blob: fd37437c643aa2169c21580089d75609728532e4 [file] [log] [blame]
//===-- lib/Evaluate/fold-real.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-matmul.h"
#include "fold-reduction.h"
namespace Fortran::evaluate {
template <typename T>
static Expr<T> FoldTransformationalBessel(
FunctionRef<T> &&funcRef, FoldingContext &context) {
CHECK(funcRef.arguments().size() == 3);
/// Bessel runtime functions use `int` integer arguments. Convert integer
/// arguments to Int4, any overflow error will be reported during the
/// conversion folding.
using Int4 = Type<TypeCategory::Integer, 4>;
if (auto args{
GetConstantArguments<Int4, Int4, T>(context, funcRef.arguments())}) {
const std::string &name{std::get<SpecificIntrinsic>(funcRef.proc().u).name};
if (auto elementalBessel{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
std::vector<Scalar<T>> results;
int n1{static_cast<int>(
std::get<0>(*args)->GetScalarValue().value().ToInt64())};
int n2{static_cast<int>(
std::get<1>(*args)->GetScalarValue().value().ToInt64())};
Scalar<T> x{std::get<2>(*args)->GetScalarValue().value()};
for (int i{n1}; i <= n2; ++i) {
results.emplace_back((*elementalBessel)(context, Scalar<Int4>{i}, x));
}
return Expr<T>{Constant<T>{
std::move(results), ConstantSubscripts{std::max(n2 - n1 + 1, 0)}}};
} else {
context.messages().Say(
"%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US,
name, T::kind);
}
}
return Expr<T>{std::move(funcRef)};
}
// NORM2
template <int KIND> class Norm2Accumulator {
using T = Type<TypeCategory::Real, KIND>;
public:
Norm2Accumulator(
const Constant<T> &array, const Constant<T> &maxAbs, Rounding rounding)
: array_{array}, maxAbs_{maxAbs}, rounding_{rounding} {};
void operator()(
Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) {
// Kahan summation of scaled elements:
// Naively,
// NORM2(A(:)) = SQRT(SUM(A(:)**2))
// For any T > 0, we have mathematically
// SQRT(SUM(A(:)**2))
// = SQRT(T**2 * (SUM(A(:)**2) / T**2))
// = SQRT(T**2 * SUM(A(:)**2 / T**2))
// = SQRT(T**2 * SUM((A(:)/T)**2))
// = SQRT(T**2) * SQRT(SUM((A(:)/T)**2))
// = T * SQRT(SUM((A(:)/T)**2))
// By letting T = MAXVAL(ABS(A)), we ensure that
// ALL(ABS(A(:)/T) <= 1), so ALL((A(:)/T)**2 <= 1), and the SUM will
// not overflow unless absolutely necessary.
auto scale{maxAbs_.At(maxAbsAt_)};
if (scale.IsZero()) {
// Maximum value is zero, and so will the result be.
// Avoid division by zero below.
element = scale;
} else {
auto item{array_.At(at)};
auto scaled{item.Divide(scale).value};
auto square{scaled.Multiply(scaled).value};
auto next{square.Add(correction_, rounding_)};
overflow_ |= next.flags.test(RealFlag::Overflow);
auto sum{element.Add(next.value, rounding_)};
overflow_ |= sum.flags.test(RealFlag::Overflow);
correction_ = sum.value.Subtract(element, rounding_)
.value.Subtract(next.value, rounding_)
.value;
element = sum.value;
}
}
bool overflow() const { return overflow_; }
void Done(Scalar<T> &result) {
// result+correction == SUM((data(:)/maxAbs)**2)
// result = maxAbs * SQRT(result+correction)
auto corrected{result.Add(correction_, rounding_)};
overflow_ |= corrected.flags.test(RealFlag::Overflow);
correction_ = Scalar<T>{};
auto root{corrected.value.SQRT().value};
auto product{root.Multiply(maxAbs_.At(maxAbsAt_))};
maxAbs_.IncrementSubscripts(maxAbsAt_);
overflow_ |= product.flags.test(RealFlag::Overflow);
result = product.value;
}
private:
const Constant<T> &array_;
const Constant<T> &maxAbs_;
const Rounding rounding_;
bool overflow_{false};
Scalar<T> correction_{};
ConstantSubscripts maxAbsAt_{maxAbs_.lbounds()};
};
template <int KIND>
static Expr<Type<TypeCategory::Real, KIND>> FoldNorm2(FoldingContext &context,
FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) {
using T = Type<TypeCategory::Real, KIND>;
using Element = typename Constant<T>::Element;
std::optional<int> dim;
if (std::optional<ArrayAndMask<T>> arrayAndMask{
ProcessReductionArgs<T>(context, funcRef.arguments(), dim,
/*X=*/0, /*DIM=*/1)}) {
MaxvalMinvalAccumulator<T, /*ABS=*/true> maxAbsAccumulator{
RelationalOperator::GT, context, arrayAndMask->array};
const Element identity{};
Constant<T> maxAbs{DoReduction<T>(arrayAndMask->array, arrayAndMask->mask,
dim, identity, maxAbsAccumulator)};
Norm2Accumulator norm2Accumulator{arrayAndMask->array, maxAbs,
context.targetCharacteristics().roundingMode()};
Constant<T> result{DoReduction<T>(arrayAndMask->array, arrayAndMask->mask,
dim, identity, norm2Accumulator)};
if (norm2Accumulator.overflow()) {
context.messages().Say(
"NORM2() of REAL(%d) data overflowed"_warn_en_US, KIND);
}
return Expr<T>{std::move(result)};
}
return Expr<T>{std::move(funcRef)};
}
template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) {
using T = Type<TypeCategory::Real, KIND>;
