blob: 66af19b94e78df761a70a69ad7fe4f1cb6ce16b1 [file] [log] [blame]
//===-- ConvertCall.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-expr"
static llvm::cl::opt<bool> useHlfirIntrinsicOps(
"use-hlfir-intrinsic-ops", llvm::cl::init(true),
llvm::cl::desc("Lower via HLFIR transformational intrinsic operations such "
"as hlfir.sum"));
/// Helper to package a Value and its properties into an ExtendedValue.
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
llvm::ArrayRef<mlir::Value> extents,
llvm::ArrayRef<mlir::Value> lengths) {
mlir::Type type = base.getType();
if (type.isa<fir::BaseBoxType>())
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
type = fir::unwrapRefType(type);
if (type.isa<fir::BaseBoxType>())
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
if (seqTy.getDimension() != extents.size())
fir::emitFatalError(loc, "incorrect number of extents for array");
if (seqTy.getEleTy().isa<fir::CharacterType>()) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharArrayBoxValue(base, lengths[0], extents);
}
return fir::ArrayBoxValue(base, extents);
}
if (type.isa<fir::CharacterType>()) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharBoxValue(base, lengths[0]);
}
return base;
}
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
/// reference. A C pointer can correspond to a Fortran dummy argument of type
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
static mlir::Value genRecordCPtrValueArg(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value rec,
mlir::Type ty) {
mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
return builder.createConvert(loc, cAddr.getType(), cVal);
}
// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
// Scan the argument list from last to first as the host associations are
// appended for now.
for (unsigned i = fn.getNumArguments(); i > 0; --i)
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
// Host assoc tuple must be last argument (for now).
assert(i == fn.getNumArguments() && "tuple must be last");
return i - 1;
}
llvm_unreachable("anyFuncArgsHaveAttr failed");
}
mlir::Value
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
mlir::Value arg) {
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
auto &builder = converter.getFirOpBuilder();
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
return converter.hostAssocTupleValue();
}
return {};
}
static bool mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
mlir::FunctionType callSiteType, mlir::FunctionType funcOpType) {
// Deal with argument number mismatch by making a function pointer so
// that function type cast can be inserted. Do not emit a warning here
// because this can happen in legal program if the function is not
// defined here and it was first passed as an argument without any more
// information.
if (callSiteType.getNumResults() != funcOpType.getNumResults() ||
callSiteType.getNumInputs() != funcOpType.getNumInputs())
return true;
// Implicit interface result type mismatch are not standard Fortran, but
// some compilers are not complaining about it. The front end is not
// protecting lowering from this currently. Support this with a
// discouraging warning.
// Cast the actual function to the current caller implicit type because
// that is the behavior we would get if we could not see the definition.
if (callSiteType.getResults() != funcOpType.getResults()) {
LLVM_DEBUG(mlir::emitWarning(
loc, "a return type mismatch is not standard compliant and may "
"lead to undefined behavior."));
return true;
}
// In HLFIR, there is little attempt to cope with implicit interface
// mismatch on the arguments. The argument are always prepared according
// to the implicit interface. Cast the actual function if any of the
// argument mismatch cannot be dealt with a simple fir.convert.
if (converter.getLoweringOptions().getLowerToHighLevelFIR())
for (auto [actualType, dummyType] :
llvm::zip(callSiteType.getInputs(), funcOpType.getInputs()))
if (actualType != dummyType &&
!fir::ConvertOp::canBeConverted(actualType, dummyType))
return true;
return false;
}
fir::ExtendedValue Fortran::lower::genCallOpAndResult(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
std::optional<mlir::Type> resultType) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
// Handle cases where caller must allocate the result or a fir.box for it.
bool mustPopSymMap = false;
if (caller.mustMapInterfaceSymbols()) {
symMap.pushScope();
mustPopSymMap = true;
Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
}
// If this is an indirect call, retrieve the function address. Also retrieve
// the result length if this is a character function (note that this length
// will be used only if there is no explicit length in the local interface).
mlir::Value funcPointer;
mlir::Value charFuncPointerLength;
if (const Fortran::semantics::Symbol *sym =
caller.getIfIndirectCallSymbol()) {
funcPointer = fir::getBase(converter.getSymbolExtendedValue(*sym, &symMap));
if (!funcPointer)
fir::emitFatalError(loc, "failed to find indirect call symbol address");
if (fir::isCharacterProcedureTuple(funcPointer.getType(),
/*acceptRawFunc=*/false))
std::tie(funcPointer, charFuncPointerLength) =
fir::factory::extractCharacterProcedureTuple(builder, loc,
funcPointer);
}
mlir::IndexType idxTy = builder.getIndexType();
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> resultLengths;
auto allocatedResult = [&]() -> std::optional<fir::ExtendedValue> {
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
if (!caller.callerAllocateResult())
return {};
mlir::Type type = caller.getResultStorageType();
if (type.isa<fir::SequenceType>())
caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
extents.emplace_back(lowerSpecExpr(e));
});
caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
lengths.emplace_back(lowerSpecExpr(e));
});
// Result length parameters should not be provided to box storage
// allocation and save_results, but they are still useful information to
// keep in the ExtendedValue if non-deferred.
if (!type.isa<fir::BoxType>()) {
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
// Calling an assumed length function. This is only possible if this
// is a call to a character dummy procedure.
if (!charFuncPointerLength)
fir::emitFatalError(loc, "failed to retrieve character function "
"length while calling it");
lengths.push_back(charFuncPointerLength);
}
resultLengths = lengths;
}
if (!extents.empty() || !lengths.empty()) {
auto *bldr = &converter.getFirOpBuilder();
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
mlir::Value sp;
fir::CallOp call = bldr->create<fir::CallOp>(
loc, stackSaveFn.getFunctionType().getResults(), stackSaveSymbol,
mlir::ValueRange{});
if (call.getNumResults() != 0)
sp = call.getResult(0);
stmtCtx.attachCleanup([bldr, loc, sp]() {
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
auto stackRestoreSymbol =
bldr->getSymbolRefAttr(stackRestoreFn.getName());
bldr->create<fir::CallOp>(loc,
stackRestoreFn.getFunctionType().getResults(),
stackRestoreSymbol, mlir::ValueRange{sp});
});
}
mlir::Value temp =
builder.createTemporary(loc, type, ".result", extents, resultLengths);
return toExtendedValue(loc, temp, extents, lengths);
}();
if (mustPopSymMap)
symMap.popScope();
// Place allocated result or prepare the fir.save_result arguments.
mlir::Value arrayResultShape;
if (allocatedResult) {
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = caller.getPassedResult()) {
if (resultArg->passBy == PassBy::AddressAndLength)
caller.placeAddressAndLengthInput(*resultArg,
fir::getBase(*allocatedResult),
fir::getLen(*allocatedResult));
else if (resultArg->passBy == PassBy::BaseAddress)
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
else
fir::emitFatalError(
loc, "only expect character scalar result to be passed by ref");
} else {
assert(caller.mustSaveResult());
arrayResultShape = allocatedResult->match(
[&](const fir::CharArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const fir::ArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const auto &) { return mlir::Value{}; });
}
}
// In older Fortran, procedure argument types are inferred. This may lead
// different view of what the function signature is in different locations.
// Casts are inserted as needed below to accommodate this.
// The mlir::func::FuncOp type prevails, unless it has a different number of
// arguments which can happen in legal program if it was passed as a dummy
// procedure argument earlier with no further type information.
mlir::SymbolRefAttr funcSymbolAttr;
bool addHostAssociations = false;
if (!funcPointer) {
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
mlir::SymbolRefAttr symbolAttr =
builder.getSymbolRefAttr(caller.getMangledName());
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
fir::getHostAssocAttrName())) {
// The number of arguments is off by one, and we're lowering a function
// with host associations. Modify call to include host associations
// argument by appending the value at the end of the operands.
