blob: 6246cb931ff986c3e6be3d4b35374bc464ed82c5 [file] [log] [blame]
//===-- lib/Evaluate/shape.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/shape.h"
#include "flang/Common/idioms.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/symbol.h"
#include <functional>
using namespace std::placeholders; // _1, _2, &c. for std::bind()
namespace Fortran::evaluate {
bool IsImpliedShape(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()};
return details && symbol.attrs().test(semantics::Attr::PARAMETER) &&
details->shape().CanBeImpliedShape();
}
bool IsExplicitShape(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
const auto &shape{details->shape()};
return shape.Rank() == 0 ||
shape.IsExplicitShape(); // true when scalar, too
} else {
return symbol
.has<semantics::AssocEntityDetails>(); // exprs have explicit shape
}
}
Shape GetShapeHelper::ConstantShape(const Constant<ExtentType> &arrayConstant) {
CHECK(arrayConstant.Rank() == 1);
Shape result;
std::size_t dimensions{arrayConstant.size()};
for (std::size_t j{0}; j < dimensions; ++j) {
Scalar<ExtentType> extent{arrayConstant.values().at(j)};
result.emplace_back(MaybeExtentExpr{ExtentExpr{std::move(extent)}});
}
return result;
}
auto GetShapeHelper::AsShapeResult(ExtentExpr &&arrayExpr) const -> Result {
if (context_) {
arrayExpr = Fold(*context_, std::move(arrayExpr));
}
if (const auto *constArray{UnwrapConstantValue<ExtentType>(arrayExpr)}) {
return ConstantShape(*constArray);
}
if (auto *constructor{UnwrapExpr<ArrayConstructor<ExtentType>>(arrayExpr)}) {
Shape result;
for (auto &value : *constructor) {
auto *expr{std::get_if<ExtentExpr>(&value.u)};
if (expr && expr->Rank() == 0) {
result.emplace_back(std::move(*expr));
} else {
return std::nullopt;
}
}
return result;
} else {
return std::nullopt;
}
}
Shape GetShapeHelper::CreateShape(int rank, NamedEntity &base) const {
Shape shape;
for (int dimension{0}; dimension < rank; ++dimension) {
shape.emplace_back(GetExtent(base, dimension, invariantOnly_));
}
return shape;
}
std::optional<ExtentExpr> AsExtentArrayExpr(const Shape &shape) {
ArrayConstructorValues<ExtentType> values;
for (const auto &dim : shape) {
if (dim) {
values.Push(common::Clone(*dim));
} else {
return std::nullopt;
}
}
return ExtentExpr{ArrayConstructor<ExtentType>{std::move(values)}};
}
std::optional<Constant<ExtentType>> AsConstantShape(
FoldingContext &context, const Shape &shape) {
if (auto shapeArray{AsExtentArrayExpr(shape)}) {
auto folded{Fold(context, std::move(*shapeArray))};
if (auto *p{UnwrapConstantValue<ExtentType>(folded)}) {
return std::move(*p);
}
}
return std::nullopt;
}
Constant<SubscriptInteger> AsConstantShape(const ConstantSubscripts &shape) {
using IntType = Scalar<SubscriptInteger>;
std::vector<IntType> result;
for (auto dim : shape) {
result.emplace_back(dim);
}
return {std::move(result), ConstantSubscripts{GetRank(shape)}};
}
ConstantSubscripts AsConstantExtents(const Constant<ExtentType> &shape) {
ConstantSubscripts result;
for (const auto &extent : shape.values()) {
result.push_back(extent.ToInt64());
}
return result;
}
std::optional<ConstantSubscripts> AsConstantExtents(
FoldingContext &context, const Shape &shape) {
if (auto shapeConstant{AsConstantShape(context, shape)}) {
return AsConstantExtents(*shapeConstant);
} else {
return std::nullopt;
}
}
Shape AsShape(const ConstantSubscripts &shape) {
Shape result;
for (const auto &extent : shape) {
result.emplace_back(ExtentExpr{extent});
}
return result;
}
std::optional<Shape> AsShape(const std::optional<ConstantSubscripts> &shape) {
if (shape) {
return AsShape(*shape);
} else {
return std::nullopt;
}
}
Shape Fold(FoldingContext &context, Shape &&shape) {
for (auto &dim : shape) {
dim = Fold(context, std::move(dim));
}
return std::move(shape);
}
std::optional<Shape> Fold(
FoldingContext &context, std::optional<Shape> &&shape) {
if (shape) {
return Fold(context, std::move(*shape));
} else {
return std::nullopt;
}
}
static ExtentExpr ComputeTripCount(
ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) {
ExtentExpr strideCopy{common::Clone(stride)};
ExtentExpr span{
(std::move(upper) - std::move(lower) + std::move(strideCopy)) /
std::move(stride)};
return ExtentExpr{
Extremum<ExtentType>{Ordering::Greater, std::move(span), ExtentExpr{0}}};
}
ExtentExpr CountTrips(
ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) {
return ComputeTripCount(
std::move(lower), std::move(upper), std::move(stride));
}
