| //===-- lib/Evaluate/fold-real.cpp ----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "fold-implementation.h" |
| #include "fold-matmul.h" |
| #include "fold-reduction.h" |
| |
| namespace Fortran::evaluate { |
| |
| template <typename T> |
| static Expr<T> FoldTransformationalBessel( |
| FunctionRef<T> &&funcRef, FoldingContext &context) { |
| CHECK(funcRef.arguments().size() == 3); |
| /// Bessel runtime functions use `int` integer arguments. Convert integer |
| /// arguments to Int4, any overflow error will be reported during the |
| /// conversion folding. |
| using Int4 = Type<TypeCategory::Integer, 4>; |
| if (auto args{GetConstantArguments<Int4, Int4, T>( |
| context, funcRef.arguments(), /*hasOptionalArgument=*/false)}) { |
| const std::string &name{std::get<SpecificIntrinsic>(funcRef.proc().u).name}; |
| if (auto elementalBessel{GetHostRuntimeWrapper<T, Int4, T>(name)}) { |
| std::vector<Scalar<T>> results; |
| int n1{static_cast<int>( |
| std::get<0>(*args)->GetScalarValue().value().ToInt64())}; |
| int n2{static_cast<int>( |
| std::get<1>(*args)->GetScalarValue().value().ToInt64())}; |
| Scalar<T> x{std::get<2>(*args)->GetScalarValue().value()}; |
| for (int i{n1}; i <= n2; ++i) { |
| results.emplace_back((*elementalBessel)(context, Scalar<Int4>{i}, x)); |
| } |
| return Expr<T>{Constant<T>{ |
| std::move(results), ConstantSubscripts{std::max(n2 - n1 + 1, 0)}}}; |
| } else if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingFailure)) { |
| context.messages().Say(common::UsageWarning::FoldingFailure, |
| "%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US, |
| name, T::kind); |
| } |
| } |
| return Expr<T>{std::move(funcRef)}; |
| } |
| |
| // NORM2 |
| template <int KIND> class Norm2Accumulator { |
| using T = Type<TypeCategory::Real, KIND>; |
| |
| public: |
| Norm2Accumulator( |
| const Constant<T> &array, const Constant<T> &maxAbs, Rounding rounding) |
| : array_{array}, maxAbs_{maxAbs}, rounding_{rounding} {}; |
| void operator()( |
| Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) { |
| // Summation of scaled elements: |
| // Naively, |
| // NORM2(A(:)) = SQRT(SUM(A(:)**2)) |
| // For any T > 0, we have mathematically |
| // SQRT(SUM(A(:)**2)) |
| // = SQRT(T**2 * (SUM(A(:)**2) / T**2)) |
| // = SQRT(T**2 * SUM(A(:)**2 / T**2)) |
| // = SQRT(T**2 * SUM((A(:)/T)**2)) |
| // = SQRT(T**2) * SQRT(SUM((A(:)/T)**2)) |
| // = T * SQRT(SUM((A(:)/T)**2)) |
| // By letting T = MAXVAL(ABS(A)), we ensure that |
| // ALL(ABS(A(:)/T) <= 1), so ALL((A(:)/T)**2 <= 1), and the SUM will |
| // not overflow unless absolutely necessary. |
| auto scale{maxAbs_.At(maxAbsAt_)}; |
| if (scale.IsZero()) { |
| // Maximum value is zero, and so will the result be. |
| // Avoid division by zero below. |
| element = scale; |
| } else { |
| auto item{array_.At(at)}; |
| auto scaled{item.Divide(scale).value}; |
| auto square{scaled.Multiply(scaled).value}; |
| if constexpr (useKahanSummation) { |
| auto next{square.Subtract(correction_, rounding_)}; |
| overflow_ |= next.flags.test(RealFlag::Overflow); |
| auto sum{element.Add(next.value, rounding_)}; |
| overflow_ |= sum.flags.test(RealFlag::Overflow); |
| correction_ = sum.value.Subtract(element, rounding_) |
| .value.Subtract(next.value, rounding_) |
| .value; |
| element = sum.value; |
| } else { |
| auto sum{element.Add(square, rounding_)}; |
| overflow_ |= sum.flags.test(RealFlag::Overflow); |
| element = sum.value; |
| } |
| } |
| } |
| bool overflow() const { return overflow_; } |
| void Done(Scalar<T> &result) { |
| // incoming result = SUM((data(:)/maxAbs)**2) |
| // outgoing result = maxAbs * SQRT(result) |
| auto root{result.SQRT().value}; |
| auto product{root.Multiply(maxAbs_.At(maxAbsAt_))}; |
| maxAbs_.IncrementSubscripts(maxAbsAt_); |
| overflow_ |= product.flags.test(RealFlag::Overflow); |
| result = product.value; |
| } |
| |
| private: |
| const Constant<T> &array_; |
| const Constant<T> &maxAbs_; |
| const Rounding rounding_; |
| bool overflow_{false}; |
| Scalar<T> correction_{}; |
