blob: b653bc802022ff411ca2b34fdd7a6a4d53e31d09 [file] [log] [blame]
//===-- primary64.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_PRIMARY64_H_
#define SCUDO_PRIMARY64_H_
#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "memtag.h"
#include "options.h"
#include "release.h"
#include "stats.h"
#include "string_utils.h"
namespace scudo {
// SizeClassAllocator64 is an allocator tuned for 64-bit address space.
//
// It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
// Regions, specific to each size class. Note that the base of that mapping is
// random (based to the platform specific map() capabilities). If
// PrimaryEnableRandomOffset is set, each Region actually starts at a random
// offset from its base.
//
// Regions are mapped incrementally on demand to fulfill allocation requests,
// those mappings being split into equally sized Blocks based on the size class
// they belong to. The Blocks created are shuffled to prevent predictable
// address patterns (the predictability increases with the size of the Blocks).
//
// The 1st Region (for size class 0) holds the TransferBatches. This is a
// structure used to transfer arrays of available pointers from the class size
// freelist to the thread specific freelist, and back.
//
// The memory used by this allocator is never unmapped, but can be partially
// released if the platform allows for it.
template <typename Config> class SizeClassAllocator64 {
public:
typedef typename Config::PrimaryCompactPtrT CompactPtrT;
static const uptr CompactPtrScale = Config::PrimaryCompactPtrScale;
static const uptr GroupSizeLog = Config::PrimaryGroupSizeLog;
typedef typename Config::SizeClassMap SizeClassMap;
typedef SizeClassAllocator64<Config> ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
typedef typename CacheT::TransferBatch TransferBatch;
typedef typename CacheT::BatchGroup BatchGroup;
static uptr getSizeByClassId(uptr ClassId) {
return (ClassId == SizeClassMap::BatchClassId)
? roundUpTo(sizeof(TransferBatch), 1U << CompactPtrScale)
: SizeClassMap::getSizeByClassId(ClassId);
}
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
void init(s32 ReleaseToOsInterval) {
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
DCHECK_EQ(PrimaryBase, 0U);
// Reserve the space required for the Primary.
PrimaryBase = reinterpret_cast<uptr>(
map(nullptr, PrimarySize, nullptr, MAP_NOACCESS, &Data));
u32 Seed;
const u64 Time = getMonotonicTime();
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12));
const uptr PageSize = getPageSizeCached();
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
// The actual start of a region is offset by a random number of pages
// when PrimaryEnableRandomOffset is set.
Region->RegionBeg = getRegionBaseByClassId(I) +
(Config::PrimaryEnableRandomOffset
? ((getRandomModN(&Seed, 16) + 1) * PageSize)
: 0);
Region->RandState = getRandomU32(&Seed);
Region->ReleaseInfo.LastReleaseAtNs = Time;
}
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void unmapTestOnly() {
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
*Region = {};
}
if (PrimaryBase)
unmap(reinterpret_cast<void *>(PrimaryBase), PrimarySize, UNMAP_ALL,
&Data);
PrimaryBase = 0U;
}
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
RegionInfo *Region = getRegionInfo(ClassId);
ScopedLock L(Region->Mutex);
TransferBatch *B = popBatchImpl(C, ClassId);
if (UNLIKELY(!B)) {
if (UNLIKELY(!populateFreeList(C, ClassId, Region)))
return nullptr;
B = popBatchImpl(C, ClassId);
// if `populateFreeList` succeeded, we are supposed to get free blocks.
DCHECK_NE(B, nullptr);
}
Region->Stats.PoppedBlocks += B->getCount();
return B;
}
// Push the array of free blocks to the designated batch group.
