blob: ae8679afc603f8a0df07ff546ef540dc52e4a0f6 [file] [log] [blame]
//===-- Bridge.cpp -- bridge to lower to MLIR -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/Bridge.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/Coarray.h"
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/HostAssociations.h"
#include "flang/Lower/IO.h"
#include "flang/Lower/IterationSpace.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/OpenACC.h"
#include "flang/Lower/OpenMP.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Runtime.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Assign.h"
#include "flang/Optimizer/Builder/Runtime/Character.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Runtime/EnvironmentDefaults.h"
#include "flang/Optimizer/Builder/Runtime/Main.h"
#include "flang/Optimizer/Builder/Runtime/Ragged.h"
#include "flang/Optimizer/Builder/Runtime/Stop.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Runtime/iostat.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Target/TargetMachine.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-bridge"
static llvm::cl::opt<bool> dumpBeforeFir(
"fdebug-dump-pre-fir", llvm::cl::init(false),
llvm::cl::desc("dump the Pre-FIR tree prior to FIR generation"));
static llvm::cl::opt<bool> forceLoopToExecuteOnce(
"always-execute-loop-body", llvm::cl::init(false),
llvm::cl::desc("force the body of a loop to execute at least once"));
namespace {
/// Information for generating a structured or unstructured increment loop.
struct IncrementLoopInfo {
template <typename T>
explicit IncrementLoopInfo(Fortran::semantics::Symbol &sym, const T &lower,
const T &upper, const std::optional<T> &step,
bool isUnordered = false)
: loopVariableSym{&sym}, lowerExpr{Fortran::semantics::GetExpr(lower)},
upperExpr{Fortran::semantics::GetExpr(upper)},
stepExpr{Fortran::semantics::GetExpr(step)}, isUnordered{isUnordered} {}
IncrementLoopInfo(IncrementLoopInfo &&) = default;
IncrementLoopInfo &operator=(IncrementLoopInfo &&x) = default;
bool isStructured() const { return !headerBlock; }
mlir::Type getLoopVariableType() const {
assert(loopVariable && "must be set");
return fir::unwrapRefType(loopVariable.getType());
}
bool hasLocalitySpecs() const {
return !localSymList.empty() || !localInitSymList.empty() ||
!sharedSymList.empty();
}
// Data members common to both structured and unstructured loops.
const Fortran::semantics::Symbol *loopVariableSym;
const Fortran::lower::SomeExpr *lowerExpr;
const Fortran::lower::SomeExpr *upperExpr;
const Fortran::lower::SomeExpr *stepExpr;
const Fortran::lower::SomeExpr *maskExpr = nullptr;
bool isUnordered; // do concurrent, forall
llvm::SmallVector<const Fortran::semantics::Symbol *> localSymList;
llvm::SmallVector<const Fortran::semantics::Symbol *> localInitSymList;
llvm::SmallVector<const Fortran::semantics::Symbol *> sharedSymList;
mlir::Value loopVariable = nullptr;
// Data members for structured loops.
fir::DoLoopOp doLoop = nullptr;
// Data members for unstructured loops.
bool hasRealControl = false;
mlir::Value tripVariable = nullptr;
mlir::Value stepVariable = nullptr;
mlir::Block *headerBlock = nullptr; // loop entry and test block
mlir::Block *maskBlock = nullptr; // concurrent loop mask block
mlir::Block *bodyBlock = nullptr; // first loop body block
mlir::Block *exitBlock = nullptr; // loop exit target block
};
/// Information to support stack management, object deallocation, and
/// object finalization at early and normal construct exits.
struct ConstructContext {
explicit ConstructContext(Fortran::lower::pft::Evaluation &eval,
Fortran::lower::StatementContext &stmtCtx)
: eval{eval}, stmtCtx{stmtCtx} {}
Fortran::lower::pft::Evaluation &eval; // construct eval
Fortran::lower::StatementContext &stmtCtx; // construct exit code
};
/// Helper class to generate the runtime type info global data and the
/// fir.type_info operations that contain the dipatch tables (if any).
/// The type info global data is required to describe the derived type to the
/// runtime so that it can operate over it.
/// It must be ensured these operations will be generated for every derived type
/// lowered in the current translated unit. However, these operations
/// cannot be generated before FuncOp have been created for functions since the
/// initializers may take their address (e.g for type bound procedures). This
/// class allows registering all the required type info while it is not
/// possible to create GlobalOp/TypeInfoOp, and to generate this data afte
/// function lowering.
class TypeInfoConverter {
/// Store the location and symbols of derived type info to be generated.
/// The location of the derived type instantiation is also stored because
/// runtime type descriptor symbols are compiler generated and cannot be
/// mapped to user code on their own.
struct TypeInfo {
Fortran::semantics::SymbolRef symbol;
const Fortran::semantics::DerivedTypeSpec &typeSpec;
fir::RecordType type;
mlir::Location loc;
};
public:
void registerTypeInfo(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
Fortran::semantics::SymbolRef typeInfoSym,
const Fortran::semantics::DerivedTypeSpec &typeSpec,
fir::RecordType type) {
if (seen.contains(typeInfoSym))
return;
seen.insert(typeInfoSym);
currentTypeInfoStack->emplace_back(
TypeInfo{typeInfoSym, typeSpec, type, loc});
return;
}
void createTypeInfo(Fortran::lower::AbstractConverter &converter) {
while (!registeredTypeInfoA.empty()) {
currentTypeInfoStack = &registeredTypeInfoB;
for (const TypeInfo &info : registeredTypeInfoA)
createTypeInfoOpAndGlobal(converter, info);
registeredTypeInfoA.clear();
currentTypeInfoStack = &registeredTypeInfoA;
for (const TypeInfo &info : registeredTypeInfoB)
createTypeInfoOpAndGlobal(converter, info);
registeredTypeInfoB.clear();
}
}
private:
void createTypeInfoOpAndGlobal(Fortran::lower::AbstractConverter &converter,
const TypeInfo &info) {
Fortran::lower::createRuntimeTypeInfoGlobal(converter, info.symbol.get());
createTypeInfoOp(converter, info);
}
void createTypeInfoOp(Fortran::lower::AbstractConverter &converter,
const TypeInfo &info) {
fir::RecordType parentType{};
if (const Fortran::semantics::DerivedTypeSpec *parent =
Fortran::evaluate::GetParentTypeSpec(info.typeSpec))
parentType = mlir::cast<fir::RecordType>(converter.genType(*parent));
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::ModuleOp module = builder.getModule();
fir::TypeInfoOp dt =
module.lookupSymbol<fir::TypeInfoOp>(info.type.getName());
if (dt)
return; // Already created.
auto insertPt = builder.saveInsertionPoint();
builder.setInsertionPoint(module.getBody(), module.getBody()->end());
dt = builder.create<fir::TypeInfoOp>(info.loc, info.type, parentType);
if (!info.typeSpec.HasDefaultInitialization(/*ignoreAllocatable=*/false,
/*ignorePointer=*/false))
dt->setAttr(dt.getNoInitAttrName(), builder.getUnitAttr());
if (!info.typeSpec.HasDestruction())
dt->setAttr(dt.getNoDestroyAttrName(), builder.getUnitAttr());
if (!Fortran::semantics::MayRequireFinalization(info.typeSpec))
dt->setAttr(dt.getNoFinalAttrName(), builder.getUnitAttr());
const Fortran::semantics::Scope *scope = info.typeSpec.scope();
if (!scope)
scope = info.typeSpec.typeSymbol().scope();
assert(scope && "failed to find type scope");
Fortran::semantics::SymbolVector bindings =
Fortran::semantics::CollectBindings(*scope);
if (!bindings.empty()) {
builder.createBlock(&dt.getDispatchTable());
for (const Fortran::semantics::SymbolRef &binding : bindings) {
const auto &details =
binding.get().get<Fortran::semantics::ProcBindingDetails>();
std::string tbpName = binding.get().name().ToString();
if (details.numPrivatesNotOverridden() > 0)
tbpName += "."s + std::to_string(details.numPrivatesNotOverridden());
std::string bindingName = converter.mangleName(details.symbol());
builder.create<fir::DTEntryOp>(
info.loc, mlir::StringAttr::get(builder.getContext(), tbpName),
mlir::SymbolRefAttr::get(builder.getContext(), bindingName));
}
builder.create<fir::FirEndOp>(info.loc);
}
builder.restoreInsertionPoint(insertPt);
}
/// Store the front-end data that will be required to generate the type info
/// for the derived types that have been converted to fir.type<>. There are
/// two stacks since the type info may visit new types, so the new types must
/// be added to a new stack.
llvm::SmallVector<TypeInfo> registeredTypeInfoA;
llvm::SmallVector<TypeInfo> registeredTypeInfoB;
llvm::SmallVector<TypeInfo> *currentTypeInfoStack = &registeredTypeInfoA;
/// Track symbols symbols processed during and after the registration
/// to avoid infinite loops between type conversions and global variable
/// creation.
llvm::SmallSetVector<Fortran::semantics::SymbolRef, 32> seen;
};
using IncrementLoopNestInfo = llvm::SmallVector<IncrementLoopInfo, 8>;
} // namespace
//===----------------------------------------------------------------------===//
// FirConverter
//===----------------------------------------------------------------------===//
namespace {
/// Traverse the pre-FIR tree (PFT) to generate the FIR dialect of MLIR.
class FirConverter : public Fortran::lower::AbstractConverter {
public:
explicit FirConverter(Fortran::lower::LoweringBridge &bridge)
: Fortran::lower::AbstractConverter(bridge.getLoweringOptions()),
bridge{bridge}, foldingContext{bridge.createFoldingContext()},
mlirSymbolTable{bridge.getModule()} {}
virtual ~FirConverter() = default;
/// Convert the PFT to FIR.
void run(Fortran::lower::pft::Program &pft) {
// Preliminary translation pass.
// Lower common blocks, taking into account initialization and the largest
// size of all instances of each common block. This is done before lowering
// since the global definition may differ from any one local definition.
lowerCommonBlocks(pft.getCommonBlocks());
// - Declare all functions that have definitions so that definition
// signatures prevail over call site signatures.
// - Define module variables and OpenMP/OpenACC declarative constructs so
// they are available before lowering any function that may use them.
bool hasMainProgram = false;
const Fortran::semantics::Symbol *globalOmpRequiresSymbol = nullptr;
for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) {
std::visit(Fortran::common::visitors{
[&](Fortran::lower::pft::FunctionLikeUnit &f) {
if (f.isMainProgram())
hasMainProgram = true;
declareFunction(f);
if (!globalOmpRequiresSymbol)
globalOmpRequiresSymbol = f.getScope().symbol();
},
[&](Fortran::lower::pft::ModuleLikeUnit &m) {
lowerModuleDeclScope(m);
for (Fortran::lower::pft::FunctionLikeUnit &f :
m.nestedFunctions)
declareFunction(f);
},
[&](Fortran::lower::pft::BlockDataUnit &b) {
if (!globalOmpRequiresSymbol)
globalOmpRequiresSymbol = b.symTab.symbol();
},
[&](Fortran::lower::pft::CompilerDirectiveUnit &d) {},
[&](Fortran::lower::pft::OpenACCDirectiveUnit &d) {},
},
u);
}
// Create definitions of intrinsic module constants.
createGlobalOutsideOfFunctionLowering(
[&]() { createIntrinsicModuleDefinitions(pft); });
// Primary translation pass.
for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) {
std::visit(
Fortran::common::visitors{
[&](Fortran::lower::pft::FunctionLikeUnit &f) { lowerFunc(f); },
[&](Fortran::lower::pft::ModuleLikeUnit &m) { lowerMod(m); },
[&](Fortran::lower::pft::BlockDataUnit &b) {},
[&](Fortran::lower::pft::CompilerDirectiveUnit &d) {},
[&](Fortran::lower::pft::OpenACCDirectiveUnit &d) {
builder = new fir::FirOpBuilder(
bridge.getModule(), bridge.getKindMap(), &mlirSymbolTable);
Fortran::lower::genOpenACCRoutineConstruct(
*this, bridge.getSemanticsContext(), bridge.getModule(),
d.routine, accRoutineInfos);
builder = nullptr;
},
},
u);
}
// Once all the code has been translated, create global runtime type info
// data structures for the derived types that have been processed, as well
// as fir.type_info operations for the dispatch tables.
createGlobalOutsideOfFunctionLowering(
[&]() { typeInfoConverter.createTypeInfo(*this); });
// Generate the `main` entry point if necessary
if (hasMainProgram)
createGlobalOutsideOfFunctionLowering([&]() {
fir::runtime::genMain(*builder, toLocation(),
bridge.getEnvironmentDefaults());
});
finalizeOpenACCLowering();
finalizeOpenMPLowering(globalOmpRequiresSymbol);
}
/// Declare a function.
void declareFunction(Fortran::lower::pft::FunctionLikeUnit &funit) {
setCurrentPosition(funit.getStartingSourceLoc());
for (int entryIndex = 0, last = funit.entryPointList.size();
entryIndex < last; ++entryIndex) {
funit.setActiveEntry(entryIndex);
// Calling CalleeInterface ctor will build a declaration
// mlir::func::FuncOp with no other side effects.
// TODO: when doing some compiler profiling on real apps, it may be worth
// to check it's better to save the CalleeInterface instead of recomputing
// it later when lowering the body. CalleeInterface ctor should be linear
// with the number of arguments, so it is not awful to do it that way for
// now, but the linear coefficient might be non negligible. Until
// measured, stick to the solution that impacts the code less.
Fortran::lower::CalleeInterface{funit, *this};
}
funit.setActiveEntry(0);
// Compute the set of host associated entities from the nested functions.
llvm::SetVector<const Fortran::semantics::Symbol *> escapeHost;
for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions)
collectHostAssociatedVariables(f, escapeHost);
funit.setHostAssociatedSymbols(escapeHost);
// Declare internal procedures
for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions)
declareFunction(f);
}
/// Get the scope that is defining or using \p sym. The returned scope is not
/// the ultimate scope, since this helper does not traverse use association.
/// This allows capturing module variables that are referenced in an internal
/// procedure but whose use statement is inside the host program.
const Fortran::semantics::Scope &
getSymbolHostScope(const Fortran::semantics::Symbol &sym) {
const Fortran::semantics::Symbol *hostSymbol = &sym;
while (const auto *details =
hostSymbol->detailsIf<Fortran::semantics::HostAssocDetails>())
hostSymbol = &details->symbol();
return hostSymbol->owner();
}
/// Collects the canonical list of all host associated symbols. These bindings
/// must be aggregated into a tuple which can then be added to each of the
/// internal procedure declarations and passed at each call site.
void collectHostAssociatedVariables(
Fortran::lower::pft::FunctionLikeUnit &funit,
llvm::SetVector<const Fortran::semantics::Symbol *> &escapees) {
const Fortran::semantics::Scope *internalScope =
funit.getSubprogramSymbol().scope();
assert(internalScope && "internal procedures symbol must create a scope");
auto addToListIfEscapee = [&](const Fortran::semantics::Symbol &sym) {
const Fortran::semantics::Symbol &ultimate = sym.GetUltimate();
const auto *namelistDetails =
ultimate.detailsIf<Fortran::semantics::NamelistDetails>();
if (ultimate.has<Fortran::semantics::ObjectEntityDetails>() ||
Fortran::semantics::IsProcedurePointer(ultimate) ||
Fortran::semantics::IsDummy(sym) || namelistDetails) {
const Fortran::semantics::Scope &symbolScope = getSymbolHostScope(sym);
if (symbolScope.kind() ==
Fortran::semantics::Scope::Kind::MainProgram ||
symbolScope.kind() == Fortran::semantics::Scope::Kind::Subprogram)
if (symbolScope != *internalScope &&
symbolScope.Contains(*internalScope)) {
if (namelistDetails) {
// So far, namelist symbols are processed on the fly in IO and
// the related namelist data structure is not added to the symbol
// map, so it cannot be passed to the internal procedures.
// Instead, all the symbols of the host namelist used in the
// internal procedure must be considered as host associated so
// that IO lowering can find them when needed.
for (const auto &namelistObject : namelistDetails->objects())
escapees.insert(&*namelistObject);
} else {
escapees.insert(&ultimate);
}
}
}
};
Fortran::lower::pft::visitAllSymbols(funit, addToListIfEscapee);
}
//===--------------------------------------------------------------------===//
// AbstractConverter overrides
//===--------------------------------------------------------------------===//
mlir::Value getSymbolAddress(Fortran::lower::SymbolRef sym) override final {
return lookupSymbol(sym).getAddr();
}
fir::ExtendedValue
symBoxToExtendedValue(const Fortran::lower::SymbolBox &symBox) {
return symBox.match(
[](const Fortran::lower::SymbolBox::Intrinsic &box)
-> fir::ExtendedValue { return box.getAddr(); },
[](const Fortran::lower::SymbolBox::None &) -> fir::ExtendedValue {
llvm::report_fatal_error("symbol not mapped");
},
[&](const fir::FortranVariableOpInterface &x) -> fir::ExtendedValue {
return hlfir::translateToExtendedValue(getCurrentLocation(),
getFirOpBuilder(), x);
},
[](const auto &box) -> fir::ExtendedValue { return box; });
}
fir::ExtendedValue
getSymbolExtendedValue(const Fortran::semantics::Symbol &sym,
Fortran::lower::SymMap *symMap) override final {
Fortran::lower::SymbolBox sb = lookupSymbol(sym, symMap);
if (!sb) {
LLVM_DEBUG(llvm::dbgs() << "unknown symbol: " << sym << "\nmap: "
<< (symMap ? *symMap : localSymbols) << '\n');
fir::emitFatalError(getCurrentLocation(),
"symbol is not mapped to any IR value");
}
return symBoxToExtendedValue(sb);
}
mlir::Value impliedDoBinding(llvm::StringRef name) override final {
mlir::Value val = localSymbols.lookupImpliedDo(name);
if (!val)
fir::emitFatalError(toLocation(), "ac-do-variable has no binding");
return val;
}
void copySymbolBinding(Fortran::lower::SymbolRef src,
Fortran::lower::SymbolRef target) override final {
localSymbols.copySymbolBinding(src, target);
}
/// Add the symbol binding to the inner-most level of the symbol map and
/// return true if it is not already present. Otherwise, return false.
bool bindIfNewSymbol(Fortran::lower::SymbolRef sym,
const fir::ExtendedValue &exval) {
if (shallowLookupSymbol(sym))
return false;
bindSymbol(sym, exval);
return true;
}
void bindSymbol(Fortran::lower::SymbolRef sym,
const fir::ExtendedValue &exval) override final {
addSymbol(sym, exval, /*forced=*/true);
}
void
overrideExprValues(const Fortran::lower::ExprToValueMap *map) override final {
exprValueOverrides = map;
}
const Fortran::lower::ExprToValueMap *getExprOverrides() override final {
return exprValueOverrides;
}
bool lookupLabelSet(Fortran::lower::SymbolRef sym,
Fortran::lower::pft::LabelSet &labelSet) override final {
Fortran::lower::pft::FunctionLikeUnit &owningProc =
*getEval().getOwningProcedure();
auto iter = owningProc.assignSymbolLabelMap.find(sym);
if (iter == owningProc.assignSymbolLabelMap.end())
return false;
labelSet = iter->second;
return true;
}
Fortran::lower::pft::Evaluation *
lookupLabel(Fortran::lower::pft::Label label) override final {
Fortran::lower::pft::FunctionLikeUnit &owningProc =
*getEval().getOwningProcedure();
return owningProc.labelEvaluationMap.lookup(label);
}
fir::ExtendedValue
genExprAddr(const Fortran::lower::SomeExpr &expr,
Fortran::lower::StatementContext &context,
mlir::Location *locPtr = nullptr) override final {
mlir::Location loc = locPtr ? *locPtr : toLocation();
if (lowerToHighLevelFIR())
return Fortran::lower::convertExprToAddress(loc, *this, expr,
localSymbols, context);
return Fortran::lower::createSomeExtendedAddress(loc, *this, expr,
localSymbols, context);
}
fir::ExtendedValue
genExprValue(const Fortran::lower::SomeExpr &expr,
Fortran::lower::StatementContext &context,
mlir::Location *locPtr = nullptr) override final {
mlir::Location loc = locPtr ? *locPtr : toLocation();
if (lowerToHighLevelFIR())
return Fortran::lower::convertExprToValue(loc, *this, expr, localSymbols,
context);
return Fortran::lower::createSomeExtendedExpression(loc, *this, expr,
localSymbols, context);
}
fir::ExtendedValue
genExprBox(mlir::Location loc, const Fortran::lower::SomeExpr &expr,
Fortran::lower::StatementContext &stmtCtx) override final {
if (lowerToHighLevelFIR())
return Fortran::lower::convertExprToBox(loc, *this, expr, localSymbols,
stmtCtx);
return Fortran::lower::createBoxValue(loc, *this, expr, localSymbols,
stmtCtx);
}
Fortran::evaluate::FoldingContext &getFoldingContext() override final {
return foldingContext;
}
mlir::Type genType(const Fortran::lower::SomeExpr &expr) override final {
return Fortran::lower::translateSomeExprToFIRType(*this, expr);
}
mlir::Type genType(const Fortran::lower::pft::Variable &var) override final {
return Fortran::lower::translateVariableToFIRType(*this, var);
}
mlir::Type genType(Fortran::lower::SymbolRef sym) override final {
return Fortran::lower::translateSymbolToFIRType(*this, sym);
}
mlir::Type
genType(Fortran::common::TypeCategory tc, int kind,
llvm::ArrayRef<std::int64_t> lenParameters) override final {
return Fortran::lower::getFIRType(&getMLIRContext(), tc, kind,
lenParameters);
}
mlir::Type
genType(const Fortran::semantics::DerivedTypeSpec &tySpec) override final {
return Fortran::lower::translateDerivedTypeToFIRType(*this, tySpec);
}
mlir::Type genType(Fortran::common::TypeCategory tc) override final {
return Fortran::lower::getFIRType(
&getMLIRContext(), tc, bridge.getDefaultKinds().GetDefaultKind(tc),
std::nullopt);
}
Fortran::lower::TypeConstructionStack &
getTypeConstructionStack() override final {
return typeConstructionStack;
}
bool isPresentShallowLookup(Fortran::semantics::Symbol &sym) override final {
return bool(shallowLookupSymbol(sym));
}
bool createHostAssociateVarClone(
const Fortran::semantics::Symbol &sym) override final {
mlir::Location loc = genLocation(sym.name());
mlir::Type symType = genType(sym);
const auto *details = sym.detailsIf<Fortran::semantics::HostAssocDetails>();
assert(details && "No host-association found");
const Fortran::semantics::Symbol &hsym = details->symbol();
mlir::Type hSymType = genType(hsym);
Fortran::lower::SymbolBox hsb =
lookupSymbol(hsym, /*symMap=*/nullptr, /*forceHlfirBase=*/true);
auto allocate = [&](llvm::ArrayRef<mlir::Value> shape,
llvm::ArrayRef<mlir::Value> typeParams) -> mlir::Value {
mlir::Value allocVal = builder->allocateLocal(
loc,
Fortran::semantics::IsAllocatableOrObjectPointer(&hsym.GetUltimate())
? hSymType
: symType,
mangleName(sym), toStringRef(sym.GetUltimate().name()),
/*pinned=*/true, shape, typeParams,
sym.GetUltimate().attrs().test(Fortran::semantics::Attr::TARGET));
return allocVal;
};
fir::ExtendedValue hexv = symBoxToExtendedValue(hsb);
fir::ExtendedValue exv = hexv.match(
[&](const fir::BoxValue &box) -> fir::ExtendedValue {
const Fortran::semantics::DeclTypeSpec *type = sym.GetType();
if (type && type->IsPolymorphic())
TODO(loc, "create polymorphic host associated copy");
// Create a contiguous temp with the same shape and length as
// the original variable described by a fir.box.
llvm::SmallVector<mlir::Value> extents =
fir::factory::getExtents(loc, *builder, hexv);
if (box.isDerivedWithLenParameters())
TODO(loc, "get length parameters from derived type BoxValue");
if (box.isCharacter()) {
mlir::Value len = fir::factory::readCharLen(*builder, loc, box);
mlir::Value temp = allocate(extents, {len});
return fir::CharArrayBoxValue{temp, len, extents};
}
return fir::ArrayBoxValue{allocate(extents, {}), extents};
},
[&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
// Allocate storage for a pointer/allocatble descriptor.
// No shape/lengths to be passed to the alloca.
return fir::MutableBoxValue(allocate({}, {}), {}, {});
},
[&](const auto &) -> fir::ExtendedValue {
mlir::Value temp =
allocate(fir::factory::getExtents(loc, *builder, hexv),
fir::factory::getTypeParams(loc, *builder, hexv));
return fir::substBase(hexv, temp);
});
// Initialise cloned allocatable
hexv.match(
[&](const fir::MutableBoxValue &box) -> void {
// Do not process pointers
if (Fortran::semantics::IsPointer(sym.GetUltimate())) {
return;
}
// Allocate storage for a pointer/allocatble descriptor.
// No shape/lengths to be passed to the alloca.
const auto new_box = exv.getBoxOf<fir::MutableBoxValue>();
// allocate if allocated
mlir::Value isAllocated =
fir::factory::genIsAllocatedOrAssociatedTest(*builder, loc, box);
auto if_builder = builder->genIfThenElse(loc, isAllocated);
if_builder.genThen([&]() {
std::string name = mangleName(sym) + ".alloc";
fir::ExtendedValue read = fir::factory::genMutableBoxRead(
*builder, loc, box, /*mayBePolymorphic=*/false);
if (auto read_arr_box = read.getBoxOf<fir::ArrayBoxValue>()) {
fir::factory::genInlinedAllocation(
*builder, loc, *new_box, read_arr_box->getLBounds(),
read_arr_box->getExtents(),
/*lenParams=*/std::nullopt, name,
/*mustBeHeap=*/true);
} else if (auto read_char_arr_box =
read.getBoxOf<fir::CharArrayBoxValue>()) {
fir::factory::genInlinedAllocation(
*builder, loc, *new_box, read_char_arr_box->getLBounds(),
read_char_arr_box->getExtents(), read_char_arr_box->getLen(),
name,
/*mustBeHeap=*/true);
} else if (auto read_char_box =
read.getBoxOf<fir::CharBoxValue>()) {
fir::factory::genInlinedAllocation(*builder, loc, *new_box,
/*lbounds=*/std::nullopt,
/*extents=*/std::nullopt,
read_char_box->getLen(), name,
/*mustBeHeap=*/true);
} else {
fir::factory::genInlinedAllocation(
*builder, loc, *new_box, box.getMutableProperties().lbounds,
box.getMutableProperties().extents,
box.nonDeferredLenParams(), name,
/*mustBeHeap=*/true);
}
});
if_builder.genElse([&]() {
// nullify box
auto empty = fir::factory::createUnallocatedBox(
*builder, loc, new_box->getBoxTy(),
new_box->nonDeferredLenParams(), {});
builder->create<fir::StoreOp>(loc, empty, new_box->getAddr());
});
if_builder.end();
},
[&](const auto &) -> void {
// Do nothing
});
return bindIfNewSymbol(sym, exv);
}
void createHostAssociateVarCloneDealloc(
const Fortran::semantics::Symbol &sym) override final {
mlir::Location loc = genLocation(sym.name());
Fortran::lower::SymbolBox hsb =
lookupSymbol(sym, /*symMap=*/nullptr, /*forceHlfirBase=*/true);
fir::ExtendedValue hexv = symBoxToExtendedValue(hsb);
hexv.match(
[&](const fir::MutableBoxValue &new_box) -> void {
// Do not process pointers
if (Fortran::semantics::IsPointer(sym.GetUltimate())) {
return;
}
// deallocate allocated in createHostAssociateVarClone value
Fortran::lower::genDeallocateIfAllocated(*this, new_box, loc);
},
[&](const auto &) -> void {
// Do nothing
});
}
void copyVar(mlir::Location loc, mlir::Value dst,
mlir::Value src) override final {
copyVarHLFIR(loc, Fortran::lower::SymbolBox::Intrinsic{dst},
Fortran::lower::SymbolBox::Intrinsic{src});
}
void copyHostAssociateVar(
const Fortran::semantics::Symbol &sym,
mlir::OpBuilder::InsertPoint *copyAssignIP = nullptr) override final {
// 1) Fetch the original copy of the variable.
assert(sym.has<Fortran::semantics::HostAssocDetails>() &&
"No host-association found");
const Fortran::semantics::Symbol &hsym = sym.GetUltimate();
Fortran::lower::SymbolBox hsb = lookupOneLevelUpSymbol(hsym);
assert(hsb && "Host symbol box not found");
// 2) Fetch the copied one that will mask the original.
