blob: 3eb8e1f3f1fc22bf5114c94086a10e02b5417400 [file] [log] [blame]
//===-- lib/Evaluate/fold-complex.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-matmul.h"
#include "fold-reduction.h"
namespace Fortran::evaluate {
template <int KIND>
Expr<Type<TypeCategory::Complex, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Complex, KIND>> &&funcRef) {
using T = Type<TypeCategory::Complex, KIND>;
using Part = typename T::Part;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" ||
name == "atan" || name == "atanh" || name == "cos" || name == "cosh" ||
name == "exp" || name == "log" || name == "sin" || name == "sinh" ||
name == "sqrt" || name == "tan" || name == "tanh") {
if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), *callable);
} else if (context.languageFeatures().ShouldWarn(
common::UsageWarning::FoldingFailure)) {
context.messages().Say(common::UsageWarning::FoldingFailure,
"%s(complex(kind=%d)) cannot be folded on host"_warn_en_US, name,
KIND);
}
} else if (name == "conjg") {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), &Scalar<T>::CONJG);
} else if (name == "cmplx") {
if (args.size() > 0 && args[0].has_value()) {
if (auto *x{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
// CMPLX(X [, KIND]) with complex X
return Fold(context, ConvertToType<T>(std::move(*x)));
} else {
if (args.size() >= 2 && args[1].has_value()) {
// Do not fold CMPLX with an Y argument that may be absent at runtime
// into a complex constructor so that lowering can deal with the
// optional aspect (there is no optional aspect with the complex
// constructor).
if (MayBePassedAsAbsentOptional(*args[1]->UnwrapExpr())) {
return Expr<T>{std::move(funcRef)};
}
}
// CMPLX(X [, Y [, KIND]]) with non-complex X
Expr<SomeType> re{std::move(*args[0].value().UnwrapExpr())};
Expr<SomeType> im{args.size() >= 2 && args[1].has_value()
? std::move(*args[1]->UnwrapExpr())
: AsGenericExpr(Constant<Part>{Scalar<Part>{}})};
return Fold(context,
Expr<T>{
ComplexConstructor<KIND>{ToReal<KIND>(context, std::move(re)),
ToReal<KIND>(context, std::move(im))}});
}
}
} else if (name == "dot_product") {
return FoldDotProduct<T>(context, std::move(funcRef));
} else if (name == "matmul") {
return FoldMatmul(context, std::move(funcRef));
} else if (name == "product") {
auto one{Scalar<Part>::FromInteger(value::Integer<8>{1}).value};
return FoldProduct<T>(context, std::move(funcRef), Scalar<T>{one});
} else if (name == "sum") {
return FoldSum<T>(context, std::move(funcRef));
}
return Expr<T>{std::move(funcRef)};
}
template <int KIND>
Expr<Type<TypeCategory::Complex, KIND>> FoldOperation(
FoldingContext &context, ComplexConstructor<KIND> &&x) {
if (auto array{ApplyElementwise(context, x)}) {
return *array;
}
using Result = Type<TypeCategory::Complex, KIND>;
if (auto folded{OperandsAreConstants(x)}) {
return Expr<Result>{
Constant<Result>{Scalar<Result>{folded->first, folded->second}}};
}
return Expr<Result>{std::move(x)};
}
#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_COMPLEX_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeComplex>;
} // namespace Fortran::evaluate