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
DCHECK_LT(ClassId, NumClasses);
DCHECK_GT(Size, 0);
RegionInfo *Region = getRegionInfo(ClassId);
if (ClassId == SizeClassMap::BatchClassId) {
ScopedLock L(Region->Mutex);
// Constructing a batch group in the free list will use two blocks in
// BatchClassId. If we are pushing BatchClassId blocks, we will use the
// blocks in the array directly (can't delegate local cache which will
// cause a recursive allocation). However, The number of free blocks may
// be less than two. Therefore, populate the free list before inserting
// the blocks.
if (Size == 1 && UNLIKELY(!populateFreeList(C, ClassId, Region)))
return;
pushBlocksImpl(C, ClassId, Array, Size);
Region->Stats.PushedBlocks += Size;
return;
}
// TODO(chiahungduan): Consider not doing grouping if the group size is not
// greater than the block size with a certain scale.
// Sort the blocks so that blocks belonging to the same group can be pushed
// together.
bool SameGroup = true;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
SameGroup = false;
CompactPtrT Cur = Array[I];
u32 J = I;
while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
Array[J] = Array[J - 1];
--J;
}
Array[J] = Cur;
}
ScopedLock L(Region->Mutex);
pushBlocksImpl(C, ClassId, Array, Size, SameGroup);
Region->Stats.PushedBlocks += Size;
if (ClassId != SizeClassMap::BatchClassId)
releaseToOSMaybe(Region, ClassId);
}
void disable() {
// The BatchClassId must be locked last since other classes can use it.
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
continue;
getRegionInfo(static_cast<uptr>(I))->Mutex.lock();
}
getRegionInfo(SizeClassMap::BatchClassId)->Mutex.lock();
}
void enable() {
getRegionInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
getRegionInfo(I)->Mutex.unlock();
}
}
template <typename F> void iterateOverBlocks(F Callback) {
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
const RegionInfo *Region = getRegionInfo(I);
const uptr BlockSize = getSizeByClassId(I);
const uptr From = Region->RegionBeg;
const uptr To = From + Region->AllocatedUser;
for (uptr Block = From; Block < To; Block += BlockSize)
Callback(Block);
}
}
void getStats(ScopedString *Str) {
// TODO(kostyak): get the RSS per region.
uptr TotalMapped = 0;
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
if (Region->MappedUser)
TotalMapped += Region->MappedUser;
PoppedBlocks += Region->Stats.PoppedBlocks;
PushedBlocks += Region->Stats.PushedBlocks;
}
Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu "
"allocations; remains %zu\n",
TotalMapped >> 20, 0U, PoppedBlocks,
PoppedBlocks - PushedBlocks);
for (uptr I = 0; I < NumClasses; I++)
getStats(Str, I, 0);
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval = Max(
Min(static_cast<s32>(Value), Config::PrimaryMaxReleaseToOsIntervalMs),
Config::PrimaryMinReleaseToOsIntervalMs);
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
return true;
}
// Not supported by the Primary, but not an error either.
return true;
}
uptr releaseToOS() {
uptr TotalReleasedBytes = 0;
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
ScopedLock L(Region->Mutex);
TotalReleasedBytes += releaseToOSMaybe(Region, I, /*Force=*/true);
}
return TotalReleasedBytes;
}
const char *getRegionInfoArrayAddress() const {
return reinterpret_cast<const char *>(RegionInfoArray);
}
static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }
uptr getCompactPtrBaseByClassId(uptr ClassId) {
// If we are not compacting pointers, base everything off of 0.