Fortran::lower::SymbolBox sb = shallowLookupSymbol(sym);
assert(sb && "Host-associated symbol box not found");
assert(hsb.getAddr() != sb.getAddr() &&
"Host and associated symbol boxes are the same");
// 3) Perform the assignment.
mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint();
if (copyAssignIP && copyAssignIP->isSet())
builder->restoreInsertionPoint(*copyAssignIP);
else
builder->setInsertionPointAfter(sb.getAddr().getDefiningOp());
Fortran::lower::SymbolBox *lhs_sb, *rhs_sb;
if (copyAssignIP && copyAssignIP->isSet() &&
sym.test(Fortran::semantics::Symbol::Flag::OmpLastPrivate)) {
// lastprivate case
lhs_sb = &hsb;
rhs_sb = &sb;
} else {
lhs_sb = &sb;
rhs_sb = &hsb;
}
copyVar(sym, *lhs_sb, *rhs_sb);
if (copyAssignIP && copyAssignIP->isSet() &&
sym.test(Fortran::semantics::Symbol::Flag::OmpLastPrivate)) {
builder->restoreInsertionPoint(insPt);
}
}
void genEval(Fortran::lower::pft::Evaluation &eval,
bool unstructuredContext) override final {
genFIR(eval, unstructuredContext);
}
//===--------------------------------------------------------------------===//
// Utility methods
//===--------------------------------------------------------------------===//
void collectSymbolSet(
Fortran::lower::pft::Evaluation &eval,
llvm::SetVector<const Fortran::semantics::Symbol *> &symbolSet,
Fortran::semantics::Symbol::Flag flag, bool collectSymbols,
bool checkHostAssociatedSymbols) override final {
auto addToList = [&](const Fortran::semantics::Symbol &sym) {
std::function<void(const Fortran::semantics::Symbol &, bool)>
insertSymbols = [&](const Fortran::semantics::Symbol &oriSymbol,
bool collectSymbol) {
if (collectSymbol && oriSymbol.test(flag))
symbolSet.insert(&oriSymbol);
else if (checkHostAssociatedSymbols)
if (const auto *details{
oriSymbol
.detailsIf<Fortran::semantics::HostAssocDetails>()})
insertSymbols(details->symbol(), true);
};
insertSymbols(sym, collectSymbols);
};
Fortran::lower::pft::visitAllSymbols(eval, addToList);
}
mlir::Location getCurrentLocation() override final { return toLocation(); }
/// Generate a dummy location.
mlir::Location genUnknownLocation() override final {
// Note: builder may not be instantiated yet
return mlir::UnknownLoc::get(&getMLIRContext());
}
/// Generate a `Location` from the `CharBlock`.
mlir::Location
genLocation(const Fortran::parser::CharBlock &block) override final {
if (const Fortran::parser::AllCookedSources *cooked =
bridge.getCookedSource()) {
if (std::optional<Fortran::parser::ProvenanceRange> provenance =
cooked->GetProvenanceRange(block)) {
if (std::optional<Fortran::parser::SourcePosition> filePos =
cooked->allSources().GetSourcePosition(provenance->start())) {
llvm::SmallString<256> filePath(*filePos->path);
llvm::sys::fs::make_absolute(filePath);
llvm::sys::path::remove_dots(filePath);
return mlir::FileLineColLoc::get(&getMLIRContext(), filePath.str(),
filePos->line, filePos->column);
}
}
}
return genUnknownLocation();
}
const Fortran::semantics::Scope &getCurrentScope() override final {
return bridge.getSemanticsContext().FindScope(currentPosition);
}
fir::FirOpBuilder &getFirOpBuilder() override final { return *builder; }
mlir::ModuleOp &getModuleOp() override final { return bridge.getModule(); }
mlir::MLIRContext &getMLIRContext() override final {
return bridge.getMLIRContext();
}
std::string
mangleName(const Fortran::semantics::Symbol &symbol) override final {
return Fortran::lower::mangle::mangleName(
symbol, scopeBlockIdMap, /*keepExternalInScope=*/false,
getLoweringOptions().getUnderscoring());
}
std::string mangleName(
const Fortran::semantics::DerivedTypeSpec &derivedType) override final {
return Fortran::lower::mangle::mangleName(derivedType, scopeBlockIdMap);
}
std::string mangleName(std::string &name) override final {
return Fortran::lower::mangle::mangleName(name, getCurrentScope(),
scopeBlockIdMap);
}
std::string getRecordTypeFieldName(
const Fortran::semantics::Symbol &component) override final {
return Fortran::lower::mangle::getRecordTypeFieldName(component,
scopeBlockIdMap);
}
const fir::KindMapping &getKindMap() override final {
return bridge.getKindMap();
}
/// Return the current function context, which may be a nested BLOCK context
/// or a full subprogram context.
Fortran::lower::StatementContext &getFctCtx() override final {
if (!activeConstructStack.empty() &&
activeConstructStack.back().eval.isA<Fortran::parser::BlockConstruct>())
return activeConstructStack.back().stmtCtx;
return bridge.fctCtx();
}
mlir::Value hostAssocTupleValue() override final { return hostAssocTuple; }
/// Record a binding for the ssa-value of the tuple for this function.
void bindHostAssocTuple(mlir::Value val) override final {
assert(!hostAssocTuple && val);
hostAssocTuple = val;
}
void registerTypeInfo(mlir::Location loc,
Fortran::lower::SymbolRef typeInfoSym,
const Fortran::semantics::DerivedTypeSpec &typeSpec,
fir::RecordType type) override final {
typeInfoConverter.registerTypeInfo(*this, loc, typeInfoSym, typeSpec, type);
}
llvm::StringRef
getUniqueLitName(mlir::Location loc,
std::unique_ptr<Fortran::lower::SomeExpr> expr,
mlir::Type eleTy) override final {
std::string namePrefix =
getConstantExprManglePrefix(loc, *expr.get(), eleTy);
auto [it, inserted] = literalNamesMap.try_emplace(
expr.get(), namePrefix + std::to_string(uniqueLitId));
const auto &name = it->second;
if (inserted) {
// Keep ownership of the expr key.
literalExprsStorage.push_back(std::move(expr));
// If we've just added a new name, we have to make sure
// there is no global object with the same name in the module.
fir::GlobalOp global = builder->getNamedGlobal(name);
if (global)
fir::emitFatalError(loc, llvm::Twine("global object with name '") +
llvm::Twine(name) +
llvm::Twine("' already exists"));
++uniqueLitId;
return name;
}
// The name already exists. Verify that the prefix is the same.
if (!llvm::StringRef(name).starts_with(namePrefix))
fir::emitFatalError(loc, llvm::Twine("conflicting prefixes: '") +
llvm::Twine(name) +
llvm::Twine("' does not start with '") +
llvm::Twine(namePrefix) + llvm::Twine("'"));
return name;
}
private:
FirConverter() = delete;
FirConverter(const FirConverter &) = delete;
FirConverter &operator=(const FirConverter &) = delete;
//===--------------------------------------------------------------------===//
// Helper member functions
//===--------------------------------------------------------------------===//
mlir::Value createFIRExpr(mlir::Location loc,
const Fortran::lower::SomeExpr *expr,
Fortran::lower::StatementContext &stmtCtx) {
return fir::getBase(genExprValue(*expr, stmtCtx, &loc));
}
/// Find the symbol in the local map or return null.
Fortran::lower::SymbolBox
lookupSymbol(const Fortran::semantics::Symbol &sym,
Fortran::lower::SymMap *symMap = nullptr,
bool forceHlfirBase = false) {
symMap = symMap ? symMap : &localSymbols;
if (lowerToHighLevelFIR()) {
if (std::optional<fir::FortranVariableOpInterface> var =
symMap->lookupVariableDefinition(sym)) {
auto exv = hlfir::translateToExtendedValue(toLocation(), *builder, *var,
forceHlfirBase);
return exv.match(
[](mlir::Value x) -> Fortran::lower::SymbolBox {
return Fortran::lower::SymbolBox::Intrinsic{x};
},
[](auto x) -> Fortran::lower::SymbolBox { return x; });
}
// Entry character result represented as an argument pair
// needs to be represented in the symbol table even before
// we can create DeclareOp for it. The temporary mapping
// is EmboxCharOp that conveys the address and length information.
// After mapSymbolAttributes is done, the mapping is replaced
// with the new DeclareOp, and the following table lookups
// do not reach here.
if (sym.IsFuncResult())
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
if (declTy->category() ==
Fortran::semantics::DeclTypeSpec::Category::Character)
return symMap->lookupSymbol(sym);
// Procedure dummies are not mapped with an hlfir.declare because
// they are not "variable" (cannot be assigned to), and it would
// make hlfir.declare more complex than it needs to to allow this.
// Do a regular lookup.
if (Fortran::semantics::IsProcedure(sym))
return symMap->lookupSymbol(sym);
// Commonblock names are not variables, but in some lowerings (like
// OpenMP) it is useful to maintain the address of the commonblock in an
// MLIR value and query it. hlfir.declare need not be created for these.
if (sym.detailsIf<Fortran::semantics::CommonBlockDetails>())
return symMap->lookupSymbol(sym);
// For symbols to be privatized in OMP, the symbol is mapped to an
// instance of `SymbolBox::Intrinsic` (i.e. a direct mapping to an MLIR
// SSA value). This MLIR SSA value is the block argument to the
// `omp.private`'s `alloc` block. If this is the case, we return this
// `SymbolBox::Intrinsic` value.
if (Fortran::lower::SymbolBox v = symMap->lookupSymbol(sym))
return v;
return {};
}
if (Fortran::lower::SymbolBox v = symMap->lookupSymbol(sym))
return v;
return {};
}
/// Find the symbol in the inner-most level of the local map or return null.
Fortran::lower::SymbolBox
shallowLookupSymbol(const Fortran::semantics::Symbol &sym) {
if (Fortran::lower::SymbolBox v = localSymbols.shallowLookupSymbol(sym))
return v;
return {};
}
/// Find the symbol in one level up of symbol map such as for host-association
/// in OpenMP code or return null.
Fortran::lower::SymbolBox
lookupOneLevelUpSymbol(const Fortran::semantics::Symbol &sym) override {
if (Fortran::lower::SymbolBox v = localSymbols.lookupOneLevelUpSymbol(sym))
return v;
return {};
}
mlir::SymbolTable *getMLIRSymbolTable() override { return &mlirSymbolTable; }
/// Add the symbol to the local map and return `true`. If the symbol is
/// already in the map and \p forced is `false`, the map is not updated.
/// Instead the value `false` is returned.
bool addSymbol(const Fortran::semantics::SymbolRef sym,
fir::ExtendedValue val, bool forced = false) {
if (!forced && lookupSymbol(sym))
return false;
if (lowerToHighLevelFIR()) {
Fortran::lower::genDeclareSymbol(*this, localSymbols, sym, val,
fir::FortranVariableFlagsEnum::None,
forced);
} else {
localSymbols.addSymbol(sym, val, forced);
}
return true;
}
void copyVar(const Fortran::semantics::Symbol &sym,
const Fortran::lower::SymbolBox &lhs_sb,
const Fortran::lower::SymbolBox &rhs_sb) {
mlir::Location loc = genLocation(sym.name());
if (lowerToHighLevelFIR())
copyVarHLFIR(loc, lhs_sb, rhs_sb);
else
copyVarFIR(loc, sym, lhs_sb, rhs_sb);
}
void copyVarHLFIR(mlir::Location loc, Fortran::lower::SymbolBox dst,
Fortran::lower::SymbolBox src) {
assert(lowerToHighLevelFIR());
hlfir::Entity lhs{dst.getAddr()};
hlfir::Entity rhs{src.getAddr()};
// Temporary_lhs is set to true in hlfir.assign below to avoid user
// assignment to be used and finalization to be called on the LHS.
// This may or may not be correct but mimics the current behaviour
// without HLFIR.
auto copyData = [&](hlfir::Entity l, hlfir::Entity r) {
// Dereference RHS and load it if trivial scalar.
r = hlfir::loadTrivialScalar(loc, *builder, r);
builder->create<hlfir::AssignOp>(
loc, r, l,
/*isWholeAllocatableAssignment=*/false,
/*keepLhsLengthInAllocatableAssignment=*/false,
/*temporary_lhs=*/true);
};
bool isBoxAllocatable = dst.match(
[](const fir::MutableBoxValue &box) { return box.isAllocatable(); },
[](const fir::FortranVariableOpInterface &box) {
return fir::FortranVariableOpInterface(box).isAllocatable();
},
[](const auto &box) { return false; });
bool isBoxPointer = dst.match(
[](const fir::MutableBoxValue &box) { return box.isPointer(); },
[](const fir::FortranVariableOpInterface &box) {
return fir::FortranVariableOpInterface(box).isPointer();
},
[](const auto &box) { return false; });
if (isBoxAllocatable) {
// Deep copy allocatable if it is allocated.
// Note that when allocated, the RHS is already allocated with the LHS
// shape for copy on entry in createHostAssociateVarClone.
// For lastprivate, this assumes that the RHS was not reallocated in
// the OpenMP region.
lhs = hlfir::derefPointersAndAllocatables(loc, *builder, lhs);
mlir::Value addr = hlfir::genVariableRawAddress(loc, *builder, lhs);
mlir::Value isAllocated = builder->genIsNotNullAddr(loc, addr);
builder->genIfThen(loc, isAllocated)
.genThen([&]() {
// Copy the DATA, not the descriptors.
copyData(lhs, rhs);
})
.end();
} else if (isBoxPointer) {
// Set LHS target to the target of RHS (do not copy the RHS
// target data into the LHS target storage).
auto loadVal = builder->create<fir::LoadOp>(loc, rhs);
builder->create<fir::StoreOp>(loc, loadVal, lhs);
} else {
// Non ALLOCATABLE/POINTER variable. Simple DATA copy.
copyData(lhs, rhs);
}
}
void copyVarFIR(mlir::Location loc, const Fortran::semantics::Symbol &sym,
const Fortran::lower::SymbolBox &lhs_sb,
const Fortran::lower::SymbolBox &rhs_sb) {
assert(!lowerToHighLevelFIR());
fir::ExtendedValue lhs = symBoxToExtendedValue(lhs_sb);
fir::ExtendedValue rhs = symBoxToExtendedValue(rhs_sb);
mlir::Type symType = genType(sym);
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(symType)) {
Fortran::lower::StatementContext stmtCtx;
Fortran::lower::createSomeArrayAssignment(*this, lhs, rhs, localSymbols,
stmtCtx);
stmtCtx.finalizeAndReset();
} else if (lhs.getBoxOf<fir::CharBoxValue>()) {
fir::factory::CharacterExprHelper{*builder, loc}.createAssign(lhs, rhs);
} else {
auto loadVal = builder->create<fir::LoadOp>(loc, fir::getBase(rhs));
builder->create<fir::StoreOp>(loc, loadVal, fir::getBase(lhs));
}
}
/// Map a block argument to a result or dummy symbol. This is not the
/// definitive mapping. The specification expression have not been lowered
/// yet. The final mapping will be done using this pre-mapping in
/// Fortran::lower::mapSymbolAttributes.
bool mapBlockArgToDummyOrResult(const Fortran::semantics::SymbolRef sym,
mlir::Value val, bool forced = false) {
if (!forced && lookupSymbol(sym))
return false;
localSymbols.addSymbol(sym, val, forced);
return true;
}
/// Generate the address of loop variable \p sym.
/// If \p sym is not mapped yet, allocate local storage for it.
mlir::Value genLoopVariableAddress(mlir::Location loc,
const Fortran::semantics::Symbol &sym,
bool isUnordered) {
if (isUnordered || sym.has<Fortran::semantics::HostAssocDetails>() ||
sym.has<Fortran::semantics::UseDetails>()) {
if (!shallowLookupSymbol(sym)) {
// Do concurrent loop variables are not mapped yet since they are local
// to the Do concurrent scope (same for OpenMP loops).
mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint();
builder->setInsertionPointToStart(builder->getAllocaBlock());
mlir::Type tempTy = genType(sym);
mlir::Value temp =
builder->createTemporaryAlloc(loc, tempTy, toStringRef(sym.name()));
bindIfNewSymbol(sym, temp);
builder->restoreInsertionPoint(insPt);
}
}
auto entry = lookupSymbol(sym);
(void)entry;
assert(entry && "loop control variable must already be in map");
Fortran::lower::StatementContext stmtCtx;
return fir::getBase(
genExprAddr(Fortran::evaluate::AsGenericExpr(sym).value(), stmtCtx));
}
static bool isNumericScalarCategory(Fortran::common::TypeCategory cat) {
return cat == Fortran::common::TypeCategory::Integer ||
cat == Fortran::common::TypeCategory::Real ||
cat == Fortran::common::TypeCategory::Complex ||
cat == Fortran::common::TypeCategory::Logical;
}
static bool isLogicalCategory(Fortran::common::TypeCategory cat) {
return cat == Fortran::common::TypeCategory::Logical;
}
static bool isCharacterCategory(Fortran::common::TypeCategory cat) {
return cat == Fortran::common::TypeCategory::Character;
}
static bool isDerivedCategory(Fortran::common::TypeCategory cat) {
return cat == Fortran::common::TypeCategory::Derived;
}
/// Insert a new block before \p block. Leave the insertion point unchanged.
mlir::Block *insertBlock(mlir::Block *block) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
mlir::Block *newBlock = builder->createBlock(block);
builder->restoreInsertionPoint(insertPt);
return newBlock;
}
Fortran::lower::pft::Evaluation &evalOfLabel(Fortran::parser::Label label) {
const Fortran::lower::pft::LabelEvalMap &labelEvaluationMap =
getEval().getOwningProcedure()->labelEvaluationMap;
const auto iter = labelEvaluationMap.find(label);
assert(iter != labelEvaluationMap.end() && "label missing from map");
return *iter->second;
}
void genBranch(mlir::Block *targetBlock) {
assert(targetBlock && "missing unconditional target block");
builder->create<mlir::cf::BranchOp>(toLocation(), targetBlock);
}
void genConditionalBranch(mlir::Value cond, mlir::Block *trueTarget,
mlir::Block *falseTarget) {
assert(trueTarget && "missing conditional branch true block");
assert(falseTarget && "missing conditional branch false block");
mlir::Location loc = toLocation();
mlir::Value bcc = builder->createConvert(loc, builder->getI1Type(), cond);
builder->create<mlir::cf::CondBranchOp>(loc, bcc, trueTarget, std::nullopt,
falseTarget, std::nullopt);
}
void genConditionalBranch(mlir::Value cond,
Fortran::lower::pft::Evaluation *trueTarget,
Fortran::lower::pft::Evaluation *falseTarget) {
genConditionalBranch(cond, trueTarget->block, falseTarget->block);
}
void genConditionalBranch(const Fortran::parser::ScalarLogicalExpr &expr,
mlir::Block *trueTarget, mlir::Block *falseTarget) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value cond =
createFIRExpr(toLocation(), Fortran::semantics::GetExpr(expr), stmtCtx);
stmtCtx.finalizeAndReset();
genConditionalBranch(cond, trueTarget, falseTarget);
}
void genConditionalBranch(const Fortran::parser::ScalarLogicalExpr &expr,
Fortran::lower::pft::Evaluation *trueTarget,
Fortran::lower::pft::Evaluation *falseTarget) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value cond =
createFIRExpr(toLocation(), Fortran::semantics::GetExpr(expr), stmtCtx);
stmtCtx.finalizeAndReset();
genConditionalBranch(cond, trueTarget->block, falseTarget->block);
}
/// Return the nearest active ancestor construct of \p eval, or nullptr.
Fortran::lower::pft::Evaluation *
getActiveAncestor(const Fortran::lower::pft::Evaluation &eval) {
Fortran::lower::pft::Evaluation *ancestor = eval.parentConstruct;
for (; ancestor; ancestor = ancestor->parentConstruct)
if (ancestor->activeConstruct)
break;
return ancestor;
}
/// Return the predicate: "a branch to \p targetEval has exit code".
bool hasExitCode(const Fortran::lower::pft::Evaluation &targetEval) {
Fortran::lower::pft::Evaluation *activeAncestor =
getActiveAncestor(targetEval);
for (auto it = activeConstructStack.rbegin(),
rend = activeConstructStack.rend();
it != rend; ++it) {
if (&it->eval == activeAncestor)
break;
if (it->stmtCtx.hasCode())
return true;
}
return false;
}
/// Generate a branch to \p targetEval after generating on-exit code for
/// any enclosing construct scopes that are exited by taking the branch.
void
genConstructExitBranch(const Fortran::lower::pft::Evaluation &targetEval) {
Fortran::lower::pft::Evaluation *activeAncestor =
getActiveAncestor(targetEval);
for (auto it = activeConstructStack.rbegin(),
rend = activeConstructStack.rend();
it != rend; ++it) {
if (&it->eval == activeAncestor)
break;
it->stmtCtx.finalizeAndKeep();
}
genBranch(targetEval.block);
}
/// Generate a SelectOp or branch sequence that compares \p selector against
/// values in \p valueList and targets corresponding labels in \p labelList.
/// If no value matches the selector, branch to \p defaultEval.
///
/// Three cases require special processing.
///
/// An empty \p valueList indicates an ArithmeticIfStmt context that requires
/// two comparisons against 0 or 0.0. The selector may have either INTEGER
/// or REAL type.
///
/// A nonpositive \p valuelist value indicates an IO statement context
/// (0 for ERR, -1 for END, -2 for EOR). An ERR branch must be taken for
/// any positive (IOSTAT) value. A missing (zero) label requires a branch
/// to \p defaultEval for that value.
///
/// A non-null \p errorBlock indicates an AssignedGotoStmt context that
/// must always branch to an explicit target. There is no valid defaultEval
/// in this case. Generate a branch to \p errorBlock for an AssignedGotoStmt
/// that violates this program requirement.
///
/// If this is not an ArithmeticIfStmt and no targets have exit code,
/// generate a SelectOp. Otherwise, for each target, if it has exit code,
/// branch to a new block, insert exit code, and then branch to the target.
/// Otherwise, branch directly to the target.
void genMultiwayBranch(mlir::Value selector,
llvm::SmallVector<int64_t> valueList,
llvm::SmallVector<Fortran::parser::Label> labelList,
const Fortran::lower::pft::Evaluation &defaultEval,
mlir::Block *errorBlock = nullptr) {
bool inArithmeticIfContext = valueList.empty();
assert(((inArithmeticIfContext && labelList.size() == 2) ||
(valueList.size() && labelList.size() == valueList.size())) &&
"mismatched multiway branch targets");
mlir::Block *defaultBlock = errorBlock ? errorBlock : defaultEval.block;
bool defaultHasExitCode = !errorBlock && hasExitCode(defaultEval);
bool hasAnyExitCode = defaultHasExitCode;
if (!hasAnyExitCode)
for (auto label : labelList)
if (label && hasExitCode(evalOfLabel(label))) {
hasAnyExitCode = true;
break;
}
mlir::Location loc = toLocation();
size_t branchCount = labelList.size();
if (!inArithmeticIfContext && !hasAnyExitCode &&
!getEval().forceAsUnstructured()) { // from -no-structured-fir option
// Generate a SelectOp.
llvm::SmallVector<mlir::Block *> blockList;
for (auto label : labelList) {
mlir::Block *block =
label ? evalOfLabel(label).block : defaultEval.block;
assert(block && "missing multiway branch block");
blockList.push_back(block);
}
blockList.push_back(defaultBlock);
if (valueList[branchCount - 1] == 0) // Swap IO ERR and default blocks.
std::swap(blockList[branchCount - 1], blockList[branchCount]);
builder->create<fir::SelectOp>(loc, selector, valueList, blockList);
return;
}
mlir::Type selectorType = selector.getType();
bool realSelector = mlir::isa<mlir::FloatType>(selectorType);
assert((inArithmeticIfContext || !realSelector) && "invalid selector type");
mlir::Value zero;
if (inArithmeticIfContext)
zero =
realSelector
? builder->create<mlir::arith::ConstantOp>(
loc, selectorType, builder->getFloatAttr(selectorType, 0.0))
: builder->createIntegerConstant(loc, selectorType, 0);
for (auto label : llvm::enumerate(labelList)) {
mlir::Value cond;
if (realSelector) // inArithmeticIfContext
cond = builder->create<mlir::arith::CmpFOp>(
loc,
label.index() == 0 ? mlir::arith::CmpFPredicate::OLT
: mlir::arith::CmpFPredicate::OGT,
selector, zero);
else if (inArithmeticIfContext) // INTEGER selector
cond = builder->create<mlir::arith::CmpIOp>(
loc,
label.index() == 0 ? mlir::arith::CmpIPredicate::slt
: mlir::arith::CmpIPredicate::sgt,
selector, zero);
else // A value of 0 is an IO ERR branch: invert comparison.
cond = builder->create<mlir::arith::CmpIOp>(
loc,
valueList[label.index()] == 0 ? mlir::arith::CmpIPredicate::ne
: mlir::arith::CmpIPredicate::eq,
selector,
builder->createIntegerConstant(loc, selectorType,
valueList[label.index()]));
// Branch to a new block with exit code and then to the target, or branch
// directly to the target. defaultBlock is the "else" target.
bool lastBranch = label.index() == branchCount - 1;
mlir::Block *nextBlock =
lastBranch && !defaultHasExitCode
? defaultBlock
: builder->getBlock()->splitBlock(builder->getInsertionPoint());
const Fortran::lower::pft::Evaluation &targetEval =
label.value() ? evalOfLabel(label.value()) : defaultEval;
if (hasExitCode(targetEval)) {
mlir::Block *jumpBlock =
builder->getBlock()->splitBlock(builder->getInsertionPoint());
genConditionalBranch(cond, jumpBlock, nextBlock);
startBlock(jumpBlock);
genConstructExitBranch(targetEval);
} else {
genConditionalBranch(cond, targetEval.block, nextBlock);
}
if (!lastBranch) {
startBlock(nextBlock);
} else if (defaultHasExitCode) {
startBlock(nextBlock);
genConstructExitBranch(defaultEval);
}
}
}
void pushActiveConstruct(Fortran::lower::pft::Evaluation &eval,
Fortran::lower::StatementContext &stmtCtx) {
activeConstructStack.push_back(ConstructContext{eval, stmtCtx});
eval.activeConstruct = true;
}
void popActiveConstruct() {
assert(!activeConstructStack.empty() && "invalid active construct stack");
activeConstructStack.back().eval.activeConstruct = false;
activeConstructStack.pop_back();
}
//===--------------------------------------------------------------------===//
// Termination of symbolically referenced execution units
//===--------------------------------------------------------------------===//
/// END of program
///
/// Generate the cleanup block before the program exits
void genExitRoutine() {
if (blockIsUnterminated())
builder->create<mlir::func::ReturnOp>(toLocation());
}
/// END of procedure-like constructs
///
/// Generate the cleanup block before the procedure exits
void genReturnSymbol(const Fortran::semantics::Symbol &functionSymbol) {
const Fortran::semantics::Symbol &resultSym =
functionSymbol.get<Fortran::semantics::SubprogramDetails>().result();
Fortran::lower::SymbolBox resultSymBox = lookupSymbol(resultSym);
mlir::Location loc = toLocation();
if (!resultSymBox) {
mlir::emitError(loc, "internal error when processing function return");
return;
}
mlir::Value resultVal = resultSymBox.match(
[&](const fir::CharBoxValue &x) -> mlir::Value {
if (Fortran::semantics::IsBindCProcedure(functionSymbol))
return builder->create<fir::LoadOp>(loc, x.getBuffer());
return fir::factory::CharacterExprHelper{*builder, loc}
.createEmboxChar(x.getBuffer(), x.getLen());
},
[&](const fir::MutableBoxValue &x) -> mlir::Value {
mlir::Value resultRef = resultSymBox.getAddr();
mlir::Value load = builder->create<fir::LoadOp>(loc, resultRef);
unsigned rank = x.rank();
if (x.isAllocatable() && rank > 0) {
// ALLOCATABLE array result must have default lower bounds.