| ConstantSubscripts maxAbsAt_{maxAbs_.lbounds()}; |
| }; |
| |
| template <int KIND> |
| static Expr<Type<TypeCategory::Real, KIND>> FoldNorm2(FoldingContext &context, |
| FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) { |
| using T = Type<TypeCategory::Real, KIND>; |
| using Element = typename Constant<T>::Element; |
| std::optional<int> dim; |
| if (std::optional<ArrayAndMask<T>> arrayAndMask{ |
| ProcessReductionArgs<T>(context, funcRef.arguments(), dim, |
| /*X=*/0, /*DIM=*/1)}) { |
| MaxvalMinvalAccumulator<T, /*ABS=*/true> maxAbsAccumulator{ |
| RelationalOperator::GT, context, arrayAndMask->array}; |
| const Element identity{}; |
| Constant<T> maxAbs{DoReduction<T>(arrayAndMask->array, arrayAndMask->mask, |
| dim, identity, maxAbsAccumulator)}; |
| Norm2Accumulator norm2Accumulator{arrayAndMask->array, maxAbs, |
| context.targetCharacteristics().roundingMode()}; |
| Constant<T> result{DoReduction<T>(arrayAndMask->array, arrayAndMask->mask, |
| dim, identity, norm2Accumulator)}; |
| if (norm2Accumulator.overflow() && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| context.messages().Say(common::UsageWarning::FoldingException, |
| "NORM2() of REAL(%d) data overflowed"_warn_en_US, KIND); |
| } |
| return Expr<T>{std::move(result)}; |
| } |
| return Expr<T>{std::move(funcRef)}; |
| } |
| |
| template <int KIND> |
| Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction( |
| FoldingContext &context, |
| FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) { |
| using T = Type<TypeCategory::Real, KIND>; |
| using ComplexT = Type<TypeCategory::Complex, KIND>; |
| using Int4 = Type<TypeCategory::Integer, 4>; |
| ActualArguments &args{funcRef.arguments()}; |
| auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; |
| CHECK(intrinsic); |
| std::string name{intrinsic->name}; |
| if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" || |
| (name == "atan" && args.size() == 1) || name == "atanh" || |
| name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" || |
| name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" || |
| name == "erfc" || name == "erfc_scaled" || name == "exp" || |
| name == "gamma" || name == "log" || name == "log10" || |
| name == "log_gamma" || name == "sin" || name == "sinh" || name == "tan" || |
| name == "tanh") { |
| CHECK(args.size() == 1); |
| if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) { |
| return FoldElementalIntrinsic<T, T>( |
| context, std::move(funcRef), *callable); |
| } else if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingFailure)) { |
| context.messages().Say(common::UsageWarning::FoldingFailure, |
| "%s(real(kind=%d)) cannot be folded on host"_warn_en_US, name, KIND); |
| } |
| } else if (name == "amax0" || name == "amin0" || name == "amin1" || |
| name == "amax1" || name == "dmin1" || name == "dmax1") { |
| return RewriteSpecificMINorMAX(context, std::move(funcRef)); |
| } else if (name == "atan" || name == "atan2") { |
| std::string localName{name == "atan" ? "atan2" : name}; |
| CHECK(args.size() == 2); |
| if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) { |
| return FoldElementalIntrinsic<T, T, T>( |
| context, std::move(funcRef), *callable); |
| } else if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingFailure)) { |
| context.messages().Say(common::UsageWarning::FoldingFailure, |
| "%s(real(kind=%d), real(kind%d)) cannot be folded on host"_warn_en_US, |
| name, KIND, KIND); |
| } |
| } else if (name == "bessel_jn" || name == "bessel_yn") { |
| if (args.size() == 2) { // elemental |
| // runtime functions use int arg |
| if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) { |
| return FoldElementalIntrinsic<T, Int4, T>( |
| context, std::move(funcRef), *callable); |
| } else if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingFailure)) { |
| context.messages().Say(common::UsageWarning::FoldingFailure, |
| "%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US, |
| name, KIND); |
| } |
| } else { |
| return FoldTransformationalBessel<T>(std::move(funcRef), context); |
| } |