if (sizeof(CompactPtrT) == sizeof(uptr) && CompactPtrScale == 0)
return 0;
return getRegionInfo(ClassId)->RegionBeg;
}
CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
}
void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
return reinterpret_cast<void *>(
decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
}
static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) {
const RegionInfo *RegionInfoArray =
reinterpret_cast<const RegionInfo *>(RegionInfoData);
uptr ClassId;
uptr MinDistance = -1UL;
for (uptr I = 0; I != NumClasses; ++I) {
if (I == SizeClassMap::BatchClassId)
continue;
uptr Begin = RegionInfoArray[I].RegionBeg;
uptr End = Begin + RegionInfoArray[I].AllocatedUser;
if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
continue;
uptr RegionDistance;
if (Begin <= Ptr) {
if (Ptr < End)
RegionDistance = 0;
else
RegionDistance = Ptr - End;
} else {
RegionDistance = Begin - Ptr;
}
if (RegionDistance < MinDistance) {
MinDistance = RegionDistance;
ClassId = I;
}
}
BlockInfo B = {};
if (MinDistance <= 8192) {
B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
B.RegionEnd = B.RegionBegin + RegionInfoArray[ClassId].AllocatedUser;
B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
B.BlockBegin =
B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
sptr(B.BlockSize));
while (B.BlockBegin < B.RegionBegin)
B.BlockBegin += B.BlockSize;
while (B.RegionEnd < B.BlockBegin + B.BlockSize)
B.BlockBegin -= B.BlockSize;
}
return B;
}
AtomicOptions Options;
private:
static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog;
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr PrimarySize = RegionSize * NumClasses;
static const uptr MapSizeIncrement = Config::PrimaryMapSizeIncrement;
// Fill at most this number of batches from the newly map'd memory.
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
struct RegionStats {
uptr PoppedBlocks;
uptr PushedBlocks;
};
struct ReleaseToOsInfo {
uptr PushedBlocksAtLastRelease;
uptr RangesReleased;
uptr LastReleasedBytes;
u64 LastReleaseAtNs;
};
struct UnpaddedRegionInfo {
HybridMutex Mutex;
SinglyLinkedList<BatchGroup> FreeList;
uptr RegionBeg = 0;
RegionStats Stats = {};
u32 RandState = 0;
uptr MappedUser = 0; // Bytes mapped for user memory.
uptr AllocatedUser = 0; // Bytes allocated for user memory.
MapPlatformData Data = {};
ReleaseToOsInfo ReleaseInfo = {};
bool Exhausted = false;
};
struct RegionInfo : UnpaddedRegionInfo {
char Padding[SCUDO_CACHE_LINE_SIZE -
(sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
};
static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
uptr PrimaryBase = 0;
MapPlatformData Data = {};
atomic_s32 ReleaseToOsIntervalMs = {};
alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];
RegionInfo *getRegionInfo(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
return &RegionInfoArray[ClassId];
}
uptr getRegionBaseByClassId(uptr ClassId) const {
return PrimaryBase + (ClassId << Config::PrimaryRegionSizeLog);
}
static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
}
static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
}
static uptr compactPtrGroup(CompactPtrT CompactPtr) {
return static_cast<uptr>(CompactPtr) >> (GroupSizeLog - CompactPtrScale);
}
static uptr batchGroupBase(uptr Base, uptr GroupId) {
return (GroupId << GroupSizeLog) + Base;
}
// Push the blocks to their batch group. The layout will be like,
//
// FreeList - > BG -> BG -> BG
// | | |
// v v v
// TB TB TB
// |
// v
// TB
//
// Each BlockGroup(BG) will associate with unique group id and the free blocks
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
// that we can get better performance of maintaining sorted property.
// Use `SameGroup=true` to indicate that all blocks in the array are from the
// same group then we will skip checking the group id of each block.
//
// Note that this aims to have a better management of dirty pages, i.e., the
// RSS usage won't grow indefinitely. There's an exception that we may not put
// a block to its associated group. While populating new blocks, we may have
// blocks cross different groups. However, most cases will fall into same
// group and they are supposed to be popped soon. In that case, it's not worth
// sorting the array with the almost-sorted property. Therefore, we use
// `SameGroup=true` instead.