ExtentExpr CountTrips(const ExtentExpr &lower, const ExtentExpr &upper,
const ExtentExpr &stride) {
return ComputeTripCount(
common::Clone(lower), common::Clone(upper), common::Clone(stride));
}
MaybeExtentExpr CountTrips(MaybeExtentExpr &&lower, MaybeExtentExpr &&upper,
MaybeExtentExpr &&stride) {
std::function<ExtentExpr(ExtentExpr &&, ExtentExpr &&, ExtentExpr &&)> bound{
std::bind(ComputeTripCount, _1, _2, _3)};
return common::MapOptional(
std::move(bound), std::move(lower), std::move(upper), std::move(stride));
}
MaybeExtentExpr GetSize(Shape &&shape) {
ExtentExpr extent{1};
for (auto &&dim : std::move(shape)) {
if (dim) {
extent = std::move(extent) * std::move(*dim);
} else {
return std::nullopt;
}
}
return extent;
}
ConstantSubscript GetSize(const ConstantSubscripts &shape) {
ConstantSubscript size{1};
for (auto dim : shape) {
CHECK(dim >= 0);
size *= dim;
}
return size;
}
bool ContainsAnyImpliedDoIndex(const ExtentExpr &expr) {
struct MyVisitor : public AnyTraverse<MyVisitor> {
using Base = AnyTraverse<MyVisitor>;
MyVisitor() : Base{*this} {}
using Base::operator();
bool operator()(const ImpliedDoIndex &) { return true; }
};
return MyVisitor{}(expr);
}
// Determines lower bound on a dimension. This can be other than 1 only
// for a reference to a whole array object or component. (See LBOUND, 16.9.109).
// ASSOCIATE construct entities may require traversal of their referents.
template <typename RESULT, bool LBOUND_SEMANTICS>
class GetLowerBoundHelper
: public Traverse<GetLowerBoundHelper<RESULT, LBOUND_SEMANTICS>, RESULT> {
public:
using Result = RESULT;
using Base = Traverse<GetLowerBoundHelper, RESULT>;
using Base::operator();
explicit GetLowerBoundHelper(
int d, FoldingContext *context, bool invariantOnly)
: Base{*this}, dimension_{d}, context_{context},
invariantOnly_{invariantOnly} {}
static Result Default() { return Result{1}; }
static Result Combine(Result &&, Result &&) {
// Operator results and array references always have lower bounds == 1
return Result{1};
}
Result GetLowerBound(const Symbol &symbol0, NamedEntity &&base) const {
const Symbol &symbol{symbol0.GetUltimate()};
if (const auto *object{
symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
int rank{object->shape().Rank()};
if (dimension_ < rank) {
const semantics::ShapeSpec &shapeSpec{object->shape()[dimension_]};
if (shapeSpec.lbound().isExplicit()) {
if (const auto &lbound{shapeSpec.lbound().GetExplicit()}) {
if constexpr (LBOUND_SEMANTICS) {
bool ok{false};
auto lbValue{ToInt64(*lbound)};
if (dimension_ == rank - 1 &&
semantics::IsAssumedSizeArray(symbol)) {
// last dimension of assumed-size dummy array: don't worry
// about handling an empty dimension
ok = !invariantOnly_ || IsScopeInvariantExpr(*lbound);
} else if (lbValue.value_or(0) == 1) {
// Lower bound is 1, regardless of extent
ok = true;
} else if (const auto &ubound{shapeSpec.ubound().GetExplicit()}) {
// If we can't prove that the dimension is nonempty,
// we must be conservative.
// TODO: simple symbolic math in expression rewriting to
// cope with cases like A(J:J)
if (context_) {
auto extent{ToInt64(Fold(*context_,
ExtentExpr{*ubound} - ExtentExpr{*lbound} +
ExtentExpr{1}))};
if (extent) {
if (extent <= 0) {
return Result{1};
}
ok = true;
} else {
ok = false;
}
} else {
auto ubValue{ToInt64(*ubound)};
if (lbValue && ubValue) {
if (*lbValue > *ubValue) {
return Result{1};
}
ok = true;
} else {
ok = false;
}
}
}
return ok ? *lbound : Result{};
} else {
return *lbound;
}
} else {
return Result{1};
}
}
if (IsDescriptor(symbol)) {
return ExtentExpr{DescriptorInquiry{std::move(base),
DescriptorInquiry::Field::LowerBound, dimension_}};
}
}
} else if (const auto *assoc{
symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->IsAssumedSize()) { // RANK(*)
return Result{1};
} else if (assoc->IsAssumedRank()) { // RANK DEFAULT
} else if (assoc->rank()) { // RANK(n)
const Symbol &resolved{ResolveAssociations(symbol)};
if (IsDescriptor(resolved) && dimension_ < *assoc->rank()) {
return ExtentExpr{DescriptorInquiry{std::move(base),
DescriptorInquiry::Field::LowerBound, dimension_}};
}
} else {
Result exprLowerBound{((*this)(assoc->expr()))};
if (IsActuallyConstant(exprLowerBound)) {
return std::move(exprLowerBound);
} else {
// If the lower bound of the associated entity is not resolved to a
// constant expression at the time of the association, it is unsafe
// to re-evaluate it later in the associate construct. Statements
// in between may have modified its operands value.
