| //===-- combined.h ----------------------------------------------*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef SCUDO_COMBINED_H_ | 
 | #define SCUDO_COMBINED_H_ | 
 |  | 
 | #include "allocator_config_wrapper.h" | 
 | #include "atomic_helpers.h" | 
 | #include "chunk.h" | 
 | #include "common.h" | 
 | #include "flags.h" | 
 | #include "flags_parser.h" | 
 | #include "mem_map.h" | 
 | #include "memtag.h" | 
 | #include "mutex.h" | 
 | #include "options.h" | 
 | #include "quarantine.h" | 
 | #include "report.h" | 
 | #include "secondary.h" | 
 | #include "size_class_allocator.h" | 
 | #include "stack_depot.h" | 
 | #include "string_utils.h" | 
 | #include "tracing.h" | 
 | #include "tsd.h" | 
 |  | 
 | #include "scudo/interface.h" | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 | #include "gwp_asan/guarded_pool_allocator.h" | 
 | #include "gwp_asan/optional/backtrace.h" | 
 | #include "gwp_asan/optional/segv_handler.h" | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 | extern "C" inline void EmptyCallback() {} | 
 |  | 
 | #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE | 
 | // This function is not part of the NDK so it does not appear in any public | 
 | // header files. We only declare/use it when targeting the platform. | 
 | extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf, | 
 |                                                      size_t num_entries); | 
 | #endif | 
 |  | 
 | namespace scudo { | 
 |  | 
 | template <class Config, void (*PostInitCallback)(void) = EmptyCallback> | 
 | class Allocator { | 
 | public: | 
 |   using AllocatorConfig = BaseConfig<Config>; | 
 |   using PrimaryT = | 
 |       typename AllocatorConfig::template PrimaryT<PrimaryConfig<Config>>; | 
 |   using SecondaryT = | 
 |       typename AllocatorConfig::template SecondaryT<SecondaryConfig<Config>>; | 
 |   using SizeClassAllocatorT = typename PrimaryT::SizeClassAllocatorT; | 
 |   typedef Allocator<Config, PostInitCallback> ThisT; | 
 |   typedef typename AllocatorConfig::template TSDRegistryT<ThisT> TSDRegistryT; | 
 |  | 
 |   void callPostInitCallback() { | 
 |     pthread_once(&PostInitNonce, PostInitCallback); | 
 |   } | 
 |  | 
 |   struct QuarantineCallback { | 
 |     explicit QuarantineCallback(ThisT &Instance, | 
 |                                 SizeClassAllocatorT &SizeClassAllocator) | 
 |         : Allocator(Instance), SizeClassAllocator(SizeClassAllocator) {} | 
 |  | 
 |     // Chunk recycling function, returns a quarantined chunk to the backend, | 
 |     // first making sure it hasn't been tampered with. | 
 |     void recycle(void *Ptr) { | 
 |       Chunk::UnpackedHeader Header; | 
 |       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); | 
 |       if (UNLIKELY(Header.State != Chunk::State::Quarantined)) | 
 |         reportInvalidChunkState(AllocatorAction::Recycling, Ptr); | 
 |  | 
 |       Header.State = Chunk::State::Available; | 
 |       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); | 
 |  | 
 |       if (allocatorSupportsMemoryTagging<AllocatorConfig>()) | 
 |         Ptr = untagPointer(Ptr); | 
 |       void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header); | 
 |       SizeClassAllocator.deallocate(Header.ClassId, BlockBegin); | 
 |     } | 
 |  | 
 |     // We take a shortcut when allocating a quarantine batch by working with the | 
 |     // appropriate class ID instead of using Size. The compiler should optimize | 
 |     // the class ID computation and work with the associated cache directly. | 
 |     void *allocate(UNUSED uptr Size) { | 
 |       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( | 
 |           sizeof(QuarantineBatch) + Chunk::getHeaderSize()); | 
 |       void *Ptr = SizeClassAllocator.allocate(QuarantineClassId); | 
