| //===-- lib/Evaluate/shape.cpp --------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Evaluate/shape.h" |
| #include "flang/Common/idioms.h" |
| #include "flang/Common/template.h" |
| #include "flang/Evaluate/characteristics.h" |
| #include "flang/Evaluate/check-expression.h" |
| #include "flang/Evaluate/fold.h" |
| #include "flang/Evaluate/intrinsics.h" |
| #include "flang/Evaluate/tools.h" |
| #include "flang/Evaluate/type.h" |
| #include "flang/Parser/message.h" |
| #include "flang/Semantics/symbol.h" |
| #include <functional> |
| |
| using namespace std::placeholders; // _1, _2, &c. for std::bind() |
| |
| namespace Fortran::evaluate { |
| |
| bool IsImpliedShape(const Symbol &original) { |
| const Symbol &symbol{ResolveAssociations(original)}; |
| const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}; |
| return details && symbol.attrs().test(semantics::Attr::PARAMETER) && |
| details->shape().CanBeImpliedShape(); |
| } |
| |
| bool IsExplicitShape(const Symbol &original) { |
| const Symbol &symbol{ResolveAssociations(original)}; |
| if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| const auto &shape{details->shape()}; |
| return shape.Rank() == 0 || |
| shape.IsExplicitShape(); // true when scalar, too |
| } else { |
| return symbol |
| .has<semantics::AssocEntityDetails>(); // exprs have explicit shape |
| } |
| } |
| |
| Shape GetShapeHelper::ConstantShape(const Constant<ExtentType> &arrayConstant) { |
| CHECK(arrayConstant.Rank() == 1); |
| Shape result; |
| std::size_t dimensions{arrayConstant.size()}; |
| for (std::size_t j{0}; j < dimensions; ++j) { |
| Scalar<ExtentType> extent{arrayConstant.values().at(j)}; |
| result.emplace_back(MaybeExtentExpr{ExtentExpr{std::move(extent)}}); |
| } |
| return result; |
| } |
| |
| auto GetShapeHelper::AsShapeResult(ExtentExpr &&arrayExpr) const -> Result { |
| if (context_) { |
| arrayExpr = Fold(*context_, std::move(arrayExpr)); |
| } |
| if (const auto *constArray{UnwrapConstantValue<ExtentType>(arrayExpr)}) { |
| return ConstantShape(*constArray); |
| } |
| if (auto *constructor{UnwrapExpr<ArrayConstructor<ExtentType>>(arrayExpr)}) { |
| Shape result; |
| for (auto &value : *constructor) { |
| auto *expr{std::get_if<ExtentExpr>(&value.u)}; |
| if (expr && expr->Rank() == 0) { |
| result.emplace_back(std::move(*expr)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| return result; |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| Shape GetShapeHelper::CreateShape(int rank, NamedEntity &base) const { |
| Shape shape; |
| for (int dimension{0}; dimension < rank; ++dimension) { |
| shape.emplace_back(GetExtent(base, dimension, invariantOnly_)); |
| } |
| return shape; |
| } |
| |
| std::optional<ExtentExpr> AsExtentArrayExpr(const Shape &shape) { |
| ArrayConstructorValues<ExtentType> values; |
| for (const auto &dim : shape) { |
| if (dim) { |
| values.Push(common::Clone(*dim)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| return ExtentExpr{ArrayConstructor<ExtentType>{std::move(values)}}; |
| } |
| |
| std::optional<Constant<ExtentType>> AsConstantShape( |
| FoldingContext &context, const Shape &shape) { |
| if (auto shapeArray{AsExtentArrayExpr(shape)}) { |
| auto folded{Fold(context, std::move(*shapeArray))}; |
| if (auto *p{UnwrapConstantValue<ExtentType>(folded)}) { |
| return std::move(*p); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| Constant<SubscriptInteger> AsConstantShape(const ConstantSubscripts &shape) { |
| using IntType = Scalar<SubscriptInteger>; |
| std::vector<IntType> result; |
| for (auto dim : shape) { |
| result.emplace_back(dim); |
| } |
| return {std::move(result), ConstantSubscripts{GetRank(shape)}}; |
| } |
| |
| ConstantSubscripts AsConstantExtents(const Constant<ExtentType> &shape) { |
| ConstantSubscripts result; |
| for (const auto &extent : shape.values()) { |
| result.push_back(extent.ToInt64()); |
| } |
| return result; |
| } |
| |
| std::optional<ConstantSubscripts> AsConstantExtents( |
| FoldingContext &context, const Shape &shape) { |
| if (auto shapeConstant{AsConstantShape(context, shape)}) { |
| return AsConstantExtents(*shapeConstant); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| Shape AsShape(const ConstantSubscripts &shape) { |
| Shape result; |
| for (const auto &extent : shape) { |
| result.emplace_back(ExtentExpr{extent}); |
| } |
| return result; |
| } |
| |
| std::optional<Shape> AsShape(const std::optional<ConstantSubscripts> &shape) { |
| if (shape) { |
| return AsShape(*shape); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| Shape Fold(FoldingContext &context, Shape &&shape) { |
| for (auto &dim : shape) { |
| dim = Fold(context, std::move(dim)); |
| } |
| return std::move(shape); |
| } |
| |
| std::optional<Shape> Fold( |
| FoldingContext &context, std::optional<Shape> &&shape) { |
| if (shape) { |
| return Fold(context, std::move(*shape)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| static ExtentExpr ComputeTripCount( |
| ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) { |
| ExtentExpr strideCopy{common::Clone(stride)}; |
| ExtentExpr span{ |
| (std::move(upper) - std::move(lower) + std::move(strideCopy)) / |
| std::move(stride)}; |
| return ExtentExpr{ |
| Extremum<ExtentType>{Ordering::Greater, std::move(span), ExtentExpr{0}}}; |
| } |
| |
| ExtentExpr CountTrips( |
| ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) { |
| return ComputeTripCount( |
| std::move(lower), std::move(upper), std::move(stride)); |
| } |
| |
| ExtentExpr CountTrips(const ExtentExpr &lower, const ExtentExpr &upper, |
| const ExtentExpr &stride) { |
| return ComputeTripCount( |
| common::Clone(lower), common::Clone(upper), common::Clone(stride)); |
| } |
| |
| MaybeExtentExpr CountTrips(MaybeExtentExpr &&lower, MaybeExtentExpr &&upper, |
| MaybeExtentExpr &&stride) { |
| std::function<ExtentExpr(ExtentExpr &&, ExtentExpr &&, ExtentExpr &&)> bound{ |
| std::bind(ComputeTripCount, _1, _2, _3)}; |
| return common::MapOptional( |
| std::move(bound), std::move(lower), std::move(upper), std::move(stride)); |
| } |
| |
| MaybeExtentExpr GetSize(Shape &&shape) { |
| ExtentExpr extent{1}; |
| for (auto &&dim : std::move(shape)) { |
| if (dim) { |
| extent = std::move(extent) * std::move(*dim); |
| } else { |
| return std::nullopt; |
| } |
| } |
| return extent; |
| } |
| |
| ConstantSubscript GetSize(const ConstantSubscripts &shape) { |
| ConstantSubscript size{1}; |
| for (auto dim : shape) { |
| CHECK(dim >= 0); |
| size *= dim; |
| } |
| return size; |
| } |
| |
| bool ContainsAnyImpliedDoIndex(const ExtentExpr &expr) { |
| struct MyVisitor : public AnyTraverse<MyVisitor> { |
| using Base = AnyTraverse<MyVisitor>; |
| MyVisitor() : Base{*this} {} |
| using Base::operator(); |
| bool operator()(const ImpliedDoIndex &) { return true; } |
| }; |
| return MyVisitor{}(expr); |
| } |
| |
| // Determines lower bound on a dimension. This can be other than 1 only |
| // for a reference to a whole array object or component. (See LBOUND, 16.9.109). |
| // ASSOCIATE construct entities may require traversal of their referents. |
| template <typename RESULT, bool LBOUND_SEMANTICS> |
| class GetLowerBoundHelper |
| : public Traverse<GetLowerBoundHelper<RESULT, LBOUND_SEMANTICS>, RESULT> { |
| public: |
| using Result = RESULT; |
| using Base = Traverse<GetLowerBoundHelper, RESULT>; |
| using Base::operator(); |
| explicit GetLowerBoundHelper( |
| int d, FoldingContext *context, bool invariantOnly) |
| : Base{*this}, dimension_{d}, context_{context}, |
| invariantOnly_{invariantOnly} {} |
| static Result Default() { return Result{1}; } |
| static Result Combine(Result &&, Result &&) { |
| // Operator results and array references always have lower bounds == 1 |
| return Result{1}; |
| } |
| |
| Result GetLowerBound(const Symbol &symbol0, NamedEntity &&base) const { |
| const Symbol &symbol{symbol0.GetUltimate()}; |
| if (const auto *object{ |
| symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| int rank{object->shape().Rank()}; |
| if (dimension_ < rank) { |
| const semantics::ShapeSpec &shapeSpec{object->shape()[dimension_]}; |
| if (shapeSpec.lbound().isExplicit()) { |
| if (const auto &lbound{shapeSpec.lbound().GetExplicit()}) { |
| if constexpr (LBOUND_SEMANTICS) { |
| bool ok{false}; |
| auto lbValue{ToInt64(*lbound)}; |
| if (dimension_ == rank - 1 && |
| semantics::IsAssumedSizeArray(symbol)) { |
| // last dimension of assumed-size dummy array: don't worry |
| // about handling an empty dimension |
| ok = !invariantOnly_ || IsScopeInvariantExpr(*lbound); |
| } else if (lbValue.value_or(0) == 1) { |
| // Lower bound is 1, regardless of extent |
| ok = true; |
| } else if (const auto &ubound{shapeSpec.ubound().GetExplicit()}) { |
| // If we can't prove that the dimension is nonempty, |
| // we must be conservative. |
| // TODO: simple symbolic math in expression rewriting to |
| // cope with cases like A(J:J) |
| if (context_) { |
| auto extent{ToInt64(Fold(*context_, |
| ExtentExpr{*ubound} - ExtentExpr{*lbound} + |
| ExtentExpr{1}))}; |
| if (extent) { |
| if (extent <= 0) { |
| return Result{1}; |
| } |
| ok = true; |
| } else { |
| ok = false; |
| } |
| } else { |
| auto ubValue{ToInt64(*ubound)}; |
| if (lbValue && ubValue) { |
| if (*lbValue > *ubValue) { |
| return Result{1}; |
| } |
| ok = true; |
| } else { |
| ok = false; |
| } |
| } |
| } |
| return ok ? *lbound : Result{}; |
| } else { |
| return *lbound; |
| } |
| } else { |
| return Result{1}; |
| } |
| } |
| if (IsDescriptor(symbol)) { |
| return ExtentExpr{DescriptorInquiry{std::move(base), |
| DescriptorInquiry::Field::LowerBound, dimension_}}; |
| } |
| } |
| } else if (const auto *assoc{ |
| symbol.detailsIf<semantics::AssocEntityDetails>()}) { |
| if (assoc->IsAssumedSize()) { // RANK(*) |
| return Result{1}; |
| } else if (assoc->IsAssumedRank()) { // RANK DEFAULT |