using ComplexT = Type<TypeCategory::Complex, KIND>;
using Int4 = Type<TypeCategory::Integer, 4>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" ||
(name == "atan" && args.size() == 1) || name == "atanh" ||
name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" ||
name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" ||
name == "erfc" || name == "erfc_scaled" || name == "exp" ||
name == "gamma" || name == "log" || name == "log10" ||
name == "log_gamma" || name == "sin" || name == "sinh" || name == "tan" ||
name == "tanh") {
CHECK(args.size() == 1);
if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d)) cannot be folded on host"_warn_en_US, name, KIND);
}
} else if (name == "amax0" || name == "amin0" || name == "amin1" ||
name == "amax1" || name == "dmin1" || name == "dmax1") {
return RewriteSpecificMINorMAX(context, std::move(funcRef));
} else if (name == "atan" || name == "atan2") {
std::string localName{name == "atan" ? "atan2" : name};
CHECK(args.size() == 2);
if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d), real(kind%d)) cannot be folded on host"_warn_en_US,
name, KIND, KIND);
}
} else if (name == "bessel_jn" || name == "bessel_yn") {
if (args.size() == 2) { // elemental
// runtime functions use int arg
if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
return FoldElementalIntrinsic<T, Int4, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US,
name, KIND);
}
} else {
return FoldTransformationalBessel<T>(std::move(funcRef), context);
}
} else if (name == "abs") { // incl. zabs & cdabs
// Argument can be complex or real
if (auto *x{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), &Scalar<T>::ABS);
} else if (auto *z{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
return FoldElementalIntrinsic<T, ComplexT>(context, std::move(funcRef),
ScalarFunc<T, ComplexT>([&name, &context](
const Scalar<ComplexT> &z) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> y{z.ABS()};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"complex ABS intrinsic folding overflow"_warn_en_US, name);
}
return y.value;
}));
} else {
common::die(" unexpected argument type inside abs");
}
} else if (name == "aimag") {
if (auto *zExpr{UnwrapExpr<Expr<ComplexT>>(args[0])}) {
return Fold(context, Expr<T>{ComplexComponent{true, std::move(*zExpr)}});
}
} else if (name == "aint" || name == "anint") {
// ANINT rounds ties away from zero, not to even
common::RoundingMode mode{name == "aint"
? common::RoundingMode::ToZero
: common::RoundingMode::TiesAwayFromZero};
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[&name, &context, mode](const Scalar<T> &x) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"%s intrinsic folding overflow"_warn_en_US, name);
}
return y.value;
}));
} else if (name == "dim") {
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>([&context](const Scalar<T> &x,
const Scalar<T> &y) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> result{x.DIM(y)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say("DIM intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
} else if (name == "dot_product") {
return FoldDotProduct<T>(context, std::move(funcRef));
} else if (name == "dprod") {
// Rewrite DPROD(x,y) -> DBLE(x)*DBLE(y)
if (args.at(0) && args.at(1)) {
const auto *xExpr{args[0]->UnwrapExpr()};
const auto *yExpr{args[1]->UnwrapExpr()};
if (xExpr && yExpr) {
return Fold(context,
ToReal<T::kind>(context, common::Clone(*xExpr)) *
ToReal<T::kind>(context, common::Clone(*yExpr)));
}
}
} else if (name == "epsilon") {
return Expr<T>{Scalar<T>::EPSILON()};
} else if (name == "fraction") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.FRACTION(); }));
} else if (name == "huge") {
return Expr<T>{Scalar<T>::HUGE()};
} else if (name == "hypot") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> result{x.HYPOT(y)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"HYPOT intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
} else if (name == "matmul") {
return FoldMatmul(context, std::move(funcRef));
} else if (name == "max") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater);
} else if (name == "maxval") {
return FoldMaxvalMinval<T>(context, std::move(funcRef),
RelationalOperator::GT, T::Scalar::HUGE().Negate());
} else if (name == "min") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Less);
} else if (name == "minval") {
return FoldMaxvalMinval<T>(
context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE());
} else if (name == "mod") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&context](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
auto result{x.MOD(y)};
if (result.flags.test(RealFlag::DivideByZero)) {
context.messages().Say(
"second argument to MOD must not be zero"_warn_en_US);
}
return result.value;
}));