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
converter.hostAssocTupleValue().getType());
addHostAssociations = true;
}
// When this is not a call to an internal procedure (where there is a
// mismatch due to the extra argument, but the interface is otherwise
// explicit and safe), handle interface mismatch due to F77 implicit
// interface "abuse" with a function address cast if needed.
if (!addHostAssociations &&
mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
loc, converter, callSiteType, funcOpType))
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
else
funcSymbolAttr = symbolAttr;
// Issue a warning if the procedure name conflicts with
// a runtime function name a call to which has been already
// lowered (implying that the FuncOp has been created).
// The behavior is undefined in this case.
if (caller.getFuncOp()->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()))
LLVM_DEBUG(mlir::emitWarning(
loc,
llvm::Twine("function name '") +
llvm::Twine(symbolAttr.getLeafReference()) +
llvm::Twine("' conflicts with a runtime function name used by "
"Flang - this may lead to undefined behavior")));
}
mlir::FunctionType funcType =
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
llvm::SmallVector<mlir::Value> operands;
// First operand of indirect call is the function pointer. Cast it to
// required function type for the call to handle procedures that have a
// compatible interface in Fortran, but that have different signatures in
// FIR.
if (funcPointer) {
operands.push_back(
funcPointer.getType().isa<fir::BoxProcType>()
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
: builder.createConvert(loc, funcType, funcPointer));
}
// Deal with potential mismatches in arguments types. Passing an array to a
// scalar argument should for instance be tolerated here.
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
// When passing arguments to a procedure that can be called by implicit
// interface, allow any character actual arguments to be passed to dummy
// arguments of any type and vice versa.
mlir::Value cast;
auto *context = builder.getContext();
if (snd.isa<fir::BoxProcType>() &&
fst.getType().isa<mlir::FunctionType>()) {
auto funcTy =
mlir::FunctionType::get(context, std::nullopt, std::nullopt);
auto boxProcTy = builder.getBoxProcType(funcTy);
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
cast = builder.create<fir::EmboxProcOp>(
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
} else {
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
}
} else {
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
if (fir::isa_builtin_cptr_type(fromTy) &&
Fortran::lower::isCPtrArgByValueType(snd)) {
cast = genRecordCPtrValueArg(builder, loc, fst, fromTy);
} else if (fir::isa_derived(snd)) {
// FIXME: This seems like a serious bug elsewhere in lowering. Paper
// over the problem for now.
TODO(loc, "derived type argument passed by value");
} else {
cast = builder.convertWithSemantics(loc, snd, fst,
callingImplicitInterface);
}
}
operands.push_back(cast);
}
// Add host associations as necessary.
if (addHostAssociations)
operands.push_back(converter.hostAssocTupleValue());
mlir::Value callResult;
unsigned callNumResults;
if (caller.requireDispatchCall()) {
// Procedure call requiring a dynamic dispatch. Call is created with
// fir.dispatch.
// Get the raw procedure name. The procedure name is not mangled in the
// binding table, but there can be a suffix to distinguish bindings of
// the same name (which happens only when PRIVATE bindings exist in
// ancestor types in other modules).
const auto &ultimateSymbol =
caller.getCallDescription().proc().GetSymbol()->GetUltimate();
std::string procName = ultimateSymbol.name().ToString();
if (const auto &binding{
ultimateSymbol.get<Fortran::semantics::ProcBindingDetails>()};
binding.numPrivatesNotOverridden() > 0)
procName += "."s + std::to_string(binding.numPrivatesNotOverridden());
fir::DispatchOp dispatch;
if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
// PASS, PASS(arg-name)
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
operands[*passArg], operands, builder.getI32IntegerAttr(*passArg));
} else {
// NOPASS
const Fortran::evaluate::Component *component =
caller.getCallDescription().proc().GetComponent();
assert(component && "expect component for type-bound procedure call.");
fir::ExtendedValue pass = converter.getSymbolExtendedValue(
component->GetFirstSymbol(), &symMap);
mlir::Value passObject = fir::getBase(pass);
if (fir::isa_ref_type(passObject.getType()))
passObject = builder.create<fir::LoadOp>(loc, passObject);
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
passObject, operands, nullptr);
}
callNumResults = dispatch.getNumResults();
if (callNumResults != 0)
callResult = dispatch.getResult(0);
} else {
// Standard procedure call with fir.call.
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
funcSymbolAttr, operands);
callNumResults = call.getNumResults();
if (callNumResults != 0)
callResult = call.getResult(0);
}
if (caller.mustSaveResult()) {
assert(allocatedResult.has_value());
builder.create<fir::SaveResultOp>(loc, callResult,
fir::getBase(*allocatedResult),
arrayResultShape, resultLengths);
}
if (allocatedResult) {
// 7.5.6.3 point 5. Derived-type finalization for nonpointer function.
// Check if the derived-type is finalizable if it is a monomorphic
// derived-type.
// For polymorphic and unlimited polymorphic enities call the runtime
// in any cases.
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
bool cleanupWithDestroy = false;
if (!fir::isPointerType(funcType.getResults()[0]) && retTy &&
(retTy->category() == Fortran::common::TypeCategory::Derived ||
retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())) {
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic()) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
fir::runtime::genDerivedTypeDestroy(*bldr, loc,
fir::getBase(*allocatedResult));
});
cleanupWithDestroy = true;
} else {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
if (Fortran::semantics::IsFinalizable(typeSpec)) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
mlir::Value box = bldr->createBox(loc, *allocatedResult);
fir::runtime::genDerivedTypeDestroy(*bldr, loc, box);
});
cleanupWithDestroy = true;
}
}
}
allocatedResult->match(
[&](const fir::MutableBoxValue &box) {
if (box.isAllocatable() && !cleanupWithDestroy) {
// 9.7.3.2 point 4. Finalize allocatables.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, box]() {
fir::factory::genFinalization(*bldr, loc, box);
});
}
},
[](const auto &) {});
return *allocatedResult;
}
if (!resultType)
return mlir::Value{}; // subroutine call
// For now, Fortran return values are implemented with a single MLIR
// function return value.
assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
(void)callNumResults;
// Call a BIND(C) function that return a char.
if (caller.characterize().IsBindC() &&
funcType.getResults()[0].isa<fir::CharacterType>()) {
fir::CharacterType charTy =
funcType.getResults()[0].dyn_cast<fir::CharacterType>();
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
return fir::CharBoxValue{callResult, len};
}
return callResult;
}
static hlfir::EntityWithAttributes genStmtFunctionRef(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
assert(symbol && "expected symbol in ProcedureRef of statement functions");
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Statement functions have their own scope, we just need to associate
// the dummy symbols to argument expressions. There are no
// optional/alternate return arguments. Statement functions cannot be
// recursive (directly or indirectly) so it is safe to add dummy symbols to
// the local map here.
symMap.pushScope();
llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
for (auto [arg, bind] : llvm::zip(details.dummyArgs(), procRef.arguments())) {
assert(arg && "alternate return in statement function");
assert(bind && "optional argument in statement function");
const auto *expr = bind->UnwrapExpr();
// TODO: assumed type in statement function, that surprisingly seems
// allowed, probably because nobody thought of restricting this usage.
// gfortran/ifort compiles this.
assert(expr && "assumed type used as statement function argument");
// As per Fortran 2018 C1580, statement function arguments can only be
// scalars.
// The only care is to use the dummy character explicit length if any
// instead of the actual argument length (that can be bigger).
hlfir::EntityWithAttributes loweredArg = Fortran::lower::convertExprToHLFIR(
loc, converter, *expr, symMap, stmtCtx);
fir::FortranVariableOpInterface variableIface = loweredArg.getIfVariable();
if (!variableIface) {
// So far only FortranVariableOpInterface can be mapped to symbols.