| } else if (assoc->rank()) { // RANK(n) |
| const Symbol &resolved{ResolveAssociations(symbol)}; |
| if (IsDescriptor(resolved) && dimension_ < *assoc->rank()) { |
| return ExtentExpr{DescriptorInquiry{std::move(base), |
| DescriptorInquiry::Field::LowerBound, dimension_}}; |
| } |
| } else { |
| Result exprLowerBound{((*this)(assoc->expr()))}; |
| if (IsActuallyConstant(exprLowerBound)) { |
| return std::move(exprLowerBound); |
| } else { |
| // If the lower bound of the associated entity is not resolved to a |
| // constant expression at the time of the association, it is unsafe |
| // to re-evaluate it later in the associate construct. Statements |
| // in between may have modified its operands value. |
| return ExtentExpr{DescriptorInquiry{std::move(base), |
| DescriptorInquiry::Field::LowerBound, dimension_}}; |
| } |
| } |
| } |
| if constexpr (LBOUND_SEMANTICS) { |
| return Result{}; |
| } else { |
| return Result{1}; |
| } |
| } |
| |
| Result operator()(const Symbol &symbol) const { |
| return GetLowerBound(symbol, NamedEntity{symbol}); |
| } |
| |
| Result operator()(const Component &component) const { |
| if (component.base().Rank() == 0) { |
| return GetLowerBound( |
| component.GetLastSymbol(), NamedEntity{common::Clone(component)}); |
| } |
| return Result{1}; |
| } |
| |
| template <typename T> Result operator()(const Expr<T> &expr) const { |
| if (const Symbol * whole{UnwrapWholeSymbolOrComponentDataRef(expr)}) { |
| return (*this)(*whole); |
| } else if constexpr (common::HasMember<Constant<T>, decltype(expr.u)>) { |
| if (const auto *con{std::get_if<Constant<T>>(&expr.u)}) { |
| ConstantSubscripts lb{con->lbounds()}; |
| if (dimension_ < GetRank(lb)) { |
| return Result{lb[dimension_]}; |
| } |
| } else { // operation |
| return Result{1}; |
| } |
| } else { |
| return (*this)(expr.u); |
| } |
| if constexpr (LBOUND_SEMANTICS) { |
| return Result{}; |
| } else { |
| return Result{1}; |
| } |
| } |
| |
| private: |
| int dimension_; // zero-based |
| FoldingContext *context_{nullptr}; |
| bool invariantOnly_{false}; |
| }; |
| |
| ExtentExpr GetRawLowerBound( |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| return GetLowerBoundHelper<ExtentExpr, false>{ |
| dimension, nullptr, invariantOnly}(base); |
| } |
| |
| ExtentExpr GetRawLowerBound(FoldingContext &context, const NamedEntity &base, |
| int dimension, bool invariantOnly) { |
| return Fold(context, |
| GetLowerBoundHelper<ExtentExpr, false>{ |
| dimension, &context, invariantOnly}(base)); |
| } |
| |
| MaybeExtentExpr GetLBOUND( |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| return GetLowerBoundHelper<MaybeExtentExpr, true>{ |
| dimension, nullptr, invariantOnly}(base); |
| } |
| |
| MaybeExtentExpr GetLBOUND(FoldingContext &context, const NamedEntity &base, |
| int dimension, bool invariantOnly) { |
| return Fold(context, |
| GetLowerBoundHelper<MaybeExtentExpr, true>{ |
| dimension, &context, invariantOnly}(base)); |
| } |
| |
| Shape GetRawLowerBounds(const NamedEntity &base, bool invariantOnly) { |
| Shape result; |
| int rank{base.Rank()}; |
| for (int dim{0}; dim < rank; ++dim) { |
| result.emplace_back(GetRawLowerBound(base, dim, invariantOnly)); |
| } |
| return result; |
| } |
| |
| Shape GetRawLowerBounds( |
| FoldingContext &context, const NamedEntity &base, bool invariantOnly) { |
| Shape result; |
| int rank{base.Rank()}; |
| for (int dim{0}; dim < rank; ++dim) { |
| result.emplace_back(GetRawLowerBound(context, base, dim, invariantOnly)); |
| } |
| return result; |
| } |
| |
| Shape GetLBOUNDs(const NamedEntity &base, bool invariantOnly) { |
| Shape result; |
| int rank{base.Rank()}; |
| for (int dim{0}; dim < rank; ++dim) { |
| result.emplace_back(GetLBOUND(base, dim, invariantOnly)); |
| } |
| return result; |
| } |
| |
| Shape GetLBOUNDs( |
| FoldingContext &context, const NamedEntity &base, bool invariantOnly) { |
| Shape result; |
| int rank{base.Rank()}; |
| for (int dim{0}; dim < rank; ++dim) { |
| result.emplace_back(GetLBOUND(context, base, dim, invariantOnly)); |
| } |
| return result; |
| } |
| |
| // If the upper and lower bounds are constant, return a constant expression for |
| // the extent. In particular, if the upper bound is less than the lower bound, |
| // return zero. |
| static MaybeExtentExpr GetNonNegativeExtent( |
| const semantics::ShapeSpec &shapeSpec, bool invariantOnly) { |
| const auto &ubound{shapeSpec.ubound().GetExplicit()}; |
| const auto &lbound{shapeSpec.lbound().GetExplicit()}; |
| std::optional<ConstantSubscript> uval{ToInt64(ubound)}; |
| std::optional<ConstantSubscript> lval{ToInt64(lbound)}; |
| if (uval && lval) { |
| if (*uval < *lval) { |
| return ExtentExpr{0}; |
| } else { |
| return ExtentExpr{*uval - *lval + 1}; |
| } |
| } else if (lbound && ubound && |
| (!invariantOnly || |
| (IsScopeInvariantExpr(*lbound) && IsScopeInvariantExpr(*ubound)))) { |