// At the call site the result box of a function reference
// might be considered having default lower bounds, but
// the runtime box should probably comply with this assumption
// as well. If the result box has proper lbounds in runtime,
// this may improve the debugging experience of Fortran apps.
// We may consider removing this, if the overhead of setting
// default lower bounds is too big.
mlir::Value one =
builder->createIntegerConstant(loc, builder->getIndexType(), 1);
llvm::SmallVector<mlir::Value> lbounds{rank, one};
auto shiftTy = fir::ShiftType::get(builder->getContext(), rank);
mlir::Value shiftOp =
builder->create<fir::ShiftOp>(loc, shiftTy, lbounds);
load = builder->create<fir::ReboxOp>(
loc, load.getType(), load, shiftOp, /*slice=*/mlir::Value{});
}
return load;
},
[&](const auto &) -> mlir::Value {
mlir::Value resultRef = resultSymBox.getAddr();
mlir::Type resultType = genType(resultSym);
mlir::Type resultRefType = builder->getRefType(resultType);
// A function with multiple entry points returning different types
// tags all result variables with one of the largest types to allow
// them to share the same storage. Convert this to the actual type.
if (resultRef.getType() != resultRefType)
resultRef = builder->createConvert(loc, resultRefType, resultRef);
return builder->create<fir::LoadOp>(loc, resultRef);
});
bridge.openAccCtx().finalizeAndPop();
bridge.fctCtx().finalizeAndPop();
builder->create<mlir::func::ReturnOp>(loc, resultVal);
}
/// Get the return value of a call to \p symbol, which is a subroutine entry
/// point that has alternative return specifiers.
const mlir::Value
getAltReturnResult(const Fortran::semantics::Symbol &symbol) {
assert(Fortran::semantics::HasAlternateReturns(symbol) &&
"subroutine does not have alternate returns");
return getSymbolAddress(symbol);
}
void genFIRProcedureExit(Fortran::lower::pft::FunctionLikeUnit &funit,
const Fortran::semantics::Symbol &symbol) {
if (mlir::Block *finalBlock = funit.finalBlock) {
// The current block must end with a terminator.
if (blockIsUnterminated())
builder->create<mlir::cf::BranchOp>(toLocation(), finalBlock);
// Set insertion point to final block.
builder->setInsertionPoint(finalBlock, finalBlock->end());
}
if (Fortran::semantics::IsFunction(symbol)) {
genReturnSymbol(symbol);
} else if (Fortran::semantics::HasAlternateReturns(symbol)) {
mlir::Value retval = builder->create<fir::LoadOp>(
toLocation(), getAltReturnResult(symbol));
bridge.openAccCtx().finalizeAndPop();
bridge.fctCtx().finalizeAndPop();
builder->create<mlir::func::ReturnOp>(toLocation(), retval);
} else {
bridge.openAccCtx().finalizeAndPop();
bridge.fctCtx().finalizeAndPop();
genExitRoutine();
}
}
//
// Statements that have control-flow semantics
//
/// Generate an If[Then]Stmt condition or its negation.
template <typename A>
mlir::Value genIfCondition(const A *stmt, bool negate = false) {
mlir::Location loc = toLocation();
Fortran::lower::StatementContext stmtCtx;
mlir::Value condExpr = createFIRExpr(
loc,
Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarLogicalExpr>(stmt->t)),
stmtCtx);
stmtCtx.finalizeAndReset();
mlir::Value cond =
builder->createConvert(loc, builder->getI1Type(), condExpr);
if (negate)
cond = builder->create<mlir::arith::XOrIOp>(
loc, cond, builder->createIntegerConstant(loc, cond.getType(), 1));
return cond;
}
mlir::func::FuncOp getFunc(llvm::StringRef name, mlir::FunctionType ty) {
if (mlir::func::FuncOp func = builder->getNamedFunction(name)) {
assert(func.getFunctionType() == ty);
return func;
}
return builder->createFunction(toLocation(), name, ty);
}
/// Lowering of CALL statement
void genFIR(const Fortran::parser::CallStmt &stmt) {
Fortran::lower::StatementContext stmtCtx;
Fortran::lower::pft::Evaluation &eval = getEval();
setCurrentPosition(stmt.source);
assert(stmt.typedCall && "Call was not analyzed");
mlir::Value res{};
if (lowerToHighLevelFIR()) {
std::optional<mlir::Type> resultType;
if (stmt.typedCall->hasAlternateReturns())
resultType = builder->getIndexType();
auto hlfirRes = Fortran::lower::convertCallToHLFIR(
toLocation(), *this, *stmt.typedCall, resultType, localSymbols,
stmtCtx);
if (hlfirRes)
res = *hlfirRes;
} else {
// Call statement lowering shares code with function call lowering.
res = Fortran::lower::createSubroutineCall(
*this, *stmt.typedCall, explicitIterSpace, implicitIterSpace,
localSymbols, stmtCtx, /*isUserDefAssignment=*/false);
}
stmtCtx.finalizeAndReset();
if (!res)
return; // "Normal" subroutine call.
// Call with alternate return specifiers.
// The call returns an index that selects an alternate return branch target.
llvm::SmallVector<int64_t> indexList;
llvm::SmallVector<Fortran::parser::Label> labelList;
int64_t index = 0;
for (const Fortran::parser::ActualArgSpec &arg :
std::get<std::list<Fortran::parser::ActualArgSpec>>(stmt.call.t)) {
const auto &actual = std::get<Fortran::parser::ActualArg>(arg.t);
if (const auto *altReturn =
std::get_if<Fortran::parser::AltReturnSpec>(&actual.u)) {
indexList.push_back(++index);
labelList.push_back(altReturn->v);
}
}
genMultiwayBranch(res, indexList, labelList, eval.nonNopSuccessor());
}
void genFIR(const Fortran::parser::ComputedGotoStmt &stmt) {
Fortran::lower::StatementContext stmtCtx;
Fortran::lower::pft::Evaluation &eval = getEval();
mlir::Value selectExpr =
createFIRExpr(toLocation(),
Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntExpr>(stmt.t)),
stmtCtx);
stmtCtx.finalizeAndReset();
llvm::SmallVector<int64_t> indexList;
llvm::SmallVector<Fortran::parser::Label> labelList;
int64_t index = 0;
for (Fortran::parser::Label label :
std::get<std::list<Fortran::parser::Label>>(stmt.t)) {
indexList.push_back(++index);
labelList.push_back(label);
}
genMultiwayBranch(selectExpr, indexList, labelList, eval.nonNopSuccessor());
}
void genFIR(const Fortran::parser::ArithmeticIfStmt &stmt) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value expr = createFIRExpr(
toLocation(),
Fortran::semantics::GetExpr(std::get<Fortran::parser::Expr>(stmt.t)),
stmtCtx);
stmtCtx.finalizeAndReset();
// Raise an exception if REAL expr is a NaN.
if (mlir::isa<mlir::FloatType>(expr.getType()))
expr = builder->create<mlir::arith::AddFOp>(toLocation(), expr, expr);
// An empty valueList indicates to genMultiwayBranch that the branch is
// an ArithmeticIfStmt that has two branches on value 0 or 0.0.
llvm::SmallVector<int64_t> valueList;
llvm::SmallVector<Fortran::parser::Label> labelList;
labelList.push_back(std::get<1>(stmt.t));
labelList.push_back(std::get<3>(stmt.t));
const Fortran::lower::pft::LabelEvalMap &labelEvaluationMap =
getEval().getOwningProcedure()->labelEvaluationMap;
const auto iter = labelEvaluationMap.find(std::get<2>(stmt.t));
assert(iter != labelEvaluationMap.end() && "label missing from map");
genMultiwayBranch(expr, valueList, labelList, *iter->second);
}
void genFIR(const Fortran::parser::AssignedGotoStmt &stmt) {
// See Fortran 90 Clause 8.2.4.
// Relax the requirement that the GOTO variable must have a value in the
// label list when a list is present, and allow a branch to any non-format
// target that has an ASSIGN statement for the variable.
mlir::Location loc = toLocation();
Fortran::lower::pft::Evaluation &eval = getEval();
Fortran::lower::pft::FunctionLikeUnit &owningProc =
*eval.getOwningProcedure();
const Fortran::lower::pft::SymbolLabelMap &symbolLabelMap =
owningProc.assignSymbolLabelMap;
const Fortran::lower::pft::LabelEvalMap &labelEvalMap =
owningProc.labelEvaluationMap;
const Fortran::semantics::Symbol &symbol =
*std::get<Fortran::parser::Name>(stmt.t).symbol;
auto labelSetIter = symbolLabelMap.find(symbol);
llvm::SmallVector<int64_t> valueList;
llvm::SmallVector<Fortran::parser::Label> labelList;
if (labelSetIter != symbolLabelMap.end()) {
for (auto &label : labelSetIter->second) {
const auto evalIter = labelEvalMap.find(label);
assert(evalIter != labelEvalMap.end() && "assigned goto label missing");
if (evalIter->second->block) { // non-format statement
valueList.push_back(label); // label as an integer
labelList.push_back(label);
}
}
}
if (!labelList.empty()) {
auto selectExpr =
builder->create<fir::LoadOp>(loc, getSymbolAddress(symbol));
// Add a default error target in case the goto is nonconforming.
mlir::Block *errorBlock =
builder->getBlock()->splitBlock(builder->getInsertionPoint());
genMultiwayBranch(selectExpr, valueList, labelList,
eval.nonNopSuccessor(), errorBlock);
startBlock(errorBlock);
}
fir::runtime::genReportFatalUserError(
*builder, loc,
"Assigned GOTO variable '" + symbol.name().ToString() +
"' does not have a valid target label value");
builder->create<fir::UnreachableOp>(loc);
}
/// Collect DO CONCURRENT or FORALL loop control information.
IncrementLoopNestInfo getConcurrentControl(
const Fortran::parser::ConcurrentHeader &header,
const std::list<Fortran::parser::LocalitySpec> &localityList = {}) {
IncrementLoopNestInfo incrementLoopNestInfo;
for (const Fortran::parser::ConcurrentControl &control :
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t))
incrementLoopNestInfo.emplace_back(
*std::get<0>(control.t).symbol, std::get<1>(control.t),
std::get<2>(control.t), std::get<3>(control.t), /*isUnordered=*/true);
IncrementLoopInfo &info = incrementLoopNestInfo.back();
info.maskExpr = Fortran::semantics::GetExpr(
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(header.t));
for (const Fortran::parser::LocalitySpec &x : localityList) {
if (const auto *localList =
std::get_if<Fortran::parser::LocalitySpec::Local>(&x.u))
for (const Fortran::parser::Name &x : localList->v)
info.localSymList.push_back(x.symbol);
if (const auto *localInitList =
std::get_if<Fortran::parser::LocalitySpec::LocalInit>(&x.u))
for (const Fortran::parser::Name &x : localInitList->v)
info.localInitSymList.push_back(x.symbol);
if (const auto *sharedList =
std::get_if<Fortran::parser::LocalitySpec::Shared>(&x.u))
for (const Fortran::parser::Name &x : sharedList->v)
info.sharedSymList.push_back(x.symbol);
}
return incrementLoopNestInfo;
}
/// Create DO CONCURRENT construct symbol bindings and generate LOCAL_INIT
/// assignments.
void handleLocalitySpecs(const IncrementLoopInfo &info) {
Fortran::semantics::SemanticsContext &semanticsContext =
bridge.getSemanticsContext();
for (const Fortran::semantics::Symbol *sym : info.localSymList)
createHostAssociateVarClone(*sym);
for (const Fortran::semantics::Symbol *sym : info.localInitSymList) {
createHostAssociateVarClone(*sym);
const auto *hostDetails =
sym->detailsIf<Fortran::semantics::HostAssocDetails>();
assert(hostDetails && "missing locality spec host symbol");
const Fortran::semantics::Symbol *hostSym = &hostDetails->symbol();
Fortran::evaluate::ExpressionAnalyzer ea{semanticsContext};
Fortran::evaluate::Assignment assign{
ea.Designate(Fortran::evaluate::DataRef{*sym}).value(),
ea.Designate(Fortran::evaluate::DataRef{*hostSym}).value()};
if (Fortran::semantics::IsPointer(*sym))
assign.u = Fortran::evaluate::Assignment::BoundsSpec{};
genAssignment(assign);
}
for (const Fortran::semantics::Symbol *sym : info.sharedSymList) {
const auto *hostDetails =
sym->detailsIf<Fortran::semantics::HostAssocDetails>();
copySymbolBinding(hostDetails->symbol(), *sym);
}
}
/// Generate FIR for a DO construct. There are six variants:
/// - unstructured infinite and while loops
/// - structured and unstructured increment loops
/// - structured and unstructured concurrent loops
void genFIR(const Fortran::parser::DoConstruct &doConstruct) {
setCurrentPositionAt(doConstruct);
// Collect loop nest information.
// Generate begin loop code directly for infinite and while loops.
Fortran::lower::pft::Evaluation &eval = getEval();
bool unstructuredContext = eval.lowerAsUnstructured();
Fortran::lower::pft::Evaluation &doStmtEval =
eval.getFirstNestedEvaluation();
auto *doStmt = doStmtEval.getIf<Fortran::parser::NonLabelDoStmt>();
const auto &loopControl =
std::get<std::optional<Fortran::parser::LoopControl>>(doStmt->t);
mlir::Block *preheaderBlock = doStmtEval.block;
mlir::Block *beginBlock =
preheaderBlock ? preheaderBlock : builder->getBlock();
auto createNextBeginBlock = [&]() {
// Step beginBlock through unstructured preheader, header, and mask
// blocks, created in outermost to innermost order.
return beginBlock = beginBlock->splitBlock(beginBlock->end());
};
mlir::Block *headerBlock =
unstructuredContext ? createNextBeginBlock() : nullptr;
mlir::Block *bodyBlock = doStmtEval.lexicalSuccessor->block;
mlir::Block *exitBlock = doStmtEval.parentConstruct->constructExit->block;
IncrementLoopNestInfo incrementLoopNestInfo;
const Fortran::parser::ScalarLogicalExpr *whileCondition = nullptr;
bool infiniteLoop = !loopControl.has_value();
if (infiniteLoop) {
assert(unstructuredContext && "infinite loop must be unstructured");
startBlock(headerBlock);
} else if ((whileCondition =
std::get_if<Fortran::parser::ScalarLogicalExpr>(
&loopControl->u))) {
assert(unstructuredContext && "while loop must be unstructured");
maybeStartBlock(preheaderBlock); // no block or empty block
startBlock(headerBlock);
genConditionalBranch(*whileCondition, bodyBlock, exitBlock);
} else if (const auto *bounds =
std::get_if<Fortran::parser::LoopControl::Bounds>(
&loopControl->u)) {
// Non-concurrent increment loop.
IncrementLoopInfo &info = incrementLoopNestInfo.emplace_back(
*bounds->name.thing.symbol, bounds->lower, bounds->upper,
bounds->step);
if (unstructuredContext) {
maybeStartBlock(preheaderBlock);
info.hasRealControl = info.loopVariableSym->GetType()->IsNumeric(
Fortran::common::TypeCategory::Real);
info.headerBlock = headerBlock;
info.bodyBlock = bodyBlock;
info.exitBlock = exitBlock;
}
} else {
const auto *concurrent =
std::get_if<Fortran::parser::LoopControl::Concurrent>(
&loopControl->u);
assert(concurrent && "invalid DO loop variant");
incrementLoopNestInfo = getConcurrentControl(
std::get<Fortran::parser::ConcurrentHeader>(concurrent->t),
std::get<std::list<Fortran::parser::LocalitySpec>>(concurrent->t));
if (unstructuredContext) {
maybeStartBlock(preheaderBlock);
for (IncrementLoopInfo &info : incrementLoopNestInfo) {
// The original loop body provides the body and latch blocks of the
// innermost dimension. The (first) body block of a non-innermost
// dimension is the preheader block of the immediately enclosed
// dimension. The latch block of a non-innermost dimension is the
// exit block of the immediately enclosed dimension.
auto createNextExitBlock = [&]() {
// Create unstructured loop exit blocks, outermost to innermost.
return exitBlock = insertBlock(exitBlock);
};
bool isInnermost = &info == &incrementLoopNestInfo.back();
bool isOutermost = &info == &incrementLoopNestInfo.front();
info.headerBlock = isOutermost ? headerBlock : createNextBeginBlock();
info.bodyBlock = isInnermost ? bodyBlock : createNextBeginBlock();
info.exitBlock = isOutermost ? exitBlock : createNextExitBlock();
if (info.maskExpr)
info.maskBlock = createNextBeginBlock();
}
}
}
// Increment loop begin code. (Infinite/while code was already generated.)
if (!infiniteLoop && !whileCondition)
genFIRIncrementLoopBegin(incrementLoopNestInfo);
// Loop body code.
auto iter = eval.getNestedEvaluations().begin();
for (auto end = --eval.getNestedEvaluations().end(); iter != end; ++iter)
genFIR(*iter, unstructuredContext);
// An EndDoStmt in unstructured code may start a new block.
Fortran::lower::pft::Evaluation &endDoEval = *iter;
assert(endDoEval.getIf<Fortran::parser::EndDoStmt>() && "no enddo stmt");
if (unstructuredContext)
maybeStartBlock(endDoEval.block);
// Loop end code.
if (infiniteLoop || whileCondition)
genBranch(headerBlock);
else
genFIRIncrementLoopEnd(incrementLoopNestInfo);
// This call may generate a branch in some contexts.
genFIR(endDoEval, unstructuredContext);
}
/// Generate FIR to evaluate loop control values (lower, upper and step).
mlir::Value genControlValue(const Fortran::lower::SomeExpr *expr,
const IncrementLoopInfo &info,
bool *isConst = nullptr) {
mlir::Location loc = toLocation();
mlir::Type controlType = info.isStructured() ? builder->getIndexType()
: info.getLoopVariableType();
Fortran::lower::StatementContext stmtCtx;
if (expr) {
if (isConst)
*isConst = Fortran::evaluate::IsConstantExpr(*expr);
return builder->createConvert(loc, controlType,
createFIRExpr(loc, expr, stmtCtx));
}
if (isConst)
*isConst = true;
if (info.hasRealControl)
return builder->createRealConstant(loc, controlType, 1u);
return builder->createIntegerConstant(loc, controlType, 1); // step
}
/// Generate FIR to begin a structured or unstructured increment loop nest.
void genFIRIncrementLoopBegin(IncrementLoopNestInfo &incrementLoopNestInfo) {
assert(!incrementLoopNestInfo.empty() && "empty loop nest");
mlir::Location loc = toLocation();
for (IncrementLoopInfo &info : incrementLoopNestInfo) {
info.loopVariable =
genLoopVariableAddress(loc, *info.loopVariableSym, info.isUnordered);
mlir::Value lowerValue = genControlValue(info.lowerExpr, info);
mlir::Value upperValue = genControlValue(info.upperExpr, info);
bool isConst = true;
mlir::Value stepValue = genControlValue(
info.stepExpr, info, info.isStructured() ? nullptr : &isConst);
// Use a temp variable for unstructured loops with non-const step.
if (!isConst) {
info.stepVariable = builder->createTemporary(loc, stepValue.getType());
builder->create<fir::StoreOp>(loc, stepValue, info.stepVariable);
}
// Structured loop - generate fir.do_loop.
if (info.isStructured()) {
mlir::Type loopVarType = info.getLoopVariableType();
mlir::Value loopValue;
if (info.isUnordered) {
// The loop variable value is explicitly updated.
info.doLoop = builder->create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/true);
builder->setInsertionPointToStart(info.doLoop.getBody());
loopValue = builder->createConvert(loc, loopVarType,
info.doLoop.getInductionVar());
} else {
// The loop variable is a doLoop op argument.
info.doLoop = builder->create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/false,
/*finalCountValue=*/true,
builder->createConvert(loc, loopVarType, lowerValue));
builder->setInsertionPointToStart(info.doLoop.getBody());
loopValue = info.doLoop.getRegionIterArgs()[0];
}
// Update the loop variable value in case it has non-index references.
builder->create<fir::StoreOp>(loc, loopValue, info.loopVariable);
if (info.maskExpr) {
Fortran::lower::StatementContext stmtCtx;
mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx);
stmtCtx.finalizeAndReset();
mlir::Value maskCondCast =
builder->createConvert(loc, builder->getI1Type(), maskCond);
auto ifOp = builder->create<fir::IfOp>(loc, maskCondCast,
/*withElseRegion=*/false);
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
}
if (info.hasLocalitySpecs())
handleLocalitySpecs(info);
continue;
}
// Unstructured loop preheader - initialize tripVariable and loopVariable.
mlir::Value tripCount;
if (info.hasRealControl) {
auto diff1 =
builder->create<mlir::arith::SubFOp>(loc, upperValue, lowerValue);
auto diff2 =
builder->create<mlir::arith::AddFOp>(loc, diff1, stepValue);
tripCount = builder->create<mlir::arith::DivFOp>(loc, diff2, stepValue);
tripCount =
builder->createConvert(loc, builder->getIndexType(), tripCount);
} else {
auto diff1 =
builder->create<mlir::arith::SubIOp>(loc, upperValue, lowerValue);
auto diff2 =
builder->create<mlir::arith::AddIOp>(loc, diff1, stepValue);
tripCount =
builder->create<mlir::arith::DivSIOp>(loc, diff2, stepValue);
}
if (forceLoopToExecuteOnce) { // minimum tripCount is 1
mlir::Value one =
builder->createIntegerConstant(loc, tripCount.getType(), 1);
auto cond = builder->create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::slt, tripCount, one);
tripCount =
builder->create<mlir::arith::SelectOp>(loc, cond, one, tripCount);
}
info.tripVariable = builder->createTemporary(loc, tripCount.getType());
builder->create<fir::StoreOp>(loc, tripCount, info.tripVariable);
builder->create<fir::StoreOp>(loc, lowerValue, info.loopVariable);
// Unstructured loop header - generate loop condition and mask.
// Note - Currently there is no way to tag a loop as a concurrent loop.
startBlock(info.headerBlock);
tripCount = builder->create<fir::LoadOp>(loc, info.tripVariable);
mlir::Value zero =
builder->createIntegerConstant(loc, tripCount.getType(), 0);
auto cond = builder->create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::sgt, tripCount, zero);
if (info.maskExpr) {
genConditionalBranch(cond, info.maskBlock, info.exitBlock);
startBlock(info.maskBlock);
mlir::Block *latchBlock = getEval().getLastNestedEvaluation().block;
assert(latchBlock && "missing masked concurrent loop latch block");
Fortran::lower::StatementContext stmtCtx;
mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx);
stmtCtx.finalizeAndReset();
genConditionalBranch(maskCond, info.bodyBlock, latchBlock);
} else {
genConditionalBranch(cond, info.bodyBlock, info.exitBlock);
if (&info != &incrementLoopNestInfo.back()) // not innermost
startBlock(info.bodyBlock); // preheader block of enclosed dimension
}
if (info.hasLocalitySpecs()) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
builder->setInsertionPointToStart(info.bodyBlock);
handleLocalitySpecs(info);
builder->restoreInsertionPoint(insertPt);
}
}
}
/// Generate FIR to end a structured or unstructured increment loop nest.
void genFIRIncrementLoopEnd(IncrementLoopNestInfo &incrementLoopNestInfo) {
assert(!incrementLoopNestInfo.empty() && "empty loop nest");
mlir::Location loc = toLocation();
for (auto it = incrementLoopNestInfo.rbegin(),
rend = incrementLoopNestInfo.rend();
it != rend; ++it) {
IncrementLoopInfo &info = *it;
if (info.isStructured()) {
// End fir.do_loop.
if (info.isUnordered) {
builder->setInsertionPointAfter(info.doLoop);
continue;
}
// Decrement tripVariable.
builder->setInsertionPointToEnd(info.doLoop.getBody());
llvm::SmallVector<mlir::Value, 2> results;
results.push_back(builder->create<mlir::arith::AddIOp>(
loc, info.doLoop.getInductionVar(), info.doLoop.getStep()));
// Step loopVariable to help optimizations such as vectorization.
// Induction variable elimination will clean up as necessary.
mlir::Value step = builder->createConvert(
loc, info.getLoopVariableType(), info.doLoop.getStep());
mlir::Value loopVar =
builder->create<fir::LoadOp>(loc, info.loopVariable);
results.push_back(
builder->create<mlir::arith::AddIOp>(loc, loopVar, step));
builder->create<fir::ResultOp>(loc, results);
builder->setInsertionPointAfter(info.doLoop);
// The loop control variable may be used after the loop.
builder->create<fir::StoreOp>(loc, info.doLoop.getResult(1),
info.loopVariable);
continue;
}
// Unstructured loop - decrement tripVariable and step loopVariable.
mlir::Value tripCount =
builder->create<fir::LoadOp>(loc, info.tripVariable);
mlir::Value one =
builder->createIntegerConstant(loc, tripCount.getType(), 1);
tripCount = builder->create<mlir::arith::SubIOp>(loc, tripCount, one);
builder->create<fir::StoreOp>(loc, tripCount, info.tripVariable);
mlir::Value value = builder->create<fir::LoadOp>(loc, info.loopVariable);
mlir::Value step;
if (info.stepVariable)
step = builder->create<fir::LoadOp>(loc, info.stepVariable);
else
step = genControlValue(info.stepExpr, info);
if (info.hasRealControl)
value = builder->create<mlir::arith::AddFOp>(loc, value, step);
else
value = builder->create<mlir::arith::AddIOp>(loc, value, step);
builder->create<fir::StoreOp>(loc, value, info.loopVariable);
genBranch(info.headerBlock);
if (&info != &incrementLoopNestInfo.front()) // not outermost
startBlock(info.exitBlock); // latch block of enclosing dimension
}
}
/// Generate structured or unstructured FIR for an IF construct.
/// The initial statement may be either an IfStmt or an IfThenStmt.
void genFIR(const Fortran::parser::IfConstruct &) {
Fortran::lower::pft::Evaluation &eval = getEval();
// Structured fir.if nest.
if (eval.lowerAsStructured()) {
fir::IfOp topIfOp, currentIfOp;
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
auto genIfOp = [&](mlir::Value cond) {
auto ifOp =
builder->create<fir::IfOp>(toLocation(), cond, /*withElse=*/true);
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
return ifOp;
};
setCurrentPosition(e.position);
if (auto *s = e.getIf<Fortran::parser::IfThenStmt>()) {
topIfOp = currentIfOp = genIfOp(genIfCondition(s, e.negateCondition));
} else if (auto *s = e.getIf<Fortran::parser::IfStmt>()) {
topIfOp = currentIfOp = genIfOp(genIfCondition(s, e.negateCondition));
} else if (auto *s = e.getIf<Fortran::parser::ElseIfStmt>()) {
builder->setInsertionPointToStart(
&currentIfOp.getElseRegion().front());
currentIfOp = genIfOp(genIfCondition(s));
} else if (e.isA<Fortran::parser::ElseStmt>()) {
builder->setInsertionPointToStart(
&currentIfOp.getElseRegion().front());
} else if (e.isA<Fortran::parser::EndIfStmt>()) {
builder->setInsertionPointAfter(topIfOp);
genFIR(e, /*unstructuredContext=*/false); // may generate branch
} else {
genFIR(e, /*unstructuredContext=*/false);
}
}
return;
}
// Unstructured branch sequence.