| } else if (name == "abs") { // incl. zabs & cdabs |
| // Argument can be complex or real |
| if (UnwrapExpr<Expr<SomeReal>>(args[0])) { |
| return FoldElementalIntrinsic<T, T>( |
| context, std::move(funcRef), &Scalar<T>::ABS); |
| } else if (UnwrapExpr<Expr<SomeComplex>>(args[0])) { |
| return FoldElementalIntrinsic<T, ComplexT>(context, std::move(funcRef), |
| ScalarFunc<T, ComplexT>([&name, &context]( |
| const Scalar<ComplexT> &z) -> Scalar<T> { |
| ValueWithRealFlags<Scalar<T>> y{z.ABS()}; |
| if (y.flags.test(RealFlag::Overflow) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| context.messages().Say(common::UsageWarning::FoldingException, |
| "complex ABS intrinsic folding overflow"_warn_en_US, name); |
| } |
| return y.value; |
| })); |
| } else { |
| common::die(" unexpected argument type inside abs"); |
| } |
| } else if (name == "aimag") { |
| if (auto *zExpr{UnwrapExpr<Expr<ComplexT>>(args[0])}) { |
| return Fold(context, Expr<T>{ComplexComponent{true, std::move(*zExpr)}}); |
| } |
| } else if (name == "aint" || name == "anint") { |
| // ANINT rounds ties away from zero, not to even |
| common::RoundingMode mode{name == "aint" |
| ? common::RoundingMode::ToZero |
| : common::RoundingMode::TiesAwayFromZero}; |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>( |
| [&name, &context, mode](const Scalar<T> &x) -> Scalar<T> { |
| ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)}; |
| if (y.flags.test(RealFlag::Overflow) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| context.messages().Say(common::UsageWarning::FoldingException, |
| "%s intrinsic folding overflow"_warn_en_US, name); |
| } |
| return y.value; |
| })); |
| } else if (name == "dim") { |
| return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T, T>([&context](const Scalar<T> &x, |
| const Scalar<T> &y) -> Scalar<T> { |
| ValueWithRealFlags<Scalar<T>> result{x.DIM(y)}; |
| if (result.flags.test(RealFlag::Overflow) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| context.messages().Say(common::UsageWarning::FoldingException, |
| "DIM intrinsic folding overflow"_warn_en_US); |
| } |
| return result.value; |
| })); |
| } else if (name == "dot_product") { |
| return FoldDotProduct<T>(context, std::move(funcRef)); |
| } else if (name == "dprod") { |
| // Rewrite DPROD(x,y) -> DBLE(x)*DBLE(y) |
| if (args.at(0) && args.at(1)) { |
| const auto *xExpr{args[0]->UnwrapExpr()}; |
| const auto *yExpr{args[1]->UnwrapExpr()}; |
| if (xExpr && yExpr) { |
| return Fold(context, |
| ToReal<T::kind>(context, common::Clone(*xExpr)) * |
| ToReal<T::kind>(context, common::Clone(*yExpr))); |
| } |
| } |
| } else if (name == "epsilon") { |
| return Expr<T>{Scalar<T>::EPSILON()}; |
| } else if (name == "fraction") { |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>( |
| [](const Scalar<T> &x) -> Scalar<T> { return x.FRACTION(); })); |
| } else if (name == "huge") { |
| return Expr<T>{Scalar<T>::HUGE()}; |
| } else if (name == "hypot") { |
| CHECK(args.size() == 2); |
| return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T, T>( |
| [&](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> { |
| ValueWithRealFlags<Scalar<T>> result{x.HYPOT(y)}; |
| if (result.flags.test(RealFlag::Overflow) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| context.messages().Say(common::UsageWarning::FoldingException, |
| "HYPOT intrinsic folding overflow"_warn_en_US); |
| } |
| return result.value; |
| })); |
| } else if (name == "matmul") { |
| return FoldMatmul(context, std::move(funcRef)); |
| } else if (name == "max") { |
| return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater); |
| } else if (name == "maxval") { |
| return FoldMaxvalMinval<T>(context, std::move(funcRef), |
| RelationalOperator::GT, T::Scalar::HUGE().Negate()); |
| } else if (name == "min") { |
| return FoldMINorMAX(context, std::move(funcRef), Ordering::Less); |
| } else if (name == "minval") { |
| return FoldMaxvalMinval<T>( |
| context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE()); |
| } else if (name == "mod") { |
| CHECK(args.size() == 2); |