// Create an hlfir.associate to create a variable from a potential
// value argument.
mlir::Type argType = converter.genType(*arg);
auto associate = hlfir::genAssociateExpr(
loc, builder, loweredArg, argType, toStringRef(arg->name()));
exprAssociations.push_back(associate);
variableIface = associate;
}
const Fortran::semantics::DeclTypeSpec *type = arg->GetType();
if (type &&
type->category() == Fortran::semantics::DeclTypeSpec::Character) {
// Instantiate character as if it was a normal dummy argument so that the
// statement function dummy character length is applied and dealt with
// correctly.
symMap.addSymbol(*arg, variableIface.getBase());
Fortran::lower::mapSymbolAttributes(converter, *arg, symMap, stmtCtx);
} else {
// No need to create an extra hlfir.declare otherwise for
// numerical and logical scalar dummies.
symMap.addVariableDefinition(*arg, variableIface);
}
}
// Explicitly map statement function host associated symbols to their
// parent scope lowered symbol box.
for (const Fortran::semantics::SymbolRef &sym :
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
if (const auto *details =
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
converter.copySymbolBinding(details->symbol(), sym);
hlfir::Entity result = Fortran::lower::convertExprToHLFIR(
loc, converter, details.stmtFunction().value(), symMap, stmtCtx);
symMap.popScope();
// The result must not be a variable.
result = hlfir::loadTrivialScalar(loc, builder, result);
if (result.isVariable())
result = hlfir::Entity{builder.create<hlfir::AsExprOp>(loc, result)};
for (auto associate : exprAssociations)
builder.create<hlfir::EndAssociateOp>(loc, associate);
return hlfir::EntityWithAttributes{result};
}
namespace {
// Structure to hold the information about the call and the lowering context.
// This structure is intended to help threading the information
// through the various lowering calls without having to pass every
// required structure one by one.
struct CallContext {
CallContext(const Fortran::evaluate::ProcedureRef &procRef,
std::optional<mlir::Type> resultType, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: procRef{procRef}, converter{converter}, symMap{symMap},
stmtCtx{stmtCtx}, resultType{resultType}, loc{loc} {}
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
std::string getProcedureName() const { return procRef.proc().GetName(); }
/// Is this a call to an elemental procedure with at least one array argument?
bool isElementalProcWithArrayArgs() const {
if (procRef.IsElemental())
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments())
if (arg && arg->Rank() != 0)
return true;
return false;
}
/// Is this a statement function reference?
bool isStatementFunctionCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (const auto *details =
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
return details->stmtFunction().has_value();
return false;
}
const Fortran::evaluate::ProcedureRef &procRef;
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
std::optional<mlir::Type> resultType;
mlir::Location loc;
};
/// This structure holds the initial lowered value of an actual argument that
/// was lowered regardless of the interface, and it holds whether or not it
/// may be absent at runtime and the dummy is optional.
struct PreparedActualArgument {
PreparedActualArgument(hlfir::Entity actual,
std::optional<mlir::Value> isPresent)
: actual{actual}, isPresent{isPresent} {}
void setElementalIndices(mlir::ValueRange &indices) {
oneBasedElementalIndices = &indices;
}
hlfir::Entity getActual(mlir::Location loc,
fir::FirOpBuilder &builder) const {
if (oneBasedElementalIndices)
return hlfir::getElementAt(loc, builder, actual,
*oneBasedElementalIndices);
return actual;
}
hlfir::Entity getOriginalActual() const { return actual; }
void setOriginalActual(hlfir::Entity newActual) { actual = newActual; }
bool handleDynamicOptional() const { return isPresent.has_value(); }
mlir::Value getIsPresent() const {
assert(handleDynamicOptional() && "not a dynamic optional");
return *isPresent;
}
void resetOptionalAspect() { isPresent = std::nullopt; }
private:
hlfir::Entity actual;
mlir::ValueRange *oneBasedElementalIndices{nullptr};
// When the actual may be dynamically optional, "isPresent"
// holds a boolean value indicating the presence of the
// actual argument at runtime.
std::optional<mlir::Value> isPresent;
};
} // namespace
/// Vector of pre-lowered actual arguments. nullopt if the actual is
/// "statically" absent (if it was not syntactically provided).
using PreparedActualArguments =
llvm::SmallVector<std::optional<PreparedActualArgument>>;
// Helper to transform a fir::ExtendedValue to an hlfir::EntityWithAttributes.
static hlfir::EntityWithAttributes
extendedValueToHlfirEntity(mlir::Location loc, fir::FirOpBuilder &builder,
const fir::ExtendedValue &exv,
llvm::StringRef name) {
mlir::Value firBase = fir::getBase(exv);
mlir::Type firBaseTy = firBase.getType();
if (fir::isa_trivial(firBaseTy))
return hlfir::EntityWithAttributes{firBase};
if (auto charTy = firBase.getType().dyn_cast<fir::CharacterType>()) {
// CHAR() intrinsic and BIND(C) procedures returning CHARACTER(1)
// are lowered to a fir.char<kind,1> that is not in memory.
// This tends to cause a lot of bugs because the rest of the
// infrastructure is mostly tested with characters that are
// in memory.
// To avoid having to deal with this special case here and there,
// place it in memory here. If this turns out to be suboptimal,
// this could be fixed, but for now llvm opt -O1 is able to get
// rid of the memory indirection in a = char(b), so there is
// little incentive to increase the compiler complexity.
hlfir::Entity storage{builder.createTemporary(loc, charTy)};
builder.create<fir::StoreOp>(loc, firBase, storage);
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, storage, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::genDeclare(loc, builder, exv, name,
fir::FortranVariableFlagsAttr{});
}
namespace {
/// Structure to hold the clean-up related to a dummy argument preparation
/// that may have to be done after a call (copy-out or temporary deallocation).
struct CallCleanUp {
struct CopyIn {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::CopyOutOp>(loc, copiedIn, wasCopied, copyBackVar);
}
mlir::Value copiedIn;
mlir::Value wasCopied;
// copyBackVar may be null if copy back is not needed.
mlir::Value copyBackVar;
};
struct ExprAssociate {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::EndAssociateOp>(loc, tempVar, mustFree);
}
mlir::Value tempVar;
mlir::Value mustFree;
};
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
std::visit([&](auto &c) { c.genCleanUp(loc, builder); }, cleanUp);
}
std::variant<CopyIn, ExprAssociate> cleanUp;
};
/// Structure representing a prepared dummy argument.
/// It holds the value to be passed in the call and any related
/// clean-ups to be done after the call.
struct PreparedDummyArgument {
void setCopyInCleanUp(mlir::Value copiedIn, mlir::Value wasCopied,
mlir::Value copyBackVar) {
assert(!maybeCleanUp.has_value() && "clean-up already set");
maybeCleanUp =
CallCleanUp{CallCleanUp::CopyIn{copiedIn, wasCopied, copyBackVar}};
}
void setExprAssociateCleanUp(mlir::Value tempVar, mlir::Value wasCopied) {
assert(!maybeCleanUp.has_value() && "clean-up already set");
maybeCleanUp = CallCleanUp{CallCleanUp::ExprAssociate{tempVar, wasCopied}};
}
mlir::Value dummy;
std::optional<CallCleanUp> maybeCleanUp;
};
/// Structure to help conditionally preparing a dummy argument based
/// on the actual argument presence.
/// It helps "wrapping" the dummy and the clean-up information in
/// an if (present) {...}:
///
/// %conditionallyPrepared = fir.if (%present) {
/// fir.result %preparedDummy
/// } else {
/// fir.result %absent
/// }
///
struct ConditionallyPreparedDummy {
/// Create ConditionallyPreparedDummy from a preparedDummy that must
/// be wrapped in a fir.if.