| // Apply effective IDIM (MAX calculation with 0) so thet the |
| // result is never negative |
| if (lval.value_or(0) == 1) { |
| return ExtentExpr{Extremum<SubscriptInteger>{ |
| Ordering::Greater, ExtentExpr{0}, common::Clone(*ubound)}}; |
| } else { |
| return ExtentExpr{ |
| Extremum<SubscriptInteger>{Ordering::Greater, ExtentExpr{0}, |
| common::Clone(*ubound) - common::Clone(*lbound) + ExtentExpr{1}}}; |
| } |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| static MaybeExtentExpr GetAssociatedExtent( |
| const Symbol &symbol, int dimension) { |
| if (const auto *assoc{symbol.detailsIf<semantics::AssocEntityDetails>()}; |
| assoc && !assoc->rank()) { // not SELECT RANK case |
| if (auto shape{GetShape(assoc->expr())}; |
| shape && dimension < static_cast<int>(shape->size())) { |
| if (auto &extent{shape->at(dimension)}; |
| // Don't return a non-constant extent, as the variables that |
| // determine the shape of the selector's expression may change |
| // during execution of the construct. |
| extent && IsActuallyConstant(*extent)) { |
| return std::move(extent); |
| } |
| } |
| } |
| return ExtentExpr{DescriptorInquiry{ |
| NamedEntity{symbol}, DescriptorInquiry::Field::Extent, dimension}}; |
| } |
| |
| MaybeExtentExpr GetExtent( |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| CHECK(dimension >= 0); |
| const Symbol &last{base.GetLastSymbol()}; |
| const Symbol &symbol{ResolveAssociations(last)}; |
| if (const auto *assoc{last.detailsIf<semantics::AssocEntityDetails>()}) { |
| if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { // RANK(*)/DEFAULT |
| return std::nullopt; |
| } else if (assoc->rank()) { // RANK(n) |
| if (semantics::IsDescriptor(symbol) && dimension < *assoc->rank()) { |
| return ExtentExpr{DescriptorInquiry{ |
| NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}}; |
| } else { |
| return std::nullopt; |
| } |
| } else { |
| return GetAssociatedExtent(last, dimension); |
| } |
| } |
| if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| if (IsImpliedShape(symbol) && details->init()) { |
| if (auto shape{GetShape(symbol, invariantOnly)}) { |
| if (dimension < static_cast<int>(shape->size())) { |
| return std::move(shape->at(dimension)); |
| } |
| } |
| } else { |
| int j{0}; |
| for (const auto &shapeSpec : details->shape()) { |
| if (j++ == dimension) { |
| if (auto extent{GetNonNegativeExtent(shapeSpec, invariantOnly)}) { |
| return extent; |
| } else if (semantics::IsAssumedSizeArray(symbol) && |
| j == symbol.Rank()) { |
| break; |
| } else if (semantics::IsDescriptor(symbol)) { |
| return ExtentExpr{DescriptorInquiry{NamedEntity{base}, |
| DescriptorInquiry::Field::Extent, dimension}}; |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExtentExpr GetExtent(FoldingContext &context, const NamedEntity &base, |
| int dimension, bool invariantOnly) { |
| return Fold(context, GetExtent(base, dimension, invariantOnly)); |
| } |
| |
| MaybeExtentExpr GetExtent(const Subscript &subscript, const NamedEntity &base, |
| int dimension, bool invariantOnly) { |
| return common::visit( |
| common::visitors{ |
| [&](const Triplet &triplet) -> MaybeExtentExpr { |
| MaybeExtentExpr upper{triplet.upper()}; |
| if (!upper) { |
| upper = GetUBOUND(base, dimension, invariantOnly); |
| } |
| MaybeExtentExpr lower{triplet.lower()}; |
| if (!lower) { |
| lower = GetLBOUND(base, dimension, invariantOnly); |
| } |
| return CountTrips(std::move(lower), std::move(upper), |
| MaybeExtentExpr{triplet.stride()}); |
| }, |
| [&](const IndirectSubscriptIntegerExpr &subs) -> MaybeExtentExpr { |
| if (auto shape{GetShape(subs.value())}) { |
| if (GetRank(*shape) > 0) { |
| CHECK(GetRank(*shape) == 1); // vector-valued subscript |
| return std::move(shape->at(0)); |
| } |
| } |
| return std::nullopt; |
| }, |
| }, |
| subscript.u); |
| } |
| |
| MaybeExtentExpr GetExtent(FoldingContext &context, const Subscript &subscript, |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| return Fold(context, GetExtent(subscript, base, dimension, invariantOnly)); |
| } |
| |
| MaybeExtentExpr ComputeUpperBound( |
| ExtentExpr &&lower, MaybeExtentExpr &&extent) { |
| if (extent) { |
| if (ToInt64(lower).value_or(0) == 1) { |
| return std::move(*extent); |
| } else { |
| return std::move(*extent) + std::move(lower) - ExtentExpr{1}; |
| } |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| MaybeExtentExpr ComputeUpperBound( |
| FoldingContext &context, ExtentExpr &&lower, MaybeExtentExpr &&extent) { |
| return Fold(context, ComputeUpperBound(std::move(lower), std::move(extent))); |
| } |
| |
| MaybeExtentExpr GetRawUpperBound( |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; |
| if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| int rank{details->shape().Rank()}; |
| if (dimension < rank) { |
| const auto &bound{details->shape()[dimension].ubound().GetExplicit()}; |
| if (bound && (!invariantOnly || IsScopeInvariantExpr(*bound))) { |