return ExtentExpr{DescriptorInquiry{std::move(base),
DescriptorInquiry::Field::LowerBound, dimension_}};
}
}
}
if constexpr (LBOUND_SEMANTICS) {
return Result{};
} else {
return Result{1};
}
}
Result operator()(const Symbol &symbol) const {
return GetLowerBound(symbol, NamedEntity{symbol});
}
Result operator()(const Component &component) const {
if (component.base().Rank() == 0) {
return GetLowerBound(
component.GetLastSymbol(), NamedEntity{common::Clone(component)});
}
return Result{1};
}
template <typename T> Result operator()(const Expr<T> &expr) const {
if (const Symbol * whole{UnwrapWholeSymbolOrComponentDataRef(expr)}) {
return (*this)(*whole);
} else if constexpr (common::HasMember<Constant<T>, decltype(expr.u)>) {
if (const auto *con{std::get_if<Constant<T>>(&expr.u)}) {
ConstantSubscripts lb{con->lbounds()};
if (dimension_ < GetRank(lb)) {
return Result{lb[dimension_]};
}
} else { // operation
return Result{1};
}
} else {
return (*this)(expr.u);
}
if constexpr (LBOUND_SEMANTICS) {
return Result{};
} else {
return Result{1};
}
}
private:
int dimension_; // zero-based
FoldingContext *context_{nullptr};
bool invariantOnly_{false};
};
ExtentExpr GetRawLowerBound(
const NamedEntity &base, int dimension, bool invariantOnly) {
return GetLowerBoundHelper<ExtentExpr, false>{
dimension, nullptr, invariantOnly}(base);
}
ExtentExpr GetRawLowerBound(FoldingContext &context, const NamedEntity &base,
int dimension, bool invariantOnly) {
return Fold(context,
GetLowerBoundHelper<ExtentExpr, false>{
dimension, &context, invariantOnly}(base));
}
MaybeExtentExpr GetLBOUND(
const NamedEntity &base, int dimension, bool invariantOnly) {
return GetLowerBoundHelper<MaybeExtentExpr, true>{
dimension, nullptr, invariantOnly}(base);
}
MaybeExtentExpr GetLBOUND(FoldingContext &context, const NamedEntity &base,
int dimension, bool invariantOnly) {
return Fold(context,
GetLowerBoundHelper<MaybeExtentExpr, true>{
dimension, &context, invariantOnly}(base));
}
Shape GetRawLowerBounds(const NamedEntity &base, bool invariantOnly) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetRawLowerBound(base, dim, invariantOnly));
}
return result;
}
Shape GetRawLowerBounds(
FoldingContext &context, const NamedEntity &base, bool invariantOnly) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetRawLowerBound(context, base, dim, invariantOnly));
}
return result;
}
Shape GetLBOUNDs(const NamedEntity &base, bool invariantOnly) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetLBOUND(base, dim, invariantOnly));
}
return result;
}
Shape GetLBOUNDs(
FoldingContext &context, const NamedEntity &base, bool invariantOnly) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetLBOUND(context, base, dim, invariantOnly));
}
return result;
}
// If the upper and lower bounds are constant, return a constant expression for
// the extent. In particular, if the upper bound is less than the lower bound,
// return zero.
static MaybeExtentExpr GetNonNegativeExtent(
const semantics::ShapeSpec &shapeSpec, bool invariantOnly) {
const auto &ubound{shapeSpec.ubound().GetExplicit()};
const auto &lbound{shapeSpec.lbound().GetExplicit()};
std::optional<ConstantSubscript> uval{ToInt64(ubound)};
std::optional<ConstantSubscript> lval{ToInt64(lbound)};
if (uval && lval) {
if (*uval < *lval) {
return ExtentExpr{0};
} else {
return ExtentExpr{*uval - *lval + 1};
}
} else if (lbound && ubound &&
(!invariantOnly ||
(IsScopeInvariantExpr(*lbound) && IsScopeInvariantExpr(*ubound)))) {
// Apply effective IDIM (MAX calculation with 0) so thet the
// result is never negative
if (lval.value_or(0) == 1) {
return ExtentExpr{Extremum<SubscriptInteger>{
Ordering::Greater, ExtentExpr{0}, common::Clone(*ubound)}};
} else {
return ExtentExpr{
Extremum<SubscriptInteger>{Ordering::Greater, ExtentExpr{0},
common::Clone(*ubound) - common::Clone(*lbound) + ExtentExpr{1}}};
}
} else {
return std::nullopt;
}
}
static MaybeExtentExpr GetAssociatedExtent(
const Symbol &symbol, int dimension) {
if (const auto *assoc{symbol.detailsIf<semantics::AssocEntityDetails>()};
assoc && !assoc->rank()) { // not SELECT RANK case
if (auto shape{GetShape(assoc->expr())};
shape && dimension < static_cast<int>(shape->size())) {
if (auto &extent{shape->at(dimension)};
// Don't return a non-constant extent, as the variables that
// determine the shape of the selector's expression may change
// during execution of the construct.