ConditionallyPreparedDummy(PreparedDummyArgument &preparedDummy) {
thenResultValues.push_back(preparedDummy.dummy);
if (preparedDummy.maybeCleanUp) {
if (const auto *copyInCleanUp = std::get_if<CallCleanUp::CopyIn>(
&preparedDummy.maybeCleanUp->cleanUp)) {
thenResultValues.push_back(copyInCleanUp->copiedIn);
thenResultValues.push_back(copyInCleanUp->wasCopied);
if (copyInCleanUp->copyBackVar)
thenResultValues.push_back(copyInCleanUp->copyBackVar);
} else {
const auto &exprAssociate = std::get<CallCleanUp::ExprAssociate>(
preparedDummy.maybeCleanUp->cleanUp);
thenResultValues.push_back(exprAssociate.tempVar);
thenResultValues.push_back(exprAssociate.mustFree);
}
}
}
/// Get the result types of the wrapping fir.if that must be created.
llvm::SmallVector<mlir::Type> getIfResulTypes() const {
llvm::SmallVector<mlir::Type> types;
for (mlir::Value res : thenResultValues)
types.push_back(res.getType());
return types;
}
/// Generate the "fir.result %preparedDummy" in the then branch of the
/// wrapping fir.if.
void genThenResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
builder.create<fir::ResultOp>(loc, thenResultValues);
}
/// Generate the "fir.result %absent" in the else branch of the
/// wrapping fir.if.
void genElseResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
llvm::SmallVector<mlir::Value> elseResultValues;
mlir::Type i1Type = builder.getI1Type();
for (mlir::Value res : thenResultValues) {
mlir::Type type = res.getType();
if (type == i1Type)
elseResultValues.push_back(builder.createBool(loc, false));
else
elseResultValues.push_back(builder.genAbsentOp(loc, type));
}
builder.create<fir::ResultOp>(loc, elseResultValues);
}
/// Once the fir.if has been created, get the resulting %conditionallyPrepared
/// dummy argument.
PreparedDummyArgument
getPreparedDummy(fir::IfOp ifOp,
const PreparedDummyArgument &unconditionalDummy) {
PreparedDummyArgument preparedDummy;
preparedDummy.dummy = ifOp.getResults()[0];
if (unconditionalDummy.maybeCleanUp) {
if (const auto *copyInCleanUp = std::get_if<CallCleanUp::CopyIn>(
&unconditionalDummy.maybeCleanUp->cleanUp)) {
mlir::Value copyBackVar;
if (copyInCleanUp->copyBackVar)
copyBackVar = ifOp.getResults().back();
preparedDummy.setCopyInCleanUp(ifOp.getResults()[1],
ifOp.getResults()[2], copyBackVar);
} else {
preparedDummy.setExprAssociateCleanUp(ifOp.getResults()[1],
ifOp.getResults()[2]);
}
}
return preparedDummy;
}
llvm::SmallVector<mlir::Value> thenResultValues;
};
} // namespace
/// Fix-up the fact that it is supported to pass a character procedure
/// designator to a non character procedure dummy procedure and vice-versa, even
/// in case of explicit interface. Uglier cases where an object is passed as
/// procedure designator or vice versa are handled only for implicit interfaces
/// (refused by semantics with explicit interface), and handled with a funcOp
/// cast like other implicit interface mismatches.
static hlfir::Entity fixProcedureDummyMismatch(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity actual,
mlir::Type dummyType) {
if (actual.getType().isa<fir::BoxProcType>() &&
fir::isCharacterProcedureTuple(dummyType)) {
mlir::Value length =
builder.create<fir::UndefOp>(loc, builder.getCharacterLengthType());
mlir::Value tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, dummyType, actual, length);
return hlfir::Entity{tuple};
}
assert(fir::isCharacterProcedureTuple(actual.getType()) &&
dummyType.isa<fir::BoxProcType>() &&
"unsupported dummy procedure mismatch with the actual argument");
mlir::Value boxProc = fir::factory::extractCharacterProcedureTuple(
builder, loc, actual, /*openBoxProc=*/false)
.first;
return hlfir::Entity{boxProc};
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface. Do as needed:
/// - address element if this is an array argument in an elemental call.
/// - set dynamic type to the dummy type if the dummy is not polymorphic.
/// - copy-in into contiguous variable if the dummy must be contiguous
/// - copy into a temporary if the dummy has the VALUE attribute.
/// - package the prepared dummy as required (fir.box, fir.class,
/// fir.box_char...).
/// This function should only be called with an actual that is present.
/// The optional aspects must be handled by this function user.
static PreparedDummyArgument preparePresentUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const PreparedActualArgument &preparedActual, mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::AbstractConverter &converter) {
Fortran::evaluate::FoldingContext &foldingContext =
converter.getFoldingContext();
// Step 1: get the actual argument, which includes addressing the
// element if this is an array in an elemental call.
hlfir::Entity actual = preparedActual.getActual(loc, builder);
// Do nothing if this is a procedure argument. It is already a
// fir.boxproc/fir.tuple<fir.boxproc, len> as it should.
if (actual.isProcedure()) {
if (actual.getType() != dummyType)
actual = fixProcedureDummyMismatch(loc, builder, actual, dummyType);
return PreparedDummyArgument{actual, std::nullopt};
}
const bool passingPolymorphicToNonPolymorphic =
actual.isPolymorphic() && !fir::isPolymorphicType(dummyType);
// When passing a CLASS(T) to TYPE(T), only the "T" part must be
// passed. Unless the entity is a scalar passed by raw address, a
// new descriptor must be made using the dummy argument type as
// dynamic type. This must be done before any copy/copy-in because the
// dynamic type matters to determine the contiguity.
const bool mustSetDynamicTypeToDummyType =
passingPolymorphicToNonPolymorphic &&
(actual.isArray() || dummyType.isa<fir::BaseBoxType>());
// The simple contiguity of the actual is "lost" when passing a polymorphic
// to a non polymorphic entity because the dummy dynamic type matters for
// the contiguity.
const bool mustDoCopyInOut =
actual.isArray() && arg.mustBeMadeContiguous() &&
(passingPolymorphicToNonPolymorphic ||
!Fortran::evaluate::IsSimplyContiguous(expr, foldingContext));
// Step 2: prepare the storage for the dummy arguments, ensuring that it
// matches the dummy requirements (e.g., must be contiguous or must be
// a temporary).
PreparedDummyArgument preparedDummy;
hlfir::Entity entity =
hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (entity.isVariable()) {
if (mustSetDynamicTypeToDummyType) {
// Note: this is important to do this before any copy-in or copy so
// that the dummy is contiguous according to the dummy type.
mlir::Type boxType =
fir::BoxType::get(hlfir::getFortranElementOrSequenceType(dummyType));
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, boxType, entity, /*shape=*/mlir::Value{},
/*slice=*/mlir::Value{})};
}
if (arg.hasValueAttribute() ||
// Constant expressions might be lowered as variables with
// 'parameter' attribute. Even though the constant expressions
// are not definable and explicit assignments to them are not
// possible, we have to create a temporary copies when we pass
// them down the call stack.
entity.isParameter()) {
// Make a copy in a temporary.
auto copy = builder.create<hlfir::AsExprOp>(loc, entity);
mlir::Type storageType = entity.getType();
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, hlfir::Entity{copy}, storageType, "adapt.valuebyref");
entity = hlfir::Entity{associate.getBase()};
// Register the temporary destruction after the call.
preparedDummy.setExprAssociateCleanUp(
associate.getFirBase(), associate.getMustFreeStrorageFlag());
} else if (mustDoCopyInOut) {
// Copy-in non contiguous variables.
assert(entity.getType().isa<fir::BaseBoxType>() &&
"expect non simply contiguous variables to be boxes");
// TODO: for non-finalizable monomorphic derived type actual
// arguments associated with INTENT(OUT) dummy arguments
// we may avoid doing the copy and only allocate the temporary.
// The codegen would do a "mold" allocation instead of "sourced"
// allocation for the temp in this case. We can communicate
// this to the codegen via some CopyInOp flag.