| return *bound; |
| } else if (semantics::IsAssumedSizeArray(symbol) && |
| dimension + 1 == symbol.Rank()) { |
| return std::nullopt; |
| } else { |
| return ComputeUpperBound( |
| GetRawLowerBound(base, dimension), GetExtent(base, dimension)); |
| } |
| } |
| } else if (const auto *assoc{ |
| symbol.detailsIf<semantics::AssocEntityDetails>()}) { |
| if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { |
| return std::nullopt; |
| } else if (assoc->rank() && dimension >= *assoc->rank()) { |
| return std::nullopt; |
| } else if (auto extent{GetAssociatedExtent(symbol, dimension)}) { |
| return ComputeUpperBound( |
| GetRawLowerBound(base, dimension), std::move(extent)); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExtentExpr GetRawUpperBound(FoldingContext &context, |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| return Fold(context, GetRawUpperBound(base, dimension, invariantOnly)); |
| } |
| |
| static MaybeExtentExpr GetExplicitUBOUND(FoldingContext *context, |
| const semantics::ShapeSpec &shapeSpec, bool invariantOnly) { |
| const auto &ubound{shapeSpec.ubound().GetExplicit()}; |
| if (ubound && (!invariantOnly || IsScopeInvariantExpr(*ubound))) { |
| if (auto extent{GetNonNegativeExtent(shapeSpec, invariantOnly)}) { |
| if (auto cstExtent{ToInt64( |
| context ? Fold(*context, std::move(*extent)) : *extent)}) { |
| if (cstExtent > 0) { |
| return *ubound; |
| } else if (cstExtent == 0) { |
| return ExtentExpr{0}; |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| static MaybeExtentExpr GetUBOUND(FoldingContext *context, |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; |
| if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| int rank{details->shape().Rank()}; |
| if (dimension < rank) { |
| const semantics::ShapeSpec &shapeSpec{details->shape()[dimension]}; |
| if (auto ubound{GetExplicitUBOUND(context, shapeSpec, invariantOnly)}) { |
| return *ubound; |
| } else if (semantics::IsAssumedSizeArray(symbol) && |
| dimension + 1 == symbol.Rank()) { |
| return std::nullopt; // UBOUND() folding replaces with -1 |
| } else if (auto lb{GetLBOUND(base, dimension, invariantOnly)}) { |
| return ComputeUpperBound( |
| std::move(*lb), GetExtent(base, dimension, invariantOnly)); |
| } |
| } |
| } else if (const auto *assoc{ |
| symbol.detailsIf<semantics::AssocEntityDetails>()}) { |
| if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { |
| return std::nullopt; |
| } else if (assoc->rank()) { // RANK (n) |
| const Symbol &resolved{ResolveAssociations(symbol)}; |
| if (IsDescriptor(resolved) && dimension < *assoc->rank()) { |
| ExtentExpr lb{DescriptorInquiry{NamedEntity{base}, |
| DescriptorInquiry::Field::LowerBound, dimension}}; |
| ExtentExpr extent{DescriptorInquiry{ |
| std::move(base), DescriptorInquiry::Field::Extent, dimension}}; |
| return ComputeUpperBound(std::move(lb), std::move(extent)); |
| } |
| } else if (auto extent{GetAssociatedExtent(symbol, dimension)}) { |
| if (auto lb{GetLBOUND(base, dimension, invariantOnly)}) { |
| return ComputeUpperBound(std::move(*lb), std::move(extent)); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExtentExpr GetUBOUND( |
| const NamedEntity &base, int dimension, bool invariantOnly) { |
| return GetUBOUND(nullptr, base, dimension, invariantOnly); |
| } |
| |
| MaybeExtentExpr GetUBOUND(FoldingContext &context, const NamedEntity &base, |
| int dimension, bool invariantOnly) { |
| return Fold(context, GetUBOUND(&context, base, dimension, invariantOnly)); |
| } |
| |
| static Shape GetUBOUNDs( |
| FoldingContext *context, const NamedEntity &base, bool invariantOnly) { |
| Shape result; |
| int rank{base.Rank()}; |
| for (int dim{0}; dim < rank; ++dim) { |
| result.emplace_back(GetUBOUND(context, base, dim, invariantOnly)); |
| } |
| return result; |
| } |
| |
| Shape GetUBOUNDs( |
| FoldingContext &context, const NamedEntity &base, bool invariantOnly) { |
| return Fold(context, GetUBOUNDs(&context, base, invariantOnly)); |
| } |
| |
| Shape GetUBOUNDs(const NamedEntity &base, bool invariantOnly) { |
| return GetUBOUNDs(nullptr, base, invariantOnly); |
| } |
| |
| auto GetShapeHelper::operator()(const Symbol &symbol) const -> Result { |
| return common::visit( |
| common::visitors{ |
| [&](const semantics::ObjectEntityDetails &object) { |
| if (IsImpliedShape(symbol) && object.init()) { |
| return (*this)(object.init()); |
| } else if (IsAssumedRank(symbol)) { |
| return Result{}; |
| } else { |
| int n{object.shape().Rank()}; |
| NamedEntity base{symbol}; |
| return Result{CreateShape(n, base)}; |
| } |
| }, |
| [](const semantics::EntityDetails &) { |
| return ScalarShape(); // no dimensions seen |
| }, |
| [&](const semantics::ProcEntityDetails &proc) { |
| if (const Symbol * interface{proc.procInterface()}) { |
| return (*this)(*interface); |
| } else { |
| return ScalarShape(); |
| } |
| }, |
| [&](const semantics::AssocEntityDetails &assoc) { |