| bool badPConst{false}; |
| if (auto *pExpr{UnwrapExpr<Expr<T>>(args[1])}) { |
| *pExpr = Fold(context, std::move(*pExpr)); |
| if (auto pConst{GetScalarConstantValue<T>(*pExpr)}; pConst && |
| pConst->IsZero() && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingAvoidsRuntimeCrash)) { |
| context.messages().Say(common::UsageWarning::FoldingAvoidsRuntimeCrash, |
| "MOD: P argument is zero"_warn_en_US); |
| badPConst = true; |
| } |
| } |
| return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T, T>([&context, badPConst](const Scalar<T> &x, |
| const Scalar<T> &y) -> Scalar<T> { |
| auto result{x.MOD(y)}; |
| if (!badPConst && result.flags.test(RealFlag::DivideByZero) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingAvoidsRuntimeCrash)) { |
| context.messages().Say( |
| common::UsageWarning::FoldingAvoidsRuntimeCrash, |
| "second argument to MOD must not be zero"_warn_en_US); |
| } |
| return result.value; |
| })); |
| } else if (name == "modulo") { |
| CHECK(args.size() == 2); |
| bool badPConst{false}; |
| if (auto *pExpr{UnwrapExpr<Expr<T>>(args[1])}) { |
| *pExpr = Fold(context, std::move(*pExpr)); |
| if (auto pConst{GetScalarConstantValue<T>(*pExpr)}; pConst && |
| pConst->IsZero() && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingAvoidsRuntimeCrash)) { |
| context.messages().Say(common::UsageWarning::FoldingAvoidsRuntimeCrash, |
| "MODULO: P argument is zero"_warn_en_US); |
| badPConst = true; |
| } |
| } |
| return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T, T>([&context, badPConst](const Scalar<T> &x, |
| const Scalar<T> &y) -> Scalar<T> { |
| auto result{x.MODULO(y)}; |
| if (!badPConst && result.flags.test(RealFlag::DivideByZero) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingAvoidsRuntimeCrash)) { |
| context.messages().Say( |
| common::UsageWarning::FoldingAvoidsRuntimeCrash, |
| "second argument to MODULO must not be zero"_warn_en_US); |
| } |
| return result.value; |
| })); |
| } else if (name == "nearest") { |
| if (auto *sExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) { |
| *sExpr = Fold(context, std::move(*sExpr)); |
| return common::visit( |
| [&](const auto &sVal) { |
| using TS = ResultType<decltype(sVal)>; |
| bool badSConst{false}; |
| if (auto sConst{GetScalarConstantValue<TS>(sVal)}; sConst && |
| (sConst->IsZero() || sConst->IsNotANumber()) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingValueChecks)) { |
| context.messages().Say(common::UsageWarning::FoldingValueChecks, |
| "NEAREST: S argument is %s"_warn_en_US, |
| sConst->IsZero() ? "zero" : "NaN"); |
| badSConst = true; |
| } |
| return FoldElementalIntrinsic<T, T, TS>(context, std::move(funcRef), |
| ScalarFunc<T, T, TS>([&](const Scalar<T> &x, |
| const Scalar<TS> &s) -> Scalar<T> { |
| if (!badSConst && (s.IsZero() || s.IsNotANumber()) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingValueChecks)) { |
| context.messages().Say( |
| common::UsageWarning::FoldingValueChecks, |
| "NEAREST: S argument is %s"_warn_en_US, |
| s.IsZero() ? "zero" : "NaN"); |
| } |
| auto result{x.NEAREST(!s.IsNegative())}; |
| if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| if (result.flags.test(RealFlag::InvalidArgument)) { |
| context.messages().Say( |
| common::UsageWarning::FoldingException, |
| "NEAREST intrinsic folding: bad argument"_warn_en_US); |
| } |
| } |
| return result.value; |
| })); |
| }, |
| sExpr->u); |
| } |
| } else if (name == "norm2") { |
| return FoldNorm2<T::kind>(context, std::move(funcRef)); |
| } else if (name == "product") { |
| auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value}; |
| return FoldProduct<T>(context, std::move(funcRef), one); |
| } else if (name == "real" || name == "dble") { |
| if (auto *expr{args[0].value().UnwrapExpr()}) { |
| return ToReal<KIND>(context, std::move(*expr)); |
| } |
| } else if (name == "rrspacing") { |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>( |
| [](const Scalar<T> &x) -> Scalar<T> { return x.RRSPACING(); })); |
| } else if (name == "scale") { |