 |       // Quarantine batch allocation failure is fatal. | 
 |       if (UNLIKELY(!Ptr)) | 
 |         reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId)); | 
 |  | 
 |       Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) + | 
 |                                      Chunk::getHeaderSize()); | 
 |       Chunk::UnpackedHeader Header = {}; | 
 |       Header.ClassId = QuarantineClassId & Chunk::ClassIdMask; | 
 |       Header.SizeOrUnusedBytes = sizeof(QuarantineBatch); | 
 |       Header.State = Chunk::State::Quarantined; | 
 |       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); | 
 |  | 
 |       // Reset tag to 0 as this chunk may have been previously used for a tagged | 
 |       // user allocation. | 
 |       if (UNLIKELY(useMemoryTagging<AllocatorConfig>( | 
 |               Allocator.Primary.Options.load()))) | 
 |         storeTags(reinterpret_cast<uptr>(Ptr), | 
 |                   reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch)); | 
 |  | 
 |       return Ptr; | 
 |     } | 
 |  | 
 |     void deallocate(void *Ptr) { | 
 |       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( | 
 |           sizeof(QuarantineBatch) + Chunk::getHeaderSize()); | 
 |       Chunk::UnpackedHeader Header; | 
 |       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); | 
 |  | 
 |       if (UNLIKELY(Header.State != Chunk::State::Quarantined)) | 
 |         reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); | 
 |       DCHECK_EQ(Header.ClassId, QuarantineClassId); | 
 |       DCHECK_EQ(Header.Offset, 0); | 
 |       DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch)); | 
 |  | 
 |       Header.State = Chunk::State::Available; | 
 |       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); | 
 |       SizeClassAllocator.deallocate( | 
 |           QuarantineClassId, | 
 |           reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) - | 
 |                                    Chunk::getHeaderSize())); | 
 |     } | 
 |  | 
 |   private: | 
 |     ThisT &Allocator; | 
 |     SizeClassAllocatorT &SizeClassAllocator; | 
 |   }; | 
 |  | 
 |   typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT; | 
 |   typedef typename QuarantineT::CacheT QuarantineCacheT; | 
 |  | 
 |   void init() { | 
 |     // Make sure that the page size is initialized if it's not a constant. | 
 |     CHECK_NE(getPageSizeCached(), 0U); | 
 |  | 
 |     performSanityChecks(); | 
 |  | 
 |     // Check if hardware CRC32 is supported in the binary and by the platform, | 
 |     // if so, opt for the CRC32 hardware version of the checksum. | 
 |     if (&computeHardwareCRC32 && hasHardwareCRC32()) | 
 |       HashAlgorithm = Checksum::HardwareCRC32; | 
 |  | 
 |     if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie)))) | 
 |       Cookie = static_cast<u32>(getMonotonicTime() ^ | 
 |                                 (reinterpret_cast<uptr>(this) >> 4)); | 
 |  | 
 |     initFlags(); | 
 |     reportUnrecognizedFlags(); | 
 |  | 
 |     // Store some flags locally. | 
 |     if (getFlags()->may_return_null) | 
 |       Primary.Options.set(OptionBit::MayReturnNull); | 
 |     if (getFlags()->zero_contents) | 
 |       Primary.Options.setFillContentsMode(ZeroFill); | 
 |     else if (getFlags()->pattern_fill_contents) | 
 |       Primary.Options.setFillContentsMode(PatternOrZeroFill); | 
 |     if (getFlags()->dealloc_type_mismatch) | 
 |       Primary.Options.set(OptionBit::DeallocTypeMismatch); | 
 |     if (getFlags()->delete_size_mismatch) | 
 |       Primary.Options.set(OptionBit::DeleteSizeMismatch); | 
 |     if (allocatorSupportsMemoryTagging<AllocatorConfig>() && | 
 |         systemSupportsMemoryTagging()) | 
 |       Primary.Options.set(OptionBit::UseMemoryTagging); | 