// This is a performance concern.
auto copyIn = builder.create<hlfir::CopyInOp>(
loc, entity, /*var_is_present=*/mlir::Value{});
entity = hlfir::Entity{copyIn.getCopiedIn()};
// Register the copy-out after the call.
preparedDummy.setCopyInCleanUp(
copyIn.getCopiedIn(), copyIn.getWasCopied(),
arg.mayBeModifiedByCall() ? copyIn.getVar() : mlir::Value{});
}
} else {
// The actual is an expression value, place it into a temporary
// and register the temporary destruction after the call.
if (mustSetDynamicTypeToDummyType)
TODO(loc, "passing polymorphic array expression to non polymorphic "
"contiguous dummy");
mlir::Type storageType = converter.genType(expr);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, entity, storageType, "adapt.valuebyref");
entity = hlfir::Entity{associate.getBase()};
preparedDummy.setExprAssociateCleanUp(associate.getFirBase(),
associate.getMustFreeStrorageFlag());
}
// Step 3: now that the dummy argument storage has been prepared, package
// it according to the interface.
mlir::Value addr;
if (dummyType.isa<fir::BoxCharType>()) {
addr = hlfir::genVariableBoxChar(loc, builder, entity);
} else if (dummyType.isa<fir::BaseBoxType>()) {
entity = hlfir::genVariableBox(loc, builder, entity);
// Ensures the box has the right attributes and that it holds an
// addendum if needed.
fir::BaseBoxType actualBoxType = entity.getType().cast<fir::BaseBoxType>();
mlir::Type boxEleType = actualBoxType.getEleTy();
// For now, assume it is not OK to pass the allocatable/pointer
// descriptor to a non pointer/allocatable dummy. That is a strict
// interpretation of 18.3.6 point 4 that stipulates the descriptor
// has the dummy attributes in BIND(C) contexts.
const bool actualBoxHasAllocatableOrPointerFlag =
fir::isa_ref_type(boxEleType);
// On the callee side, the current code generated for unlimited
// polymorphic might unconditionally read the addendum. Intrinsic type
// descriptors may not have an addendum, the rebox below will create a
// descriptor with an addendum in such case.
const bool actualBoxHasAddendum = fir::boxHasAddendum(actualBoxType);
const bool needToAddAddendum =
fir::isUnlimitedPolymorphicType(dummyType) && !actualBoxHasAddendum;
mlir::Type reboxType = dummyType;
if (needToAddAddendum || actualBoxHasAllocatableOrPointerFlag) {
if (fir::getBoxRank(dummyType) != fir::getBoxRank(actualBoxType)) {
// This may happen only with IGNORE_TKR(R).
if (!arg.testTKR(Fortran::common::IgnoreTKR::Rank))
DIE("actual and dummy arguments must have equal ranks");
// Only allow it for unlimited polymorphic dummy arguments
// for now.
if (!fir::isUnlimitedPolymorphicType(dummyType))
TODO(loc, "actual/dummy rank mismatch for not unlimited polymorphic "
"dummy.");
auto elementType = fir::updateTypeForUnlimitedPolymorphic(boxEleType);
if (fir::isAssumedType(dummyType))
reboxType = fir::BoxType::get(elementType);
else
reboxType = fir::ClassType::get(elementType);
}
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, reboxType, entity, /*shape=*/mlir::Value{},
/*slice=*/mlir::Value{})};
}
addr = entity;
} else {
addr = hlfir::genVariableRawAddress(loc, builder, entity);
}
preparedDummy.dummy = builder.createConvert(loc, dummyType, addr);
return preparedDummy;
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface, taking care
/// of any optional aspect.
static PreparedDummyArgument prepareUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const PreparedActualArgument &preparedActual, mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::AbstractConverter &converter) {
if (!preparedActual.handleDynamicOptional())
return preparePresentUserCallActualArgument(
loc, builder, preparedActual, dummyType, arg, expr, converter);
// Conditional dummy argument preparation. The actual may be absent
// at runtime, causing any addressing, copy, and packaging to have
// undefined behavior.
// To simplify the handling of this case, the "normal" dummy preparation
// helper is used, except its generated code is wrapped inside a
// fir.if(present).
mlir::Value isPresent = preparedActual.getIsPresent();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
// Code generated in a preparation block that will become the
// "then" block in "if (present) then {} else {}". The reason
// for this unusual if/then/else generation is that the number
// and types of the if results will depend on how the argument
// is prepared, and forecasting that here would be brittle.
auto badIfOp = builder.create<fir::IfOp>(loc, dummyType, isPresent,
/*withElseRegion=*/false);
mlir::Block *preparationBlock = &badIfOp.getThenRegion().front();
builder.setInsertionPointToStart(preparationBlock);
PreparedDummyArgument unconditionalDummy =
preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, expr, converter);
builder.restoreInsertionPoint(insertPt);
// TODO: when forwarding an optional to an optional of the same kind
// (i.e, unconditionalDummy.dummy was not created in preparationBlock),
// the if/then/else generation could be skipped to improve the generated
// code.
// Now that the result types of the ifOp can be deduced, generate
// the "real" ifOp (operation result types cannot be changed, so
// badIfOp cannot be modified and used here).
llvm::SmallVector<mlir::Type> ifOpResultTypes;
ConditionallyPreparedDummy conditionalDummy(unconditionalDummy);
auto ifOp = builder.create<fir::IfOp>(loc, conditionalDummy.getIfResulTypes(),
isPresent,
/*withElseRegion=*/true);
// Move "preparationBlock" into the "then" of the new
// fir.if operation and create fir.result propagating
// unconditionalDummy.
preparationBlock->moveBefore(&ifOp.getThenRegion().back());
ifOp.getThenRegion().back().erase();
builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
conditionalDummy.genThenResult(loc, builder);
// Generate "else" branch with returning absent values.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
conditionalDummy.genElseResult(loc, builder);
// Build dummy from IfOpResults.
builder.setInsertionPointAfter(ifOp);
PreparedDummyArgument result =
conditionalDummy.getPreparedDummy(ifOp, unconditionalDummy);
badIfOp->erase();
return result;
}
/// Lower calls to user procedures with actual arguments that have been
/// pre-lowered but not yet prepared according to the interface.
/// This can be called for elemental procedures, but only with scalar
/// arguments: if there are array arguments, it must be provided with
/// the array argument elements value and will return the corresponding
/// scalar result value.
static std::optional<hlfir::EntityWithAttributes>
genUserCall(PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType, CallContext &callContext) {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
llvm::SmallVector<CallCleanUp> callCleanUps;
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
if (!preparedActual) {
// Optional dummy argument for which there is no actual argument.
caller.placeInput(arg, builder.genAbsentOp(loc, argTy));
continue;
}
const auto *expr = arg.entity->UnwrapExpr();
if (!expr)
TODO(loc, "assumed type actual argument");
switch (arg.passBy) {
case PassBy::Value: {
// True pass-by-value semantics.
assert(!preparedActual->handleDynamicOptional() && "cannot be optional");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
hlfir::Entity value = hlfir::loadTrivialScalar(loc, builder, actual);
mlir::Type eleTy = value.getFortranElementType();
if (fir::isa_builtin_cptr_type(eleTy)) {
// Pass-by-value argument of type(C_PTR/C_FUNPTR).
// Load the __address component and pass it by value.
if (value.isValue()) {
auto associate = hlfir::genAssociateExpr(loc, builder, value, eleTy,
"adapt.cptrbyval");
value = hlfir::Entity{genRecordCPtrValueArg(
builder, loc, associate.getFirBase(), eleTy)};
builder.create<hlfir::EndAssociateOp>(loc, associate);
} else {
value =
hlfir::Entity{genRecordCPtrValueArg(builder, loc, value, eleTy)};
}
}
caller.placeInput(arg, builder.createConvert(loc, argTy, value));
} break;
case PassBy::BaseAddressValueAttribute:
case PassBy::CharBoxValueAttribute:
case PassBy::Box:
case PassBy::BaseAddress:
case PassBy::BoxChar: {
PreparedDummyArgument preparedDummy =
prepareUserCallActualArgument(loc, builder, *preparedActual, argTy,
arg, *expr, callContext.converter);
if (preparedDummy.maybeCleanUp.has_value())
callCleanUps.emplace_back(std::move(*preparedDummy.maybeCleanUp));
caller.placeInput(arg, preparedDummy.dummy);
} break;
case PassBy::AddressAndLength:
// PassBy::AddressAndLength is only used for character results. Results
// are not handled here.
fir::emitFatalError(
loc, "unexpected PassBy::AddressAndLength for actual arguments");
break;
case PassBy::CharProcTuple: {
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (!fir::isCharacterProcedureTuple(actual.getType()))
actual = fixProcedureDummyMismatch(loc, builder, actual, argTy);
caller.placeInput(arg, actual);
} break;
case PassBy::MutableBox: {
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// If expr is NULL(), the mutableBox created must be a deallocated
// pointer with the dummy argument characteristics (see table 16.5
// in Fortran 2018 standard).