//
// The region mutex needs to be held while calling this method.
void pushBlocksImpl(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size,
bool SameGroup = false) {
DCHECK_GT(Size, 0U);
RegionInfo *Region = getRegionInfo(ClassId);
auto CreateGroup = [&](uptr GroupId) {
BatchGroup *BG = nullptr;
TransferBatch *TB = nullptr;
if (ClassId == SizeClassMap::BatchClassId) {
DCHECK_GE(Size, 2U);
BG = reinterpret_cast<BatchGroup *>(
decompactPtr(ClassId, Array[Size - 1]));
BG->Batches.clear();
TB = reinterpret_cast<TransferBatch *>(
decompactPtr(ClassId, Array[Size - 2]));
TB->clear();
} else {
BG = C->createGroup();
BG->Batches.clear();
TB = C->createBatch(ClassId, nullptr);
TB->clear();
}
BG->GroupId = GroupId;
BG->Batches.push_front(TB);
BG->PushedBlocks = 0;
BG->PushedBlocksAtLastCheckpoint = 0;
BG->MaxCachedPerBatch =
TransferBatch::getMaxCached(getSizeByClassId(ClassId));
return BG;
};
auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
TransferBatch *CurBatch = Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = C->createBatch(
ClassId,
reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
CurBatch->clear();
Batches.push_front(CurBatch);
UnusedSlots = BG->MaxCachedPerBatch;
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
};
BatchGroup *Cur = Region->FreeList.front();
if (ClassId == SizeClassMap::BatchClassId) {
if (Cur == nullptr) {
// Don't need to classify BatchClassId.
Cur = CreateGroup(/*GroupId=*/0);
Region->FreeList.push_front(Cur);
}
InsertBlocks(Cur, Array, Size);
return;
}
// In the following, `Cur` always points to the BatchGroup for blocks that
// will be pushed next. `Prev` is the element right before `Cur`.
BatchGroup *Prev = nullptr;
while (Cur != nullptr && compactPtrGroup(Array[0]) > Cur->GroupId) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr || compactPtrGroup(Array[0]) != Cur->GroupId) {
Cur = CreateGroup(compactPtrGroup(Array[0]));
if (Prev == nullptr)
Region->FreeList.push_front(Cur);
else
Region->FreeList.insert(Prev, Cur);
}
// All the blocks are from the same group, just push without checking group
// id.
if (SameGroup) {
InsertBlocks(Cur, Array, Size);
return;
}
// The blocks are sorted by group id. Determine the segment of group and
// push them to their group together.
u32 Count = 1;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->GroupId);
InsertBlocks(Cur, Array + I - Count, Count);
while (Cur != nullptr && compactPtrGroup(Array[I]) > Cur->GroupId) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr || compactPtrGroup(Array[I]) != Cur->GroupId) {
Cur = CreateGroup(compactPtrGroup(Array[I]));
DCHECK_NE(Prev, nullptr);
Region->FreeList.insert(Prev, Cur);
}
Count = 1;
} else {
++Count;
}
}
InsertBlocks(Cur, Array + Size - Count, Count);
}
// Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
// group id will be considered first.
//
// The region mutex needs to be held while calling this method.
TransferBatch *popBatchImpl(CacheT *C, uptr ClassId) {
RegionInfo *Region = getRegionInfo(ClassId);
if (Region->FreeList.empty())
return nullptr;
SinglyLinkedList<TransferBatch> &Batches =
Region->FreeList.front()->Batches;
DCHECK(!Batches.empty());
TransferBatch *B = Batches.front();
Batches.pop_front();
DCHECK_NE(B, nullptr);
DCHECK_GT(B->getCount(), 0U);
if (Batches.empty()) {
BatchGroup *BG = Region->FreeList.front();
Region->FreeList.pop_front();
// We don't keep BatchGroup with zero blocks to avoid empty-checking while
// allocating. Note that block used by constructing BatchGroup is recorded
// as free blocks in the last element of BatchGroup::Batches. Which means,
// once we pop the last TransferBatch, the block is implicitly
// deallocated.
