blob: 7cf509c14a1f1e59c28a3500d1ceb4cce3189a86 [file] [log] [blame]
//===-- include/flang/Evaluate/call.h ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_CALL_H_
#define FORTRAN_EVALUATE_CALL_H_
#include "common.h"
#include "constant.h"
#include "formatting.h"
#include "type.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/indirection.h"
#include "flang/Common/reference.h"
#include "flang/Parser/char-block.h"
#include "flang/Semantics/attr.h"
#include <optional>
#include <vector>
namespace llvm {
class raw_ostream;
}
namespace Fortran::semantics {
class Symbol;
}
// Mutually referential data structures are represented here with forward
// declarations of hitherto undefined class types and a level of indirection.
namespace Fortran::evaluate {
class Component;
class IntrinsicProcTable;
} // namespace Fortran::evaluate
namespace Fortran::evaluate::characteristics {
struct DummyArgument;
struct Procedure;
} // namespace Fortran::evaluate::characteristics
extern template class Fortran::common::Indirection<Fortran::evaluate::Component,
true>;
extern template class Fortran::common::Indirection<
Fortran::evaluate::characteristics::Procedure, true>;
namespace Fortran::evaluate {
using semantics::Symbol;
using SymbolRef = common::Reference<const Symbol>;
class ActualArgument {
public:
// Dummy arguments that are TYPE(*) can be forwarded as actual arguments.
// Since that's the only thing one may do with them in Fortran, they're
// represented in expressions as a special case of an actual argument.
class AssumedType {
public:
explicit AssumedType(const Symbol &);
DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(AssumedType)
const Symbol &symbol() const { return symbol_; }
int Rank() const;
bool operator==(const AssumedType &that) const {
return &*symbol_ == &*that.symbol_;
}
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
private:
SymbolRef symbol_;
};
DECLARE_CONSTRUCTORS_AND_ASSIGNMENTS(ActualArgument)
explicit ActualArgument(Expr<SomeType> &&);
explicit ActualArgument(common::CopyableIndirection<Expr<SomeType>> &&);
explicit ActualArgument(AssumedType);
explicit ActualArgument(common::Label);
~ActualArgument();
ActualArgument &operator=(Expr<SomeType> &&);
Expr<SomeType> *UnwrapExpr() {
if (auto *p{
std::get_if<common::CopyableIndirection<Expr<SomeType>>>(&u_)}) {
return &p->value();
} else {
return nullptr;
}
}
const Expr<SomeType> *UnwrapExpr() const {
if (const auto *p{
std::get_if<common::CopyableIndirection<Expr<SomeType>>>(&u_)}) {
return &p->value();
} else {
return nullptr;
}
}
const Symbol *GetAssumedTypeDummy() const {
if (const AssumedType * aType{std::get_if<AssumedType>(&u_)}) {
return &aType->symbol();
} else {
return nullptr;
}
}
common::Label GetLabel() const { return std::get<common::Label>(u_); }
std::optional<DynamicType> GetType() const;
int Rank() const;
bool operator==(const ActualArgument &) const;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
std::optional<parser::CharBlock> keyword() const { return keyword_; }
ActualArgument &set_keyword(parser::CharBlock x) {
keyword_ = x;
return *this;
}
bool isAlternateReturn() const {
return std::holds_alternative<common::Label>(u_);
}
bool isPassedObject() const { return isPassedObject_; }
ActualArgument &set_isPassedObject(bool yes = true) {
isPassedObject_ = yes;
return *this;
}
bool Matches(const characteristics::DummyArgument &) const;
common::Intent dummyIntent() const { return dummyIntent_; }
ActualArgument &set_dummyIntent(common::Intent intent) {
dummyIntent_ = intent;
return *this;
}
// Wrap this argument in parentheses
void Parenthesize();
// TODO: Mark legacy %VAL and %REF arguments
private:
// Subtlety: There is a distinction that must be maintained here between an
// actual argument expression that is a variable and one that is not,
// e.g. between X and (X). The parser attempts to parse each argument
// first as a variable, then as an expression, and the distinction appears
// in the parse tree.