extent && IsActuallyConstant(*extent)) {
return std::move(extent);
}
}
}
return ExtentExpr{DescriptorInquiry{
NamedEntity{symbol}, DescriptorInquiry::Field::Extent, dimension}};
}
MaybeExtentExpr GetExtent(
const NamedEntity &base, int dimension, bool invariantOnly) {
CHECK(dimension >= 0);
const Symbol &last{base.GetLastSymbol()};
const Symbol &symbol{ResolveAssociations(last)};
if (const auto *assoc{last.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { // RANK(*)/DEFAULT
return std::nullopt;
} else if (assoc->rank()) { // RANK(n)
if (semantics::IsDescriptor(symbol) && dimension < *assoc->rank()) {
return ExtentExpr{DescriptorInquiry{
NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}};
} else {
return std::nullopt;
}
} else {
return GetAssociatedExtent(last, dimension);
}
}
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
if (IsImpliedShape(symbol) && details->init()) {
if (auto shape{GetShape(symbol, invariantOnly)}) {
if (dimension < static_cast<int>(shape->size())) {
return std::move(shape->at(dimension));
}
}
} else {
int j{0};
for (const auto &shapeSpec : details->shape()) {
if (j++ == dimension) {
if (auto extent{GetNonNegativeExtent(shapeSpec, invariantOnly)}) {
return extent;
} else if (semantics::IsAssumedSizeArray(symbol) &&
j == symbol.Rank()) {
break;
} else if (semantics::IsDescriptor(symbol)) {
return ExtentExpr{DescriptorInquiry{NamedEntity{base},
DescriptorInquiry::Field::Extent, dimension}};
} else {
break;
}
}
}
}
}
return std::nullopt;
}
MaybeExtentExpr GetExtent(FoldingContext &context, const NamedEntity &base,
int dimension, bool invariantOnly) {
return Fold(context, GetExtent(base, dimension, invariantOnly));
}
MaybeExtentExpr GetExtent(const Subscript &subscript, const NamedEntity &base,
int dimension, bool invariantOnly) {
return common::visit(
common::visitors{
[&](const Triplet &triplet) -> MaybeExtentExpr {
MaybeExtentExpr upper{triplet.upper()};
if (!upper) {
upper = GetUBOUND(base, dimension, invariantOnly);
}
MaybeExtentExpr lower{triplet.lower()};
if (!lower) {
lower = GetLBOUND(base, dimension, invariantOnly);
}
return CountTrips(std::move(lower), std::move(upper),
MaybeExtentExpr{triplet.stride()});
},
[&](const IndirectSubscriptIntegerExpr &subs) -> MaybeExtentExpr {
if (auto shape{GetShape(subs.value())}) {
if (GetRank(*shape) > 0) {
CHECK(GetRank(*shape) == 1); // vector-valued subscript
return std::move(shape->at(0));
}
}
return std::nullopt;
},
},
subscript.u);
}
MaybeExtentExpr GetExtent(FoldingContext &context, const Subscript &subscript,
const NamedEntity &base, int dimension, bool invariantOnly) {
return Fold(context, GetExtent(subscript, base, dimension, invariantOnly));
}
MaybeExtentExpr ComputeUpperBound(
ExtentExpr &&lower, MaybeExtentExpr &&extent) {
if (extent) {
if (ToInt64(lower).value_or(0) == 1) {
return std::move(*extent);
} else {
return std::move(*extent) + std::move(lower) - ExtentExpr{1};
}
} else {
return std::nullopt;
}
}
MaybeExtentExpr ComputeUpperBound(
FoldingContext &context, ExtentExpr &&lower, MaybeExtentExpr &&extent) {
return Fold(context, ComputeUpperBound(std::move(lower), std::move(extent)));
}
MaybeExtentExpr GetRawUpperBound(
const NamedEntity &base, int dimension, bool invariantOnly) {
const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
int rank{details->shape().Rank()};
if (dimension < rank) {
const auto &bound{details->shape()[dimension].ubound().GetExplicit()};
if (bound && (!invariantOnly || IsScopeInvariantExpr(*bound))) {
return *bound;
} else if (semantics::IsAssumedSizeArray(symbol) &&
dimension + 1 == symbol.Rank()) {
return std::nullopt;
} else {
return ComputeUpperBound(
GetRawLowerBound(base, dimension), GetExtent(base, dimension));
}
}
} else if (const auto *assoc{
symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) {
return std::nullopt;
} else if (assoc->rank() && dimension >= *assoc->rank()) {
return std::nullopt;
} else if (auto extent{GetAssociatedExtent(symbol, dimension)}) {
return ComputeUpperBound(
GetRawLowerBound(base, dimension), std::move(extent));
}
}
return std::nullopt;
}
MaybeExtentExpr GetRawUpperBound(FoldingContext &context,
const NamedEntity &base, int dimension, bool invariantOnly) {
return Fold(context, GetRawUpperBound(base, dimension, invariantOnly));
}
