| //===-- xray_fdr_log_writer.h ---------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of XRay, a function call tracing system. |
| // |
| //===----------------------------------------------------------------------===// |
| #ifndef COMPILER_RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_ |
| #define COMPILER_RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_ |
| |
| #include "xray_buffer_queue.h" |
| #include "xray_fdr_log_records.h" |
| #include <functional> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace __xray { |
| |
| template <size_t Index> struct SerializerImpl { |
| template <class Tuple, |
| typename std::enable_if< |
| Index<std::tuple_size< |
| typename std::remove_reference<Tuple>::type>::value, |
| int>::type = 0> static void serializeTo(char *Buffer, |
| Tuple &&T) { |
| auto P = reinterpret_cast<const char *>(&std::get<Index>(T)); |
| constexpr auto Size = sizeof(std::get<Index>(T)); |
| internal_memcpy(Buffer, P, Size); |
| SerializerImpl<Index + 1>::serializeTo(Buffer + Size, |
| std::forward<Tuple>(T)); |
| } |
| |
| template <class Tuple, |
| typename std::enable_if< |
| Index >= std::tuple_size<typename std::remove_reference< |
| Tuple>::type>::value, |
| int>::type = 0> |
| static void serializeTo(char *, Tuple &&) {} |
| }; |
| |
| using Serializer = SerializerImpl<0>; |
| |
| template <class Tuple, size_t Index> struct AggregateSizesImpl { |
| static constexpr size_t value = |
| sizeof(typename std::tuple_element<Index, Tuple>::type) + |
| AggregateSizesImpl<Tuple, Index - 1>::value; |
| }; |
| |
| template <class Tuple> struct AggregateSizesImpl<Tuple, 0> { |
| static constexpr size_t value = |
| sizeof(typename std::tuple_element<0, Tuple>::type); |
| }; |
| |
| template <class Tuple> struct AggregateSizes { |
| static constexpr size_t value = |
| AggregateSizesImpl<Tuple, std::tuple_size<Tuple>::value - 1>::value; |
| }; |
| |
| template <MetadataRecord::RecordKinds Kind, class... DataTypes> |
| MetadataRecord createMetadataRecord(DataTypes &&... Ds) { |
| static_assert(AggregateSizes<std::tuple<DataTypes...>>::value <= |
| sizeof(MetadataRecord) - 1, |
| "Metadata payload longer than metadata buffer!"); |
| MetadataRecord R; |
| R.Type = 1; |
| R.RecordKind = static_cast<uint8_t>(Kind); |
| Serializer::serializeTo(R.Data, |
| std::make_tuple(std::forward<DataTypes>(Ds)...)); |
| return R; |
| } |
| |
| class FDRLogWriter { |
| BufferQueue::Buffer &Buffer; |
| char *NextRecord = nullptr; |
| |
| template <class T> void writeRecord(const T &R) { |
| internal_memcpy(NextRecord, reinterpret_cast<const char *>(&R), sizeof(T)); |
| NextRecord += sizeof(T); |
| // We need this atomic fence here to ensure that other threads attempting to |
| // read the bytes in the buffer will see the writes committed before the |
| // extents are updated. |
| atomic_thread_fence(memory_order_release); |
| atomic_fetch_add(Buffer.Extents, sizeof(T), memory_order_acq_rel); |
| } |
| |
| public: |
| explicit FDRLogWriter(BufferQueue::Buffer &B, char *P) |
| : Buffer(B), NextRecord(P) { |
| DCHECK_NE(Buffer.Data, nullptr); |
| DCHECK_NE(NextRecord, nullptr); |
| } |
| |
| explicit FDRLogWriter(BufferQueue::Buffer &B) |
| : FDRLogWriter(B, static_cast<char *>(B.Data)) {} |
| |
| template <MetadataRecord::RecordKinds Kind, class... Data> |
| bool writeMetadata(Data &&... Ds) { |
| // TODO: Check boundary conditions: |
| // 1) Buffer is full, and cannot handle one metadata record. |
| // 2) Buffer queue is finalising. |
| writeRecord(createMetadataRecord<Kind>(std::forward<Data>(Ds)...)); |
| return true; |
| } |
| |
| template <size_t N> size_t writeMetadataRecords(MetadataRecord (&Recs)[N]) { |
| constexpr auto Size = sizeof(MetadataRecord) * N; |
| internal_memcpy(NextRecord, reinterpret_cast<const char *>(Recs), Size); |
| NextRecord += Size; |
| // We need this atomic fence here to ensure that other threads attempting to |
| // read the bytes in the buffer will see the writes committed before the |
| // extents are updated. |
| atomic_thread_fence(memory_order_release); |
| atomic_fetch_add(Buffer.Extents, Size, memory_order_acq_rel); |
| return Size; |
| } |
| |