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
auto genIfBranch = [&](mlir::Value cond) {
if (e.lexicalSuccessor == e.controlSuccessor) // empty block -> exit
genConditionalBranch(cond, e.parentConstruct->constructExit,
e.controlSuccessor);
else // non-empty block
genConditionalBranch(cond, e.lexicalSuccessor, e.controlSuccessor);
};
setCurrentPosition(e.position);
if (auto *s = e.getIf<Fortran::parser::IfThenStmt>()) {
maybeStartBlock(e.block);
genIfBranch(genIfCondition(s, e.negateCondition));
} else if (auto *s = e.getIf<Fortran::parser::IfStmt>()) {
maybeStartBlock(e.block);
genIfBranch(genIfCondition(s, e.negateCondition));
} else if (auto *s = e.getIf<Fortran::parser::ElseIfStmt>()) {
startBlock(e.block);
genIfBranch(genIfCondition(s));
} else {
genFIR(e);
}
}
}
void genFIR(const Fortran::parser::CaseConstruct &) {
Fortran::lower::pft::Evaluation &eval = getEval();
Fortran::lower::StatementContext stmtCtx;
pushActiveConstruct(eval, stmtCtx);
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
if (e.getIf<Fortran::parser::EndSelectStmt>())
maybeStartBlock(e.block);
else
genFIR(e);
}
popActiveConstruct();
}
template <typename A>
void genNestedStatement(const Fortran::parser::Statement<A> &stmt) {
setCurrentPosition(stmt.source);
genFIR(stmt.statement);
}
/// Force the binding of an explicit symbol. This is used to bind and re-bind
/// a concurrent control symbol to its value.
void forceControlVariableBinding(const Fortran::semantics::Symbol *sym,
mlir::Value inducVar) {
mlir::Location loc = toLocation();
assert(sym && "There must be a symbol to bind");
mlir::Type toTy = genType(*sym);
// FIXME: this should be a "per iteration" temporary.
mlir::Value tmp =
builder->createTemporary(loc, toTy, toStringRef(sym->name()),
llvm::ArrayRef<mlir::NamedAttribute>{
fir::getAdaptToByRefAttr(*builder)});
mlir::Value cast = builder->createConvert(loc, toTy, inducVar);
builder->create<fir::StoreOp>(loc, cast, tmp);
addSymbol(*sym, tmp, /*force=*/true);
}
/// Process a concurrent header for a FORALL. (Concurrent headers for DO
/// CONCURRENT loops are lowered elsewhere.)
void genFIR(const Fortran::parser::ConcurrentHeader &header) {
llvm::SmallVector<mlir::Value> lows;
llvm::SmallVector<mlir::Value> highs;
llvm::SmallVector<mlir::Value> steps;
if (explicitIterSpace.isOutermostForall()) {
// For the outermost forall, we evaluate the bounds expressions once.
// Contrastingly, if this forall is nested, the bounds expressions are
// assumed to be pure, possibly dependent on outer concurrent control
// variables, possibly variant with respect to arguments, and will be
// re-evaluated.
mlir::Location loc = toLocation();
mlir::Type idxTy = builder->getIndexType();
Fortran::lower::StatementContext &stmtCtx =
explicitIterSpace.stmtContext();
auto lowerExpr = [&](auto &e) {
return fir::getBase(genExprValue(e, stmtCtx));
};
for (const Fortran::parser::ConcurrentControl &ctrl :
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
const Fortran::lower::SomeExpr *lo =
Fortran::semantics::GetExpr(std::get<1>(ctrl.t));
const Fortran::lower::SomeExpr *hi =
Fortran::semantics::GetExpr(std::get<2>(ctrl.t));
auto &optStep =
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(ctrl.t);
lows.push_back(builder->createConvert(loc, idxTy, lowerExpr(*lo)));
highs.push_back(builder->createConvert(loc, idxTy, lowerExpr(*hi)));
steps.push_back(
optStep.has_value()
? builder->createConvert(
loc, idxTy,
lowerExpr(*Fortran::semantics::GetExpr(*optStep)))
: builder->createIntegerConstant(loc, idxTy, 1));
}
}
auto lambda = [&, lows, highs, steps]() {
// Create our iteration space from the header spec.
mlir::Location loc = toLocation();
mlir::Type idxTy = builder->getIndexType();
llvm::SmallVector<fir::DoLoopOp> loops;
Fortran::lower::StatementContext &stmtCtx =
explicitIterSpace.stmtContext();
auto lowerExpr = [&](auto &e) {
return fir::getBase(genExprValue(e, stmtCtx));
};
const bool outermost = !lows.empty();
std::size_t headerIndex = 0;
for (const Fortran::parser::ConcurrentControl &ctrl :
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
const Fortran::semantics::Symbol *ctrlVar =
std::get<Fortran::parser::Name>(ctrl.t).symbol;
mlir::Value lb;
mlir::Value ub;
mlir::Value by;
if (outermost) {
assert(headerIndex < lows.size());
if (headerIndex == 0)
explicitIterSpace.resetInnerArgs();
lb = lows[headerIndex];
ub = highs[headerIndex];
by = steps[headerIndex++];
} else {
const Fortran::lower::SomeExpr *lo =
Fortran::semantics::GetExpr(std::get<1>(ctrl.t));
const Fortran::lower::SomeExpr *hi =
Fortran::semantics::GetExpr(std::get<2>(ctrl.t));
auto &optStep =
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(ctrl.t);
lb = builder->createConvert(loc, idxTy, lowerExpr(*lo));
ub = builder->createConvert(loc, idxTy, lowerExpr(*hi));
by = optStep.has_value()
? builder->createConvert(
loc, idxTy,
lowerExpr(*Fortran::semantics::GetExpr(*optStep)))
: builder->createIntegerConstant(loc, idxTy, 1);
}
auto lp = builder->create<fir::DoLoopOp>(
loc, lb, ub, by, /*unordered=*/true,
/*finalCount=*/false, explicitIterSpace.getInnerArgs());
if ((!loops.empty() || !outermost) && !lp.getRegionIterArgs().empty())
builder->create<fir::ResultOp>(loc, lp.getResults());
explicitIterSpace.setInnerArgs(lp.getRegionIterArgs());
builder->setInsertionPointToStart(lp.getBody());
forceControlVariableBinding(ctrlVar, lp.getInductionVar());
loops.push_back(lp);
}
if (outermost)
explicitIterSpace.setOuterLoop(loops[0]);
explicitIterSpace.appendLoops(loops);
if (const auto &mask =
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(
header.t);
mask.has_value()) {
mlir::Type i1Ty = builder->getI1Type();
fir::ExtendedValue maskExv =
genExprValue(*Fortran::semantics::GetExpr(mask.value()), stmtCtx);
mlir::Value cond =
builder->createConvert(loc, i1Ty, fir::getBase(maskExv));
auto ifOp = builder->create<fir::IfOp>(
loc, explicitIterSpace.innerArgTypes(), cond,
/*withElseRegion=*/true);
builder->create<fir::ResultOp>(loc, ifOp.getResults());
builder->setInsertionPointToStart(&ifOp.getElseRegion().front());
builder->create<fir::ResultOp>(loc, explicitIterSpace.getInnerArgs());
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
}
};
// Push the lambda to gen the loop nest context.
explicitIterSpace.pushLoopNest(lambda);
}
void genFIR(const Fortran::parser::ForallAssignmentStmt &stmt) {
std::visit([&](const auto &x) { genFIR(x); }, stmt.u);
}
void genFIR(const Fortran::parser::EndForallStmt &) {
if (!lowerToHighLevelFIR())
cleanupExplicitSpace();
}
template <typename A>
void prepareExplicitSpace(const A &forall) {
if (!explicitIterSpace.isActive())
analyzeExplicitSpace(forall);
localSymbols.pushScope();
explicitIterSpace.enter();
}
/// Cleanup all the FORALL context information when we exit.
void cleanupExplicitSpace() {
explicitIterSpace.leave();
localSymbols.popScope();
}
/// Generate FIR for a FORALL statement.
void genFIR(const Fortran::parser::ForallStmt &stmt) {
const auto &concurrentHeader =
std::get<
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
stmt.t)
.value();
if (lowerToHighLevelFIR()) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
localSymbols.pushScope();
genForallNest(concurrentHeader);
genFIR(std::get<Fortran::parser::UnlabeledStatement<
Fortran::parser::ForallAssignmentStmt>>(stmt.t)
.statement);
localSymbols.popScope();
builder->restoreInsertionPoint(insertPt);
return;
}
prepareExplicitSpace(stmt);
genFIR(concurrentHeader);
genFIR(std::get<Fortran::parser::UnlabeledStatement<
Fortran::parser::ForallAssignmentStmt>>(stmt.t)
.statement);
cleanupExplicitSpace();
}
/// Generate FIR for a FORALL construct.
void genFIR(const Fortran::parser::ForallConstruct &forall) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
if (lowerToHighLevelFIR())
localSymbols.pushScope();
else
prepareExplicitSpace(forall);
genNestedStatement(
std::get<
Fortran::parser::Statement<Fortran::parser::ForallConstructStmt>>(
forall.t));
for (const Fortran::parser::ForallBodyConstruct &s :
std::get<std::list<Fortran::parser::ForallBodyConstruct>>(forall.t)) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::WhereConstruct &b) { genFIR(b); },
[&](const Fortran::common::Indirection<
Fortran::parser::ForallConstruct> &b) { genFIR(b.value()); },
[&](const auto &b) { genNestedStatement(b); }},
s.u);
}
genNestedStatement(
std::get<Fortran::parser::Statement<Fortran::parser::EndForallStmt>>(
forall.t));
if (lowerToHighLevelFIR()) {
localSymbols.popScope();
builder->restoreInsertionPoint(insertPt);
}
}
/// Lower the concurrent header specification.
void genFIR(const Fortran::parser::ForallConstructStmt &stmt) {
const auto &concurrentHeader =
std::get<
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
stmt.t)
.value();
if (lowerToHighLevelFIR())
genForallNest(concurrentHeader);
else
genFIR(concurrentHeader);
}
/// Generate hlfir.forall and hlfir.forall_mask nest given a Forall
/// concurrent header
void genForallNest(const Fortran::parser::ConcurrentHeader &header) {
mlir::Location loc = getCurrentLocation();
const bool isOutterForall = !isInsideHlfirForallOrWhere();
hlfir::ForallOp outerForall;
auto evaluateControl = [&](const auto &parserExpr, mlir::Region &region,
bool isMask = false) {
if (region.empty())
builder->createBlock(&region);
Fortran::lower::StatementContext localStmtCtx;
const Fortran::semantics::SomeExpr *anlalyzedExpr =
Fortran::semantics::GetExpr(parserExpr);
assert(anlalyzedExpr && "expression semantics failed");
// Generate the controls of outer forall outside of the hlfir.forall
// region. They do not depend on any previous forall indices (C1123) and
// no assignment has been made yet that could modify their value. This
// will simplify hlfir.forall analysis because the SSA integer value
// yielded will obviously not depend on any variable modified by the
// forall when produced outside of it.
// This is not done for the mask because it may (and in usual code, does)
// depend on the forall indices that have just been defined as
// hlfir.forall block arguments.
mlir::OpBuilder::InsertPoint innerInsertionPoint;
if (outerForall && !isMask) {
innerInsertionPoint = builder->saveInsertionPoint();
builder->setInsertionPoint(outerForall);
}
mlir::Value exprVal =
fir::getBase(genExprValue(*anlalyzedExpr, localStmtCtx, &loc));
localStmtCtx.finalizeAndPop();
if (isMask)
exprVal = builder->createConvert(loc, builder->getI1Type(), exprVal);
if (innerInsertionPoint.isSet())
builder->restoreInsertionPoint(innerInsertionPoint);
builder->create<hlfir::YieldOp>(loc, exprVal);
};
for (const Fortran::parser::ConcurrentControl &control :
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
auto forallOp = builder->create<hlfir::ForallOp>(loc);
if (isOutterForall && !outerForall)
outerForall = forallOp;
evaluateControl(std::get<1>(control.t), forallOp.getLbRegion());
evaluateControl(std::get<2>(control.t), forallOp.getUbRegion());
if (const auto &optionalStep =
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(
control.t))
evaluateControl(*optionalStep, forallOp.getStepRegion());
// Create block argument and map it to a symbol via an hlfir.forall_index
// op (symbols must be mapped to in memory values).
const Fortran::semantics::Symbol *controlVar =
std::get<Fortran::parser::Name>(control.t).symbol;
assert(controlVar && "symbol analysis failed");
mlir::Type controlVarType = genType(*controlVar);
mlir::Block *forallBody = builder->createBlock(&forallOp.getBody(), {},
{controlVarType}, {loc});
auto forallIndex = builder->create<hlfir::ForallIndexOp>(
loc, fir::ReferenceType::get(controlVarType),
forallBody->getArguments()[0],
builder->getStringAttr(controlVar->name().ToString()));
localSymbols.addVariableDefinition(*controlVar, forallIndex,
/*force=*/true);
auto end = builder->create<fir::FirEndOp>(loc);
builder->setInsertionPoint(end);
}
if (const auto &maskExpr =
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(
header.t)) {
// Create hlfir.forall_mask and set insertion point in its body.
auto forallMaskOp = builder->create<hlfir::ForallMaskOp>(loc);
evaluateControl(*maskExpr, forallMaskOp.getMaskRegion(), /*isMask=*/true);
builder->createBlock(&forallMaskOp.getBody());
auto end = builder->create<fir::FirEndOp>(loc);
builder->setInsertionPoint(end);
}
}
void genFIR(const Fortran::parser::CompilerDirective &) {
// TODO
}
void genFIR(const Fortran::parser::OpenACCConstruct &acc) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
localSymbols.pushScope();
mlir::Value exitCond = genOpenACCConstruct(
*this, bridge.getSemanticsContext(), getEval(), acc);
const Fortran::parser::OpenACCLoopConstruct *accLoop =
std::get_if<Fortran::parser::OpenACCLoopConstruct>(&acc.u);
const Fortran::parser::OpenACCCombinedConstruct *accCombined =
std::get_if<Fortran::parser::OpenACCCombinedConstruct>(&acc.u);
Fortran::lower::pft::Evaluation *curEval = &getEval();
if (accLoop || accCombined) {
int64_t collapseValue;
if (accLoop) {
const Fortran::parser::AccBeginLoopDirective &beginLoopDir =
std::get<Fortran::parser::AccBeginLoopDirective>(accLoop->t);
const Fortran::parser::AccClauseList &clauseList =
std::get<Fortran::parser::AccClauseList>(beginLoopDir.t);
collapseValue = Fortran::lower::getCollapseValue(clauseList);
} else if (accCombined) {
const Fortran::parser::AccBeginCombinedDirective &beginCombinedDir =
std::get<Fortran::parser::AccBeginCombinedDirective>(
accCombined->t);
const Fortran::parser::AccClauseList &clauseList =
std::get<Fortran::parser::AccClauseList>(beginCombinedDir.t);
collapseValue = Fortran::lower::getCollapseValue(clauseList);
}
if (curEval->lowerAsStructured()) {
curEval = &curEval->getFirstNestedEvaluation();
for (int64_t i = 1; i < collapseValue; i++)
curEval = &*std::next(curEval->getNestedEvaluations().begin());
}
}
for (Fortran::lower::pft::Evaluation &e : curEval->getNestedEvaluations())
genFIR(e);
localSymbols.popScope();
builder->restoreInsertionPoint(insertPt);
if (accLoop && exitCond) {
Fortran::lower::pft::FunctionLikeUnit *funit =
getEval().getOwningProcedure();
assert(funit && "not inside main program, function or subroutine");
mlir::Block *continueBlock =
builder->getBlock()->splitBlock(builder->getBlock()->end());
builder->create<mlir::cf::CondBranchOp>(toLocation(), exitCond,
funit->finalBlock, continueBlock);
builder->setInsertionPointToEnd(continueBlock);
}
}
void genFIR(const Fortran::parser::OpenACCDeclarativeConstruct &accDecl) {
genOpenACCDeclarativeConstruct(*this, bridge.getSemanticsContext(),
bridge.openAccCtx(), accDecl,
accRoutineInfos);
for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations())
genFIR(e);
}
void genFIR(const Fortran::parser::OpenACCRoutineConstruct &acc) {
// Handled by genFIR(const Fortran::parser::OpenACCDeclarativeConstruct &)
}
void genFIR(const Fortran::parser::CUFKernelDoConstruct &kernel) {
localSymbols.pushScope();
const Fortran::parser::CUFKernelDoConstruct::Directive &dir =
std::get<Fortran::parser::CUFKernelDoConstruct::Directive>(kernel.t);
mlir::Location loc = genLocation(dir.source);
Fortran::lower::StatementContext stmtCtx;
unsigned nestedLoops = 1;
const auto &nLoops =
std::get<std::optional<Fortran::parser::ScalarIntConstantExpr>>(dir.t);
if (nLoops)
nestedLoops = *Fortran::semantics::GetIntValue(*nLoops);
mlir::IntegerAttr n;
if (nestedLoops > 1)
n = builder->getIntegerAttr(builder->getI64Type(), nestedLoops);
const std::list<Fortran::parser::CUFKernelDoConstruct::StarOrExpr> &grid =
std::get<1>(dir.t);
const std::list<Fortran::parser::CUFKernelDoConstruct::StarOrExpr> &block =
std::get<2>(dir.t);
const std::optional<Fortran::parser::ScalarIntExpr> &stream =
std::get<3>(dir.t);
auto isOnlyStars =
[&](const std::list<Fortran::parser::CUFKernelDoConstruct::StarOrExpr>
&list) -> bool {
for (const Fortran::parser::CUFKernelDoConstruct::StarOrExpr &expr :
list) {
if (expr.v)
return false;
}
return true;
};
mlir::Value zero =
builder->createIntegerConstant(loc, builder->getI32Type(), 0);
llvm::SmallVector<mlir::Value> gridValues;
if (!isOnlyStars(grid)) {
for (const Fortran::parser::CUFKernelDoConstruct::StarOrExpr &expr :
grid) {
if (expr.v) {
gridValues.push_back(fir::getBase(
genExprValue(*Fortran::semantics::GetExpr(*expr.v), stmtCtx)));
} else {
gridValues.push_back(zero);
}
}
}
llvm::SmallVector<mlir::Value> blockValues;
if (!isOnlyStars(block)) {
for (const Fortran::parser::CUFKernelDoConstruct::StarOrExpr &expr :
block) {
if (expr.v) {
blockValues.push_back(fir::getBase(
genExprValue(*Fortran::semantics::GetExpr(*expr.v), stmtCtx)));
} else {
blockValues.push_back(zero);
}
}
}
mlir::Value streamValue;
if (stream)
streamValue = fir::getBase(
genExprValue(*Fortran::semantics::GetExpr(*stream), stmtCtx));
const auto &outerDoConstruct =
std::get<std::optional<Fortran::parser::DoConstruct>>(kernel.t);
llvm::SmallVector<mlir::Location> locs;
locs.push_back(loc);
llvm::SmallVector<mlir::Value> lbs, ubs, steps;
mlir::Type idxTy = builder->getIndexType();
llvm::SmallVector<mlir::Type> ivTypes;
llvm::SmallVector<mlir::Location> ivLocs;
llvm::SmallVector<mlir::Value> ivValues;
for (unsigned i = 0; i < nestedLoops; ++i) {
const Fortran::parser::LoopControl *loopControl;
Fortran::lower::pft::Evaluation *loopEval =
&getEval().getFirstNestedEvaluation();
mlir::Location crtLoc = loc;
if (i == 0) {
loopControl = &*outerDoConstruct->GetLoopControl();
crtLoc =
genLocation(Fortran::parser::FindSourceLocation(outerDoConstruct));
} else {
auto *doCons = loopEval->getIf<Fortran::parser::DoConstruct>();
assert(doCons && "expect do construct");
loopControl = &*doCons->GetLoopControl();
crtLoc = genLocation(Fortran::parser::FindSourceLocation(*doCons));
}
locs.push_back(crtLoc);
const Fortran::parser::LoopControl::Bounds *bounds =
std::get_if<Fortran::parser::LoopControl::Bounds>(&loopControl->u);
assert(bounds && "Expected bounds on the loop construct");
Fortran::semantics::Symbol &ivSym =
bounds->name.thing.symbol->GetUltimate();
ivValues.push_back(getSymbolAddress(ivSym));
lbs.push_back(builder->createConvert(
crtLoc, idxTy,
fir::getBase(genExprValue(*Fortran::semantics::GetExpr(bounds->lower),
stmtCtx))));
ubs.push_back(builder->createConvert(
crtLoc, idxTy,
fir::getBase(genExprValue(*Fortran::semantics::GetExpr(bounds->upper),
stmtCtx))));
if (bounds->step)
steps.push_back(fir::getBase(
genExprValue(*Fortran::semantics::GetExpr(bounds->step), stmtCtx)));
else // If `step` is not present, assume it is `1`.
steps.push_back(builder->createIntegerConstant(loc, idxTy, 1));
ivTypes.push_back(idxTy);
ivLocs.push_back(crtLoc);
if (i < nestedLoops - 1)
loopEval = &*std::next(loopEval->getNestedEvaluations().begin());
}
auto op = builder->create<fir::CUDAKernelOp>(
loc, gridValues, blockValues, streamValue, lbs, ubs, steps, n);
builder->createBlock(&op.getRegion(), op.getRegion().end(), ivTypes,
ivLocs);
mlir::Block &b = op.getRegion().back();
builder->setInsertionPointToStart(&b);
for (auto [arg, value] : llvm::zip(
op.getLoopRegions().front()->front().getArguments(), ivValues)) {
mlir::Value convArg =
builder->createConvert(loc, fir::unwrapRefType(value.getType()), arg);
builder->create<fir::StoreOp>(loc, convArg, value);
}
Fortran::lower::pft::Evaluation *crtEval = &getEval();
if (crtEval->lowerAsStructured()) {
crtEval = &crtEval->getFirstNestedEvaluation();
for (int64_t i = 1; i < nestedLoops; i++)
crtEval = &*std::next(crtEval->getNestedEvaluations().begin());
}
// Generate loop body
for (Fortran::lower::pft::Evaluation &e : crtEval->getNestedEvaluations())
genFIR(e);
builder->create<fir::FirEndOp>(loc);
builder->setInsertionPointAfter(op);
localSymbols.popScope();
}
void genFIR(const Fortran::parser::OpenMPConstruct &omp) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
genOpenMPConstruct(*this, localSymbols, bridge.getSemanticsContext(),
getEval(), omp);
builder->restoreInsertionPoint(insertPt);
// Register if a target region was found
ompDeviceCodeFound =
ompDeviceCodeFound || Fortran::lower::isOpenMPTargetConstruct(omp);
}
void genFIR(const Fortran::parser::OpenMPDeclarativeConstruct &ompDecl) {
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
// Register if a declare target construct intended for a target device was
// found
ompDeviceCodeFound =
ompDeviceCodeFound ||
Fortran::lower::isOpenMPDeviceDeclareTarget(
*this, bridge.getSemanticsContext(), getEval(), ompDecl);
Fortran::lower::gatherOpenMPDeferredDeclareTargets(
*this, bridge.getSemanticsContext(), getEval(), ompDecl,
ompDeferredDeclareTarget);
genOpenMPDeclarativeConstruct(
*this, localSymbols, bridge.getSemanticsContext(), getEval(), ompDecl);
builder->restoreInsertionPoint(insertPt);
}
/// Generate FIR for a SELECT CASE statement.
/// The selector may have CHARACTER, INTEGER, or LOGICAL type.
void genFIR(const Fortran::parser::SelectCaseStmt &stmt) {
Fortran::lower::pft::Evaluation &eval = getEval();
Fortran::lower::pft::Evaluation *parentConstruct = eval.parentConstruct;
assert(!activeConstructStack.empty() &&
&activeConstructStack.back().eval == parentConstruct &&
"select case construct is not active");
Fortran::lower::StatementContext &stmtCtx =
activeConstructStack.back().stmtCtx;
const Fortran::lower::SomeExpr *expr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::Scalar<Fortran::parser::Expr>>(stmt.t));
bool isCharSelector = isCharacterCategory(expr->GetType()->category());
bool isLogicalSelector = isLogicalCategory(expr->GetType()->category());
mlir::MLIRContext *context = builder->getContext();
mlir::Location loc = toLocation();
auto charValue = [&](const Fortran::lower::SomeExpr *expr) {
fir::ExtendedValue exv = genExprAddr(*expr, stmtCtx, &loc);
return exv.match(
[&](const fir::CharBoxValue &cbv) {
return fir::factory::CharacterExprHelper{*builder, loc}
.createEmboxChar(cbv.getAddr(), cbv.getLen());
},
[&](auto) {
fir::emitFatalError(loc, "not a character");
return mlir::Value{};
});
};
mlir::Value selector;
if (isCharSelector) {
selector = charValue(expr);
} else {
selector = createFIRExpr(loc, expr, stmtCtx);
if (isLogicalSelector)
selector = builder->createConvert(loc, builder->getI1Type(), selector);
}
mlir::Type selectType = selector.getType();
llvm::SmallVector<mlir::Attribute> attrList;
llvm::SmallVector<mlir::Value> valueList;
llvm::SmallVector<mlir::Block *> blockList;
mlir::Block *defaultBlock = parentConstruct->constructExit->block;
using CaseValue = Fortran::parser::Scalar<Fortran::parser::ConstantExpr>;
auto addValue = [&](const CaseValue &caseValue) {
const Fortran::lower::SomeExpr *expr =
Fortran::semantics::GetExpr(caseValue.thing);
if (isCharSelector)
valueList.push_back(charValue(expr));
else if (isLogicalSelector)
valueList.push_back(builder->createConvert(
loc, selectType, createFIRExpr(toLocation(), expr, stmtCtx)));
else
valueList.push_back(builder->createIntegerConstant(
loc, selectType, *Fortran::evaluate::ToInt64(*expr)));
};
for (Fortran::lower::pft::Evaluation *e = eval.controlSuccessor; e;
e = e->controlSuccessor) {
const auto &caseStmt = e->getIf<Fortran::parser::CaseStmt>();
assert(e->block && "missing CaseStmt block");
const auto &caseSelector =
std::get<Fortran::parser::CaseSelector>(caseStmt->t);
const auto *caseValueRangeList =
std::get_if<std::list<Fortran::parser::CaseValueRange>>(
&caseSelector.u);
if (!caseValueRangeList) {
defaultBlock = e->block;
continue;
}
for (const Fortran::parser::CaseValueRange &caseValueRange :
*caseValueRangeList) {
blockList.push_back(e->block);
if (const auto *caseValue = std::get_if<CaseValue>(&caseValueRange.u)) {
attrList.push_back(fir::PointIntervalAttr::get(context));
addValue(*caseValue);
continue;
}
const auto &caseRange =
std::get<Fortran::parser::CaseValueRange::Range>(caseValueRange.u);
if (caseRange.lower && caseRange.upper) {
attrList.push_back(fir::ClosedIntervalAttr::get(context));
addValue(*caseRange.lower);
addValue(*caseRange.upper);
} else if (caseRange.lower) {
attrList.push_back(fir::LowerBoundAttr::get(context));
addValue(*caseRange.lower);
} else {
attrList.push_back(fir::UpperBoundAttr::get(context));
addValue(*caseRange.upper);
}
}
}
// Skip a logical default block that can never be referenced.
if (isLogicalSelector && attrList.size() == 2)
defaultBlock = parentConstruct->constructExit->block;
attrList.push_back(mlir::UnitAttr::get(context));
blockList.push_back(defaultBlock);
// Generate a fir::SelectCaseOp. Explicit branch code is better for the
// LOGICAL type. The CHARACTER type does not have downstream SelectOp
// support. The -no-structured-fir option can be used to force generation
// of INTEGER type branch code.
if (!isLogicalSelector && !isCharSelector &&
!getEval().forceAsUnstructured()) {
// The selector is in an ssa register. Any temps that may have been
// generated while evaluating it can be cleaned up now.
stmtCtx.finalizeAndReset();
builder->create<fir::SelectCaseOp>(loc, selector, attrList, valueList,
blockList);
return;
}
// Generate a sequence of case value comparisons and branches.