static MaybeExtentExpr GetExplicitUBOUND(FoldingContext *context,
const semantics::ShapeSpec &shapeSpec, bool invariantOnly) {
const auto &ubound{shapeSpec.ubound().GetExplicit()};
if (ubound && (!invariantOnly || IsScopeInvariantExpr(*ubound))) {
if (auto extent{GetNonNegativeExtent(shapeSpec, invariantOnly)}) {
if (auto cstExtent{ToInt64(
context ? Fold(*context, std::move(*extent)) : *extent)}) {
if (cstExtent > 0) {
return *ubound;
} else if (cstExtent == 0) {
return ExtentExpr{0};
}
}
}
}
return std::nullopt;
}
static MaybeExtentExpr GetUBOUND(FoldingContext *context,
const NamedEntity &base, int dimension, bool invariantOnly) {
const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
int rank{details->shape().Rank()};
if (dimension < rank) {
const semantics::ShapeSpec &shapeSpec{details->shape()[dimension]};
if (auto ubound{GetExplicitUBOUND(context, shapeSpec, invariantOnly)}) {
return *ubound;
} else if (semantics::IsAssumedSizeArray(symbol) &&
dimension + 1 == symbol.Rank()) {
return std::nullopt; // UBOUND() folding replaces with -1
} else if (auto lb{GetLBOUND(base, dimension, invariantOnly)}) {
return ComputeUpperBound(
std::move(*lb), GetExtent(base, dimension, invariantOnly));
}
}
} else if (const auto *assoc{
symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) {
return std::nullopt;
} else if (assoc->rank()) { // RANK (n)
const Symbol &resolved{ResolveAssociations(symbol)};
if (IsDescriptor(resolved) && dimension < *assoc->rank()) {
ExtentExpr lb{DescriptorInquiry{NamedEntity{base},
DescriptorInquiry::Field::LowerBound, dimension}};
ExtentExpr extent{DescriptorInquiry{
std::move(base), DescriptorInquiry::Field::Extent, dimension}};
return ComputeUpperBound(std::move(lb), std::move(extent));
}
} else if (auto extent{GetAssociatedExtent(symbol, dimension)}) {
if (auto lb{GetLBOUND(base, dimension, invariantOnly)}) {
return ComputeUpperBound(std::move(*lb), std::move(extent));
}
}
}
return std::nullopt;
}
MaybeExtentExpr GetUBOUND(
const NamedEntity &base, int dimension, bool invariantOnly) {
return GetUBOUND(nullptr, base, dimension, invariantOnly);
}
MaybeExtentExpr GetUBOUND(FoldingContext &context, const NamedEntity &base,
int dimension, bool invariantOnly) {
return Fold(context, GetUBOUND(&context, base, dimension, invariantOnly));
}
static Shape GetUBOUNDs(
FoldingContext *context, const NamedEntity &base, bool invariantOnly) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetUBOUND(context, base, dim, invariantOnly));
}
return result;
}
Shape GetUBOUNDs(
FoldingContext &context, const NamedEntity &base, bool invariantOnly) {
return Fold(context, GetUBOUNDs(&context, base, invariantOnly));
}
Shape GetUBOUNDs(const NamedEntity &base, bool invariantOnly) {
return GetUBOUNDs(nullptr, base, invariantOnly);
}
auto GetShapeHelper::operator()(const Symbol &symbol) const -> Result {
return common::visit(
common::visitors{
[&](const semantics::ObjectEntityDetails &object) {
if (IsImpliedShape(symbol) && object.init()) {
return (*this)(object.init());
} else if (IsAssumedRank(symbol)) {
return Result{};
} else {
int n{object.shape().Rank()};
NamedEntity base{symbol};
return Result{CreateShape(n, base)};
}
},
[](const semantics::EntityDetails &) {
return ScalarShape(); // no dimensions seen
},
[&](const semantics::ProcEntityDetails &proc) {
if (const Symbol * interface{proc.procInterface()}) {
return (*this)(*interface);
} else {
return ScalarShape();
}
},
[&](const semantics::AssocEntityDetails &assoc) {
NamedEntity base{symbol};
if (assoc.rank()) { // SELECT RANK case
int n{assoc.rank().value()};
return Result{CreateShape(n, base)};
} else {
auto exprShape{((*this)(assoc.expr()))};
if (exprShape) {
int rank{static_cast<int>(exprShape->size())};
for (int dimension{0}; dimension < rank; ++dimension) {
auto &extent{(*exprShape)[dimension]};
if (extent && !IsActuallyConstant(*extent)) {
extent = GetExtent(base, dimension);
}
}
}
return exprShape;
}
},
[&](const semantics::SubprogramDetails &subp) -> Result {
if (subp.isFunction()) {
auto resultShape{(*this)(subp.result())};
if (resultShape && !useResultSymbolShape_) {
// Ensure the shape is constant. Otherwise, it may be referring
// to symbols that belong to the function's scope and are
// meaningless on the caller side without the related call
// expression.