 |  | 
 |     QuarantineMaxChunkSize = | 
 |         static_cast<u32>(getFlags()->quarantine_max_chunk_size); | 
 |  | 
 |     Stats.init(); | 
 |     // TODO(chiahungduan): Given that we support setting the default value in | 
 |     // the PrimaryConfig and CacheConfig, consider to deprecate the use of | 
 |     // `release_to_os_interval_ms` flag. | 
 |     const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms; | 
 |     Primary.init(ReleaseToOsIntervalMs); | 
 |     Secondary.init(&Stats, ReleaseToOsIntervalMs); | 
 |     if (!AllocatorConfig::getQuarantineDisabled()) { | 
 |       Quarantine.init( | 
 |           static_cast<uptr>(getFlags()->quarantine_size_kb << 10), | 
 |           static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10)); | 
 |     } | 
 |   } | 
 |  | 
 |   void enableRingBuffer() NO_THREAD_SAFETY_ANALYSIS { | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     if (RB) | 
 |       RB->Depot->enable(); | 
 |     RingBufferInitLock.unlock(); | 
 |   } | 
 |  | 
 |   void disableRingBuffer() NO_THREAD_SAFETY_ANALYSIS { | 
 |     RingBufferInitLock.lock(); | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     if (RB) | 
 |       RB->Depot->disable(); | 
 |   } | 
 |  | 
 |   // Initialize the embedded GWP-ASan instance. Requires the main allocator to | 
 |   // be functional, best called from PostInitCallback. | 
 |   void initGwpAsan() { | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     gwp_asan::options::Options Opt; | 
 |     Opt.Enabled = getFlags()->GWP_ASAN_Enabled; | 
 |     Opt.MaxSimultaneousAllocations = | 
 |         getFlags()->GWP_ASAN_MaxSimultaneousAllocations; | 
 |     Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate; | 
 |     Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers; | 
 |     Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable; | 
 |     // Embedded GWP-ASan is locked through the Scudo atfork handler (via | 
 |     // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork | 
 |     // handler. | 
 |     Opt.InstallForkHandlers = false; | 
 |     Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction(); | 
 |     GuardedAlloc.init(Opt); | 
 |  | 
 |     if (Opt.InstallSignalHandlers) | 
 |       gwp_asan::segv_handler::installSignalHandlers( | 
 |           &GuardedAlloc, Printf, | 
 |           gwp_asan::backtrace::getPrintBacktraceFunction(), | 
 |           gwp_asan::backtrace::getSegvBacktraceFunction(), | 
 |           Opt.Recoverable); | 
 |  | 
 |     GuardedAllocSlotSize = | 
 |         GuardedAlloc.getAllocatorState()->maximumAllocationSize(); | 
 |     Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) * | 
 |                             GuardedAllocSlotSize); | 
 | #endif // GWP_ASAN_HOOKS | 
 |   } | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 |   const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() { | 
 |     return GuardedAlloc.getMetadataRegion(); | 
 |   } | 
 |  | 
 |   const gwp_asan::AllocatorState *getGwpAsanAllocatorState() { | 
 |     return GuardedAlloc.getAllocatorState(); | 
 |   } | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 |   ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) { | 
 |     TSDRegistry.initThreadMaybe(this, MinimalInit); | 
 |   } | 
 |  | 
 |   void unmapTestOnly() { | 
 |     unmapRingBuffer(); | 
 |     TSDRegistry.unmapTestOnly(this); | 
 |     Primary.unmapTestOnly(); | 
 |     Secondary.unmapTestOnly(); | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     if (getFlags()->GWP_ASAN_InstallSignalHandlers) | 
 |       gwp_asan::segv_handler::uninstallSignalHandlers(); | 
 |     GuardedAlloc.uninitTestOnly(); | 
 | #endif // GWP_ASAN_HOOKS | 
 |   } | 
 |  | 
 |   TSDRegistryT *getTSDRegistry() { return &TSDRegistry; } | 