auto caseValue = valueList.begin();
auto caseBlock = blockList.begin();
for (mlir::Attribute attr : attrList) {
if (mlir::isa<mlir::UnitAttr>(attr)) {
genBranch(*caseBlock++);
break;
}
auto genCond = [&](mlir::Value rhs,
mlir::arith::CmpIPredicate pred) -> mlir::Value {
if (!isCharSelector)
return builder->create<mlir::arith::CmpIOp>(loc, pred, selector, rhs);
fir::factory::CharacterExprHelper charHelper{*builder, loc};
std::pair<mlir::Value, mlir::Value> lhsVal =
charHelper.createUnboxChar(selector);
std::pair<mlir::Value, mlir::Value> rhsVal =
charHelper.createUnboxChar(rhs);
return fir::runtime::genCharCompare(*builder, loc, pred, lhsVal.first,
lhsVal.second, rhsVal.first,
rhsVal.second);
};
mlir::Block *newBlock = insertBlock(*caseBlock);
if (mlir::isa<fir::ClosedIntervalAttr>(attr)) {
mlir::Block *newBlock2 = insertBlock(*caseBlock);
mlir::Value cond =
genCond(*caseValue++, mlir::arith::CmpIPredicate::sge);
genConditionalBranch(cond, newBlock, newBlock2);
builder->setInsertionPointToEnd(newBlock);
mlir::Value cond2 =
genCond(*caseValue++, mlir::arith::CmpIPredicate::sle);
genConditionalBranch(cond2, *caseBlock++, newBlock2);
builder->setInsertionPointToEnd(newBlock2);
continue;
}
mlir::arith::CmpIPredicate pred;
if (mlir::isa<fir::PointIntervalAttr>(attr)) {
pred = mlir::arith::CmpIPredicate::eq;
} else if (mlir::isa<fir::LowerBoundAttr>(attr)) {
pred = mlir::arith::CmpIPredicate::sge;
} else {
assert(mlir::isa<fir::UpperBoundAttr>(attr) && "unexpected predicate");
pred = mlir::arith::CmpIPredicate::sle;
}
mlir::Value cond = genCond(*caseValue++, pred);
genConditionalBranch(cond, *caseBlock++, newBlock);
builder->setInsertionPointToEnd(newBlock);
}
assert(caseValue == valueList.end() && caseBlock == blockList.end() &&
"select case list mismatch");
}
fir::ExtendedValue
genAssociateSelector(const Fortran::lower::SomeExpr &selector,
Fortran::lower::StatementContext &stmtCtx) {
if (lowerToHighLevelFIR())
return genExprAddr(selector, stmtCtx);
return Fortran::lower::isArraySectionWithoutVectorSubscript(selector)
? Fortran::lower::createSomeArrayBox(*this, selector,
localSymbols, stmtCtx)
: genExprAddr(selector, stmtCtx);
}
void genFIR(const Fortran::parser::AssociateConstruct &) {
Fortran::lower::pft::Evaluation &eval = getEval();
Fortran::lower::StatementContext stmtCtx;
pushActiveConstruct(eval, stmtCtx);
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
setCurrentPosition(e.position);
if (auto *stmt = e.getIf<Fortran::parser::AssociateStmt>()) {
if (eval.lowerAsUnstructured())
maybeStartBlock(e.block);
localSymbols.pushScope();
for (const Fortran::parser::Association &assoc :
std::get<std::list<Fortran::parser::Association>>(stmt->t)) {
Fortran::semantics::Symbol &sym =
*std::get<Fortran::parser::Name>(assoc.t).symbol;
const Fortran::lower::SomeExpr &selector =
*sym.get<Fortran::semantics::AssocEntityDetails>().expr();
addSymbol(sym, genAssociateSelector(selector, stmtCtx));
}
} else if (e.getIf<Fortran::parser::EndAssociateStmt>()) {
if (eval.lowerAsUnstructured())
maybeStartBlock(e.block);
localSymbols.popScope();
} else {
genFIR(e);
}
}
popActiveConstruct();
}
void genFIR(const Fortran::parser::BlockConstruct &blockConstruct) {
Fortran::lower::pft::Evaluation &eval = getEval();
Fortran::lower::StatementContext stmtCtx;
pushActiveConstruct(eval, stmtCtx);
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
setCurrentPosition(e.position);
if (e.getIf<Fortran::parser::BlockStmt>()) {
if (eval.lowerAsUnstructured())
maybeStartBlock(e.block);
const Fortran::parser::CharBlock &endPosition =
eval.getLastNestedEvaluation().position;
localSymbols.pushScope();
mlir::func::FuncOp stackSave = fir::factory::getLlvmStackSave(*builder);
mlir::func::FuncOp stackRestore =
fir::factory::getLlvmStackRestore(*builder);
mlir::Value stackPtr =
builder->create<fir::CallOp>(toLocation(), stackSave).getResult(0);
mlir::Location endLoc = genLocation(endPosition);
stmtCtx.attachCleanup([=]() {
builder->create<fir::CallOp>(endLoc, stackRestore, stackPtr);
});
Fortran::semantics::Scope &scope =
bridge.getSemanticsContext().FindScope(endPosition);
scopeBlockIdMap.try_emplace(&scope, ++blockId);
Fortran::lower::AggregateStoreMap storeMap;
for (const Fortran::lower::pft::Variable &var :
Fortran::lower::pft::getScopeVariableList(scope)) {
// Do no instantiate again variables from the block host
// that appears in specification of block variables.
if (!var.hasSymbol() || !lookupSymbol(var.getSymbol()))
instantiateVar(var, storeMap);
}
} else if (e.getIf<Fortran::parser::EndBlockStmt>()) {
if (eval.lowerAsUnstructured())
maybeStartBlock(e.block);
localSymbols.popScope();
} else {
genFIR(e);
}
}
popActiveConstruct();
}
void genFIR(const Fortran::parser::ChangeTeamConstruct &construct) {
TODO(toLocation(), "coarray: ChangeTeamConstruct");
}
void genFIR(const Fortran::parser::ChangeTeamStmt &stmt) {
TODO(toLocation(), "coarray: ChangeTeamStmt");
}
void genFIR(const Fortran::parser::EndChangeTeamStmt &stmt) {
TODO(toLocation(), "coarray: EndChangeTeamStmt");
}
void genFIR(const Fortran::parser::CriticalConstruct &criticalConstruct) {
setCurrentPositionAt(criticalConstruct);
TODO(toLocation(), "coarray: CriticalConstruct");
}
void genFIR(const Fortran::parser::CriticalStmt &) {
TODO(toLocation(), "coarray: CriticalStmt");
}
void genFIR(const Fortran::parser::EndCriticalStmt &) {
TODO(toLocation(), "coarray: EndCriticalStmt");
}
void genFIR(const Fortran::parser::SelectRankConstruct &selectRankConstruct) {
setCurrentPositionAt(selectRankConstruct);
TODO(toLocation(), "coarray: SelectRankConstruct");
}
void genFIR(const Fortran::parser::SelectRankStmt &) {
TODO(toLocation(), "coarray: SelectRankStmt");
}
void genFIR(const Fortran::parser::SelectRankCaseStmt &) {
TODO(toLocation(), "coarray: SelectRankCaseStmt");
}
void genFIR(const Fortran::parser::SelectTypeConstruct &selectTypeConstruct) {
mlir::MLIRContext *context = builder->getContext();
Fortran::lower::StatementContext stmtCtx;
fir::ExtendedValue selector;
llvm::SmallVector<mlir::Attribute> attrList;
llvm::SmallVector<mlir::Block *> blockList;
unsigned typeGuardIdx = 0;
std::size_t defaultAttrPos = std::numeric_limits<size_t>::max();
bool hasLocalScope = false;
llvm::SmallVector<const Fortran::semantics::Scope *> typeCaseScopes;
const auto &typeCaseList =
std::get<std::list<Fortran::parser::SelectTypeConstruct::TypeCase>>(
selectTypeConstruct.t);
for (const auto &typeCase : typeCaseList) {
const auto &stmt =
std::get<Fortran::parser::Statement<Fortran::parser::TypeGuardStmt>>(
typeCase.t);
const Fortran::semantics::Scope &scope =
bridge.getSemanticsContext().FindScope(stmt.source);
typeCaseScopes.push_back(&scope);
}
pushActiveConstruct(getEval(), stmtCtx);
for (Fortran::lower::pft::Evaluation &eval :
getEval().getNestedEvaluations()) {
setCurrentPosition(eval.position);
mlir::Location loc = toLocation();
if (auto *selectTypeStmt =
eval.getIf<Fortran::parser::SelectTypeStmt>()) {
// A genFIR(SelectTypeStmt) call would have unwanted side effects.
maybeStartBlock(eval.block);
// Retrieve the selector
const auto &s = std::get<Fortran::parser::Selector>(selectTypeStmt->t);
if (const auto *v = std::get_if<Fortran::parser::Variable>(&s.u))
selector = genExprBox(loc, *Fortran::semantics::GetExpr(*v), stmtCtx);
else if (const auto *e = std::get_if<Fortran::parser::Expr>(&s.u))
selector = genExprBox(loc, *Fortran::semantics::GetExpr(*e), stmtCtx);
// Going through the controlSuccessor first to create the
// fir.select_type operation.
mlir::Block *defaultBlock = eval.parentConstruct->constructExit->block;
for (Fortran::lower::pft::Evaluation *e = eval.controlSuccessor; e;
e = e->controlSuccessor) {
const auto &typeGuardStmt =
e->getIf<Fortran::parser::TypeGuardStmt>();
const auto &guard =
std::get<Fortran::parser::TypeGuardStmt::Guard>(typeGuardStmt->t);
assert(e->block && "missing TypeGuardStmt block");
// CLASS DEFAULT
if (std::holds_alternative<Fortran::parser::Default>(guard.u)) {
defaultBlock = e->block;
// Keep track of the actual position of the CLASS DEFAULT type guard
// in the SELECT TYPE construct.
defaultAttrPos = attrList.size();
continue;
}
blockList.push_back(e->block);
if (const auto *typeSpec =
std::get_if<Fortran::parser::TypeSpec>(&guard.u)) {
// TYPE IS
mlir::Type ty;
if (std::holds_alternative<Fortran::parser::IntrinsicTypeSpec>(
typeSpec->u)) {
const Fortran::semantics::IntrinsicTypeSpec *intrinsic =
typeSpec->declTypeSpec->AsIntrinsic();
int kind =
Fortran::evaluate::ToInt64(intrinsic->kind()).value_or(kind);
llvm::SmallVector<Fortran::lower::LenParameterTy> params;
ty = genType(intrinsic->category(), kind, params);
} else {
const Fortran::semantics::DerivedTypeSpec *derived =
typeSpec->declTypeSpec->AsDerived();
ty = genType(*derived);
}
attrList.push_back(fir::ExactTypeAttr::get(ty));
} else if (const auto *derived =
std::get_if<Fortran::parser::DerivedTypeSpec>(
&guard.u)) {
// CLASS IS
assert(derived->derivedTypeSpec && "derived type spec is null");
mlir::Type ty = genType(*(derived->derivedTypeSpec));
attrList.push_back(fir::SubclassAttr::get(ty));
}
}
attrList.push_back(mlir::UnitAttr::get(context));
blockList.push_back(defaultBlock);
builder->create<fir::SelectTypeOp>(loc, fir::getBase(selector),
attrList, blockList);
// If the actual position of CLASS DEFAULT type guard is not the last
// one, it needs to be put back at its correct position for the rest of
// the processing. TypeGuardStmt are processed in the same order they
// appear in the Fortran code.
if (defaultAttrPos < attrList.size() - 1) {
auto attrIt = attrList.begin();
attrIt = attrIt + defaultAttrPos;
auto blockIt = blockList.begin();
blockIt = blockIt + defaultAttrPos;
attrList.insert(attrIt, mlir::UnitAttr::get(context));
blockList.insert(blockIt, defaultBlock);
attrList.pop_back();
blockList.pop_back();
}
} else if (auto *typeGuardStmt =
eval.getIf<Fortran::parser::TypeGuardStmt>()) {
// Map the type guard local symbol for the selector to a more precise
// typed entity in the TypeGuardStmt when necessary.
genFIR(eval);
const auto &guard =
std::get<Fortran::parser::TypeGuardStmt::Guard>(typeGuardStmt->t);
if (hasLocalScope)
localSymbols.popScope();
localSymbols.pushScope();
hasLocalScope = true;
assert(attrList.size() >= typeGuardIdx &&
"TypeGuard attribute missing");
mlir::Attribute typeGuardAttr = attrList[typeGuardIdx];
mlir::Block *typeGuardBlock = blockList[typeGuardIdx];
mlir::OpBuilder::InsertPoint crtInsPt = builder->saveInsertionPoint();
builder->setInsertionPointToStart(typeGuardBlock);
auto addAssocEntitySymbol = [&](fir::ExtendedValue exv) {
for (auto &symbol : typeCaseScopes[typeGuardIdx]->GetSymbols()) {
if (symbol->GetUltimate()
.detailsIf<Fortran::semantics::AssocEntityDetails>()) {
addSymbol(symbol, exv);
break;
}
}
};
mlir::Type baseTy = fir::getBase(selector).getType();
bool isPointer = fir::isPointerType(baseTy);
bool isAllocatable = fir::isAllocatableType(baseTy);
bool isArray =
mlir::isa<fir::SequenceType>(fir::dyn_cast_ptrOrBoxEleTy(baseTy));
const fir::BoxValue *selectorBox = selector.getBoxOf<fir::BoxValue>();
if (std::holds_alternative<Fortran::parser::Default>(guard.u)) {
// CLASS DEFAULT
addAssocEntitySymbol(selector);
} else if (const auto *typeSpec =
std::get_if<Fortran::parser::TypeSpec>(&guard.u)) {
// TYPE IS
fir::ExactTypeAttr attr =
mlir::dyn_cast<fir::ExactTypeAttr>(typeGuardAttr);
mlir::Value exactValue;
mlir::Type addrTy = attr.getType();
if (isArray) {
auto seqTy = mlir::dyn_cast<fir::SequenceType>(
fir::dyn_cast_ptrOrBoxEleTy(baseTy));
addrTy = fir::SequenceType::get(seqTy.getShape(), attr.getType());
}
if (isPointer)
addrTy = fir::PointerType::get(addrTy);
if (isAllocatable)
addrTy = fir::HeapType::get(addrTy);
if (std::holds_alternative<Fortran::parser::IntrinsicTypeSpec>(
typeSpec->u)) {
mlir::Type refTy = fir::ReferenceType::get(addrTy);
if (isPointer || isAllocatable)
refTy = addrTy;
exactValue = builder->create<fir::BoxAddrOp>(
loc, refTy, fir::getBase(selector));
const Fortran::semantics::IntrinsicTypeSpec *intrinsic =
typeSpec->declTypeSpec->AsIntrinsic();
if (isArray) {
mlir::Value exact = builder->create<fir::ConvertOp>(
loc, fir::BoxType::get(addrTy), fir::getBase(selector));
addAssocEntitySymbol(selectorBox->clone(exact));
} else if (intrinsic->category() ==
Fortran::common::TypeCategory::Character) {
auto charTy = mlir::dyn_cast<fir::CharacterType>(attr.getType());
mlir::Value charLen =
fir::factory::CharacterExprHelper(*builder, loc)
.readLengthFromBox(fir::getBase(selector), charTy);
addAssocEntitySymbol(fir::CharBoxValue(exactValue, charLen));
} else {
addAssocEntitySymbol(exactValue);
}
} else if (std::holds_alternative<Fortran::parser::DerivedTypeSpec>(
typeSpec->u)) {
exactValue = builder->create<fir::ConvertOp>(
loc, fir::BoxType::get(addrTy), fir::getBase(selector));
addAssocEntitySymbol(selectorBox->clone(exactValue));
}
} else if (std::holds_alternative<Fortran::parser::DerivedTypeSpec>(
guard.u)) {
// CLASS IS
fir::SubclassAttr attr =
mlir::dyn_cast<fir::SubclassAttr>(typeGuardAttr);
mlir::Type addrTy = attr.getType();
if (isArray) {
auto seqTy = mlir::dyn_cast<fir::SequenceType>(
fir::dyn_cast_ptrOrBoxEleTy(baseTy));
addrTy = fir::SequenceType::get(seqTy.getShape(), attr.getType());
}
if (isPointer)
addrTy = fir::PointerType::get(addrTy);
if (isAllocatable)
addrTy = fir::HeapType::get(addrTy);
mlir::Type classTy = fir::ClassType::get(addrTy);
if (classTy == baseTy) {
addAssocEntitySymbol(selector);
} else {
mlir::Value derived = builder->create<fir::ConvertOp>(
loc, classTy, fir::getBase(selector));
addAssocEntitySymbol(selectorBox->clone(derived));
}
}
builder->restoreInsertionPoint(crtInsPt);
++typeGuardIdx;
} else if (eval.getIf<Fortran::parser::EndSelectStmt>()) {
maybeStartBlock(eval.block);
if (hasLocalScope)
localSymbols.popScope();
} else {
genFIR(eval);
}
}
popActiveConstruct();
}
//===--------------------------------------------------------------------===//
// IO statements (see io.h)
//===--------------------------------------------------------------------===//
void genFIR(const Fortran::parser::BackspaceStmt &stmt) {
mlir::Value iostat = genBackspaceStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::CloseStmt &stmt) {
mlir::Value iostat = genCloseStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::EndfileStmt &stmt) {
mlir::Value iostat = genEndfileStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::FlushStmt &stmt) {
mlir::Value iostat = genFlushStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::InquireStmt &stmt) {
mlir::Value iostat = genInquireStatement(*this, stmt);
if (const auto *specs =
std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u))
genIoConditionBranches(getEval(), *specs, iostat);
}
void genFIR(const Fortran::parser::OpenStmt &stmt) {
mlir::Value iostat = genOpenStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::PrintStmt &stmt) {
genPrintStatement(*this, stmt);
}
void genFIR(const Fortran::parser::ReadStmt &stmt) {
mlir::Value iostat = genReadStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.controls, iostat);
}
void genFIR(const Fortran::parser::RewindStmt &stmt) {
mlir::Value iostat = genRewindStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::WaitStmt &stmt) {
mlir::Value iostat = genWaitStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.v, iostat);
}
void genFIR(const Fortran::parser::WriteStmt &stmt) {
mlir::Value iostat = genWriteStatement(*this, stmt);
genIoConditionBranches(getEval(), stmt.controls, iostat);
}
template <typename A>
void genIoConditionBranches(Fortran::lower::pft::Evaluation &eval,
const A &specList, mlir::Value iostat) {
if (!iostat)
return;
Fortran::parser::Label endLabel{};
Fortran::parser::Label eorLabel{};
Fortran::parser::Label errLabel{};
bool hasIostat{};
for (const auto &spec : specList) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::EndLabel &label) {
endLabel = label.v;
},
[&](const Fortran::parser::EorLabel &label) {
eorLabel = label.v;
},
[&](const Fortran::parser::ErrLabel &label) {
errLabel = label.v;
},
[&](const Fortran::parser::StatVariable &) { hasIostat = true; },
[](const auto &) {}},
spec.u);
}
if (!endLabel && !eorLabel && !errLabel)
return;
// An ERR specifier branch is taken on any positive error value rather than
// some single specific value. If ERR and IOSTAT specifiers are given and
// END and EOR specifiers are allowed, the latter two specifiers must have
// explicit branch targets to allow the ERR branch to be implemented as a
// default/else target. A label=0 target for an absent END or EOR specifier
// indicates that these specifiers have a fallthrough target. END and EOR
// specifiers may appear on READ and WAIT statements.
bool allSpecifiersRequired = errLabel && hasIostat &&
(eval.isA<Fortran::parser::ReadStmt>() ||
eval.isA<Fortran::parser::WaitStmt>());
mlir::Value selector =
builder->createConvert(toLocation(), builder->getIndexType(), iostat);
llvm::SmallVector<int64_t> valueList;
llvm::SmallVector<Fortran::parser::Label> labelList;
if (eorLabel || allSpecifiersRequired) {
valueList.push_back(Fortran::runtime::io::IostatEor);
labelList.push_back(eorLabel ? eorLabel : 0);
}
if (endLabel || allSpecifiersRequired) {
valueList.push_back(Fortran::runtime::io::IostatEnd);
labelList.push_back(endLabel ? endLabel : 0);
}
if (errLabel) {
// Must be last. Value 0 is interpreted as any positive value, or
// equivalently as any value other than 0, IostatEor, or IostatEnd.
valueList.push_back(0);
labelList.push_back(errLabel);
}
genMultiwayBranch(selector, valueList, labelList, eval.nonNopSuccessor());
}
//===--------------------------------------------------------------------===//
// Memory allocation and deallocation
//===--------------------------------------------------------------------===//
void genFIR(const Fortran::parser::AllocateStmt &stmt) {
Fortran::lower::genAllocateStmt(*this, stmt, toLocation());
}
void genFIR(const Fortran::parser::DeallocateStmt &stmt) {
Fortran::lower::genDeallocateStmt(*this, stmt, toLocation());
}
/// Nullify pointer object list
///
/// For each pointer object, reset the pointer to a disassociated status.
/// We do this by setting each pointer to null.
void genFIR(const Fortran::parser::NullifyStmt &stmt) {
mlir::Location loc = toLocation();
for (auto &pointerObject : stmt.v) {
const Fortran::lower::SomeExpr *expr =
Fortran::semantics::GetExpr(pointerObject);
assert(expr);
if (Fortran::evaluate::IsProcedurePointer(*expr)) {
Fortran::lower::StatementContext stmtCtx;
hlfir::Entity pptr = Fortran::lower::convertExprToHLFIR(
loc, *this, *expr, localSymbols, stmtCtx);
auto boxTy{
Fortran::lower::getUntypedBoxProcType(builder->getContext())};
hlfir::Entity nullBoxProc(
fir::factory::createNullBoxProc(*builder, loc, boxTy));
builder->createStoreWithConvert(loc, nullBoxProc, pptr);
} else {
fir::MutableBoxValue box = genExprMutableBox(loc, *expr);
fir::factory::disassociateMutableBox(*builder, loc, box);
}
}
}
//===--------------------------------------------------------------------===//
void genFIR(const Fortran::parser::NotifyWaitStmt &stmt) {
genNotifyWaitStatement(*this, stmt);
}
void genFIR(const Fortran::parser::EventPostStmt &stmt) {
genEventPostStatement(*this, stmt);
}
void genFIR(const Fortran::parser::EventWaitStmt &stmt) {
genEventWaitStatement(*this, stmt);
}
void genFIR(const Fortran::parser::FormTeamStmt &stmt) {
genFormTeamStatement(*this, getEval(), stmt);
}
void genFIR(const Fortran::parser::LockStmt &stmt) {
genLockStatement(*this, stmt);
}
fir::ExtendedValue
genInitializerExprValue(const Fortran::lower::SomeExpr &expr,
Fortran::lower::StatementContext &stmtCtx) {
return Fortran::lower::createSomeInitializerExpression(
toLocation(), *this, expr, localSymbols, stmtCtx);
}
/// Return true if the current context is a conditionalized and implied
/// iteration space.
bool implicitIterationSpace() { return !implicitIterSpace.empty(); }
/// Return true if context is currently an explicit iteration space. A scalar
/// assignment expression may be contextually within a user-defined iteration
/// space, transforming it into an array expression.
bool explicitIterationSpace() { return explicitIterSpace.isActive(); }
/// Generate an array assignment.
/// This is an assignment expression with rank > 0. The assignment may or may
/// not be in a WHERE and/or FORALL context.
/// In a FORALL context, the assignment may be a pointer assignment and the \p
/// lbounds and \p ubounds parameters should only be used in such a pointer
/// assignment case. (If both are None then the array assignment cannot be a
/// pointer assignment.)
void genArrayAssignment(
const Fortran::evaluate::Assignment &assign,
Fortran::lower::StatementContext &localStmtCtx,
std::optional<llvm::SmallVector<mlir::Value>> lbounds = std::nullopt,
std::optional<llvm::SmallVector<mlir::Value>> ubounds = std::nullopt) {
Fortran::lower::StatementContext &stmtCtx =
explicitIterationSpace()
? explicitIterSpace.stmtContext()
: (implicitIterationSpace() ? implicitIterSpace.stmtContext()
: localStmtCtx);
if (Fortran::lower::isWholeAllocatable(assign.lhs)) {
// Assignment to allocatables may require the lhs to be
// deallocated/reallocated. See Fortran 2018 10.2.1.3 p3
Fortran::lower::createAllocatableArrayAssignment(
*this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace,
localSymbols, stmtCtx);
return;
}
if (lbounds) {
// Array of POINTER entities, with elemental assignment.
if (!Fortran::lower::isWholePointer(assign.lhs))
fir::emitFatalError(toLocation(), "pointer assignment to non-pointer");
Fortran::lower::createArrayOfPointerAssignment(
*this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace,
*lbounds, ubounds, localSymbols, stmtCtx);
return;
}
if (!implicitIterationSpace() && !explicitIterationSpace()) {
// No masks and the iteration space is implied by the array, so create a
// simple array assignment.
Fortran::lower::createSomeArrayAssignment(*this, assign.lhs, assign.rhs,
localSymbols, stmtCtx);
return;
}
// If there is an explicit iteration space, generate an array assignment
// with a user-specified iteration space and possibly with masks. These
// assignments may *appear* to be scalar expressions, but the scalar
// expression is evaluated at all points in the user-defined space much like
// an ordinary array assignment. More specifically, the semantics inside the
// FORALL much more closely resembles that of WHERE than a scalar
// assignment.
// Otherwise, generate a masked array assignment. The iteration space is
// implied by the lhs array expression.