for (auto &extent : *resultShape) {
if (extent && !IsActuallyConstant(*extent)) {
extent.reset();
}
}
}
return resultShape;
} else {
return Result{};
}
},
[&](const semantics::ProcBindingDetails &binding) {
return (*this)(binding.symbol());
},
[](const semantics::TypeParamDetails &) { return ScalarShape(); },
[](const auto &) { return Result{}; },
},
symbol.GetUltimate().details());
}
auto GetShapeHelper::operator()(const Component &component) const -> Result {
const Symbol &symbol{component.GetLastSymbol()};
int rank{symbol.Rank()};
if (rank == 0) {
return (*this)(component.base());
} else if (symbol.has<semantics::ObjectEntityDetails>()) {
NamedEntity base{Component{component}};
return CreateShape(rank, base);
} else {
return (*this)(symbol);
}
}
auto GetShapeHelper::operator()(const ArrayRef &arrayRef) const -> Result {
Shape shape;
int dimension{0};
const NamedEntity &base{arrayRef.base()};
for (const Subscript &ss : arrayRef.subscript()) {
if (ss.Rank() > 0) {
shape.emplace_back(GetExtent(ss, base, dimension));
}
++dimension;
}
if (shape.empty()) {
if (const Component * component{base.UnwrapComponent()}) {
return (*this)(component->base());
}
}
return shape;
}
auto GetShapeHelper::operator()(const CoarrayRef &coarrayRef) const -> Result {
NamedEntity base{coarrayRef.GetBase()};
if (coarrayRef.subscript().empty()) {
return (*this)(base);
} else {
Shape shape;
int dimension{0};
for (const Subscript &ss : coarrayRef.subscript()) {
if (ss.Rank() > 0) {
shape.emplace_back(GetExtent(ss, base, dimension));
}
++dimension;
}
return shape;
}
}
auto GetShapeHelper::operator()(const Substring &substring) const -> Result {
return (*this)(substring.parent());
}
auto GetShapeHelper::operator()(const ProcedureRef &call) const -> Result {
if (call.Rank() == 0) {
return ScalarShape();
} else if (call.IsElemental()) {
// Use the shape of an actual array argument associated with a
// non-OPTIONAL dummy object argument.
if (context_) {
if (auto chars{characteristics::Procedure::FromActuals(
call.proc(), call.arguments(), *context_)}) {
std::size_t j{0};
std::size_t anyArrayArgRank{0};
for (const auto &arg : call.arguments()) {
if (arg && arg->Rank() > 0 && j < chars->dummyArguments.size()) {
anyArrayArgRank = arg->Rank();
if (!chars->dummyArguments[j].IsOptional()) {
return (*this)(*arg);
}
}
++j;
}
if (anyArrayArgRank) {
// All dummy array arguments of the procedure are OPTIONAL.
// We cannot take the shape from just any array argument,
// because all of them might be OPTIONAL dummy arguments
// of the caller. Return unknown shape ranked according
// to the last actual array argument.
return Shape(anyArrayArgRank, MaybeExtentExpr{});
}
}
}
return ScalarShape();
} else if (const Symbol * symbol{call.proc().GetSymbol()}) {
auto restorer{common::ScopedSet(useResultSymbolShape_, false)};
return (*this)(*symbol);
} else if (const auto *intrinsic{call.proc().GetSpecificIntrinsic()}) {
if (intrinsic->name == "shape" || intrinsic->name == "lbound" ||
intrinsic->name == "ubound") {
// For LBOUND/UBOUND, these are the array-valued cases (no DIM=)
if (!call.arguments().empty() && call.arguments().front()) {
return Shape{
MaybeExtentExpr{ExtentExpr{call.arguments().front()->Rank()}}};
}
} else if (intrinsic->name == "all" || intrinsic->name == "any" ||
intrinsic->name == "count" || intrinsic->name == "iall" ||
intrinsic->name == "iany" || intrinsic->name == "iparity" ||
intrinsic->name == "maxval" || intrinsic->name == "minval" ||
intrinsic->name == "norm2" || intrinsic->name == "parity" ||
intrinsic->name == "product" || intrinsic->name == "sum") {
// Reduction with DIM=
if (call.arguments().size() >= 2) {
auto arrayShape{
(*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))};
const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))};
if (arrayShape && dimArg) {
if (auto dim{ToInt64(*dimArg)}) {
if (*dim >= 1 &&
static_cast<std::size_t>(*dim) <= arrayShape->size()) {
arrayShape->erase(arrayShape->begin() + (*dim - 1));
return std::move(*arrayShape);
}
}
}
}
} else if (intrinsic->name == "findloc" || intrinsic->name == "maxloc" ||
intrinsic->name == "minloc") {
std::size_t dimIndex{intrinsic->name == "findloc" ? 2u : 1u};
if (call.arguments().size() > dimIndex) {
if (auto arrayShape{
(*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}) {
auto rank{static_cast<int>(arrayShape->size())};