// No length parameters are set for the created box because any non
// deferred type parameters of the dummy will be evaluated on the
// callee side, and it is illegal to use NULL without a MOLD if any
// dummy length parameters are assumed.
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
assert(boxTy && boxTy.isa<fir::BaseBoxType>() &&
"must be a fir.box type");
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
caller.placeInput(arg, boxStorage);
continue;
}
if (fir::isPointerType(argTy) &&
!Fortran::evaluate::IsObjectPointer(
*expr, callContext.converter.getFoldingContext())) {
// Passing a non POINTER actual argument to a POINTER dummy argument.
// Create a pointer of the dummy argument type and assign the actual
// argument to it.
TODO(loc, "Associate POINTER dummy to TARGET argument in HLFIR");
continue;
}
// Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
assert(actual.isMutableBox() && "actual must be a mutable box");
caller.placeInput(arg, actual);
if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
Fortran::semantics::IsBindCProcedure(
*callContext.procRef.proc().GetSymbol())) {
TODO(loc, "BIND(C) INTENT(OUT) allocatable deallocation in HLFIR");
}
} break;
}
}
// Prepare lowered arguments according to the interface
// and map the lowered values to the dummy
// arguments.
fir::ExtendedValue result = Fortran::lower::genCallOpAndResult(
loc, callContext.converter, callContext.symMap, callContext.stmtCtx,
caller, callSiteType, callContext.resultType);
/// Clean-up associations and copy-in.
for (auto cleanUp : callCleanUps)
cleanUp.genCleanUp(loc, builder);
if (!fir::getBase(result))
return std::nullopt; // subroutine call.
// TODO: "move" non pointer results into hlfir.expr.
return extendedValueToHlfirEntity(loc, builder, result, ".tmp.func_result");
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRefCore(PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicArgumentLoweringRules *argLowering,
CallContext &callContext) {
llvm::SmallVector<fir::ExtendedValue> operands;
auto &stmtCtx = callContext.stmtCtx;
auto &converter = callContext.converter;
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
for (auto arg : llvm::enumerate(loweredActuals)) {
if (!arg.value()) {
operands.emplace_back(fir::getAbsentIntrinsicArgument());
continue;
}
if (arg.value()->handleDynamicOptional())
TODO(loc, "intrinsic dynamically optional arguments");
hlfir::Entity actual = arg.value()->getActual(loc, builder);
if (!argLowering) {
// No argument lowering instruction, lower by value.
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
}
// Helper to get the type of the Fortran expression in case it is a
// computed value that must be placed in memory (logicals are computed as
// i1, but must be placed in memory as fir.logical).
auto getActualFortranElementType = [&]() -> mlir::Type {
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
mlir::Type type = converter.genType(*expr);
return hlfir::getFortranElementType(type);
}
// TYPE(*): is already in memory anyway. Can return none
// here.
return builder.getNoneType();
};
// Ad-hoc argument lowering handling.
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
case fir::LowerIntrinsicArgAs::Addr:
operands.emplace_back(Fortran::lower::convertToAddress(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Box:
operands.emplace_back(Fortran::lower::convertToBox(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Inquired:
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// NULL() pointer without a MOLD must be passed as a deallocated
// pointer (see table 16.5 in Fortran 2018 standard).
// !fir.box<!fir.ptr<none>> should always be valid in this context.
mlir::Type noneTy = mlir::NoneType::get(builder.getContext());
mlir::Type nullPtrTy = fir::PointerType::get(noneTy);
mlir::Type boxTy = fir::BoxType::get(nullPtrTy);
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
hlfir::EntityWithAttributes nullBoxEntity =
extendedValueToHlfirEntity(loc, builder, boxStorage,
".tmp.null_box");
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, nullBoxEntity, stmtCtx));
continue;
}
}
// Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
// are translated to fir::ExtendedValue without transformation (notably,
// pointers/allocatable are not dereferenced).
// TODO: once lowering to FIR retires, UBOUND and LBOUND can be simplified
// since the fir.box lowered here are now guaranteed to contain the local
// lower bounds thanks to the hlfir.declare (the extra rebox can be
// removed).
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, actual, stmtCtx));
continue;
}
llvm_unreachable("bad switch");
}
// genIntrinsicCall needs the scalar type, even if this is a transformational
// procedure returning an array.
std::optional<mlir::Type> scalarResultType;
if (callContext.resultType)
scalarResultType = hlfir::getFortranElementType(*callContext.resultType);
const std::string intrinsicName = callContext.getProcedureName();
// Let the intrinsic library lower the intrinsic procedure call.
auto [resultExv, mustBeFreed] =
genIntrinsicCall(builder, loc, intrinsicName, scalarResultType, operands);
if (!fir::getBase(resultExv))
return std::nullopt;
hlfir::EntityWithAttributes resultEntity = extendedValueToHlfirEntity(
loc, builder, resultExv, ".tmp.intrinsic_result");
// Move result into memory into an hlfir.expr since they are immutable from
// that point, and the result storage is some temp. "Null" is special: it
// returns a null pointer variable that should not be transformed into a value
// (what matters is the memory address).
if (resultEntity.isVariable() && intrinsicName != "null") {
hlfir::AsExprOp asExpr;
// Character/Derived MERGE lowering returns one of its argument address
// (this is the only intrinsic implemented in that way so far). The
// ownership of this address cannot be taken here since it may not be a
// temp.
if (intrinsicName == "merge")
asExpr = builder.create<hlfir::AsExprOp>(loc, resultEntity);
else
asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, builder.createBool(loc, mustBeFreed));
resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
}
return resultEntity;
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes>
genHLFIRIntrinsicRefCore(PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicArgumentLoweringRules *argLowering,
CallContext &callContext) {
if (!useHlfirIntrinsicOps)
return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
callContext);
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
auto getOperandVector = [&](PreparedActualArguments &loweredActuals) {
llvm::SmallVector<mlir::Value> operands;
operands.reserve(loweredActuals.size());
for (size_t i = 0; i < loweredActuals.size(); ++i) {
std::optional<PreparedActualArgument> arg = loweredActuals[i];
if (!arg) {
operands.emplace_back();
continue;
}
hlfir::Entity actual = arg->getOriginalActual();
mlir::Value valArg;
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, i);
if (!argRules.handleDynamicOptional &&
argRules.lowerAs != fir::LowerIntrinsicArgAs::Inquired)
valArg = hlfir::derefPointersAndAllocatables(loc, builder, actual);
else
valArg = actual.getBase();
operands.emplace_back(valArg);
}
return operands;
};
auto computeResultType = [&](mlir::Value argArray,
mlir::Type stmtResultType) -> mlir::Type {
hlfir::ExprType::Shape resultShape;
mlir::Type normalisedResult =
hlfir::getFortranElementOrSequenceType(stmtResultType);
mlir::Type elementType;
if (auto array = normalisedResult.dyn_cast<fir::SequenceType>()) {
resultShape = hlfir::ExprType::Shape{array.getShape()};
elementType = array.getEleTy();
return hlfir::ExprType::get(builder.getContext(), resultShape,
elementType,
/*polymorphic=*/false);
}
elementType = normalisedResult;
return elementType;
};
auto buildSumOperation = [](fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Type resultTy, mlir::Value array,
mlir::Value dim, mlir::Value mask) {
return builder.create<hlfir::SumOp>(loc, resultTy, array, dim, mask);
};
auto buildProductOperation = [](fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type resultTy,
mlir::Value array, mlir::Value dim,
mlir::Value mask) {
return builder.create<hlfir::ProductOp>(loc, resultTy, array, dim, mask);
};