| NamedEntity base{symbol}; |
| if (assoc.rank()) { // SELECT RANK case |
| int n{assoc.rank().value()}; |
| return Result{CreateShape(n, base)}; |
| } else { |
| auto exprShape{((*this)(assoc.expr()))}; |
| if (exprShape) { |
| int rank{static_cast<int>(exprShape->size())}; |
| for (int dimension{0}; dimension < rank; ++dimension) { |
| auto &extent{(*exprShape)[dimension]}; |
| if (extent && !IsActuallyConstant(*extent)) { |
| extent = GetExtent(base, dimension); |
| } |
| } |
| } |
| return exprShape; |
| } |
| }, |
| [&](const semantics::SubprogramDetails &subp) -> Result { |
| if (subp.isFunction()) { |
| auto resultShape{(*this)(subp.result())}; |
| if (resultShape && !useResultSymbolShape_) { |
| // Ensure the shape is constant. Otherwise, it may be referring |
| // to symbols that belong to the function's scope and are |
| // meaningless on the caller side without the related call |
| // expression. |
| for (auto &extent : *resultShape) { |
| if (extent && !IsActuallyConstant(*extent)) { |
| extent.reset(); |
| } |
| } |
| } |
| return resultShape; |
| } else { |
| return Result{}; |
| } |
| }, |
| [&](const semantics::ProcBindingDetails &binding) { |
| return (*this)(binding.symbol()); |
| }, |
| [](const semantics::TypeParamDetails &) { return ScalarShape(); }, |
| [](const auto &) { return Result{}; }, |
| }, |
| symbol.GetUltimate().details()); |
| } |
| |
| auto GetShapeHelper::operator()(const Component &component) const -> Result { |
| const Symbol &symbol{component.GetLastSymbol()}; |
| int rank{symbol.Rank()}; |
| if (rank == 0) { |
| return (*this)(component.base()); |
| } else if (symbol.has<semantics::ObjectEntityDetails>()) { |
| NamedEntity base{Component{component}}; |
| return CreateShape(rank, base); |
| } else { |
| return (*this)(symbol); |
| } |
| } |
| |
| auto GetShapeHelper::operator()(const ArrayRef &arrayRef) const -> Result { |
| Shape shape; |
| int dimension{0}; |
| const NamedEntity &base{arrayRef.base()}; |
| for (const Subscript &ss : arrayRef.subscript()) { |
| if (ss.Rank() > 0) { |
| shape.emplace_back(GetExtent(ss, base, dimension)); |
| } |
| ++dimension; |
| } |
| if (shape.empty()) { |
| if (const Component * component{base.UnwrapComponent()}) { |
| return (*this)(component->base()); |
| } |
| } |
| return shape; |
| } |
| |
| auto GetShapeHelper::operator()(const CoarrayRef &coarrayRef) const -> Result { |
| NamedEntity base{coarrayRef.GetBase()}; |
| if (coarrayRef.subscript().empty()) { |
| return (*this)(base); |
| } else { |
| Shape shape; |
| int dimension{0}; |
| for (const Subscript &ss : coarrayRef.subscript()) { |
| if (ss.Rank() > 0) { |
| shape.emplace_back(GetExtent(ss, base, dimension)); |
| } |
| ++dimension; |
| } |
| return shape; |
| } |
| } |
| |
| auto GetShapeHelper::operator()(const Substring &substring) const -> Result { |
| return (*this)(substring.parent()); |
| } |
| |
| auto GetShapeHelper::operator()(const ProcedureRef &call) const -> Result { |
| if (call.Rank() == 0) { |
| return ScalarShape(); |
| } else if (call.IsElemental()) { |
| // Use the shape of an actual array argument associated with a |
| // non-OPTIONAL dummy object argument. |
| if (context_) { |
| if (auto chars{characteristics::Procedure::FromActuals( |
| call.proc(), call.arguments(), *context_)}) { |
| std::size_t j{0}; |
| std::size_t anyArrayArgRank{0}; |
| for (const auto &arg : call.arguments()) { |
| if (arg && arg->Rank() > 0 && j < chars->dummyArguments.size()) { |
| anyArrayArgRank = arg->Rank(); |
| if (!chars->dummyArguments[j].IsOptional()) { |
| return (*this)(*arg); |
| } |
| } |
| ++j; |
| } |
| if (anyArrayArgRank) { |
| // All dummy array arguments of the procedure are OPTIONAL. |
| // We cannot take the shape from just any array argument, |
| // because all of them might be OPTIONAL dummy arguments |
| // of the caller. Return unknown shape ranked according |
| // to the last actual array argument. |
| return Shape(anyArrayArgRank, MaybeExtentExpr{}); |
| } |
| } |
| } |
| return ScalarShape(); |
| } else if (const Symbol * symbol{call.proc().GetSymbol()}) { |
| auto restorer{common::ScopedSet(useResultSymbolShape_, false)}; |
| return (*this)(*symbol); |
| } else if (const auto *intrinsic{call.proc().GetSpecificIntrinsic()}) { |
| if (intrinsic->name == "shape" || intrinsic->name == "lbound" || |
| intrinsic->name == "ubound") { |
| // For LBOUND/UBOUND, these are the array-valued cases (no DIM=) |
| if (!call.arguments().empty() && call.arguments().front()) { |
| if (IsAssumedRank(*call.arguments().front())) { |
| return Shape{MaybeExtentExpr{}}; |
| } else { |
| return Shape{ |
| MaybeExtentExpr{ExtentExpr{call.arguments().front()->Rank()}}}; |
| } |
| } |
| } else if (intrinsic->name == "all" || intrinsic->name == "any" || |
| intrinsic->name == "count" || intrinsic->name == "iall" || |
| intrinsic->name == "iany" || intrinsic->name == "iparity" || |
| intrinsic->name == "maxval" || intrinsic->name == "minval" || |