if (const auto *dimArg{
UnwrapExpr<Expr<SomeType>>(call.arguments()[dimIndex])}) {
auto dim{ToInt64(*dimArg)};
if (dim && *dim >= 1 && *dim <= rank) {
arrayShape->erase(arrayShape->begin() + (*dim - 1));
return std::move(*arrayShape);
}
} else {
// xxxLOC(no DIM=) result is vector(1:RANK(ARRAY=))
return Shape{ExtentExpr{rank}};
}
}
}
} else if (intrinsic->name == "cshift" || intrinsic->name == "eoshift") {
if (!call.arguments().empty()) {
return (*this)(call.arguments()[0]);
}
} else if (intrinsic->name == "matmul") {
if (call.arguments().size() == 2) {
if (auto ashape{(*this)(call.arguments()[0])}) {
if (auto bshape{(*this)(call.arguments()[1])}) {
if (ashape->size() == 1 && bshape->size() == 2) {
bshape->erase(bshape->begin());
return std::move(*bshape); // matmul(vector, matrix)
} else if (ashape->size() == 2 && bshape->size() == 1) {
ashape->pop_back();
return std::move(*ashape); // matmul(matrix, vector)
} else if (ashape->size() == 2 && bshape->size() == 2) {
(*ashape)[1] = std::move((*bshape)[1]);
return std::move(*ashape); // matmul(matrix, matrix)
}
}
}
}
} else if (intrinsic->name == "pack") {
if (call.arguments().size() >= 3 && call.arguments().at(2)) {
// SHAPE(PACK(,,VECTOR=v)) -> SHAPE(v)
return (*this)(call.arguments().at(2));
} else if (call.arguments().size() >= 2 && context_) {
if (auto maskShape{(*this)(call.arguments().at(1))}) {
if (maskShape->size() == 0) {
// Scalar MASK= -> [MERGE(SIZE(ARRAY=), 0, mask)]
if (auto arrayShape{(*this)(call.arguments().at(0))}) {
if (auto arraySize{GetSize(std::move(*arrayShape))}) {
ActualArguments toMerge{
ActualArgument{AsGenericExpr(std::move(*arraySize))},
ActualArgument{AsGenericExpr(ExtentExpr{0})},
common::Clone(call.arguments().at(1))};
auto specific{context_->intrinsics().Probe(
CallCharacteristics{"merge"}, toMerge, *context_)};
CHECK(specific);
return Shape{ExtentExpr{FunctionRef<ExtentType>{
ProcedureDesignator{std::move(specific->specificIntrinsic)},
std::move(specific->arguments)}}};
}
}
} else {
// Non-scalar MASK= -> [COUNT(mask, KIND=extent_kind)]
ActualArgument kindArg{
AsGenericExpr(Constant<ExtentType>{ExtentType::kind})};
kindArg.set_keyword(context_->SaveTempName("kind"));
ActualArguments toCount{
ActualArgument{common::Clone(
DEREF(call.arguments().at(1).value().UnwrapExpr()))},
std::move(kindArg)};
auto specific{context_->intrinsics().Probe(
CallCharacteristics{"count"}, toCount, *context_)};
CHECK(specific);
return Shape{ExtentExpr{FunctionRef<ExtentType>{
ProcedureDesignator{std::move(specific->specificIntrinsic)},
std::move(specific->arguments)}}};
}
}
}
} else if (intrinsic->name == "reshape") {
if (call.arguments().size() >= 2 && call.arguments().at(1)) {
// SHAPE(RESHAPE(array,shape)) -> shape
if (const auto *shapeExpr{
call.arguments().at(1).value().UnwrapExpr()}) {
auto shapeArg{std::get<Expr<SomeInteger>>(shapeExpr->u)};
if (auto result{AsShapeResult(
ConvertToType<ExtentType>(std::move(shapeArg)))}) {
return result;
}
}
}
} else if (intrinsic->name == "spread") {
// SHAPE(SPREAD(ARRAY,DIM,NCOPIES)) = SHAPE(ARRAY) with NCOPIES inserted
// at position DIM.
if (call.arguments().size() == 3) {
auto arrayShape{
(*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))};
const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))};
const auto *nCopies{
UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))};
if (arrayShape && dimArg && nCopies) {
if (auto dim{ToInt64(*dimArg)}) {
if (*dim >= 1 &&
static_cast<std::size_t>(*dim) <= arrayShape->size() + 1) {
arrayShape->emplace(arrayShape->begin() + *dim - 1,
ConvertToType<ExtentType>(common::Clone(*nCopies)));
return std::move(*arrayShape);
}
}
}
}
} else if (intrinsic->name == "transfer") {
if (call.arguments().size() == 3 && call.arguments().at(2)) {
// SIZE= is present; shape is vector [SIZE=]
if (const auto *size{
UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}) {
return Shape{
MaybeExtentExpr{ConvertToType<ExtentType>(common::Clone(*size))}};
}
} else if (context_) {
if (auto moldTypeAndShape{characteristics::TypeAndShape::Characterize(
call.arguments().at(1), *context_)}) {
if (GetRank(moldTypeAndShape->shape()) == 0) {
// SIZE= is absent and MOLD= is scalar: result is scalar
return ScalarShape();
} else {
// SIZE= is absent and MOLD= is array: result is vector whose
// length is determined by sizes of types. See 16.9.193p4 case(ii).