auto buildAnyOperation = [](fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Type resultTy, mlir::Value array,
mlir::Value dim, mlir::Value mask) {
return builder.create<hlfir::AnyOp>(loc, resultTy, array, dim);
};
auto buildAllOperation = [](fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Type resultTy, mlir::Value array,
mlir::Value dim, mlir::Value mask) {
return builder.create<hlfir::AllOp>(loc, resultTy, array, dim);
};
auto buildReductionIntrinsic =
[&](PreparedActualArguments &loweredActuals, mlir::Location loc,
fir::FirOpBuilder &builder, CallContext &callContext,
std::function<mlir::Operation *(fir::FirOpBuilder &, mlir::Location,
mlir::Type, mlir::Value, mlir::Value,
mlir::Value)>
buildFunc,
bool hasMask) -> std::optional<hlfir::EntityWithAttributes> {
// shared logic for building the product and sum operations
llvm::SmallVector<mlir::Value> operands = getOperandVector(loweredActuals);
// dim, mask can be NULL if these arguments were not given
mlir::Value array = operands[0];
mlir::Value dim = operands[1];
if (dim)
dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
mlir::Value mask;
if (hasMask)
mask = operands[2];
mlir::Type resultTy = computeResultType(array, *callContext.resultType);
auto *intrinsicOp = buildFunc(builder, loc, resultTy, array, dim, mask);
return {hlfir::EntityWithAttributes{intrinsicOp->getResult(0)}};
};
const std::string intrinsicName = callContext.getProcedureName();
if (intrinsicName == "sum") {
return buildReductionIntrinsic(loweredActuals, loc, builder, callContext,
buildSumOperation, true);
}
if (intrinsicName == "product") {
return buildReductionIntrinsic(loweredActuals, loc, builder, callContext,
buildProductOperation, true);
}
if (intrinsicName == "matmul") {
llvm::SmallVector<mlir::Value> operands = getOperandVector(loweredActuals);
mlir::Type resultTy =
computeResultType(operands[0], *callContext.resultType);
hlfir::MatmulOp matmulOp = builder.create<hlfir::MatmulOp>(
loc, resultTy, operands[0], operands[1]);
return {hlfir::EntityWithAttributes{matmulOp.getResult()}};
}
if (intrinsicName == "transpose") {
llvm::SmallVector<mlir::Value> operands = getOperandVector(loweredActuals);
hlfir::ExprType::Shape resultShape;
mlir::Type normalisedResult =
hlfir::getFortranElementOrSequenceType(*callContext.resultType);
auto array = normalisedResult.cast<fir::SequenceType>();
llvm::ArrayRef<int64_t> arrayShape = array.getShape();
assert(arrayShape.size() == 2 && "arguments to transpose have a rank of 2");
mlir::Type elementType = array.getEleTy();
resultShape.push_back(arrayShape[0]);
resultShape.push_back(arrayShape[1]);
mlir::Type resultTy = hlfir::ExprType::get(
builder.getContext(), resultShape, elementType, /*polymorphic=*/false);
hlfir::TransposeOp transposeOp =
builder.create<hlfir::TransposeOp>(loc, resultTy, operands[0]);
return {hlfir::EntityWithAttributes{transposeOp.getResult()}};
}
if (intrinsicName == "any") {
return buildReductionIntrinsic(loweredActuals, loc, builder, callContext,
buildAnyOperation, false);
}
if (intrinsicName == "all") {
return buildReductionIntrinsic(loweredActuals, loc, builder, callContext,
buildAllOperation, false);
}
// TODO add hlfir operations for other transformational intrinsics here
// fallback to calling the intrinsic via fir.call
return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
callContext);
}
namespace {
template <typename ElementalCallBuilderImpl>
class ElementalCallBuilder {
public:
std::optional<hlfir::EntityWithAttributes>
genElementalCall(PreparedActualArguments &loweredActuals, bool isImpure,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
unsigned numArgs = loweredActuals.size();
// Step 1: dereference pointers/allocatables and compute elemental shape.
mlir::Value shape;
PreparedActualArgument *optionalWithShape;
// 10.1.4 p5. Impure elemental procedures must be called in element order.
bool mustBeOrdered = isImpure;
for (unsigned i = 0; i < numArgs; ++i) {
auto &preparedActual = loweredActuals[i];
if (preparedActual) {
hlfir::Entity actual = preparedActual->getOriginalActual();
// Elemental procedure dummy arguments cannot be pointer/allocatables
// (C15100), so it is safe to dereference any pointer or allocatable
// actual argument now instead of doing this inside the elemental
// region.
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
// Better to load scalars outside of the loop when possible.
if (!preparedActual->handleDynamicOptional() &&
impl().canLoadActualArgumentBeforeLoop(i))
actual = hlfir::loadTrivialScalar(loc, builder, actual);
// TODO: merge shape instead of using the first one.
if (!shape && actual.isArray()) {
if (preparedActual->handleDynamicOptional())
optionalWithShape = &*preparedActual;
else
shape = hlfir::genShape(loc, builder, actual);
}
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
// arguments must be called in element order.
if (impl().argMayBeModifiedByCall(i))
mustBeOrdered = true;
// Propagates pointer dereferences and scalar loads.
preparedActual->setOriginalActual(actual);
}
}
if (!shape && optionalWithShape) {
// If all array operands appear in optional positions, then none of them
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
// first operand.
shape =
hlfir::genShape(loc, builder, optionalWithShape->getOriginalActual());
// TODO: There is an opportunity to add a runtime check here that
// this array is present as required. Also, the optionality of all actual
// could be checked and reset given the Fortran requirement.
optionalWithShape->resetOptionalAspect();
}
assert(shape &&
"elemental array calls must have at least one array arguments");
if (mustBeOrdered)
TODO(loc, "ordered elemental calls in HLFIR");
// Push a new local scope so that any temps made inside the elemental
// iterations are cleaned up inside the iterations.
if (!callContext.resultType) {
// Subroutine case. Generate call inside loop nest.
hlfir::LoopNest loopNest = hlfir::genLoopNest(loc, builder, shape);
mlir::ValueRange oneBasedIndices = loopNest.oneBasedIndices;
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
builder.restoreInsertionPoint(insPt);
return std::nullopt;
}
// Function case: generate call inside hlfir.elemental
mlir::Type elementType =
hlfir::getFortranElementType(*callContext.resultType);
// Get result length parameters.
llvm::SmallVector<mlir::Value> typeParams;
if (elementType.isa<fir::CharacterType>() ||
fir::isRecordWithTypeParameters(elementType)) {
auto charType = elementType.dyn_cast<fir::CharacterType>();
if (charType && charType.hasConstantLen())
typeParams.push_back(builder.createIntegerConstant(
loc, builder.getIndexType(), charType.getLen()));
else if (charType)
typeParams.push_back(impl().computeDynamicCharacterResultLength(
loweredActuals, callContext));
else
TODO(
loc,
"compute elemental PDT function result length parameters in HLFIR");
}
auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b,
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
auto res = *impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
// Note that an hlfir.destroy is not emitted for the result since it
// is still used by the hlfir.yield_element that also marks its last
// use.
return res;
};
mlir::Value elemental = hlfir::genElementalOp(loc, builder, elementType,
shape, typeParams, genKernel);
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, elemental); });
return hlfir::EntityWithAttributes{elemental};
}
private:
ElementalCallBuilderImpl &impl() {
return *static_cast<ElementalCallBuilderImpl *>(this);
}
};
class ElementalUserCallBuilder
: public ElementalCallBuilder<ElementalUserCallBuilder> {
public:
ElementalUserCallBuilder(Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType)
: caller{caller}, callSiteType{callSiteType} {}
std::optional<hlfir::Entity>
genElementalKernel(PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
bool argMayBeModifiedByCall(unsigned argIdx) const {
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
return caller.getPassedArguments()[argIdx].mayBeModifiedByCall();
}
bool canLoadActualArgumentBeforeLoop(unsigned argIdx) const {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
// If the actual argument does not need to be passed via an address,
// or will be passed in the address of a temporary copy, it can be loaded
// before the elemental loop nest.