Fortran::lower::createAnyMaskedArrayAssignment(
*this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace,
localSymbols, stmtCtx);
}
#if !defined(NDEBUG)
static bool isFuncResultDesignator(const Fortran::lower::SomeExpr &expr) {
const Fortran::semantics::Symbol *sym =
Fortran::evaluate::GetFirstSymbol(expr);
return sym && sym->IsFuncResult();
}
#endif
inline fir::MutableBoxValue
genExprMutableBox(mlir::Location loc,
const Fortran::lower::SomeExpr &expr) override final {
if (lowerToHighLevelFIR())
return Fortran::lower::convertExprToMutableBox(loc, *this, expr,
localSymbols);
return Fortran::lower::createMutableBox(loc, *this, expr, localSymbols);
}
// Create the [newRank] array with the lower bounds to be passed to the
// runtime as a descriptor.
mlir::Value createLboundArray(llvm::ArrayRef<mlir::Value> lbounds,
mlir::Location loc) {
mlir::Type indexTy = builder->getIndexType();
mlir::Type boundArrayTy = fir::SequenceType::get(
{static_cast<int64_t>(lbounds.size())}, builder->getI64Type());
mlir::Value boundArray = builder->create<fir::AllocaOp>(loc, boundArrayTy);
mlir::Value array = builder->create<fir::UndefOp>(loc, boundArrayTy);
for (unsigned i = 0; i < lbounds.size(); ++i) {
array = builder->create<fir::InsertValueOp>(
loc, boundArrayTy, array, lbounds[i],
builder->getArrayAttr({builder->getIntegerAttr(
builder->getIndexType(), static_cast<int>(i))}));
}
builder->create<fir::StoreOp>(loc, array, boundArray);
mlir::Type boxTy = fir::BoxType::get(boundArrayTy);
mlir::Value ext =
builder->createIntegerConstant(loc, indexTy, lbounds.size());
llvm::SmallVector<mlir::Value> shapes = {ext};
mlir::Value shapeOp = builder->genShape(loc, shapes);
return builder->create<fir::EmboxOp>(loc, boxTy, boundArray, shapeOp);
}
// Generate pointer assignment with possibly empty bounds-spec. R1035: a
// bounds-spec is a lower bound value.
void genPointerAssignment(
mlir::Location loc, const Fortran::evaluate::Assignment &assign,
const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) {
Fortran::lower::StatementContext stmtCtx;
if (!lowerToHighLevelFIR() && Fortran::evaluate::IsProcedure(assign.rhs))
TODO(loc, "procedure pointer assignment");
if (Fortran::evaluate::IsProcedurePointer(assign.lhs)) {
hlfir::Entity lhs = Fortran::lower::convertExprToHLFIR(
loc, *this, assign.lhs, localSymbols, stmtCtx);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
assign.rhs)) {
// rhs is null(). rhs being null(pptr) is handled in genNull.
auto boxTy{
Fortran::lower::getUntypedBoxProcType(builder->getContext())};
hlfir::Entity rhs(
fir::factory::createNullBoxProc(*builder, loc, boxTy));
builder->createStoreWithConvert(loc, rhs, lhs);
return;
}
hlfir::Entity rhs(getBase(Fortran::lower::convertExprToAddress(
loc, *this, assign.rhs, localSymbols, stmtCtx)));
builder->createStoreWithConvert(loc, rhs, lhs);
return;
}
std::optional<Fortran::evaluate::DynamicType> lhsType =
assign.lhs.GetType();
// Delegate pointer association to unlimited polymorphic pointer
// to the runtime. element size, type code, attribute and of
// course base_addr might need to be updated.
if (lhsType && lhsType->IsPolymorphic()) {
if (!lowerToHighLevelFIR() && explicitIterationSpace())
TODO(loc, "polymorphic pointer assignment in FORALL");
llvm::SmallVector<mlir::Value> lbounds;
for (const Fortran::evaluate::ExtentExpr &lbExpr : lbExprs)
lbounds.push_back(
fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx)));
fir::MutableBoxValue lhsMutableBox = genExprMutableBox(loc, assign.lhs);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
assign.rhs)) {
fir::factory::disassociateMutableBox(*builder, loc, lhsMutableBox);
return;
}
mlir::Value lhs = lhsMutableBox.getAddr();
mlir::Value rhs = fir::getBase(genExprBox(loc, assign.rhs, stmtCtx));
if (!lbounds.empty()) {
mlir::Value boundsDesc = createLboundArray(lbounds, loc);
Fortran::lower::genPointerAssociateLowerBounds(*builder, loc, lhs, rhs,
boundsDesc);
return;
}
Fortran::lower::genPointerAssociate(*builder, loc, lhs, rhs);
return;
}
llvm::SmallVector<mlir::Value> lbounds;
for (const Fortran::evaluate::ExtentExpr &lbExpr : lbExprs)
lbounds.push_back(fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx)));
if (!lowerToHighLevelFIR() && explicitIterationSpace()) {
// Pointer assignment in FORALL context. Copy the rhs box value
// into the lhs box variable.
genArrayAssignment(assign, stmtCtx, lbounds);
return;
}
fir::MutableBoxValue lhs = genExprMutableBox(loc, assign.lhs);
Fortran::lower::associateMutableBox(*this, loc, lhs, assign.rhs, lbounds,
stmtCtx);
}
// Create the 2 x newRank array with the bounds to be passed to the runtime as
// a descriptor.
mlir::Value createBoundArray(llvm::ArrayRef<mlir::Value> lbounds,
llvm::ArrayRef<mlir::Value> ubounds,
mlir::Location loc) {
assert(lbounds.size() && ubounds.size());
mlir::Type indexTy = builder->getIndexType();
mlir::Type boundArrayTy = fir::SequenceType::get(
{2, static_cast<int64_t>(lbounds.size())}, builder->getI64Type());
mlir::Value boundArray = builder->create<fir::AllocaOp>(loc, boundArrayTy);
mlir::Value array = builder->create<fir::UndefOp>(loc, boundArrayTy);
for (unsigned i = 0; i < lbounds.size(); ++i) {
array = builder->create<fir::InsertValueOp>(
loc, boundArrayTy, array, lbounds[i],
builder->getArrayAttr(
{builder->getIntegerAttr(builder->getIndexType(), 0),
builder->getIntegerAttr(builder->getIndexType(),
static_cast<int>(i))}));
array = builder->create<fir::InsertValueOp>(
loc, boundArrayTy, array, ubounds[i],
builder->getArrayAttr(
{builder->getIntegerAttr(builder->getIndexType(), 1),
builder->getIntegerAttr(builder->getIndexType(),
static_cast<int>(i))}));
}
builder->create<fir::StoreOp>(loc, array, boundArray);
mlir::Type boxTy = fir::BoxType::get(boundArrayTy);
mlir::Value ext =
builder->createIntegerConstant(loc, indexTy, lbounds.size());
mlir::Value c2 = builder->createIntegerConstant(loc, indexTy, 2);
llvm::SmallVector<mlir::Value> shapes = {c2, ext};
mlir::Value shapeOp = builder->genShape(loc, shapes);
return builder->create<fir::EmboxOp>(loc, boxTy, boundArray, shapeOp);
}
// Pointer assignment with bounds-remapping. R1036: a bounds-remapping is a
// pair, lower bound and upper bound.
void genPointerAssignment(
mlir::Location loc, const Fortran::evaluate::Assignment &assign,
const Fortran::evaluate::Assignment::BoundsRemapping &boundExprs) {
Fortran::lower::StatementContext stmtCtx;
llvm::SmallVector<mlir::Value> lbounds;
llvm::SmallVector<mlir::Value> ubounds;
for (const std::pair<Fortran::evaluate::ExtentExpr,
Fortran::evaluate::ExtentExpr> &pair : boundExprs) {
const Fortran::evaluate::ExtentExpr &lbExpr = pair.first;
const Fortran::evaluate::ExtentExpr &ubExpr = pair.second;
lbounds.push_back(fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx)));
ubounds.push_back(fir::getBase(genExprValue(toEvExpr(ubExpr), stmtCtx)));
}
std::optional<Fortran::evaluate::DynamicType> lhsType =
assign.lhs.GetType();
std::optional<Fortran::evaluate::DynamicType> rhsType =
assign.rhs.GetType();
// Polymorphic lhs/rhs need more care. See F2018 10.2.2.3.
if ((lhsType && lhsType->IsPolymorphic()) ||
(rhsType && rhsType->IsPolymorphic())) {
if (!lowerToHighLevelFIR() && explicitIterationSpace())
TODO(loc, "polymorphic pointer assignment in FORALL");
fir::MutableBoxValue lhsMutableBox = genExprMutableBox(loc, assign.lhs);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
assign.rhs)) {
fir::factory::disassociateMutableBox(*builder, loc, lhsMutableBox);
return;
}
mlir::Value lhs = lhsMutableBox.getAddr();
mlir::Value rhs = fir::getBase(genExprBox(loc, assign.rhs, stmtCtx));
mlir::Value boundsDesc = createBoundArray(lbounds, ubounds, loc);
Fortran::lower::genPointerAssociateRemapping(*builder, loc, lhs, rhs,
boundsDesc);
return;
}
if (!lowerToHighLevelFIR() && explicitIterationSpace()) {
// Pointer assignment in FORALL context. Copy the rhs box value
// into the lhs box variable.
genArrayAssignment(assign, stmtCtx, lbounds, ubounds);
return;
}
fir::MutableBoxValue lhs = genExprMutableBox(loc, assign.lhs);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
assign.rhs)) {
fir::factory::disassociateMutableBox(*builder, loc, lhs);
return;
}
if (lowerToHighLevelFIR()) {
fir::ExtendedValue rhs = genExprAddr(assign.rhs, stmtCtx);
fir::factory::associateMutableBoxWithRemap(*builder, loc, lhs, rhs,
lbounds, ubounds);
return;
}
// Legacy lowering below.
// Do not generate a temp in case rhs is an array section.
fir::ExtendedValue rhs =
Fortran::lower::isArraySectionWithoutVectorSubscript(assign.rhs)
? Fortran::lower::createSomeArrayBox(*this, assign.rhs,
localSymbols, stmtCtx)
: genExprAddr(assign.rhs, stmtCtx);
fir::factory::associateMutableBoxWithRemap(*builder, loc, lhs, rhs, lbounds,
ubounds);
if (explicitIterationSpace()) {
mlir::ValueRange inners = explicitIterSpace.getInnerArgs();
if (!inners.empty())
builder->create<fir::ResultOp>(loc, inners);
}
}
/// Given converted LHS and RHS of the assignment, materialize any
/// implicit conversion of the RHS to the LHS type. The front-end
/// usually already makes those explicit, except for non-standard
/// LOGICAL <-> INTEGER, or if the LHS is a whole allocatable
/// (making the conversion explicit in the front-end would prevent
/// propagation of the LHS lower bound in the reallocation).
/// If array temporaries or values are created, the cleanups are
/// added in the statement context.
hlfir::Entity genImplicitConvert(const Fortran::evaluate::Assignment &assign,
hlfir::Entity rhs, bool preserveLowerBounds,
Fortran::lower::StatementContext &stmtCtx) {
mlir::Location loc = toLocation();
auto &builder = getFirOpBuilder();
mlir::Type toType = genType(assign.lhs);
auto valueAndPair = hlfir::genTypeAndKindConvert(loc, builder, rhs, toType,
preserveLowerBounds);
if (valueAndPair.second)
stmtCtx.attachCleanup(*valueAndPair.second);
return hlfir::Entity{valueAndPair.first};
}
static void
genCleanUpInRegionIfAny(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Region &region,
Fortran::lower::StatementContext &context) {
if (!context.hasCode())
return;
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
if (region.empty())
builder.createBlock(&region);
else
builder.setInsertionPointToEnd(&region.front());
context.finalizeAndPop();
hlfir::YieldOp::ensureTerminator(region, builder, loc);
builder.restoreInsertionPoint(insertPt);
}
bool firstDummyIsPointerOrAllocatable(
const Fortran::evaluate::ProcedureRef &userDefinedAssignment) {
using DummyAttr = Fortran::evaluate::characteristics::DummyDataObject::Attr;
if (auto procedure =
Fortran::evaluate::characteristics::Procedure::Characterize(
userDefinedAssignment.proc(), getFoldingContext(),
/*emitError=*/false))
if (!procedure->dummyArguments.empty())
if (const auto *dataArg = std::get_if<
Fortran::evaluate::characteristics::DummyDataObject>(
&procedure->dummyArguments[0].u))
return dataArg->attrs.test(DummyAttr::Pointer) ||
dataArg->attrs.test(DummyAttr::Allocatable);
return false;
}
void genCUDADataTransfer(fir::FirOpBuilder &builder, mlir::Location loc,
const Fortran::evaluate::Assignment &assign,
hlfir::Entity &lhs, hlfir::Entity &rhs) {
bool lhsIsDevice = Fortran::evaluate::HasCUDAAttrs(assign.lhs);
bool rhsIsDevice = Fortran::evaluate::HasCUDAAttrs(assign.rhs);
if (rhs.isBoxAddressOrValue() || lhs.isBoxAddressOrValue())
TODO(loc, "CUDA data transfler with descriptors");
// device = host
if (lhsIsDevice && !rhsIsDevice) {
auto transferKindAttr = fir::CUDADataTransferKindAttr::get(
builder.getContext(), fir::CUDADataTransferKind::HostDevice);
if (!rhs.isVariable()) {
auto associate = hlfir::genAssociateExpr(
loc, builder, rhs, rhs.getType(), ".cuf_host_tmp");
builder.create<fir::CUDADataTransferOp>(loc, associate.getBase(), lhs,
transferKindAttr);
builder.create<hlfir::EndAssociateOp>(loc, associate);
} else {
builder.create<fir::CUDADataTransferOp>(loc, rhs, lhs,
transferKindAttr);
}
return;
}
// host = device
if (!lhsIsDevice && rhsIsDevice) {
auto transferKindAttr = fir::CUDADataTransferKindAttr::get(
builder.getContext(), fir::CUDADataTransferKind::DeviceHost);
if (!rhs.isVariable()) {
// evaluateRhs loads scalar. Look for the memory reference to be used in
// the transfer.
if (mlir::isa_and_nonnull<fir::LoadOp>(rhs.getDefiningOp())) {
auto loadOp = mlir::dyn_cast<fir::LoadOp>(rhs.getDefiningOp());
builder.create<fir::CUDADataTransferOp>(loc, loadOp.getMemref(), lhs,
transferKindAttr);
return;
}
} else {
builder.create<fir::CUDADataTransferOp>(loc, rhs, lhs,
transferKindAttr);
}
return;
}
if (lhsIsDevice && rhsIsDevice) {
assert(rhs.isVariable() && "CUDA Fortran assignment rhs is not legal");
auto transferKindAttr = fir::CUDADataTransferKindAttr::get(
builder.getContext(), fir::CUDADataTransferKind::DeviceDevice);
builder.create<fir::CUDADataTransferOp>(loc, rhs, lhs, transferKindAttr);
return;
}
llvm_unreachable("Unhandled CUDA data transfer");
}
llvm::SmallVector<mlir::Value>
genCUDAImplicitDataTransfer(fir::FirOpBuilder &builder, mlir::Location loc,
const Fortran::evaluate::Assignment &assign) {
llvm::SmallVector<mlir::Value> temps;
localSymbols.pushScope();
auto transferKindAttr = fir::CUDADataTransferKindAttr::get(
builder.getContext(), fir::CUDADataTransferKind::DeviceHost);
[[maybe_unused]] unsigned nbDeviceResidentObject = 0;
for (const Fortran::semantics::Symbol &sym :
Fortran::evaluate::CollectSymbols(assign.rhs)) {
if (const auto *details =
sym.GetUltimate()
.detailsIf<Fortran::semantics::ObjectEntityDetails>()) {
if (details->cudaDataAttr()) {
if (sym.owner().IsDerivedType() && IsAllocatable(sym.GetUltimate()))
TODO(loc, "Device resident allocatable derived-type component");
// TODO: This should probably being checked in semantic and give a
// proper error.
assert(
nbDeviceResidentObject <= 1 &&
"Only one reference to the device resident object is supported");
auto addr = getSymbolAddress(sym);
hlfir::Entity entity{addr};
auto [temp, cleanup] =
hlfir::createTempFromMold(loc, builder, entity);
auto needCleanup = fir::getIntIfConstant(cleanup);
if (needCleanup && *needCleanup)
temps.push_back(temp);
addSymbol(sym,
hlfir::translateToExtendedValue(loc, builder, temp).first,
/*forced=*/true);
builder.create<fir::CUDADataTransferOp>(loc, addr, temp,
transferKindAttr);
++nbDeviceResidentObject;
}
}
}
return temps;
}
// Check if the insertion point is currently in a device context. HostDevice
// subprogram are not considered fully device context so it will return false
// for it.
static bool isDeviceContext(fir::FirOpBuilder &builder) {
if (builder.getRegion().getParentOfType<fir::CUDAKernelOp>())
return true;
if (auto funcOp =
builder.getRegion().getParentOfType<mlir::func::FuncOp>()) {
if (auto cudaProcAttr =
funcOp.getOperation()->getAttrOfType<fir::CUDAProcAttributeAttr>(
fir::getCUDAAttrName())) {
return cudaProcAttr.getValue() != fir::CUDAProcAttribute::Host &&
cudaProcAttr.getValue() != fir::CUDAProcAttribute::HostDevice;
}
}
return false;
}
void genDataAssignment(
const Fortran::evaluate::Assignment &assign,
const Fortran::evaluate::ProcedureRef *userDefinedAssignment) {
mlir::Location loc = getCurrentLocation();
fir::FirOpBuilder &builder = getFirOpBuilder();
bool isInDeviceContext = isDeviceContext(builder);
bool isCUDATransfer = (Fortran::evaluate::HasCUDAAttrs(assign.lhs) ||
Fortran::evaluate::HasCUDAAttrs(assign.rhs)) &&
!isInDeviceContext;
bool hasCUDAImplicitTransfer =
Fortran::evaluate::HasCUDAImplicitTransfer(assign.rhs);
llvm::SmallVector<mlir::Value> implicitTemps;
if (hasCUDAImplicitTransfer && !isInDeviceContext)
implicitTemps = genCUDAImplicitDataTransfer(builder, loc, assign);
// Gather some information about the assignment that will impact how it is
// lowered.
const bool isWholeAllocatableAssignment =
!userDefinedAssignment && !isInsideHlfirWhere() &&
Fortran::lower::isWholeAllocatable(assign.lhs);
const bool isUserDefAssignToPointerOrAllocatable =
userDefinedAssignment &&
firstDummyIsPointerOrAllocatable(*userDefinedAssignment);
std::optional<Fortran::evaluate::DynamicType> lhsType =
assign.lhs.GetType();
const bool keepLhsLengthInAllocatableAssignment =
isWholeAllocatableAssignment && lhsType.has_value() &&
lhsType->category() == Fortran::common::TypeCategory::Character &&
!lhsType->HasDeferredTypeParameter();
const bool lhsHasVectorSubscripts =
Fortran::evaluate::HasVectorSubscript(assign.lhs);
// Helper to generate the code evaluating the right-hand side.
auto evaluateRhs = [&](Fortran::lower::StatementContext &stmtCtx) {
hlfir::Entity rhs = Fortran::lower::convertExprToHLFIR(
loc, *this, assign.rhs, localSymbols, stmtCtx);
// Load trivial scalar RHS to allow the loads to be hoisted outside of
// loops early if possible. This also dereferences pointer and
// allocatable RHS: the target is being assigned from.
rhs = hlfir::loadTrivialScalar(loc, builder, rhs);
// In intrinsic assignments, the LHS type may not match the RHS type, in
// which case an implicit conversion of the LHS must be done. The
// front-end usually makes it explicit, unless it cannot (whole
// allocatable LHS or Logical<->Integer assignment extension). Recognize
// any type mismatches here and insert explicit scalar convert or
// ElementalOp for array assignment. Preserve the RHS lower bounds on the
// converted entity in case of assignment to whole allocatables so to
// propagate the lower bounds to the LHS in case of reallocation.
if (!userDefinedAssignment)
rhs = genImplicitConvert(assign, rhs, isWholeAllocatableAssignment,
stmtCtx);
return rhs;
};
// Helper to generate the code evaluating the left-hand side.
auto evaluateLhs = [&](Fortran::lower::StatementContext &stmtCtx) {
hlfir::Entity lhs = Fortran::lower::convertExprToHLFIR(
loc, *this, assign.lhs, localSymbols, stmtCtx);
// Dereference pointer LHS: the target is being assigned to.
// Same for allocatables outside of whole allocatable assignments.
if (!isWholeAllocatableAssignment &&
!isUserDefAssignToPointerOrAllocatable)
lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
return lhs;
};
if (!isInsideHlfirForallOrWhere() && !lhsHasVectorSubscripts &&
!userDefinedAssignment) {
Fortran::lower::StatementContext localStmtCtx;
hlfir::Entity rhs = evaluateRhs(localStmtCtx);
hlfir::Entity lhs = evaluateLhs(localStmtCtx);
if (isCUDATransfer && !hasCUDAImplicitTransfer)
genCUDADataTransfer(builder, loc, assign, lhs, rhs);
else
builder.create<hlfir::AssignOp>(loc, rhs, lhs,
isWholeAllocatableAssignment,
keepLhsLengthInAllocatableAssignment);
if (hasCUDAImplicitTransfer && !isInDeviceContext) {
localSymbols.popScope();
for (mlir::Value temp : implicitTemps)
builder.create<fir::FreeMemOp>(loc, temp);
}
return;
}
// Assignments inside Forall, Where, or assignments to a vector subscripted
// left-hand side requires using an hlfir.region_assign in HLFIR. The
// right-hand side and left-hand side must be evaluated inside the
// hlfir.region_assign regions.
auto regionAssignOp = builder.create<hlfir::RegionAssignOp>(loc);
// Lower RHS in its own region.
builder.createBlock(&regionAssignOp.getRhsRegion());
Fortran::lower::StatementContext rhsContext;
hlfir::Entity rhs = evaluateRhs(rhsContext);
auto rhsYieldOp = builder.create<hlfir::YieldOp>(loc, rhs);
genCleanUpInRegionIfAny(loc, builder, rhsYieldOp.getCleanup(), rhsContext);
// Lower LHS in its own region.
builder.createBlock(&regionAssignOp.getLhsRegion());
Fortran::lower::StatementContext lhsContext;
mlir::Value lhsYield = nullptr;
if (!lhsHasVectorSubscripts) {
hlfir::Entity lhs = evaluateLhs(lhsContext);
auto lhsYieldOp = builder.create<hlfir::YieldOp>(loc, lhs);
genCleanUpInRegionIfAny(loc, builder, lhsYieldOp.getCleanup(),
lhsContext);
lhsYield = lhs;
} else {
hlfir::ElementalAddrOp elementalAddr =
Fortran::lower::convertVectorSubscriptedExprToElementalAddr(
loc, *this, assign.lhs, localSymbols, lhsContext);
genCleanUpInRegionIfAny(loc, builder, elementalAddr.getCleanup(),
lhsContext);
lhsYield = elementalAddr.getYieldOp().getEntity();
}
assert(lhsYield && "must have been set");
// Add "realloc" flag to hlfir.region_assign.
if (isWholeAllocatableAssignment)
TODO(loc, "assignment to a whole allocatable inside FORALL");
// Generate the hlfir.region_assign userDefinedAssignment region.
if (userDefinedAssignment) {
mlir::Type rhsType = rhs.getType();
mlir::Type lhsType = lhsYield.getType();
if (userDefinedAssignment->IsElemental()) {
rhsType = hlfir::getEntityElementType(rhs);
lhsType = hlfir::getEntityElementType(hlfir::Entity{lhsYield});
}
builder.createBlock(&regionAssignOp.getUserDefinedAssignment(),
mlir::Region::iterator{}, {rhsType, lhsType},
{loc, loc});
auto end = builder.create<fir::FirEndOp>(loc);
builder.setInsertionPoint(end);
hlfir::Entity lhsBlockArg{regionAssignOp.getUserAssignmentLhs()};
hlfir::Entity rhsBlockArg{regionAssignOp.getUserAssignmentRhs()};
Fortran::lower::convertUserDefinedAssignmentToHLFIR(
loc, *this, *userDefinedAssignment, lhsBlockArg, rhsBlockArg,
localSymbols);
}
builder.setInsertionPointAfter(regionAssignOp);
}
/// Shared for both assignments and pointer assignments.
void genAssignment(const Fortran::evaluate::Assignment &assign) {
mlir::Location loc = toLocation();
if (lowerToHighLevelFIR()) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::Assignment::Intrinsic &) {
genDataAssignment(assign, /*userDefinedAssignment=*/nullptr);
},
[&](const Fortran::evaluate::ProcedureRef &procRef) {
genDataAssignment(assign, /*userDefinedAssignment=*/&procRef);
},
[&](const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) {
if (isInsideHlfirForallOrWhere())
TODO(loc, "pointer assignment inside FORALL");
genPointerAssignment(loc, assign, lbExprs);
},
[&](const Fortran::evaluate::Assignment::BoundsRemapping
&boundExprs) {
if (isInsideHlfirForallOrWhere())
TODO(loc, "pointer assignment inside FORALL");
genPointerAssignment(loc, assign, boundExprs);
},
},
assign.u);
return;
}
if (explicitIterationSpace()) {
Fortran::lower::createArrayLoads(*this, explicitIterSpace, localSymbols);
explicitIterSpace.genLoopNest();
}
Fortran::lower::StatementContext stmtCtx;
std::visit(
Fortran::common::visitors{
// [1] Plain old assignment.
[&](const Fortran::evaluate::Assignment::Intrinsic &) {
const Fortran::semantics::Symbol *sym =
Fortran::evaluate::GetLastSymbol(assign.lhs);
if (!sym)
TODO(loc, "assignment to pointer result of function reference");
std::optional<Fortran::evaluate::DynamicType> lhsType =
assign.lhs.GetType();
assert(lhsType && "lhs cannot be typeless");
std::optional<Fortran::evaluate::DynamicType> rhsType =
assign.rhs.GetType();
// Assignment to/from polymorphic entities are done with the
// runtime.
if (lhsType->IsPolymorphic() ||
lhsType->IsUnlimitedPolymorphic() ||
(rhsType && (rhsType->IsPolymorphic() ||
rhsType->IsUnlimitedPolymorphic()))) {
mlir::Value lhs;
if (Fortran::lower::isWholeAllocatable(assign.lhs))
lhs = genExprMutableBox(loc, assign.lhs).getAddr();
else
lhs = fir::getBase(genExprBox(loc, assign.lhs, stmtCtx));
mlir::Value rhs =
fir::getBase(genExprBox(loc, assign.rhs, stmtCtx));
if ((lhsType->IsPolymorphic() ||
lhsType->IsUnlimitedPolymorphic()) &&
Fortran::lower::isWholeAllocatable(assign.lhs))
fir::runtime::genAssignPolymorphic(*builder, loc, lhs, rhs);
else
fir::runtime::genAssign(*builder, loc, lhs, rhs);
return;
}
// Note: No ad-hoc handling for pointers is required here. The
// target will be assigned as per 2018 10.2.1.3 p2. genExprAddr
// on a pointer returns the target address and not the address of
// the pointer variable.
if (assign.lhs.Rank() > 0 || explicitIterationSpace()) {
if (isDerivedCategory(lhsType->category()) &&
Fortran::semantics::IsFinalizable(
lhsType->GetDerivedTypeSpec()))
TODO(loc, "derived-type finalization with array assignment");
// Array assignment
// See Fortran 2018 10.2.1.3 p5, p6, and p7
genArrayAssignment(assign, stmtCtx);
return;
}
// Scalar assignment
const bool isNumericScalar =
isNumericScalarCategory(lhsType->category());
const bool isVector =
isDerivedCategory(lhsType->category()) &&
lhsType->GetDerivedTypeSpec().IsVectorType();
fir::ExtendedValue rhs = (isNumericScalar || isVector)
? genExprValue(assign.rhs, stmtCtx)
: genExprAddr(assign.rhs, stmtCtx);
const bool lhsIsWholeAllocatable =
Fortran::lower::isWholeAllocatable(assign.lhs);
std::optional<fir::factory::MutableBoxReallocation> lhsRealloc;
std::optional<fir::MutableBoxValue> lhsMutableBox;
// Set flag to know if the LHS needs finalization. Polymorphic,
// unlimited polymorphic assignment will be done with genAssign.
// Assign runtime function performs the finalization.
bool needFinalization = !lhsType->IsPolymorphic() &&
!lhsType->IsUnlimitedPolymorphic() &&
(isDerivedCategory(lhsType->category()) &&
Fortran::semantics::IsFinalizable(
lhsType->GetDerivedTypeSpec()));
auto lhs = [&]() -> fir::ExtendedValue {
if (lhsIsWholeAllocatable) {
lhsMutableBox = genExprMutableBox(loc, assign.lhs);
// Finalize if needed.
if (needFinalization) {
mlir::Value isAllocated =
fir::factory::genIsAllocatedOrAssociatedTest(
*builder, loc, *lhsMutableBox);
builder->genIfThen(loc, isAllocated)
.genThen([&]() {
fir::runtime::genDerivedTypeDestroy(
*builder, loc, fir::getBase(*lhsMutableBox));
})
.end();
needFinalization = false;
}
llvm::SmallVector<mlir::Value> lengthParams;
if (const fir::CharBoxValue *charBox = rhs.getCharBox())
lengthParams.push_back(charBox->getLen());
else if (fir::isDerivedWithLenParameters(rhs))
TODO(loc, "assignment to derived type allocatable with "
"LEN parameters");
lhsRealloc = fir::factory::genReallocIfNeeded(
*builder, loc, *lhsMutableBox,
/*shape=*/std::nullopt, lengthParams);
return lhsRealloc->newValue;
}
return genExprAddr(assign.lhs, stmtCtx);
}();
if (isNumericScalar || isVector) {
// Fortran 2018 10.2.1.3 p8 and p9
// Conversions should have been inserted by semantic analysis,
// but they can be incorrect between the rhs and lhs. Correct
// that here.
mlir::Value addr = fir::getBase(lhs);
mlir::Value val = fir::getBase(rhs);
// A function with multiple entry points returning different
// types tags all result variables with one of the largest
// types to allow them to share the same storage. Assignment
// to a result variable of one of the other types requires
// conversion to the actual type.
mlir::Type toTy = genType(assign.lhs);
// If Cray pointee, need to handle the address
// Array is handled in genCoordinateOp.
if (sym->test(Fortran::semantics::Symbol::Flag::CrayPointee) &&
sym->Rank() == 0) {
// get the corresponding Cray pointer
const Fortran::semantics::Symbol &ptrSym =
Fortran::semantics::GetCrayPointer(*sym);
fir::ExtendedValue ptr =
getSymbolExtendedValue(ptrSym, nullptr);
mlir::Value ptrVal = fir::getBase(ptr);
mlir::Type ptrTy = genType(ptrSym);
fir::ExtendedValue pte =
getSymbolExtendedValue(*sym, nullptr);
mlir::Value pteVal = fir::getBase(pte);
mlir::Value cnvrt = Fortran::lower::addCrayPointerInst(
loc, *builder, ptrVal, ptrTy, pteVal.getType());
addr = builder->create<fir::LoadOp>(loc, cnvrt);
}
mlir::Value cast =
isVector ? val
: builder->convertWithSemantics(loc, toTy, val);
if (fir::dyn_cast_ptrEleTy(addr.getType()) != toTy) {
assert(isFuncResultDesignator(assign.lhs) && "type mismatch");
addr = builder->createConvert(
toLocation(), builder->getRefType(toTy), addr);
}
builder->create<fir::StoreOp>(loc, cast, addr);
} else if (isCharacterCategory(lhsType->category())) {
// Fortran 2018 10.2.1.3 p10 and p11
fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
lhs, rhs);
} else if (isDerivedCategory(lhsType->category())) {
// Handle parent component.
if (Fortran::lower::isParentComponent(assign.lhs)) {
if (!mlir::isa<fir::BaseBoxType>(fir::getBase(lhs).getType()))
lhs = fir::getBase(builder->createBox(loc, lhs));
lhs = Fortran::lower::updateBoxForParentComponent(*this, lhs,
assign.lhs);
}
// Fortran 2018 10.2.1.3 p13 and p14
// Recursively gen an assignment on each element pair.
fir::factory::genRecordAssignment(*builder, loc, lhs, rhs,
needFinalization);
} else {
llvm_unreachable("unknown category");
}
if (lhsIsWholeAllocatable) {
assert(lhsRealloc.has_value());
fir::factory::finalizeRealloc(*builder, loc, *lhsMutableBox,
/*lbounds=*/std::nullopt,
/*takeLboundsIfRealloc=*/false,
*lhsRealloc);
}
},
// [2] User defined assignment. If the context is a scalar
// expression then call the procedure.