// Note that if sourceBytes is not known to be empty, we
// can fold only when moldElementBytes is known to not be zero;
// the most general case risks a division by zero otherwise.
if (auto sourceTypeAndShape{
characteristics::TypeAndShape::Characterize(
call.arguments().at(0), *context_)}) {
if (auto sourceBytes{
sourceTypeAndShape->MeasureSizeInBytes(*context_)}) {
*sourceBytes = Fold(*context_, std::move(*sourceBytes));
if (auto sourceBytesConst{ToInt64(*sourceBytes)}) {
if (*sourceBytesConst == 0) {
return Shape{ExtentExpr{0}};
}
}
if (auto moldElementBytes{
moldTypeAndShape->MeasureElementSizeInBytes(
*context_, true)}) {
*moldElementBytes =
Fold(*context_, std::move(*moldElementBytes));
auto moldElementBytesConst{ToInt64(*moldElementBytes)};
if (moldElementBytesConst && *moldElementBytesConst != 0) {
ExtentExpr extent{Fold(*context_,
(std::move(*sourceBytes) +
common::Clone(*moldElementBytes) - ExtentExpr{1}) /
common::Clone(*moldElementBytes))};
return Shape{MaybeExtentExpr{std::move(extent)}};
}
}
}
}
}
}
}
} else if (intrinsic->name == "transpose") {
if (call.arguments().size() >= 1) {
if (auto shape{(*this)(call.arguments().at(0))}) {
if (shape->size() == 2) {
std::swap((*shape)[0], (*shape)[1]);
return shape;
}
}
}
} else if (intrinsic->name == "unpack") {
if (call.arguments().size() >= 2) {
return (*this)(call.arguments()[1]); // MASK=
}
} else if (intrinsic->characteristics.value().attrs.test(characteristics::
Procedure::Attr::NullPointer)) { // NULL(MOLD=)
return (*this)(call.arguments());
} else {
// TODO: shapes of other non-elemental intrinsic results
}
}
// The rank is always known even if the extents are not.
return Shape(static_cast<std::size_t>(call.Rank()), MaybeExtentExpr{});
}
void GetShapeHelper::AccumulateExtent(
ExtentExpr &result, ExtentExpr &&n) const {
result = std::move(result) + std::move(n);
if (context_) {
// Fold during expression creation to avoid creating an expression so
// large we can't evaluate it without overflowing the stack.
result = Fold(*context_, std::move(result));
}
}
// Check conformance of the passed shapes.
std::optional<bool> CheckConformance(parser::ContextualMessages &messages,
const Shape &left, const Shape &right, CheckConformanceFlags::Flags flags,
const char *leftIs, const char *rightIs) {
int n{GetRank(left)};
if (n == 0 && (flags & CheckConformanceFlags::LeftScalarExpandable)) {
return true;
}
int rn{GetRank(right)};
if (rn == 0 && (flags & CheckConformanceFlags::RightScalarExpandable)) {
return true;
}
if (n != rn) {
messages.Say("Rank of %1$s is %2$d, but %3$s has rank %4$d"_err_en_US,
leftIs, n, rightIs, rn);
return false;
}
for (int j{0}; j < n; ++j) {
if (auto leftDim{ToInt64(left[j])}) {
if (auto rightDim{ToInt64(right[j])}) {
if (*leftDim != *rightDim) {
messages.Say("Dimension %1$d of %2$s has extent %3$jd, "
"but %4$s has extent %5$jd"_err_en_US,
j + 1, leftIs, *leftDim, rightIs, *rightDim);
return false;
}
} else if (!(flags & CheckConformanceFlags::RightIsDeferredShape)) {
return std::nullopt;
}
} else if (!(flags & CheckConformanceFlags::LeftIsDeferredShape)) {
return std::nullopt;
}
}
return true;
}
bool IncrementSubscripts(
ConstantSubscripts &indices, const ConstantSubscripts &extents) {
std::size_t rank(indices.size());
CHECK(rank <= extents.size());
for (std::size_t j{0}; j < rank; ++j) {
if (extents[j] < 1) {
return false;
}
}
for (std::size_t j{0}; j < rank; ++j) {
if (indices[j]++ < extents[j]) {
return true;
}
indices[j] = 1;
}
return false;
}
} // namespace Fortran::evaluate