 |   QuarantineT *getQuarantine() { return &Quarantine; } | 
 |  | 
 |   // The Cache must be provided zero-initialized. | 
 |   void initAllocator(SizeClassAllocatorT *SizeClassAllocator) { | 
 |     SizeClassAllocator->init(&Stats, &Primary); | 
 |   } | 
 |  | 
 |   // Release the resources used by a TSD, which involves: | 
 |   // - draining the local quarantine cache to the global quarantine; | 
 |   // - releasing the cached pointers back to the Primary; | 
 |   // - unlinking the local stats from the global ones (destroying the cache does | 
 |   //   the last two items). | 
 |   void commitBack(TSD<ThisT> *TSD) { | 
 |     TSD->assertLocked(/*BypassCheck=*/true); | 
 |     if (!AllocatorConfig::getQuarantineDisabled()) { | 
 |       Quarantine.drain(&TSD->getQuarantineCache(), | 
 |                        QuarantineCallback(*this, TSD->getSizeClassAllocator())); | 
 |     } | 
 |     TSD->getSizeClassAllocator().destroy(&Stats); | 
 |   } | 
 |  | 
 |   void drainCache(TSD<ThisT> *TSD) { | 
 |     TSD->assertLocked(/*BypassCheck=*/true); | 
 |     if (!AllocatorConfig::getQuarantineDisabled()) { | 
 |       Quarantine.drainAndRecycle( | 
 |           &TSD->getQuarantineCache(), | 
 |           QuarantineCallback(*this, TSD->getSizeClassAllocator())); | 
 |     } | 
 |     TSD->getSizeClassAllocator().drain(); | 
 |   } | 
 |   void drainCaches() { TSDRegistry.drainCaches(this); } | 
 |  | 
 |   ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) { | 
 |     if (!allocatorSupportsMemoryTagging<AllocatorConfig>()) | 
 |       return Ptr; | 
 |     auto UntaggedPtr = untagPointer(Ptr); | 
 |     if (UntaggedPtr != Ptr) | 
 |       return UntaggedPtr; | 
 |     // Secondary, or pointer allocated while memory tagging is unsupported or | 
 |     // disabled. The tag mismatch is okay in the latter case because tags will | 
 |     // not be checked. | 
 |     return addHeaderTag(Ptr); | 
 |   } | 
 |  | 
 |   ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) { | 
 |     if (!allocatorSupportsMemoryTagging<AllocatorConfig>()) | 
 |       return Ptr; | 
 |     return addFixedTag(Ptr, 2); | 
 |   } | 
 |  | 
 |   ALWAYS_INLINE void *addHeaderTag(void *Ptr) { | 
 |     return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr))); | 
 |   } | 
 |  | 
 |   NOINLINE u32 collectStackTrace(UNUSED StackDepot *Depot) { | 
 | #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE | 
 |     // Discard collectStackTrace() frame and allocator function frame. | 
 |     constexpr uptr DiscardFrames = 2; | 
 |     uptr Stack[MaxTraceSize + DiscardFrames]; | 
 |     uptr Size = | 
 |         android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames); | 
 |     Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames); | 
 |     return Depot->insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size); | 
 | #else | 
 |     return 0; | 
 | #endif | 
 |   } | 
 |  | 
 |   uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr, | 
 |                                          uptr ClassId) { | 
 |     if (!Options.get(OptionBit::UseOddEvenTags)) | 
 |       return 0; | 
 |  | 
 |     // If a chunk's tag is odd, we want the tags of the surrounding blocks to be | 
 |     // even, and vice versa. Blocks are laid out Size bytes apart, and adding | 
 |     // Size to Ptr will flip the least significant set bit of Size in Ptr, so | 
 |     // that bit will have the pattern 010101... for consecutive blocks, which we | 
 |     // can use to determine which tag mask to use. | 
 |     return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1); | 
 |   } | 
 |  | 
 |   NOINLINE void *allocate(uptr Size, Chunk::Origin Origin, | 
 |                           uptr Alignment = MinAlignment, | 