[&](const Fortran::evaluate::ProcedureRef &procRef) {
Fortran::lower::StatementContext &ctx =
explicitIterationSpace() ? explicitIterSpace.stmtContext()
: stmtCtx;
Fortran::lower::createSubroutineCall(
*this, procRef, explicitIterSpace, implicitIterSpace,
localSymbols, ctx, /*isUserDefAssignment=*/true);
},
[&](const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) {
return genPointerAssignment(loc, assign, lbExprs);
},
[&](const Fortran::evaluate::Assignment::BoundsRemapping
&boundExprs) {
return genPointerAssignment(loc, assign, boundExprs);
},
},
assign.u);
if (explicitIterationSpace())
Fortran::lower::createArrayMergeStores(*this, explicitIterSpace);
}
// Is the insertion point of the builder directly or indirectly set
// inside any operation of type "Op"?
template <typename... Op>
bool isInsideOp() const {
mlir::Block *block = builder->getInsertionBlock();
mlir::Operation *op = block ? block->getParentOp() : nullptr;
while (op) {
if (mlir::isa<Op...>(op))
return true;
op = op->getParentOp();
}
return false;
}
bool isInsideHlfirForallOrWhere() const {
return isInsideOp<hlfir::ForallOp, hlfir::WhereOp>();
}
bool isInsideHlfirWhere() const { return isInsideOp<hlfir::WhereOp>(); }
void genFIR(const Fortran::parser::WhereConstruct &c) {
mlir::Location loc = getCurrentLocation();
hlfir::WhereOp whereOp;
if (!lowerToHighLevelFIR()) {
implicitIterSpace.growStack();
} else {
whereOp = builder->create<hlfir::WhereOp>(loc);
builder->createBlock(&whereOp.getMaskRegion());
}
// Lower the where mask. For HLFIR, this is done in the hlfir.where mask
// region.
genNestedStatement(
std::get<
Fortran::parser::Statement<Fortran::parser::WhereConstructStmt>>(
c.t));
// Lower WHERE body. For HLFIR, this is done in the hlfir.where body
// region.
if (whereOp)
builder->createBlock(&whereOp.getBody());
for (const auto &body :
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(c.t))
genFIR(body);
for (const auto &e :
std::get<std::list<Fortran::parser::WhereConstruct::MaskedElsewhere>>(
c.t))
genFIR(e);
if (const auto &e =
std::get<std::optional<Fortran::parser::WhereConstruct::Elsewhere>>(
c.t);
e.has_value())
genFIR(*e);
genNestedStatement(
std::get<Fortran::parser::Statement<Fortran::parser::EndWhereStmt>>(
c.t));
if (whereOp) {
// For HLFIR, create fir.end terminator in the last hlfir.elsewhere, or
// in the hlfir.where if it had no elsewhere.
builder->create<fir::FirEndOp>(loc);
builder->setInsertionPointAfter(whereOp);
}
}
void genFIR(const Fortran::parser::WhereBodyConstruct &body) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::Statement<
Fortran::parser::AssignmentStmt> &stmt) {
genNestedStatement(stmt);
},
[&](const Fortran::parser::Statement<Fortran::parser::WhereStmt>
&stmt) { genNestedStatement(stmt); },
[&](const Fortran::common::Indirection<
Fortran::parser::WhereConstruct> &c) { genFIR(c.value()); },
},
body.u);
}
/// Lower a Where or Elsewhere mask into an hlfir mask region.
void lowerWhereMaskToHlfir(mlir::Location loc,
const Fortran::semantics::SomeExpr *maskExpr) {
assert(maskExpr && "mask semantic analysis failed");
Fortran::lower::StatementContext maskContext;
hlfir::Entity mask = Fortran::lower::convertExprToHLFIR(
loc, *this, *maskExpr, localSymbols, maskContext);
mask = hlfir::loadTrivialScalar(loc, *builder, mask);
auto yieldOp = builder->create<hlfir::YieldOp>(loc, mask);
genCleanUpInRegionIfAny(loc, *builder, yieldOp.getCleanup(), maskContext);
}
void genFIR(const Fortran::parser::WhereConstructStmt &stmt) {
const Fortran::semantics::SomeExpr *maskExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::LogicalExpr>(stmt.t));
if (lowerToHighLevelFIR())
lowerWhereMaskToHlfir(getCurrentLocation(), maskExpr);
else
implicitIterSpace.append(maskExpr);
}
void genFIR(const Fortran::parser::WhereConstruct::MaskedElsewhere &ew) {
mlir::Location loc = getCurrentLocation();
hlfir::ElseWhereOp elsewhereOp;
if (lowerToHighLevelFIR()) {
elsewhereOp = builder->create<hlfir::ElseWhereOp>(loc);
// Lower mask in the mask region.
builder->createBlock(&elsewhereOp.getMaskRegion());
}
genNestedStatement(
std::get<
Fortran::parser::Statement<Fortran::parser::MaskedElsewhereStmt>>(
ew.t));
// For HLFIR, lower the body in the hlfir.elsewhere body region.
if (elsewhereOp)
builder->createBlock(&elsewhereOp.getBody());
for (const auto &body :
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew.t))
genFIR(body);
}
void genFIR(const Fortran::parser::MaskedElsewhereStmt &stmt) {
const auto *maskExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::LogicalExpr>(stmt.t));
if (lowerToHighLevelFIR())
lowerWhereMaskToHlfir(getCurrentLocation(), maskExpr);
else
implicitIterSpace.append(maskExpr);
}
void genFIR(const Fortran::parser::WhereConstruct::Elsewhere &ew) {
if (lowerToHighLevelFIR()) {
auto elsewhereOp =
builder->create<hlfir::ElseWhereOp>(getCurrentLocation());
builder->createBlock(&elsewhereOp.getBody());
}
genNestedStatement(
std::get<Fortran::parser::Statement<Fortran::parser::ElsewhereStmt>>(
ew.t));
for (const auto &body :
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew.t))
genFIR(body);
}
void genFIR(const Fortran::parser::ElsewhereStmt &stmt) {
if (!lowerToHighLevelFIR())
implicitIterSpace.append(nullptr);
}
void genFIR(const Fortran::parser::EndWhereStmt &) {
if (!lowerToHighLevelFIR())
implicitIterSpace.shrinkStack();
}
void genFIR(const Fortran::parser::WhereStmt &stmt) {
Fortran::lower::StatementContext stmtCtx;
const auto &assign = std::get<Fortran::parser::AssignmentStmt>(stmt.t);
const auto *mask = Fortran::semantics::GetExpr(
std::get<Fortran::parser::LogicalExpr>(stmt.t));
if (lowerToHighLevelFIR()) {
mlir::Location loc = getCurrentLocation();
auto whereOp = builder->create<hlfir::WhereOp>(loc);
builder->createBlock(&whereOp.getMaskRegion());
lowerWhereMaskToHlfir(loc, mask);
builder->createBlock(&whereOp.getBody());
genAssignment(*assign.typedAssignment->v);
builder->create<fir::FirEndOp>(loc);
builder->setInsertionPointAfter(whereOp);
return;
}
implicitIterSpace.growStack();
implicitIterSpace.append(mask);
genAssignment(*assign.typedAssignment->v);
implicitIterSpace.shrinkStack();
}
void genFIR(const Fortran::parser::PointerAssignmentStmt &stmt) {
genAssignment(*stmt.typedAssignment->v);
}
void genFIR(const Fortran::parser::AssignmentStmt &stmt) {
genAssignment(*stmt.typedAssignment->v);
}
void genFIR(const Fortran::parser::SyncAllStmt &stmt) {
genSyncAllStatement(*this, stmt);
}
void genFIR(const Fortran::parser::SyncImagesStmt &stmt) {
genSyncImagesStatement(*this, stmt);
}
void genFIR(const Fortran::parser::SyncMemoryStmt &stmt) {
genSyncMemoryStatement(*this, stmt);
}
void genFIR(const Fortran::parser::SyncTeamStmt &stmt) {
genSyncTeamStatement(*this, stmt);
}
void genFIR(const Fortran::parser::UnlockStmt &stmt) {
genUnlockStatement(*this, stmt);
}
void genFIR(const Fortran::parser::AssignStmt &stmt) {
const Fortran::semantics::Symbol &symbol =
*std::get<Fortran::parser::Name>(stmt.t).symbol;
mlir::Location loc = toLocation();
mlir::Value labelValue = builder->createIntegerConstant(
loc, genType(symbol), std::get<Fortran::parser::Label>(stmt.t));
builder->create<fir::StoreOp>(loc, labelValue, getSymbolAddress(symbol));
}
void genFIR(const Fortran::parser::FormatStmt &) {
// do nothing.
// FORMAT statements have no semantics. They may be lowered if used by a
// data transfer statement.
}
void genFIR(const Fortran::parser::PauseStmt &stmt) {
genPauseStatement(*this, stmt);
}
// call FAIL IMAGE in runtime
void genFIR(const Fortran::parser::FailImageStmt &stmt) {
genFailImageStatement(*this);
}
// call STOP, ERROR STOP in runtime
void genFIR(const Fortran::parser::StopStmt &stmt) {
genStopStatement(*this, stmt);
}
void genFIR(const Fortran::parser::ReturnStmt &stmt) {
Fortran::lower::pft::FunctionLikeUnit *funit =
getEval().getOwningProcedure();
assert(funit && "not inside main program, function or subroutine");
for (auto it = activeConstructStack.rbegin(),
rend = activeConstructStack.rend();
it != rend; ++it) {
it->stmtCtx.finalizeAndKeep();
}
if (funit->isMainProgram()) {
bridge.fctCtx().finalizeAndKeep();
genExitRoutine();
return;
}
mlir::Location loc = toLocation();
if (stmt.v) {
// Alternate return statement - If this is a subroutine where some
// alternate entries have alternate returns, but the active entry point
// does not, ignore the alternate return value. Otherwise, assign it
// to the compiler-generated result variable.
const Fortran::semantics::Symbol &symbol = funit->getSubprogramSymbol();
if (Fortran::semantics::HasAlternateReturns(symbol)) {
Fortran::lower::StatementContext stmtCtx;
const Fortran::lower::SomeExpr *expr =
Fortran::semantics::GetExpr(*stmt.v);
assert(expr && "missing alternate return expression");
mlir::Value altReturnIndex = builder->createConvert(
loc, builder->getIndexType(), createFIRExpr(loc, expr, stmtCtx));
builder->create<fir::StoreOp>(loc, altReturnIndex,
getAltReturnResult(symbol));
}
}
// Branch to the last block of the SUBROUTINE, which has the actual return.
if (!funit->finalBlock) {
mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint();
Fortran::lower::setInsertionPointAfterOpenACCLoopIfInside(*builder);
funit->finalBlock = builder->createBlock(&builder->getRegion());
builder->restoreInsertionPoint(insPt);
}
if (Fortran::lower::isInOpenACCLoop(*builder))
Fortran::lower::genEarlyReturnInOpenACCLoop(*builder, loc);
else
builder->create<mlir::cf::BranchOp>(loc, funit->finalBlock);
}
void genFIR(const Fortran::parser::CycleStmt &) {
genConstructExitBranch(*getEval().controlSuccessor);
}
void genFIR(const Fortran::parser::ExitStmt &) {
genConstructExitBranch(*getEval().controlSuccessor);
}
void genFIR(const Fortran::parser::GotoStmt &) {
genConstructExitBranch(*getEval().controlSuccessor);
}
// Nop statements - No code, or code is generated at the construct level.
// But note that the genFIR call immediately below that wraps one of these
// calls does block management, possibly starting a new block, and possibly
// generating a branch to end a block. So these calls may still be required
// for that functionality.
void genFIR(const Fortran::parser::AssociateStmt &) {} // nop
void genFIR(const Fortran::parser::BlockStmt &) {} // nop
void genFIR(const Fortran::parser::CaseStmt &) {} // nop
void genFIR(const Fortran::parser::ContinueStmt &) {} // nop
void genFIR(const Fortran::parser::ElseIfStmt &) {} // nop
void genFIR(const Fortran::parser::ElseStmt &) {} // nop
void genFIR(const Fortran::parser::EndAssociateStmt &) {} // nop
void genFIR(const Fortran::parser::EndBlockStmt &) {} // nop
void genFIR(const Fortran::parser::EndDoStmt &) {} // nop
void genFIR(const Fortran::parser::EndFunctionStmt &) {} // nop
void genFIR(const Fortran::parser::EndIfStmt &) {} // nop
void genFIR(const Fortran::parser::EndMpSubprogramStmt &) {} // nop
void genFIR(const Fortran::parser::EndProgramStmt &) {} // nop
void genFIR(const Fortran::parser::EndSelectStmt &) {} // nop
void genFIR(const Fortran::parser::EndSubroutineStmt &) {} // nop
void genFIR(const Fortran::parser::EntryStmt &) {} // nop
void genFIR(const Fortran::parser::IfStmt &) {} // nop
void genFIR(const Fortran::parser::IfThenStmt &) {} // nop
void genFIR(const Fortran::parser::NonLabelDoStmt &) {} // nop
void genFIR(const Fortran::parser::OmpEndLoopDirective &) {} // nop
void genFIR(const Fortran::parser::SelectTypeStmt &) {} // nop
void genFIR(const Fortran::parser::TypeGuardStmt &) {} // nop
/// Generate FIR for Evaluation \p eval.
void genFIR(Fortran::lower::pft::Evaluation &eval,
bool unstructuredContext = true) {
// Start a new unstructured block when applicable. When transitioning
// from unstructured to structured code, unstructuredContext is true,
// which accounts for the possibility that the structured code could be
// a target that starts a new block.
if (unstructuredContext)
maybeStartBlock(eval.isConstruct() && eval.lowerAsStructured()
? eval.getFirstNestedEvaluation().block
: eval.block);
// Generate evaluation specific code. Even nop calls should usually reach
// here in case they start a new block or require generation of a generic
// end-of-block branch. An alternative is to add special case code
// elsewhere, such as in the genFIR code for a parent construct.
setCurrentEval(eval);
setCurrentPosition(eval.position);
eval.visit([&](const auto &stmt) { genFIR(stmt); });
// Generate an end-of-block branch for several special cases. For
// constructs, this can be done for either the end construct statement,
// or for the construct itself, which will skip this code if the
// end statement was visited first and generated a branch.
Fortran::lower::pft::Evaluation *successor =
eval.isConstruct() ? eval.getLastNestedEvaluation().lexicalSuccessor
: eval.lexicalSuccessor;
if (successor && blockIsUnterminated()) {
if (successor->isIntermediateConstructStmt() &&
successor->parentConstruct->lowerAsUnstructured())
// Exit from an intermediate unstructured IF or SELECT construct block.
genBranch(successor->parentConstruct->constructExit->block);
else if (unstructuredContext && eval.isConstructStmt() &&
successor == eval.controlSuccessor)
// Exit from a degenerate, empty construct block.
genBranch(eval.parentConstruct->constructExit->block);
}
}
/// Map mlir function block arguments to the corresponding Fortran dummy
/// variables. When the result is passed as a hidden argument, the Fortran
/// result is also mapped. The symbol map is used to hold this mapping.
void mapDummiesAndResults(Fortran::lower::pft::FunctionLikeUnit &funit,
const Fortran::lower::CalleeInterface &callee) {
assert(builder && "require a builder object at this point");
using PassBy = Fortran::lower::CalleeInterface::PassEntityBy;
auto mapPassedEntity = [&](const auto arg) {
if (arg.passBy == PassBy::AddressAndLength) {
if (callee.characterize().IsBindC())
return;
// TODO: now that fir call has some attributes regarding character
// return, PassBy::AddressAndLength should be retired.
mlir::Location loc = toLocation();
fir::factory::CharacterExprHelper charHelp{*builder, loc};
mlir::Value box =
charHelp.createEmboxChar(arg.firArgument, arg.firLength);
mapBlockArgToDummyOrResult(arg.entity->get(), box);
} else {
if (arg.entity.has_value()) {
mapBlockArgToDummyOrResult(arg.entity->get(), arg.firArgument);
} else {
assert(funit.parentHasTupleHostAssoc() && "expect tuple argument");
}
}
};
for (const Fortran::lower::CalleeInterface::PassedEntity &arg :
callee.getPassedArguments())
mapPassedEntity(arg);
if (std::optional<Fortran::lower::CalleeInterface::PassedEntity>
passedResult = callee.getPassedResult()) {
mapPassedEntity(*passedResult);
// FIXME: need to make sure things are OK here. addSymbol may not be OK
if (funit.primaryResult &&
passedResult->entity->get() != *funit.primaryResult)
mapBlockArgToDummyOrResult(
*funit.primaryResult,
getSymbolAddress(passedResult->entity->get()));
}
}
/// Instantiate variable \p var and add it to the symbol map.
/// See ConvertVariable.cpp.
void instantiateVar(const Fortran::lower::pft::Variable &var,
Fortran::lower::AggregateStoreMap &storeMap) {
Fortran::lower::instantiateVariable(*this, var, localSymbols, storeMap);
if (var.hasSymbol())
genOpenMPSymbolProperties(*this, var);
}
/// Where applicable, save the exception state and halting and rounding
/// modes at function entry and restore them at function exits.
void manageFPEnvironment(Fortran::lower::pft::FunctionLikeUnit &funit) {
mlir::Location loc = toLocation();
mlir::Location endLoc =
toLocation(Fortran::lower::pft::stmtSourceLoc(funit.endStmt));
if (funit.hasIeeeAccess) {
// Subject to F18 Clause 17.1p3, 17.3p3 states: If a flag is signaling
// on entry to a procedure [...], the processor will set it to quiet
// on entry and restore it to signaling on return. If a flag signals
// during execution of a procedure, the processor shall not set it to
// quiet on return.
mlir::func::FuncOp testExcept = fir::factory::getFetestexcept(*builder);
mlir::func::FuncOp clearExcept = fir::factory::getFeclearexcept(*builder);
mlir::func::FuncOp raiseExcept = fir::factory::getFeraiseexcept(*builder);
mlir::Value ones = builder->createIntegerConstant(
loc, testExcept.getFunctionType().getInput(0), -1);
mlir::Value exceptSet =
builder->create<fir::CallOp>(loc, testExcept, ones).getResult(0);
builder->create<fir::CallOp>(loc, clearExcept, exceptSet);
bridge.fctCtx().attachCleanup([=]() {
builder->create<fir::CallOp>(endLoc, raiseExcept, exceptSet);
});
}
if (funit.mayModifyHaltingMode) {
// F18 Clause 17.6p1: In a procedure [...], the processor shall not
// change the halting mode on entry, and on return shall ensure that
// the halting mode is the same as it was on entry.
mlir::func::FuncOp getExcept = fir::factory::getFegetexcept(*builder);
mlir::func::FuncOp disableExcept =
fir::factory::getFedisableexcept(*builder);
mlir::func::FuncOp enableExcept =
fir::factory::getFeenableexcept(*builder);
mlir::Value exceptSet =
builder->create<fir::CallOp>(loc, getExcept).getResult(0);
mlir::Value ones = builder->createIntegerConstant(
loc, disableExcept.getFunctionType().getInput(0), -1);
bridge.fctCtx().attachCleanup([=]() {
builder->create<fir::CallOp>(endLoc, disableExcept, ones);
builder->create<fir::CallOp>(endLoc, enableExcept, exceptSet);
});
}
if (funit.mayModifyRoundingMode) {
// F18 Clause 17.4.5: In a procedure [...], the processor shall not
// change the rounding modes on entry, and on return shall ensure that
// the rounding modes are the same as they were on entry.
mlir::func::FuncOp getRounding =
fir::factory::getLlvmGetRounding(*builder);
mlir::func::FuncOp setRounding =
fir::factory::getLlvmSetRounding(*builder);
mlir::Value roundingMode =
builder->create<fir::CallOp>(loc, getRounding).getResult(0);
bridge.fctCtx().attachCleanup([=]() {
builder->create<fir::CallOp>(endLoc, setRounding, roundingMode);
});
}
}
/// Start translation of a function.
void startNewFunction(Fortran::lower::pft::FunctionLikeUnit &funit) {
assert(!builder && "expected nullptr");
bridge.fctCtx().pushScope();
bridge.openAccCtx().pushScope();
const Fortran::semantics::Scope &scope = funit.getScope();
LLVM_DEBUG(llvm::dbgs() << "\n[bridge - startNewFunction]";
if (auto *sym = scope.symbol()) llvm::dbgs() << " " << *sym;
llvm::dbgs() << "\n");
Fortran::lower::CalleeInterface callee(funit, *this);
mlir::func::FuncOp func = callee.addEntryBlockAndMapArguments();
builder =
new fir::FirOpBuilder(func, bridge.getKindMap(), &mlirSymbolTable);
assert(builder && "FirOpBuilder did not instantiate");
builder->setFastMathFlags(bridge.getLoweringOptions().getMathOptions());
builder->setInsertionPointToStart(&func.front());
if (funit.parent.isA<Fortran::lower::pft::FunctionLikeUnit>()) {
// Give internal linkage to internal functions. There are no name clash
// risks, but giving global linkage to internal procedure will break the
// static link register in shared libraries because of the system calls.
// Also, it should be possible to eliminate the procedure code if all the
// uses have been inlined.
fir::factory::setInternalLinkage(func);
} else {
func.setVisibility(mlir::SymbolTable::Visibility::Public);
}
assert(blockId == 0 && "invalid blockId");
assert(activeConstructStack.empty() && "invalid construct stack state");
// Manage floating point exception, halting mode, and rounding mode
// settings at function entry and exit.
if (!funit.isMainProgram())
manageFPEnvironment(funit);
mapDummiesAndResults(funit, callee);
// Map host associated symbols from parent procedure if any.
if (funit.parentHasHostAssoc())
funit.parentHostAssoc().internalProcedureBindings(*this, localSymbols);
// Non-primary results of a function with multiple entry points.
// These result values share storage with the primary result.
llvm::SmallVector<Fortran::lower::pft::Variable> deferredFuncResultList;
// Backup actual argument for entry character results with different
// lengths. It needs to be added to the non-primary results symbol before
// mapSymbolAttributes is called.
Fortran::lower::SymbolBox resultArg;
if (std::optional<Fortran::lower::CalleeInterface::PassedEntity>
passedResult = callee.getPassedResult())
resultArg = lookupSymbol(passedResult->entity->get());
Fortran::lower::AggregateStoreMap storeMap;
// Map all containing submodule and module equivalences and variables, in
// case they are referenced. It might be better to limit this to variables
// that are actually referenced, although that is more complicated when
// there are equivalenced variables.
auto &scopeVariableListMap =
Fortran::lower::pft::getScopeVariableListMap(funit);
for (auto *scp = &scope.parent(); !scp->IsGlobal(); scp = &scp->parent())
if (scp->kind() == Fortran::semantics::Scope::Kind::Module)
for (const auto &var : Fortran::lower::pft::getScopeVariableList(
*scp, scopeVariableListMap))
if (!var.isRuntimeTypeInfoData())
instantiateVar(var, storeMap);
// Map function equivalences and variables.
mlir::Value primaryFuncResultStorage;
for (const Fortran::lower::pft::Variable &var :
Fortran::lower::pft::getScopeVariableList(scope)) {
// Always instantiate aggregate storage blocks.
if (var.isAggregateStore()) {
instantiateVar(var, storeMap);
continue;
}
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (funit.parentHasHostAssoc()) {
// Never instantiate host associated variables, as they are already
// instantiated from an argument tuple. Instead, just bind the symbol
// to the host variable, which must be in the map.
const Fortran::semantics::Symbol &ultimate = sym.GetUltimate();
if (funit.parentHostAssoc().isAssociated(ultimate)) {
copySymbolBinding(ultimate, sym);
continue;
}
}
if (!sym.IsFuncResult() || !funit.primaryResult) {
instantiateVar(var, storeMap);
} else if (&sym == funit.primaryResult) {
instantiateVar(var, storeMap);
primaryFuncResultStorage = getSymbolAddress(sym);
} else {
deferredFuncResultList.push_back(var);
}
}
// TODO: should use same mechanism as equivalence?
// One blocking point is character entry returns that need special handling
// since they are not locally allocated but come as argument. CHARACTER(*)
// is not something that fits well with equivalence lowering.
for (const Fortran::lower::pft::Variable &altResult :
deferredFuncResultList) {
Fortran::lower::StatementContext stmtCtx;
if (std::optional<Fortran::lower::CalleeInterface::PassedEntity>
passedResult = callee.getPassedResult()) {
mapBlockArgToDummyOrResult(altResult.getSymbol(), resultArg.getAddr());
Fortran::lower::mapSymbolAttributes(*this, altResult, localSymbols,
stmtCtx);
} else {
// catch cases where the allocation for the function result storage type
// doesn't match the type of this symbol
mlir::Value preAlloc = primaryFuncResultStorage;
mlir::Type resTy = primaryFuncResultStorage.getType();
mlir::Type symTy = genType(altResult);
mlir::Type wrappedSymTy = fir::ReferenceType::get(symTy);
if (resTy != wrappedSymTy) {
// check size of the pointed to type so we can't overflow by writing
// double precision to a single precision allocation, etc
LLVM_ATTRIBUTE_UNUSED auto getBitWidth = [this](mlir::Type ty) {
// 15.6.2.6.3: differering result types should be integer, real,
// complex or logical
if (auto cmplx = mlir::dyn_cast_or_null<fir::ComplexType>(ty)) {
fir::KindTy kind = cmplx.getFKind();
return 2 * builder->getKindMap().getRealBitsize(kind);
}
if (auto logical = mlir::dyn_cast_or_null<fir::LogicalType>(ty)) {
fir::KindTy kind = logical.getFKind();
return builder->getKindMap().getLogicalBitsize(kind);
}
return ty.getIntOrFloatBitWidth();
};
assert(getBitWidth(fir::unwrapRefType(resTy)) >= getBitWidth(symTy));
// convert the storage to the symbol type so that the hlfir.declare
// gets the correct type for this symbol
preAlloc = builder->create<fir::ConvertOp>(getCurrentLocation(),
wrappedSymTy, preAlloc);
}
Fortran::lower::mapSymbolAttributes(*this, altResult, localSymbols,
stmtCtx, preAlloc);
}
}
// If this is a host procedure with host associations, then create the tuple
// of pointers for passing to the internal procedures.
if (!funit.getHostAssoc().empty())
funit.getHostAssoc().hostProcedureBindings(*this, localSymbols);
// Create most function blocks in advance.
createEmptyBlocks(funit.evaluationList);
// Reinstate entry block as the current insertion point.
builder->setInsertionPointToEnd(&func.front());
if (callee.hasAlternateReturns()) {
// Create a local temp to hold the alternate return index.
// Give it an integer index type and the subroutine name (for dumps).
// Attach it to the subroutine symbol in the localSymbols map.