| intrinsic->name == "norm2" || intrinsic->name == "parity" || |
| intrinsic->name == "product" || intrinsic->name == "sum") { |
| // Reduction with DIM= |
| if (call.arguments().size() >= 2) { |
| auto arrayShape{ |
| (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}; |
| const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))}; |
| if (arrayShape && dimArg) { |
| if (auto dim{ToInt64(*dimArg)}) { |
| if (*dim >= 1 && |
| static_cast<std::size_t>(*dim) <= arrayShape->size()) { |
| arrayShape->erase(arrayShape->begin() + (*dim - 1)); |
| return std::move(*arrayShape); |
| } |
| } |
| } |
| } |
| } else if (intrinsic->name == "findloc" || intrinsic->name == "maxloc" || |
| intrinsic->name == "minloc") { |
| std::size_t dimIndex{intrinsic->name == "findloc" ? 2u : 1u}; |
| if (call.arguments().size() > dimIndex) { |
| if (auto arrayShape{ |
| (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}) { |
| auto rank{static_cast<int>(arrayShape->size())}; |
| if (const auto *dimArg{ |
| UnwrapExpr<Expr<SomeType>>(call.arguments()[dimIndex])}) { |
| auto dim{ToInt64(*dimArg)}; |
| if (dim && *dim >= 1 && *dim <= rank) { |
| arrayShape->erase(arrayShape->begin() + (*dim - 1)); |
| return std::move(*arrayShape); |
| } |
| } else { |
| // xxxLOC(no DIM=) result is vector(1:RANK(ARRAY=)) |
| return Shape{ExtentExpr{rank}}; |
| } |
| } |
| } |
| } else if (intrinsic->name == "cshift" || intrinsic->name == "eoshift") { |
| if (!call.arguments().empty()) { |
| return (*this)(call.arguments()[0]); |
| } |
| } else if (intrinsic->name == "matmul") { |
| if (call.arguments().size() == 2) { |
| if (auto ashape{(*this)(call.arguments()[0])}) { |
| if (auto bshape{(*this)(call.arguments()[1])}) { |
| if (ashape->size() == 1 && bshape->size() == 2) { |
| bshape->erase(bshape->begin()); |
| return std::move(*bshape); // matmul(vector, matrix) |
| } else if (ashape->size() == 2 && bshape->size() == 1) { |
| ashape->pop_back(); |
| return std::move(*ashape); // matmul(matrix, vector) |
| } else if (ashape->size() == 2 && bshape->size() == 2) { |
| (*ashape)[1] = std::move((*bshape)[1]); |
| return std::move(*ashape); // matmul(matrix, matrix) |
| } |
| } |
| } |
| } |
| } else if (intrinsic->name == "pack") { |
| if (call.arguments().size() >= 3 && call.arguments().at(2)) { |
| // SHAPE(PACK(,,VECTOR=v)) -> SHAPE(v) |
| return (*this)(call.arguments().at(2)); |
| } else if (call.arguments().size() >= 2 && context_) { |
| if (auto maskShape{(*this)(call.arguments().at(1))}) { |
| if (maskShape->size() == 0) { |
| // Scalar MASK= -> [MERGE(SIZE(ARRAY=), 0, mask)] |
| if (auto arrayShape{(*this)(call.arguments().at(0))}) { |
| if (auto arraySize{GetSize(std::move(*arrayShape))}) { |
| ActualArguments toMerge{ |
| ActualArgument{AsGenericExpr(std::move(*arraySize))}, |
| ActualArgument{AsGenericExpr(ExtentExpr{0})}, |
| common::Clone(call.arguments().at(1))}; |
| auto specific{context_->intrinsics().Probe( |
| CallCharacteristics{"merge"}, toMerge, *context_)}; |
| CHECK(specific); |
| return Shape{ExtentExpr{FunctionRef<ExtentType>{ |
| ProcedureDesignator{std::move(specific->specificIntrinsic)}, |
| std::move(specific->arguments)}}}; |
| } |
| } |
| } else { |
| // Non-scalar MASK= -> [COUNT(mask, KIND=extent_kind)] |
| ActualArgument kindArg{ |
| AsGenericExpr(Constant<ExtentType>{ExtentType::kind})}; |
| kindArg.set_keyword(context_->SaveTempName("kind")); |
| ActualArguments toCount{ |
| ActualArgument{common::Clone( |
| DEREF(call.arguments().at(1).value().UnwrapExpr()))}, |
| std::move(kindArg)}; |
| auto specific{context_->intrinsics().Probe( |
| CallCharacteristics{"count"}, toCount, *context_)}; |
| CHECK(specific); |
| return Shape{ExtentExpr{FunctionRef<ExtentType>{ |
| ProcedureDesignator{std::move(specific->specificIntrinsic)}, |
| std::move(specific->arguments)}}}; |
| } |
| } |
| } |
| } else if (intrinsic->name == "reshape") { |
| if (call.arguments().size() >= 2 && call.arguments().at(1)) { |
| // SHAPE(RESHAPE(array,shape)) -> shape |
| if (const auto *shapeExpr{ |
| call.arguments().at(1).value().UnwrapExpr()}) { |
| auto shapeArg{std::get<Expr<SomeInteger>>(shapeExpr->u)}; |
| if (auto result{AsShapeResult( |
| ConvertToType<ExtentType>(std::move(shapeArg)))}) { |
| return result; |
| } |
| } |
| } |
| } else if (intrinsic->name == "spread") { |
| // SHAPE(SPREAD(ARRAY,DIM,NCOPIES)) = SHAPE(ARRAY) with NCOPIES inserted |
| // at position DIM. |
| if (call.arguments().size() == 3) { |
| auto arrayShape{ |
| (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}; |
| const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))}; |
| const auto *nCopies{ |
| UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}; |
| if (arrayShape && dimArg && nCopies) { |
| if (auto dim{ToInt64(*dimArg)}) { |
| if (*dim >= 1 && |
| static_cast<std::size_t>(*dim) <= arrayShape->size() + 1) { |
| arrayShape->emplace(arrayShape->begin() + *dim - 1, |