const auto &arg = caller.getPassedArguments()[argIdx];
return arg.passBy == PassBy::Value ||
arg.passBy == PassBy::BaseAddressValueAttribute;
}
mlir::Value
computeDynamicCharacterResultLength(PreparedActualArguments &loweredActuals,
CallContext &callContext) {
TODO(callContext.loc,
"compute elemental function result length parameters in HLFIR");
}
private:
Fortran::lower::CallerInterface &caller;
mlir::FunctionType callSiteType;
};
class ElementalIntrinsicCallBuilder
: public ElementalCallBuilder<ElementalIntrinsicCallBuilder> {
public:
ElementalIntrinsicCallBuilder(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicArgumentLoweringRules *argLowering, bool isFunction)
: intrinsic{intrinsic}, argLowering{argLowering}, isFunction{isFunction} {
}
std::optional<hlfir::Entity>
genElementalKernel(PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genHLFIRIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
callContext);
}
// Elemental intrinsic functions cannot modify their arguments.
bool argMayBeModifiedByCall(int) const { return !isFunction; }
bool canLoadActualArgumentBeforeLoop(int) const {
// Elemental intrinsic functions never need the actual addresses
// of their arguments.
return isFunction;
}
mlir::Value
computeDynamicCharacterResultLength(PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (intrinsic)
if (intrinsic->name == "adjustr" || intrinsic->name == "adjustl" ||
intrinsic->name == "merge")
return hlfir::genCharLength(
callContext.loc, callContext.getBuilder(),
loweredActuals[0].value().getOriginalActual());
// Character MIN/MAX is the min/max of the arguments length that are
// present.
TODO(callContext.loc,
"compute elemental character min/max function result length in HLFIR");
}
private:
const Fortran::evaluate::SpecificIntrinsic *intrinsic;
const fir::IntrinsicArgumentLoweringRules *argLowering;
const bool isFunction;
};
} // namespace
static std::optional<mlir::Value>
genIsPresentIfArgMaybeAbsent(mlir::Location loc, hlfir::Entity actual,
const Fortran::lower::SomeExpr &expr,
CallContext &callContext,
bool passAsAllocatableOrPointer) {
if (!Fortran::evaluate::MayBePassedAsAbsentOptional(
expr, callContext.converter.getFoldingContext()))
return std::nullopt;
fir::FirOpBuilder &builder = callContext.getBuilder();
if (!passAsAllocatableOrPointer &&
Fortran::evaluate::IsAllocatableOrPointerObject(
expr, callContext.converter.getFoldingContext())) {
// Passing Allocatable/Pointer to non-pointer/non-allocatable OPTIONAL.
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, it is
// as if the argument was absent. The main care here is to not do a
// copy-in/copy-out because the temp address, even though pointing to a
// null size storage, would not be a nullptr and therefore the argument
// would not be considered absent on the callee side. Note: if the
// allocatable/pointer is also optional, it cannot be absent as per
// 15.5.2.12 point 7. and 8. We rely on this to un-conditionally read
// the allocatable/pointer descriptor here.
mlir::Value addr = genVariableRawAddress(loc, builder, actual);
return builder.genIsNotNullAddr(loc, addr);
}
// TODO: what if passing allocatable target to optional intent(in) pointer?
// May fall into the category above if the allocatable is not optional.
// Passing an optional to an optional.
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
/// Lower an intrinsic procedure reference.
/// \p intrinsic is null if this is an intrinsic module procedure that must be
/// lowered as if it were an intrinsic module procedure (like C_LOC which is a
/// procedure from intrinsic module iso_c_binding). Otherwise, \p intrinsic
/// must not be null.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter))
TODO(loc, "special cases of intrinsic with optional arguments");
PreparedActualArguments loweredActuals;
const fir::IntrinsicArgumentLoweringRules *argLowering =
fir::getIntrinsicArgumentLowering(callContext.getProcedureName());
for (const auto &arg : llvm::enumerate(callContext.procRef.arguments())) {
if (!arg.value()) {
// Absent optional.
loweredActuals.push_back(std::nullopt);
continue;
}
auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
if (!expr) {
// TYPE(*) dummy. They are only allowed as argument of a few intrinsics
// that do not take optional arguments: see Fortran 2018 standard C710.
const Fortran::evaluate::Symbol *assumedTypeSym =
arg.value()->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(loc,
"expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
assert(
(!argLowering ||
!fir::lowerIntrinsicArgumentAs(*argLowering, arg.index())
.handleDynamicOptional) &&
"TYPE(*) are not expected to appear as optional intrinsic arguments");
loweredActuals.push_back(PreparedActualArgument{
hlfir::Entity{*var}, /*isPresent=*/std::nullopt});
continue;
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (argLowering) {
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (argRules.handleDynamicOptional)
isPresent =
genIsPresentIfArgMaybeAbsent(loc, loweredActual, *expr, callContext,
/*passAsAllocatableOrPointer=*/false);
}
loweredActuals.push_back(PreparedActualArgument{loweredActual, isPresent});
}
if (callContext.isElementalProcWithArrayArgs()) {
// All intrinsic elemental functions are pure.
const bool isFunction = callContext.resultType.has_value();
return ElementalIntrinsicCallBuilder{intrinsic, argLowering, isFunction}
.genElementalCall(loweredActuals, /*isImpure=*/!isFunction, callContext)
.value();
}
std::optional<hlfir::EntityWithAttributes> result = genHLFIRIntrinsicRefCore(
loweredActuals, intrinsic, argLowering, callContext);
if (result && result->getType().isa<hlfir::ExprType>()) {
fir::FirOpBuilder *bldr = &callContext.getBuilder();
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, *result); });
}
return result;
}
/// Main entry point to lower procedure references, regardless of what they are.
static std::optional<hlfir::EntityWithAttributes>
genProcedureRef(CallContext &callContext) {
mlir::Location loc = callContext.loc;
if (auto *intrinsic = callContext.procRef.proc().GetSpecificIntrinsic())
return genIntrinsicRef(intrinsic, callContext);
if (Fortran::lower::isIntrinsicModuleProcRef(callContext.procRef))
return genIntrinsicRef(nullptr, callContext);
if (callContext.isStatementFunctionCall())
return genStmtFunctionRef(loc, callContext.converter, callContext.symMap,
callContext.stmtCtx, callContext.procRef);
Fortran::lower::CallerInterface caller(callContext.procRef,
callContext.converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
PreparedActualArguments loweredActuals;
// Lower the actual arguments
for (const Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity &arg :
caller.getPassedArguments())
if (const auto *actual = arg.entity) {
const auto *expr = actual->UnwrapExpr();
if (!expr)
TODO(loc, "assumed type actual argument");
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
if (arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::MutableBox) {
assert(
arg.isOptional() &&
"NULL must be passed only to pointer, allocatable, or OPTIONAL");
// Trying to lower NULL() outside of any context would lead to
// trouble. NULL() here is equivalent to not providing the
// actual argument.
loweredActuals.emplace_back(std::nullopt);
continue;
}
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (arg.isOptional())
isPresent = genIsPresentIfArgMaybeAbsent(
loc, loweredActual, *expr, callContext,
arg.passBy ==
Fortran::lower::CallerInterface::PassEntityBy::MutableBox);
loweredActuals.emplace_back(
PreparedActualArgument{loweredActual, isPresent});
} else {
// Optional dummy argument for which there is no actual argument.
loweredActuals.emplace_back(std::nullopt);
}
if (callContext.isElementalProcWithArrayArgs()) {
bool isImpure = false;
if (const Fortran::semantics::Symbol *procSym =
callContext.procRef.proc().GetSymbol())
isImpure = !Fortran::semantics::IsPureProcedure(*procSym);
return ElementalUserCallBuilder{caller, callSiteType}.genElementalCall(
loweredActuals, isImpure, callContext);
}
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
bool Fortran::lower::isIntrinsicModuleProcRef(
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
if (!symbol)
return false;
const Fortran::semantics::Symbol *module =
symbol->GetUltimate().owner().GetSymbol();
return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC) &&
module->name().ToString().find("omp_lib") == std::string::npos;
}
std::optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, std::optional<mlir::Type> resultType,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
CallContext callContext(procRef, resultType, loc, converter, symMap, stmtCtx);
return genProcedureRef(callContext);
}