// Initialize it to zero, the "fallthrough" alternate return value.
const Fortran::semantics::Symbol &symbol = funit.getSubprogramSymbol();
mlir::Location loc = toLocation();
mlir::Type idxTy = builder->getIndexType();
mlir::Value altResult =
builder->createTemporary(loc, idxTy, toStringRef(symbol.name()));
addSymbol(symbol, altResult);
mlir::Value zero = builder->createIntegerConstant(loc, idxTy, 0);
builder->create<fir::StoreOp>(loc, zero, altResult);
}
if (Fortran::lower::pft::Evaluation *alternateEntryEval =
funit.getEntryEval())
genBranch(alternateEntryEval->lexicalSuccessor->block);
}
/// Create global blocks for the current function. This eliminates the
/// distinction between forward and backward targets when generating
/// branches. A block is "global" if it can be the target of a GOTO or
/// other source code branch. A block that can only be targeted by a
/// compiler generated branch is "local". For example, a DO loop preheader
/// block containing loop initialization code is global. A loop header
/// block, which is the target of the loop back edge, is local. Blocks
/// belong to a region. Any block within a nested region must be replaced
/// with a block belonging to that region. Branches may not cross region
/// boundaries.
void createEmptyBlocks(
std::list<Fortran::lower::pft::Evaluation> &evaluationList) {
mlir::Region *region = &builder->getRegion();
for (Fortran::lower::pft::Evaluation &eval : evaluationList) {
if (eval.isNewBlock)
eval.block = builder->createBlock(region);
if (eval.isConstruct() || eval.isDirective()) {
if (eval.lowerAsUnstructured()) {
createEmptyBlocks(eval.getNestedEvaluations());
} else if (eval.hasNestedEvaluations()) {
// A structured construct that is a target starts a new block.
Fortran::lower::pft::Evaluation &constructStmt =
eval.getFirstNestedEvaluation();
if (constructStmt.isNewBlock)
constructStmt.block = builder->createBlock(region);
}
}
}
}
/// Return the predicate: "current block does not have a terminator branch".
bool blockIsUnterminated() {
mlir::Block *currentBlock = builder->getBlock();
return currentBlock->empty() ||
!currentBlock->back().hasTrait<mlir::OpTrait::IsTerminator>();
}
/// Unconditionally switch code insertion to a new block.
void startBlock(mlir::Block *newBlock) {
assert(newBlock && "missing block");
// Default termination for the current block is a fallthrough branch to
// the new block.
if (blockIsUnterminated())
genBranch(newBlock);
// Some blocks may be re/started more than once, and might not be empty.
// If the new block already has (only) a terminator, set the insertion
// point to the start of the block. Otherwise set it to the end.
builder->setInsertionPointToStart(newBlock);
if (blockIsUnterminated())
builder->setInsertionPointToEnd(newBlock);
}
/// Conditionally switch code insertion to a new block.
void maybeStartBlock(mlir::Block *newBlock) {
if (newBlock)
startBlock(newBlock);
}
void eraseDeadCodeAndBlocks(mlir::RewriterBase &rewriter,
llvm::MutableArrayRef<mlir::Region> regions) {
// WARNING: Do not add passes that can do folding or code motion here
// because they might cross omp.target region boundaries, which can result
// in incorrect code. Optimization passes like these must be added after
// OMP early outlining has been done.
(void)mlir::eraseUnreachableBlocks(rewriter, regions);
(void)mlir::runRegionDCE(rewriter, regions);
}
/// Finish translation of a function.
void endNewFunction(Fortran::lower::pft::FunctionLikeUnit &funit) {
setCurrentPosition(Fortran::lower::pft::stmtSourceLoc(funit.endStmt));
if (funit.isMainProgram()) {
bridge.openAccCtx().finalizeAndPop();
bridge.fctCtx().finalizeAndPop();
genExitRoutine();
} else {
genFIRProcedureExit(funit, funit.getSubprogramSymbol());
}
funit.finalBlock = nullptr;
LLVM_DEBUG(llvm::dbgs() << "\n[bridge - endNewFunction";
if (auto *sym = funit.scope->symbol()) llvm::dbgs()
<< " " << sym->name();
llvm::dbgs() << "] generated IR:\n\n"
<< *builder->getFunction() << '\n');
// Eliminate dead code as a prerequisite to calling other IR passes.
// FIXME: This simplification should happen in a normal pass, not here.
mlir::IRRewriter rewriter(*builder);
(void)eraseDeadCodeAndBlocks(rewriter, {builder->getRegion()});
delete builder;
builder = nullptr;
hostAssocTuple = mlir::Value{};
localSymbols.clear();
blockId = 0;
}
/// Helper to generate GlobalOps when the builder is not positioned in any
/// region block. This is required because the FirOpBuilder assumes it is
/// always positioned inside a region block when creating globals, the easiest
/// way comply is to create a dummy function and to throw it afterwards.
void createGlobalOutsideOfFunctionLowering(
const std::function<void()> &createGlobals) {
// FIXME: get rid of the bogus function context and instantiate the
// globals directly into the module.
mlir::MLIRContext *context = &getMLIRContext();
mlir::SymbolTable *symbolTable = getMLIRSymbolTable();
mlir::func::FuncOp func = fir::FirOpBuilder::createFunction(
mlir::UnknownLoc::get(context), getModuleOp(),
fir::NameUniquer::doGenerated("Sham"),
mlir::FunctionType::get(context, std::nullopt, std::nullopt),
symbolTable);
func.addEntryBlock();
builder = new fir::FirOpBuilder(func, bridge.getKindMap(), symbolTable);
assert(builder && "FirOpBuilder did not instantiate");
builder->setFastMathFlags(bridge.getLoweringOptions().getMathOptions());
createGlobals();
if (mlir::Region *region = func.getCallableRegion())
region->dropAllReferences();
func.erase();
delete builder;
builder = nullptr;
localSymbols.clear();
}
/// Instantiate the data from a BLOCK DATA unit.
void lowerBlockData(Fortran::lower::pft::BlockDataUnit &bdunit) {
createGlobalOutsideOfFunctionLowering([&]() {
Fortran::lower::AggregateStoreMap fakeMap;
for (const auto &[_, sym] : bdunit.symTab) {
if (sym->has<Fortran::semantics::ObjectEntityDetails>()) {
Fortran::lower::pft::Variable var(*sym, true);
instantiateVar(var, fakeMap);
}
}
});
}
/// Create fir::Global for all the common blocks that appear in the program.
void
lowerCommonBlocks(const Fortran::semantics::CommonBlockList &commonBlocks) {
createGlobalOutsideOfFunctionLowering(
[&]() { Fortran::lower::defineCommonBlocks(*this, commonBlocks); });
}
/// Create intrinsic module array constant definitions.
void createIntrinsicModuleDefinitions(Fortran::lower::pft::Program &pft) {
// The intrinsic module scope, if present, is the first scope.
const Fortran::semantics::Scope *intrinsicModuleScope = nullptr;
for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) {
std::visit(Fortran::common::visitors{
[&](Fortran::lower::pft::FunctionLikeUnit &f) {
intrinsicModuleScope = &f.getScope().parent();
},
[&](Fortran::lower::pft::ModuleLikeUnit &m) {
intrinsicModuleScope = &m.getScope().parent();
},
[&](Fortran::lower::pft::BlockDataUnit &b) {},
[&](Fortran::lower::pft::CompilerDirectiveUnit &d) {},
[&](Fortran::lower::pft::OpenACCDirectiveUnit &d) {},
},
u);
if (intrinsicModuleScope) {
while (!intrinsicModuleScope->IsGlobal())
intrinsicModuleScope = &intrinsicModuleScope->parent();
intrinsicModuleScope = &intrinsicModuleScope->children().front();
break;
}
}
if (!intrinsicModuleScope || !intrinsicModuleScope->IsIntrinsicModules())
return;
for (const auto &scope : intrinsicModuleScope->children()) {
llvm::StringRef modName = toStringRef(scope.symbol()->name());
if (modName != "__fortran_ieee_exceptions")
continue;
for (auto &var : Fortran::lower::pft::getScopeVariableList(scope)) {
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated))
continue;
const auto *object =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>();
if (object && object->IsArray() && object->init())
Fortran::lower::createIntrinsicModuleGlobal(*this, var);
}
}
}
/// Lower a procedure (nest).
void lowerFunc(Fortran::lower::pft::FunctionLikeUnit &funit) {
setCurrentPosition(funit.getStartingSourceLoc());
for (int entryIndex = 0, last = funit.entryPointList.size();
entryIndex < last; ++entryIndex) {
funit.setActiveEntry(entryIndex);
startNewFunction(funit); // the entry point for lowering this procedure
for (Fortran::lower::pft::Evaluation &eval : funit.evaluationList)
genFIR(eval);
endNewFunction(funit);
}
funit.setActiveEntry(0);
for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions)
lowerFunc(f); // internal procedure
}
/// Lower module variable definitions to fir::globalOp and OpenMP/OpenACC
/// declarative construct.
void lowerModuleDeclScope(Fortran::lower::pft::ModuleLikeUnit &mod) {
setCurrentPosition(mod.getStartingSourceLoc());
createGlobalOutsideOfFunctionLowering([&]() {
auto &scopeVariableListMap =
Fortran::lower::pft::getScopeVariableListMap(mod);
for (const auto &var : Fortran::lower::pft::getScopeVariableList(
mod.getScope(), scopeVariableListMap)) {
// Only define the variables owned by this module.
const Fortran::semantics::Scope *owningScope = var.getOwningScope();
if (!owningScope || mod.getScope() == *owningScope)
Fortran::lower::defineModuleVariable(*this, var);
}
for (auto &eval : mod.evaluationList)
genFIR(eval);
});
}
/// Lower functions contained in a module.
void lowerMod(Fortran::lower::pft::ModuleLikeUnit &mod) {
for (Fortran::lower::pft::FunctionLikeUnit &f : mod.nestedFunctions)
lowerFunc(f);
}
void setCurrentPosition(const Fortran::parser::CharBlock &position) {
if (position != Fortran::parser::CharBlock{})
currentPosition = position;
}
/// Set current position at the location of \p parseTreeNode. Note that the
/// position is updated automatically when visiting statements, but not when
/// entering higher level nodes like constructs or procedures. This helper is
/// intended to cover the latter cases.
template <typename A>
void setCurrentPositionAt(const A &parseTreeNode) {
setCurrentPosition(Fortran::parser::FindSourceLocation(parseTreeNode));
}
//===--------------------------------------------------------------------===//
// Utility methods
//===--------------------------------------------------------------------===//
/// Convert a parser CharBlock to a Location
mlir::Location toLocation(const Fortran::parser::CharBlock &cb) {
return genLocation(cb);
}
mlir::Location toLocation() { return toLocation(currentPosition); }
void setCurrentEval(Fortran::lower::pft::Evaluation &eval) {
evalPtr = &eval;
}
Fortran::lower::pft::Evaluation &getEval() {
assert(evalPtr);
return *evalPtr;
}
std::optional<Fortran::evaluate::Shape>
getShape(const Fortran::lower::SomeExpr &expr) {
return Fortran::evaluate::GetShape(foldingContext, expr);
}
//===--------------------------------------------------------------------===//
// Analysis on a nested explicit iteration space.
//===--------------------------------------------------------------------===//
void analyzeExplicitSpace(const Fortran::parser::ConcurrentHeader &header) {
explicitIterSpace.pushLevel();
for (const Fortran::parser::ConcurrentControl &ctrl :
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
const Fortran::semantics::Symbol *ctrlVar =
std::get<Fortran::parser::Name>(ctrl.t).symbol;
explicitIterSpace.addSymbol(ctrlVar);
}
if (const auto &mask =
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(
header.t);
mask.has_value())
analyzeExplicitSpace(*Fortran::semantics::GetExpr(*mask));
}
template <bool LHS = false, typename A>
void analyzeExplicitSpace(const Fortran::evaluate::Expr<A> &e) {
explicitIterSpace.exprBase(&e, LHS);
}
void analyzeExplicitSpace(const Fortran::evaluate::Assignment *assign) {
auto analyzeAssign = [&](const Fortran::lower::SomeExpr &lhs,
const Fortran::lower::SomeExpr &rhs) {
analyzeExplicitSpace</*LHS=*/true>(lhs);
analyzeExplicitSpace(rhs);
};
std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::ProcedureRef &procRef) {
// Ensure the procRef expressions are the one being visited.
assert(procRef.arguments().size() == 2);
const Fortran::lower::SomeExpr *lhs =
procRef.arguments()[0].value().UnwrapExpr();
const Fortran::lower::SomeExpr *rhs =
procRef.arguments()[1].value().UnwrapExpr();
assert(lhs && rhs &&
"user defined assignment arguments must be expressions");
analyzeAssign(*lhs, *rhs);
},
[&](const auto &) { analyzeAssign(assign->lhs, assign->rhs); }},
assign->u);
explicitIterSpace.endAssign();
}
void analyzeExplicitSpace(const Fortran::parser::ForallAssignmentStmt &stmt) {
std::visit([&](const auto &s) { analyzeExplicitSpace(s); }, stmt.u);
}
void analyzeExplicitSpace(const Fortran::parser::AssignmentStmt &s) {
analyzeExplicitSpace(s.typedAssignment->v.operator->());
}
void analyzeExplicitSpace(const Fortran::parser::PointerAssignmentStmt &s) {
analyzeExplicitSpace(s.typedAssignment->v.operator->());
}
void analyzeExplicitSpace(const Fortran::parser::WhereConstruct &c) {
analyzeExplicitSpace(
std::get<
Fortran::parser::Statement<Fortran::parser::WhereConstructStmt>>(
c.t)
.statement);
for (const Fortran::parser::WhereBodyConstruct &body :
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(c.t))
analyzeExplicitSpace(body);
for (const Fortran::parser::WhereConstruct::MaskedElsewhere &e :
std::get<std::list<Fortran::parser::WhereConstruct::MaskedElsewhere>>(
c.t))
analyzeExplicitSpace(e);
if (const auto &e =
std::get<std::optional<Fortran::parser::WhereConstruct::Elsewhere>>(
c.t);
e.has_value())
analyzeExplicitSpace(e.operator->());
}
void analyzeExplicitSpace(const Fortran::parser::WhereConstructStmt &ws) {
const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr(
std::get<Fortran::parser::LogicalExpr>(ws.t));
addMaskVariable(exp);
analyzeExplicitSpace(*exp);
}
void analyzeExplicitSpace(
const Fortran::parser::WhereConstruct::MaskedElsewhere &ew) {
analyzeExplicitSpace(
std::get<
Fortran::parser::Statement<Fortran::parser::MaskedElsewhereStmt>>(
ew.t)
.statement);
for (const Fortran::parser::WhereBodyConstruct &e :
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew.t))
analyzeExplicitSpace(e);
}
void analyzeExplicitSpace(const Fortran::parser::WhereBodyConstruct &body) {
std::visit(Fortran::common::visitors{
[&](const Fortran::common::Indirection<
Fortran::parser::WhereConstruct> &wc) {
analyzeExplicitSpace(wc.value());
},
[&](const auto &s) { analyzeExplicitSpace(s.statement); }},
body.u);
}
void analyzeExplicitSpace(const Fortran::parser::MaskedElsewhereStmt &stmt) {
const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr(
std::get<Fortran::parser::LogicalExpr>(stmt.t));
addMaskVariable(exp);
analyzeExplicitSpace(*exp);
}
void
analyzeExplicitSpace(const Fortran::parser::WhereConstruct::Elsewhere *ew) {
for (const Fortran::parser::WhereBodyConstruct &e :
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew->t))
analyzeExplicitSpace(e);
}
void analyzeExplicitSpace(const Fortran::parser::WhereStmt &stmt) {
const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr(
std::get<Fortran::parser::LogicalExpr>(stmt.t));
addMaskVariable(exp);
analyzeExplicitSpace(*exp);
const std::optional<Fortran::evaluate::Assignment> &assign =
std::get<Fortran::parser::AssignmentStmt>(stmt.t).typedAssignment->v;
assert(assign.has_value() && "WHERE has no statement");
analyzeExplicitSpace(assign.operator->());
}
void analyzeExplicitSpace(const Fortran::parser::ForallStmt &forall) {
analyzeExplicitSpace(
std::get<
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
forall.t)
.value());
analyzeExplicitSpace(std::get<Fortran::parser::UnlabeledStatement<
Fortran::parser::ForallAssignmentStmt>>(forall.t)
.statement);
analyzeExplicitSpacePop();
}
void
analyzeExplicitSpace(const Fortran::parser::ForallConstructStmt &forall) {
analyzeExplicitSpace(
std::get<
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
forall.t)
.value());
}
void analyzeExplicitSpace(const Fortran::parser::ForallConstruct &forall) {
analyzeExplicitSpace(
std::get<
Fortran::parser::Statement<Fortran::parser::ForallConstructStmt>>(
forall.t)
.statement);
for (const Fortran::parser::ForallBodyConstruct &s :
std::get<std::list<Fortran::parser::ForallBodyConstruct>>(forall.t)) {
std::visit(Fortran::common::visitors{
[&](const Fortran::common::Indirection<
Fortran::parser::ForallConstruct> &b) {
analyzeExplicitSpace(b.value());
},
[&](const Fortran::parser::WhereConstruct &w) {
analyzeExplicitSpace(w);
},
[&](const auto &b) { analyzeExplicitSpace(b.statement); }},
s.u);
}
analyzeExplicitSpacePop();
}
void analyzeExplicitSpacePop() { explicitIterSpace.popLevel(); }
void addMaskVariable(Fortran::lower::FrontEndExpr exp) {
// Note: use i8 to store bool values. This avoids round-down behavior found
// with sequences of i1. That is, an array of i1 will be truncated in size
// and be too small. For example, a buffer of type fir.array<7xi1> will have
// 0 size.
mlir::Type i64Ty = builder->getIntegerType(64);
mlir::TupleType ty = fir::factory::getRaggedArrayHeaderType(*builder);
mlir::Type buffTy = ty.getType(1);
mlir::Type shTy = ty.getType(2);
mlir::Location loc = toLocation();
mlir::Value hdr = builder->createTemporary(loc, ty);
// FIXME: Is there a way to create a `zeroinitializer` in LLVM-IR dialect?
// For now, explicitly set lazy ragged header to all zeros.
// auto nilTup = builder->createNullConstant(loc, ty);
// builder->create<fir::StoreOp>(loc, nilTup, hdr);
mlir::Type i32Ty = builder->getIntegerType(32);
mlir::Value zero = builder->createIntegerConstant(loc, i32Ty, 0);
mlir::Value zero64 = builder->createIntegerConstant(loc, i64Ty, 0);
mlir::Value flags = builder->create<fir::CoordinateOp>(
loc, builder->getRefType(i64Ty), hdr, zero);
builder->create<fir::StoreOp>(loc, zero64, flags);
mlir::Value one = builder->createIntegerConstant(loc, i32Ty, 1);
mlir::Value nullPtr1 = builder->createNullConstant(loc, buffTy);
mlir::Value var = builder->create<fir::CoordinateOp>(
loc, builder->getRefType(buffTy), hdr, one);
builder->create<fir::StoreOp>(loc, nullPtr1, var);
mlir::Value two = builder->createIntegerConstant(loc, i32Ty, 2);
mlir::Value nullPtr2 = builder->createNullConstant(loc, shTy);
mlir::Value shape = builder->create<fir::CoordinateOp>(
loc, builder->getRefType(shTy), hdr, two);
builder->create<fir::StoreOp>(loc, nullPtr2, shape);
implicitIterSpace.addMaskVariable(exp, var, shape, hdr);
explicitIterSpace.outermostContext().attachCleanup(
[builder = this->builder, hdr, loc]() {
fir::runtime::genRaggedArrayDeallocate(loc, *builder, hdr);
});
}
void createRuntimeTypeInfoGlobals() {}
bool lowerToHighLevelFIR() const {
return bridge.getLoweringOptions().getLowerToHighLevelFIR();
}
// Returns the mangling prefix for the given constant expression.
std::string getConstantExprManglePrefix(mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
mlir::Type eleTy) {
return std::visit(
[&](const auto &x) -> std::string {
using T = std::decay_t<decltype(x)>;
if constexpr (Fortran::common::HasMember<
T, Fortran::lower::CategoryExpression>) {
if constexpr (T::Result::category ==
Fortran::common::TypeCategory::Derived) {
if (const auto *constant =
std::get_if<Fortran::evaluate::Constant<
Fortran::evaluate::SomeDerived>>(&x.u))
return Fortran::lower::mangle::mangleArrayLiteral(eleTy,
*constant);
fir::emitFatalError(loc,
"non a constant derived type expression");
} else {
return std::visit(
[&](const auto &someKind) -> std::string {
using T = std::decay_t<decltype(someKind)>;
using TK = Fortran::evaluate::Type<T::Result::category,
T::Result::kind>;
if (const auto *constant =
std::get_if<Fortran::evaluate::Constant<TK>>(
&someKind.u)) {
return Fortran::lower::mangle::mangleArrayLiteral(
nullptr, *constant);
}
fir::emitFatalError(
loc, "not a Fortran::evaluate::Constant<T> expression");
return {};
},
x.u);
}
} else {
fir::emitFatalError(loc, "unexpected expression");
}
},
expr.u);
}
/// Performing OpenACC lowering action that were deferred to the end of
/// lowering.
void finalizeOpenACCLowering() {
Fortran::lower::finalizeOpenACCRoutineAttachment(getModuleOp(),
accRoutineInfos);
}
/// Performing OpenMP lowering actions that were deferred to the end of
/// lowering.
void finalizeOpenMPLowering(
const Fortran::semantics::Symbol *globalOmpRequiresSymbol) {
if (!ompDeferredDeclareTarget.empty()) {
bool deferredDeviceFuncFound =
Fortran::lower::markOpenMPDeferredDeclareTargetFunctions(
getModuleOp().getOperation(), ompDeferredDeclareTarget, *this);
ompDeviceCodeFound = ompDeviceCodeFound || deferredDeviceFuncFound;
}
// Set the module attribute related to OpenMP requires directives
if (ompDeviceCodeFound)
Fortran::lower::genOpenMPRequires(getModuleOp().getOperation(),
globalOmpRequiresSymbol);
}
//===--------------------------------------------------------------------===//
Fortran::lower::LoweringBridge &bridge;
Fortran::evaluate::FoldingContext foldingContext;
fir::FirOpBuilder *builder = nullptr;
Fortran::lower::pft::Evaluation *evalPtr = nullptr;
Fortran::lower::SymMap localSymbols;
Fortran::parser::CharBlock currentPosition;
TypeInfoConverter typeInfoConverter;
// Stack to manage object deallocation and finalization at construct exits.
llvm::SmallVector<ConstructContext> activeConstructStack;
/// BLOCK name mangling component map
int blockId = 0;
Fortran::lower::mangle::ScopeBlockIdMap scopeBlockIdMap;
/// FORALL statement/construct context
Fortran::lower::ExplicitIterSpace explicitIterSpace;
/// WHERE statement/construct mask expression stack
Fortran::lower::ImplicitIterSpace implicitIterSpace;
/// Tuple of host associated variables
mlir::Value hostAssocTuple;
/// A map of unique names for constant expressions.
/// The names are used for representing the constant expressions
/// with global constant initialized objects.
/// The names are usually prefixed by a mangling string based
/// on the element type of the constant expression, but the element
/// type is not used as a key into the map (so the assumption is that
/// the equivalent constant expressions are prefixed using the same
/// element type).
llvm::DenseMap<const Fortran::lower::SomeExpr *, std::string> literalNamesMap;
/// Storage for Constant expressions used as keys for literalNamesMap.
llvm::SmallVector<std::unique_ptr<Fortran::lower::SomeExpr>>
literalExprsStorage;
/// A counter for uniquing names in `literalNamesMap`.
std::uint64_t uniqueLitId = 0;
/// Deferred OpenACC routine attachment.
Fortran::lower::AccRoutineInfoMappingList accRoutineInfos;
/// Whether an OpenMP target region or declare target function/subroutine
/// intended for device offloading has been detected
bool ompDeviceCodeFound = false;
/// Keeps track of symbols defined as declare target that could not be
/// processed at the time of lowering the declare target construct, such
/// as certain cases where interfaces are declared but not defined within
/// a module.
llvm::SmallVector<Fortran::lower::OMPDeferredDeclareTargetInfo>
ompDeferredDeclareTarget;
const Fortran::lower::ExprToValueMap *exprValueOverrides{nullptr};
/// Stack of derived type under construction to avoid infinite loops when
/// dealing with recursive derived types. This is held in the bridge because
/// the state needs to be maintained between data and function type lowering
/// utilities to deal with procedure pointer components whose arguments have
/// the type of the containing derived type.
Fortran::lower::TypeConstructionStack typeConstructionStack;
/// MLIR symbol table of the fir.global/func.func operations. Note that it is
/// not guaranteed to contain all operations of the ModuleOp with Symbol
/// attribute since mlirSymbolTable must pro-actively be maintained when
/// new Symbol operations are created.
mlir::SymbolTable mlirSymbolTable;
};
} // namespace
Fortran::evaluate::FoldingContext
Fortran::lower::LoweringBridge::createFoldingContext() {
return {getDefaultKinds(), getIntrinsicTable(), getTargetCharacteristics(),
getLanguageFeatures(), tempNames};
}
void Fortran::lower::LoweringBridge::lower(
const Fortran::parser::Program &prg,
const Fortran::semantics::SemanticsContext &semanticsContext) {
std::unique_ptr<Fortran::lower::pft::Program> pft =
Fortran::lower::createPFT(prg, semanticsContext);
if (dumpBeforeFir)
Fortran::lower::dumpPFT(llvm::errs(), *pft);
FirConverter converter{*this};
converter.run(*pft);
}
void Fortran::lower::LoweringBridge::parseSourceFile(llvm::SourceMgr &srcMgr) {
mlir::OwningOpRef<mlir::ModuleOp> owningRef =
mlir::parseSourceFile<mlir::ModuleOp>(srcMgr, &context);
module.reset(new mlir::ModuleOp(owningRef.get().getOperation()));
owningRef.release();
}
Fortran::lower::LoweringBridge::LoweringBridge(
mlir::MLIRContext &context,
Fortran::semantics::SemanticsContext &semanticsContext,
const Fortran::common::IntrinsicTypeDefaultKinds &defaultKinds,
const Fortran::evaluate::IntrinsicProcTable &intrinsics,
const Fortran::evaluate::TargetCharacteristics &targetCharacteristics,
const Fortran::parser::AllCookedSources &cooked, llvm::StringRef triple,
fir::KindMapping &kindMap,
const Fortran::lower::LoweringOptions &loweringOptions,
const std::vector<Fortran::lower::EnvironmentDefault> &envDefaults,
const Fortran::common::LanguageFeatureControl &languageFeatures,
const llvm::TargetMachine &targetMachine)
: semanticsContext{semanticsContext}, defaultKinds{defaultKinds},
intrinsics{intrinsics}, targetCharacteristics{targetCharacteristics},
cooked{&cooked}, context{context}, kindMap{kindMap},
loweringOptions{loweringOptions}, envDefaults{envDefaults},
languageFeatures{languageFeatures} {
// Register the diagnostic handler.
context.getDiagEngine().registerHandler([](mlir::Diagnostic &diag) {
llvm::raw_ostream &os = llvm::errs();
switch (diag.getSeverity()) {
case mlir::DiagnosticSeverity::Error:
os << "error: ";
break;
case mlir::DiagnosticSeverity::Remark:
os << "info: ";
break;
case mlir::DiagnosticSeverity::Warning:
os << "warning: ";
break;
default:
break;
}
if (!mlir::isa<mlir::UnknownLoc>(diag.getLocation()))
os << diag.getLocation() << ": ";
os << diag << '\n';
os.flush();
return mlir::success();
});
auto getPathLocation = [&semanticsContext, &context]() -> mlir::Location {
std::optional<std::string> path;
const auto &allSources{semanticsContext.allCookedSources().allSources()};
if (auto initial{allSources.GetFirstFileProvenance()};
initial && !initial->empty()) {
if (const auto *sourceFile{allSources.GetSourceFile(initial->start())}) {
path = sourceFile->path();
}
}
if (path.has_value()) {
llvm::SmallString<256> curPath(*path);
llvm::sys::fs::make_absolute(curPath);
llvm::sys::path::remove_dots(curPath);
return mlir::FileLineColLoc::get(&context, curPath.str(), /*line=*/0,
/*col=*/0);
} else {
return mlir::UnknownLoc::get(&context);
}
};
// Create the module and attach the attributes.
module = std::make_unique<mlir::ModuleOp>(
mlir::ModuleOp::create(getPathLocation()));
assert(module.get() && "module was not created");
fir::setTargetTriple(*module.get(), triple);
fir::setKindMapping(*module.get(), kindMap);
fir::setTargetCPU(*module.get(), targetMachine.getTargetCPU());
fir::setTargetFeatures(*module.get(), targetMachine.getTargetFeatureString());
fir::support::setMLIRDataLayout(*module.get(),
targetMachine.createDataLayout());
}