} else if (name == "modulo") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&context](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
auto result{x.MODULO(y)};
if (result.flags.test(RealFlag::DivideByZero)) {
context.messages().Say(
"second argument to MODULO must not be zero"_warn_en_US);
}
return result.value;
}));
} else if (name == "nearest") {
if (const auto *sExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) {
return common::visit(
[&](const auto &sVal) {
using TS = ResultType<decltype(sVal)>;
return FoldElementalIntrinsic<T, T, TS>(context, std::move(funcRef),
ScalarFunc<T, T, TS>([&](const Scalar<T> &x,
const Scalar<TS> &s) -> Scalar<T> {
if (s.IsZero()) {
context.messages().Say(
"NEAREST: S argument is zero"_warn_en_US);
}
auto result{x.NEAREST(!s.IsNegative())};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"NEAREST intrinsic folding overflow"_warn_en_US);
} else if (result.flags.test(RealFlag::InvalidArgument)) {
context.messages().Say(
"NEAREST intrinsic folding: bad argument"_warn_en_US);
}
return result.value;
}));
},
sExpr->u);
}
} else if (name == "norm2") {
return FoldNorm2<T::kind>(context, std::move(funcRef));
} else if (name == "product") {
auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value};
return FoldProduct<T>(context, std::move(funcRef), one);
} else if (name == "real" || name == "dble") {
if (auto *expr{args[0].value().UnwrapExpr()}) {
return ToReal<KIND>(context, std::move(*expr));
}
} else if (name == "rrspacing") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.RRSPACING(); }));
} else if (name == "scale") {
if (const auto *byExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) {
return common::visit(
[&](const auto &byVal) {
using TBY = ResultType<decltype(byVal)>;
return FoldElementalIntrinsic<T, T, TBY>(context,
std::move(funcRef),
ScalarFunc<T, T, TBY>(
[&](const Scalar<T> &x, const Scalar<TBY> &y) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> result{x.
// MSVC chokes on the keyword "template" here in a call to a
// member function template.
#ifndef _MSC_VER
template
#endif
SCALE(y)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"SCALE intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
},
byExpr->u);
}
} else if (name == "set_exponent") {
if (const auto *iExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) {
return common::visit(
[&](const auto &iVal) {
using TY = ResultType<decltype(iVal)>;
return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef),
ScalarFunc<T, T, TY>(
[&](const Scalar<T> &x, const Scalar<TY> &i) -> Scalar<T> {
return x.SET_EXPONENT(i.ToInt64());
}));
},
iExpr->u);
}
} else if (name == "sign") {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), &Scalar<T>::SIGN);
} else if (name == "spacing") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.SPACING(); }));
} else if (name == "sqrt") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.SQRT().value; }));
} else if (name == "sum") {
return FoldSum<T>(context, std::move(funcRef));
} else if (name == "tiny") {
return Expr<T>{Scalar<T>::TINY()};
} else if (name == "__builtin_fma") {
CHECK(args.size() == 3);
} else if (name == "__builtin_ieee_next_after") {
if (const auto *yExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) {
return common::visit(
[&](const auto &yVal) {
using TY = ResultType<decltype(yVal)>;
return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef),
ScalarFunc<T, T, TY>([&](const Scalar<T> &x,
const Scalar<TY> &y) -> Scalar<T> {
bool upward{true};
switch (x.Compare(Scalar<T>::Convert(y).value)) {
case Relation::Unordered:
context.messages().Say(
"IEEE_NEXT_AFTER intrinsic folding: bad argument"_warn_en_US);
return x;
case Relation::Equal:
return x;
case Relation::Less:
upward = true;
break;
case Relation::Greater:
upward = false;
break;
}
auto result{x.NEAREST(upward)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"IEEE_NEXT_AFTER intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
},
yExpr->u);
}
} else if (name == "__builtin_ieee_next_up" ||
name == "__builtin_ieee_next_down") {
bool upward{name == "__builtin_ieee_next_up"};
const char *iName{upward ? "IEEE_NEXT_UP" : "IEEE_NEXT_DOWN"};
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>([&](const Scalar<T> &x) -> Scalar<T> {
auto result{x.NEAREST(upward)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"%s intrinsic folding overflow"_warn_en_US, iName);
} else if (result.flags.test(RealFlag::InvalidArgument)) {
context.messages().Say(
"%s intrinsic folding: bad argument"_warn_en_US, iName);
}
return result.value;
}));
}
return Expr<T>{std::move(funcRef)};
}
#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_REAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeReal>;
} // namespace Fortran::evaluate