| ConvertToType<ExtentType>(common::Clone(*nCopies))); |
| return std::move(*arrayShape); |
| } |
| } |
| } |
| } |
| } else if (intrinsic->name == "transfer") { |
| if (call.arguments().size() == 3 && call.arguments().at(2)) { |
| // SIZE= is present; shape is vector [SIZE=] |
| if (const auto *size{ |
| UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}) { |
| return Shape{ |
| MaybeExtentExpr{ConvertToType<ExtentType>(common::Clone(*size))}}; |
| } |
| } else if (context_) { |
| if (auto moldTypeAndShape{characteristics::TypeAndShape::Characterize( |
| call.arguments().at(1), *context_)}) { |
| if (moldTypeAndShape->Rank() == 0) { |
| // SIZE= is absent and MOLD= is scalar: result is scalar |
| return ScalarShape(); |
| } else { |
| // SIZE= is absent and MOLD= is array: result is vector whose |
| // length is determined by sizes of types. See 16.9.193p4 case(ii). |
| // Note that if sourceBytes is not known to be empty, we |
| // can fold only when moldElementBytes is known to not be zero; |
| // the most general case risks a division by zero otherwise. |
| if (auto sourceTypeAndShape{ |
| characteristics::TypeAndShape::Characterize( |
| call.arguments().at(0), *context_)}) { |
| if (auto sourceBytes{ |
| sourceTypeAndShape->MeasureSizeInBytes(*context_)}) { |
| *sourceBytes = Fold(*context_, std::move(*sourceBytes)); |
| if (auto sourceBytesConst{ToInt64(*sourceBytes)}) { |
| if (*sourceBytesConst == 0) { |
| return Shape{ExtentExpr{0}}; |
| } |
| } |
| if (auto moldElementBytes{ |
| moldTypeAndShape->MeasureElementSizeInBytes( |
| *context_, true)}) { |
| *moldElementBytes = |
| Fold(*context_, std::move(*moldElementBytes)); |
| auto moldElementBytesConst{ToInt64(*moldElementBytes)}; |
| if (moldElementBytesConst && *moldElementBytesConst != 0) { |
| ExtentExpr extent{Fold(*context_, |
| (std::move(*sourceBytes) + |
| common::Clone(*moldElementBytes) - ExtentExpr{1}) / |
| common::Clone(*moldElementBytes))}; |
| return Shape{MaybeExtentExpr{std::move(extent)}}; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } else if (intrinsic->name == "transpose") { |
| if (call.arguments().size() >= 1) { |
| if (auto shape{(*this)(call.arguments().at(0))}) { |
| if (shape->size() == 2) { |
| std::swap((*shape)[0], (*shape)[1]); |
| return shape; |
| } |
| } |
| } |
| } else if (intrinsic->name == "unpack") { |
| if (call.arguments().size() >= 2) { |
| return (*this)(call.arguments()[1]); // MASK= |
| } |
| } else if (intrinsic->characteristics.value().attrs.test(characteristics:: |
| Procedure::Attr::NullPointer)) { // NULL(MOLD=) |
| return (*this)(call.arguments()); |
| } else { |
| // TODO: shapes of other non-elemental intrinsic results |
| } |
| } |
| // The rank is always known even if the extents are not. |
| return Shape(static_cast<std::size_t>(call.Rank()), MaybeExtentExpr{}); |
| } |
| |
| void GetShapeHelper::AccumulateExtent( |
| ExtentExpr &result, ExtentExpr &&n) const { |
| result = std::move(result) + std::move(n); |
| if (context_) { |
| // Fold during expression creation to avoid creating an expression so |
| // large we can't evaluate it without overflowing the stack. |
| result = Fold(*context_, std::move(result)); |
| } |
| } |
| |
| // Check conformance of the passed shapes. |
| std::optional<bool> CheckConformance(parser::ContextualMessages &messages, |
| const Shape &left, const Shape &right, CheckConformanceFlags::Flags flags, |
| const char *leftIs, const char *rightIs) { |
| int n{GetRank(left)}; |
| if (n == 0 && (flags & CheckConformanceFlags::LeftScalarExpandable)) { |
| return true; |
| } |
| int rn{GetRank(right)}; |
| if (rn == 0 && (flags & CheckConformanceFlags::RightScalarExpandable)) { |
| return true; |
| } |
| if (n != rn) { |
| messages.Say("Rank of %1$s is %2$d, but %3$s has rank %4$d"_err_en_US, |
| leftIs, n, rightIs, rn); |
| return false; |
| } |
| for (int j{0}; j < n; ++j) { |
| if (auto leftDim{ToInt64(left[j])}) { |
| if (auto rightDim{ToInt64(right[j])}) { |
| if (*leftDim != *rightDim) { |
| messages.Say("Dimension %1$d of %2$s has extent %3$jd, " |
| "but %4$s has extent %5$jd"_err_en_US, |
| j + 1, leftIs, *leftDim, rightIs, *rightDim); |
| return false; |
| } |
| } else if (!(flags & CheckConformanceFlags::RightIsDeferredShape)) { |
| return std::nullopt; |
| } |
| } else if (!(flags & CheckConformanceFlags::LeftIsDeferredShape)) { |
| return std::nullopt; |
| } |
| } |
| return true; |
| } |
| |
| bool IncrementSubscripts( |
| ConstantSubscripts &indices, const ConstantSubscripts &extents) { |
| std::size_t rank(indices.size()); |
| CHECK(rank <= extents.size()); |
| for (std::size_t j{0}; j < rank; ++j) { |
| if (extents[j] < 1) { |
| return false; |
| } |
| } |
| for (std::size_t j{0}; j < rank; ++j) { |
| if (indices[j]++ < extents[j]) { |
| return true; |
| } |
| indices[j] = 1; |
| } |
| return false; |
| } |
| |
| } // namespace Fortran::evaluate |