 |                           bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS { | 
 |     initThreadMaybe(); | 
 |  | 
 |     const Options Options = Primary.Options.load(); | 
 |     if (UNLIKELY(Alignment > MaxAlignment)) { | 
 |       if (Options.get(OptionBit::MayReturnNull)) | 
 |         return nullptr; | 
 |       reportAlignmentTooBig(Alignment, MaxAlignment); | 
 |     } | 
 |     if (Alignment < MinAlignment) | 
 |       Alignment = MinAlignment; | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     if (UNLIKELY(GuardedAlloc.shouldSample())) { | 
 |       if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) { | 
 |         Stats.lock(); | 
 |         Stats.add(StatAllocated, GuardedAllocSlotSize); | 
 |         Stats.sub(StatFree, GuardedAllocSlotSize); | 
 |         Stats.unlock(); | 
 |         return Ptr; | 
 |       } | 
 |     } | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 |     const FillContentsMode FillContents = ZeroContents ? ZeroFill | 
 |                                           : TSDRegistry.getDisableMemInit() | 
 |                                               ? NoFill | 
 |                                               : Options.getFillContentsMode(); | 
 |  | 
 |     // If the requested size happens to be 0 (more common than you might think), | 
 |     // allocate MinAlignment bytes on top of the header. Then add the extra | 
 |     // bytes required to fulfill the alignment requirements: we allocate enough | 
 |     // to be sure that there will be an address in the block that will satisfy | 
 |     // the alignment. | 
 |     const uptr NeededSize = | 
 |         roundUp(Size, MinAlignment) + | 
 |         ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize()); | 
 |  | 
 |     // Takes care of extravagantly large sizes as well as integer overflows. | 
 |     static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, ""); | 
 |     if (UNLIKELY(Size >= MaxAllowedMallocSize)) { | 
 |       if (Options.get(OptionBit::MayReturnNull)) | 
 |         return nullptr; | 
 |       reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize); | 
 |     } | 
 |     DCHECK_LE(Size, NeededSize); | 
 |  | 
 |     void *Block = nullptr; | 
 |     uptr ClassId = 0; | 
 |     uptr SecondaryBlockEnd = 0; | 
 |     if (LIKELY(PrimaryT::canAllocate(NeededSize))) { | 
 |       ClassId = SizeClassMap::getClassIdBySize(NeededSize); | 
 |       DCHECK_NE(ClassId, 0U); | 
 |       typename TSDRegistryT::ScopedTSD TSD(TSDRegistry); | 
 |       Block = TSD->getSizeClassAllocator().allocate(ClassId); | 
 |       // If the allocation failed, retry in each successively larger class until | 
 |       // it fits. If it fails to fit in the largest class, fallback to the | 
 |       // Secondary. | 
 |       if (UNLIKELY(!Block)) { | 
 |         while (ClassId < SizeClassMap::LargestClassId && !Block) | 
 |           Block = TSD->getSizeClassAllocator().allocate(++ClassId); | 
 |         if (!Block) | 
 |           ClassId = 0; | 
 |       } | 
 |     } | 
 |     if (UNLIKELY(ClassId == 0)) { | 
 |       Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd, | 
 |                                  FillContents); | 
 |     } | 
 |  | 
 |     if (UNLIKELY(!Block)) { | 
 |       if (Options.get(OptionBit::MayReturnNull)) | 
 |         return nullptr; | 
 |       printStats(); | 
 |       reportOutOfMemory(NeededSize); | 
 |     } | 
 |  | 
 |     const uptr UserPtr = roundUp( | 
 |         reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(), Alignment); | 
 |     const uptr SizeOrUnusedBytes = | 
 |         ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size); | 
 |  | 
 |     if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) { | 