| enum class FunctionRecordKind : uint8_t { |
| Enter = 0x00, |
| Exit = 0x01, |
| TailExit = 0x02, |
| EnterArg = 0x03, |
| }; |
| |
| bool writeFunction(FunctionRecordKind Kind, int32_t FuncId, int32_t Delta) { |
| FunctionRecord R; |
| R.Type = 0; |
| R.RecordKind = uint8_t(Kind); |
| R.FuncId = FuncId; |
| R.TSCDelta = Delta; |
| writeRecord(R); |
| return true; |
| } |
| |
| bool writeFunctionWithArg(FunctionRecordKind Kind, int32_t FuncId, |
| int32_t Delta, uint64_t Arg) { |
| // We need to write the function with arg into the buffer, and then |
| // atomically update the buffer extents. This ensures that any reads |
| // synchronised on the buffer extents record will always see the writes |
| // that happen before the atomic update. |
| FunctionRecord R; |
| R.Type = 0; |
| R.RecordKind = uint8_t(Kind); |
| R.FuncId = FuncId; |
| R.TSCDelta = Delta; |
| MetadataRecord A = |
| createMetadataRecord<MetadataRecord::RecordKinds::CallArgument>(Arg); |
| NextRecord = reinterpret_cast<char *>(internal_memcpy( |
| NextRecord, reinterpret_cast<char *>(&R), sizeof(R))) + |
| sizeof(R); |
| NextRecord = reinterpret_cast<char *>(internal_memcpy( |
| NextRecord, reinterpret_cast<char *>(&A), sizeof(A))) + |
| sizeof(A); |
| // We need this atomic fence here to ensure that other threads attempting to |
| // read the bytes in the buffer will see the writes committed before the |
| // extents are updated. |
| atomic_thread_fence(memory_order_release); |
| atomic_fetch_add(Buffer.Extents, sizeof(R) + sizeof(A), |
| memory_order_acq_rel); |
| return true; |
| } |
| |
| bool writeCustomEvent(int32_t Delta, const void *Event, int32_t EventSize) { |
| // We write the metadata record and the custom event data into the buffer |
| // first, before we atomically update the extents for the buffer. This |
| // allows us to ensure that any threads reading the extents of the buffer |
| // will only ever see the full metadata and custom event payload accounted |
| // (no partial writes accounted). |
| MetadataRecord R = |
| createMetadataRecord<MetadataRecord::RecordKinds::CustomEventMarker>( |
| EventSize, Delta); |
| NextRecord = reinterpret_cast<char *>(internal_memcpy( |
| NextRecord, reinterpret_cast<char *>(&R), sizeof(R))) + |
| sizeof(R); |
| NextRecord = reinterpret_cast<char *>( |
| internal_memcpy(NextRecord, Event, EventSize)) + |
| EventSize; |
| |
| // We need this atomic fence here to ensure that other threads attempting to |
| // read the bytes in the buffer will see the writes committed before the |
| // extents are updated. |
| atomic_thread_fence(memory_order_release); |
| atomic_fetch_add(Buffer.Extents, sizeof(R) + EventSize, |
| memory_order_acq_rel); |
| return true; |
| } |
| |
| bool writeTypedEvent(int32_t Delta, uint16_t EventType, const void *Event, |
| int32_t EventSize) { |
| // We do something similar when writing out typed events, see |
| // writeCustomEvent(...) above for details. |
| MetadataRecord R = |
| createMetadataRecord<MetadataRecord::RecordKinds::TypedEventMarker>( |
| EventSize, Delta, EventType); |
| NextRecord = reinterpret_cast<char *>(internal_memcpy( |
| NextRecord, reinterpret_cast<char *>(&R), sizeof(R))) + |
| sizeof(R); |
| NextRecord = reinterpret_cast<char *>( |
| internal_memcpy(NextRecord, Event, EventSize)) + |
| EventSize; |
| |
| // We need this atomic fence here to ensure that other threads attempting to |
| // read the bytes in the buffer will see the writes committed before the |
| // extents are updated. |
| atomic_thread_fence(memory_order_release); |
| atomic_fetch_add(Buffer.Extents, EventSize, memory_order_acq_rel); |
| return true; |
| } |
| |
| char *getNextRecord() const { return NextRecord; } |
| |
| void resetRecord() { |
| NextRecord = reinterpret_cast<char *>(Buffer.Data); |
| atomic_store(Buffer.Extents, 0, memory_order_release); |
| } |
| |
| void undoWrites(size_t B) { |
| DCHECK_GE(NextRecord - B, reinterpret_cast<char *>(Buffer.Data)); |
| NextRecord -= B; |
| atomic_fetch_sub(Buffer.Extents, B, memory_order_acq_rel); |
| } |
| |
| }; // namespace __xray |
| |
| } // namespace __xray |
| |
| #endif // COMPILER-RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_ |