if (ClassId != SizeClassMap::BatchClassId)
C->deallocate(SizeClassMap::BatchClassId, BG);
}
return B;
}
NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, RegionInfo *Region) {
const uptr Size = getSizeByClassId(ClassId);
const u16 MaxCount = TransferBatch::getMaxCached(Size);
const uptr RegionBeg = Region->RegionBeg;
const uptr MappedUser = Region->MappedUser;
const uptr TotalUserBytes = Region->AllocatedUser + MaxCount * Size;
// Map more space for blocks, if necessary.
if (TotalUserBytes > MappedUser) {
// Do the mmap for the user memory.
const uptr MapSize =
roundUpTo(TotalUserBytes - MappedUser, MapSizeIncrement);
const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
if (!Region->Exhausted) {
Region->Exhausted = true;
ScopedString Str;
getStats(&Str);
Str.append(
"Scudo OOM: The process has exhausted %zuM for size class %zu.\n",
RegionSize >> 20, Size);
Str.output();
}
return false;
}
if (MappedUser == 0)
Region->Data = Data;
if (UNLIKELY(!map(
reinterpret_cast<void *>(RegionBeg + MappedUser), MapSize,
"scudo:primary",
MAP_ALLOWNOMEM | MAP_RESIZABLE |
(useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG : 0),
&Region->Data))) {
return false;
}
Region->MappedUser += MapSize;
C->getStats().add(StatMapped, MapSize);
}
const u32 NumberOfBlocks = Min(
MaxNumBatches * MaxCount,
static_cast<u32>((Region->MappedUser - Region->AllocatedUser) / Size));
DCHECK_GT(NumberOfBlocks, 0);
constexpr u32 ShuffleArraySize =
MaxNumBatches * TransferBatch::MaxNumCached;
CompactPtrT ShuffleArray[ShuffleArraySize];
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
uptr P = RegionBeg + Region->AllocatedUser;
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
// No need to shuffle the batches size class.
if (ClassId != SizeClassMap::BatchClassId)
shuffle(ShuffleArray, NumberOfBlocks, &Region->RandState);
for (u32 I = 0; I < NumberOfBlocks;) {
// `MaxCount` is u16 so the result will also fit in u16.
const u16 N = static_cast<u16>(Min<u32>(MaxCount, NumberOfBlocks - I));
// Note that the N blocks here may have different group ids. Given that
// it only happens when it crosses the group size boundary. Instead of
// sorting them, treat them as same group here to avoid sorting the
// almost-sorted blocks.
pushBlocksImpl(C, ClassId, &ShuffleArray[I], N, /*SameGroup=*/true);
I += N;
}
const uptr AllocatedUser = Size * NumberOfBlocks;
C->getStats().add(StatFree, AllocatedUser);
Region->AllocatedUser += AllocatedUser;
return true;
}
void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
RegionInfo *Region = getRegionInfo(ClassId);
if (Region->MappedUser == 0)
return;
const uptr InUse = Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks;
const uptr TotalChunks = Region->AllocatedUser / getSizeByClassId(ClassId);
Str->append("%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
"inuse: %6zu total: %6zu rss: %6zuK releases: %6zu last "
"released: %6zuK region: 0x%zx (0x%zx)\n",
Region->Exhausted ? "F" : " ", ClassId,
getSizeByClassId(ClassId), Region->MappedUser >> 10,
Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks, InUse,
TotalChunks, Rss >> 10, Region->ReleaseInfo.RangesReleased,
Region->ReleaseInfo.LastReleasedBytes >> 10, Region->RegionBeg,
getRegionBaseByClassId(ClassId));
}
NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
bool Force = false) {
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr PageSize = getPageSizeCached();
DCHECK_GE(Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks);
const uptr BytesInFreeList =
Region->AllocatedUser -
(Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks) * BlockSize;
if (BytesInFreeList < PageSize)
return 0; // No chance to release anything.