| if (const auto *byExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) { |
| return common::visit( |
| [&](const auto &byVal) { |
| using TBY = ResultType<decltype(byVal)>; |
| return FoldElementalIntrinsic<T, T, TBY>(context, |
| std::move(funcRef), |
| ScalarFunc<T, T, TBY>( |
| [&](const Scalar<T> &x, const Scalar<TBY> &y) -> Scalar<T> { |
| ValueWithRealFlags<Scalar<T>> result{ |
| x. |
| // MSVC chokes on the keyword "template" here in a call to a |
| // member function template. |
| #ifndef _MSC_VER |
| template |
| #endif |
| SCALE<Scalar<TBY>>(y)}; |
| if (result.flags.test(RealFlag::Overflow) && |
| context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| context.messages().Say( |
| common::UsageWarning::FoldingException, |
| "SCALE/IEEE_SCALB intrinsic folding overflow"_warn_en_US); |
| } |
| return result.value; |
| })); |
| }, |
| byExpr->u); |
| } |
| } else if (name == "set_exponent") { |
| if (const auto *iExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) { |
| return common::visit( |
| [&](const auto &iVal) { |
| using TY = ResultType<decltype(iVal)>; |
| return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef), |
| ScalarFunc<T, T, TY>( |
| [&](const Scalar<T> &x, const Scalar<TY> &i) -> Scalar<T> { |
| return x.SET_EXPONENT(i.ToInt64()); |
| })); |
| }, |
| iExpr->u); |
| } |
| } else if (name == "sign") { |
| return FoldElementalIntrinsic<T, T, T>( |
| context, std::move(funcRef), &Scalar<T>::SIGN); |
| } else if (name == "spacing") { |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>( |
| [](const Scalar<T> &x) -> Scalar<T> { return x.SPACING(); })); |
| } else if (name == "sqrt") { |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>( |
| [](const Scalar<T> &x) -> Scalar<T> { return x.SQRT().value; })); |
| } else if (name == "sum") { |
| return FoldSum<T>(context, std::move(funcRef)); |
| } else if (name == "tiny") { |
| return Expr<T>{Scalar<T>::TINY()}; |
| } else if (name == "__builtin_fma") { |
| CHECK(args.size() == 3); |
| } else if (name == "__builtin_ieee_next_after") { |
| if (const auto *yExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) { |
| return common::visit( |
| [&](const auto &yVal) { |
| using TY = ResultType<decltype(yVal)>; |
| return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef), |
| ScalarFunc<T, T, TY>([&](const Scalar<T> &x, |
| const Scalar<TY> &y) -> Scalar<T> { |
| auto xBig{Scalar<LargestReal>::Convert(x).value}; |
| auto yBig{Scalar<LargestReal>::Convert(y).value}; |
| switch (xBig.Compare(yBig)) { |
| case Relation::Unordered: |
| if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingValueChecks)) { |
| context.messages().Say( |
| common::UsageWarning::FoldingValueChecks, |
| "IEEE_NEXT_AFTER intrinsic folding: arguments are unordered"_warn_en_US); |
| } |
| return x.NotANumber(); |
| case Relation::Equal: |
| break; |
| case Relation::Less: |
| return x.NEAREST(true).value; |
| case Relation::Greater: |
| return x.NEAREST(false).value; |
| } |
| return x; // dodge bogus "missing return" GCC warning |
| })); |
| }, |
| yExpr->u); |
| } |
| } else if (name == "__builtin_ieee_next_up" || |
| name == "__builtin_ieee_next_down") { |
| bool upward{name == "__builtin_ieee_next_up"}; |
| const char *iName{upward ? "IEEE_NEXT_UP" : "IEEE_NEXT_DOWN"}; |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>([&](const Scalar<T> &x) -> Scalar<T> { |
| auto result{x.NEAREST(upward)}; |
| if (context.languageFeatures().ShouldWarn( |
| common::UsageWarning::FoldingException)) { |
| if (result.flags.test(RealFlag::InvalidArgument)) { |
| context.messages().Say(common::UsageWarning::FoldingException, |
| "%s intrinsic folding: argument is NaN"_warn_en_US, iName); |
| } |
| } |
| return result.value; |
| })); |
| } |
| return Expr<T>{std::move(funcRef)}; |
| } |
| |
| #ifdef _MSC_VER // disable bogus warning about missing definitions |
| #pragma warning(disable : 4661) |
| #endif |
| FOR_EACH_REAL_KIND(template class ExpressionBase, ) |
| template class ExpressionBase<SomeReal>; |
| } // namespace Fortran::evaluate |