std::variant<common::CopyableIndirection<Expr<SomeType>>, AssumedType,
common::Label>
u_;
std::optional<parser::CharBlock> keyword_;
bool isPassedObject_{false};
common::Intent dummyIntent_{common::Intent::Default};
};
using ActualArguments = std::vector<std::optional<ActualArgument>>;
// Intrinsics are identified by their names and the characteristics
// of their arguments, at least for now.
using IntrinsicProcedure = std::string;
struct SpecificIntrinsic {
SpecificIntrinsic(IntrinsicProcedure, characteristics::Procedure &&);
DECLARE_CONSTRUCTORS_AND_ASSIGNMENTS(SpecificIntrinsic)
~SpecificIntrinsic();
bool operator==(const SpecificIntrinsic &) const;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
IntrinsicProcedure name;
bool isRestrictedSpecific{false}; // if true, can only call it, not pass it
common::CopyableIndirection<characteristics::Procedure> characteristics;
};
struct ProcedureDesignator {
EVALUATE_UNION_CLASS_BOILERPLATE(ProcedureDesignator)
explicit ProcedureDesignator(SpecificIntrinsic &&i) : u{std::move(i)} {}
explicit ProcedureDesignator(const Symbol &n) : u{n} {}
explicit ProcedureDesignator(Component &&);
// Exactly one of these will return a non-null pointer.
const SpecificIntrinsic *GetSpecificIntrinsic() const;
const Symbol *GetSymbol() const; // symbol or component symbol
// For references to NOPASS components and bindings only.
// References to PASS components and bindings are represented
// with the symbol below and the base object DataRef in the
// passed-object ActualArgument.
// Always null when the procedure is intrinsic.
const Component *GetComponent() const;
const Symbol *GetInterfaceSymbol() const;
std::string GetName() const;
std::optional<DynamicType> GetType() const;
int Rank() const;
bool IsElemental() const;
std::optional<Expr<SubscriptInteger>> LEN() const;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
std::variant<SpecificIntrinsic, SymbolRef,
common::CopyableIndirection<Component>>
u;
};
class ProcedureRef {
public:
CLASS_BOILERPLATE(ProcedureRef)
ProcedureRef(ProcedureDesignator &&p, ActualArguments &&a,
bool hasAlternateReturns = false)
: proc_{std::move(p)}, arguments_{std::move(a)},
hasAlternateReturns_{hasAlternateReturns} {}
~ProcedureRef();
static void Deleter(ProcedureRef *);
ProcedureDesignator &proc() { return proc_; }
const ProcedureDesignator &proc() const { return proc_; }
ActualArguments &arguments() { return arguments_; }
const ActualArguments &arguments() const { return arguments_; }
std::optional<Expr<SubscriptInteger>> LEN() const;
int Rank() const;
bool IsElemental() const { return proc_.IsElemental(); }
bool hasAlternateReturns() const { return hasAlternateReturns_; }
Expr<SomeType> *UnwrapArgExpr(int n) {
if (static_cast<std::size_t>(n) < arguments_.size() && arguments_[n]) {
return arguments_[n]->UnwrapExpr();
} else {
return nullptr;
}
}
const Expr<SomeType> *UnwrapArgExpr(int n) const {
if (static_cast<std::size_t>(n) < arguments_.size() && arguments_[n]) {
return arguments_[n]->UnwrapExpr();
} else {
return nullptr;
}
}
bool operator==(const ProcedureRef &) const;
llvm::raw_ostream &AsFortran(llvm::raw_ostream &) const;
protected:
ProcedureDesignator proc_;
ActualArguments arguments_;
bool hasAlternateReturns_;
};
template <typename A> class FunctionRef : public ProcedureRef {
public:
using Result = A;
CLASS_BOILERPLATE(FunctionRef)
explicit FunctionRef(ProcedureRef &&pr) : ProcedureRef{std::move(pr)} {}
FunctionRef(ProcedureDesignator &&p, ActualArguments &&a)
: ProcedureRef{std::move(p), std::move(a)} {}
std::optional<DynamicType> GetType() const { return proc_.GetType(); }
std::optional<Constant<Result>> Fold(FoldingContext &); // for intrinsics
};
FOR_EACH_SPECIFIC_TYPE(extern template class FunctionRef, )
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_CALL_H_