const uptr BytesPushed = (Region->Stats.PushedBlocks -
Region->ReleaseInfo.PushedBlocksAtLastRelease) *
BlockSize;
if (BytesPushed < PageSize)
return 0; // Nothing new to release.
bool CheckDensity = BlockSize < PageSize / 16U;
// Releasing smaller blocks is expensive, so we want to make sure that a
// significant amount of bytes are free, and that there has been a good
// amount of batches pushed to the freelist before attempting to release.
if (CheckDensity) {
if (!Force && BytesPushed < Region->AllocatedUser / 16U)
return 0;
}
if (!Force) {
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
if (IntervalMs < 0)
return 0;
if (Region->ReleaseInfo.LastReleaseAtNs +
static_cast<u64>(IntervalMs) * 1000000 >
getMonotonicTime()) {
return 0; // Memory was returned recently.
}
}
const uptr GroupSize = (1U << GroupSizeLog);
const uptr AllocatedUserEnd = Region->AllocatedUser + Region->RegionBeg;
ReleaseRecorder Recorder(Region->RegionBeg, &Region->Data);
PageReleaseContext Context(BlockSize, Region->AllocatedUser,
/*NumberOfRegions=*/1U);
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
return decompactPtrInternal(CompactPtrBase, CompactPtr);
};
for (BatchGroup &BG : Region->FreeList) {
const uptr PushedBytesDelta =
BG.PushedBlocks - BG.PushedBlocksAtLastCheckpoint;
if (PushedBytesDelta * BlockSize < PageSize)
continue;
// Group boundary does not necessarily have the same alignment as Region.
// It may sit across a Region boundary. Which means that we may have the
// following two cases,
//
// 1. Group boundary sits before RegionBeg.
//
// (BatchGroupBeg)
// batchGroupBase RegionBeg BatchGroupEnd
// | | |
// v v v
// +------------+----------------+
// \ /
// ------ GroupSize ------
//
// 2. Group boundary sits after RegionBeg.
//
// (BatchGroupBeg)
// RegionBeg batchGroupBase BatchGroupEnd
// | | |
// v v v
// +-----------+-----------------------------+
// \ /
// ------ GroupSize ------
//
// Note that in the first case, the group range before RegionBeg is never
// used. Therefore, while calculating the used group size, we should
// exclude that part to get the correct size.
const uptr BatchGroupBeg =
Max(batchGroupBase(CompactPtrBase, BG.GroupId), Region->RegionBeg);
DCHECK_GE(AllocatedUserEnd, BatchGroupBeg);
const uptr BatchGroupEnd =
batchGroupBase(CompactPtrBase, BG.GroupId) + GroupSize;
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
? BatchGroupEnd - BatchGroupBeg
: AllocatedUserEnd - BatchGroupBeg;
if (AllocatedGroupSize == 0)
continue;
// TransferBatches are pushed in front of BG.Batches. The first one may
// not have all caches used.
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
BG.Batches.front()->getCount();
const uptr BytesInBG = NumBlocks * BlockSize;
// Given the randomness property, we try to release the pages only if the
// bytes used by free blocks exceed certain proportion of group size. Note
// that this heuristic only applies when all the spaces in a BatchGroup
// are allocated.
if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize <
(100U - 1U - BlockSize / 16U)) {
continue;
}
BG.PushedBlocksAtLastCheckpoint = BG.PushedBlocks;
// Note that we don't always visit blocks in each BatchGroup so that we
// may miss the chance of releasing certain pages that cross BatchGroups.
Context.markFreeBlocks(BG.Batches, DecompactPtr, Region->RegionBeg);
}
if (!Context.hasBlockMarked())
return 0;
auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
if (Recorder.getReleasedRangesCount() > 0) {
Region->ReleaseInfo.PushedBlocksAtLastRelease =
Region->Stats.PushedBlocks;
Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
}
Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
return Recorder.getReleasedBytes();
}
};
} // namespace scudo
#endif // SCUDO_PRIMARY64_H_