 |       return initChunk(ClassId, Origin, Block, UserPtr, SizeOrUnusedBytes, | 
 |                        FillContents); | 
 |     } | 
 |  | 
 |     return initChunkWithMemoryTagging(ClassId, Origin, Block, UserPtr, Size, | 
 |                                       SizeOrUnusedBytes, FillContents); | 
 |   } | 
 |  | 
 |   NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0, | 
 |                            UNUSED uptr Alignment = MinAlignment) { | 
 |     if (UNLIKELY(!Ptr)) | 
 |       return; | 
 |  | 
 |     // For a deallocation, we only ensure minimal initialization, meaning thread | 
 |     // local data will be left uninitialized for now (when using ELF TLS). The | 
 |     // fallback cache will be used instead. This is a workaround for a situation | 
 |     // where the only heap operation performed in a thread would be a free past | 
 |     // the TLS destructors, ending up in initialized thread specific data never | 
 |     // being destroyed properly. Any other heap operation will do a full init. | 
 |     initThreadMaybe(/*MinimalInit=*/true); | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { | 
 |       GuardedAlloc.deallocate(Ptr); | 
 |       Stats.lock(); | 
 |       Stats.add(StatFree, GuardedAllocSlotSize); | 
 |       Stats.sub(StatAllocated, GuardedAllocSlotSize); | 
 |       Stats.unlock(); | 
 |       return; | 
 |     } | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 |     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))) | 
 |       reportMisalignedPointer(AllocatorAction::Deallocating, Ptr); | 
 |  | 
 |     void *TaggedPtr = Ptr; | 
 |     Ptr = getHeaderTaggedPointer(Ptr); | 
 |  | 
 |     Chunk::UnpackedHeader Header; | 
 |     Chunk::loadHeader(Cookie, Ptr, &Header); | 
 |  | 
 |     if (UNLIKELY(Header.State != Chunk::State::Allocated)) | 
 |       reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); | 
 |  | 
 |     const Options Options = Primary.Options.load(); | 
 |     if (Options.get(OptionBit::DeallocTypeMismatch)) { | 
 |       if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) { | 
 |         // With the exception of memalign'd chunks, that can be still be free'd. | 
 |         if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign || | 
 |             Origin != Chunk::Origin::Malloc) | 
 |           reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr, | 
 |                                     Header.OriginOrWasZeroed, Origin); | 
 |       } | 
 |     } | 
 |  | 
 |     const uptr Size = getSize(Ptr, &Header); | 
 |     if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) { | 
 |       if (UNLIKELY(DeleteSize != Size)) | 
 |         reportDeleteSizeMismatch(Ptr, DeleteSize, Size); | 
 |     } | 
 |  | 
 |     quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size); | 
 |   } | 
 |  | 
 |   void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) { | 
 |     initThreadMaybe(); | 
 |  | 
 |     const Options Options = Primary.Options.load(); | 
 |     if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) { | 
 |       if (Options.get(OptionBit::MayReturnNull)) | 
 |         return nullptr; | 
 |       reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize); | 
 |     } | 
 |  | 
 |     // The following cases are handled by the C wrappers. | 
 |     DCHECK_NE(OldPtr, nullptr); | 
 |     DCHECK_NE(NewSize, 0); | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { | 
 |       uptr OldSize = GuardedAlloc.getSize(OldPtr); | 
 |       void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); | 
 |       if (NewPtr) | 
 |         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); | 
 |       GuardedAlloc.deallocate(OldPtr); | 
 |       Stats.lock(); | 
 |       Stats.add(StatFree, GuardedAllocSlotSize); | 
 |       Stats.sub(StatAllocated, GuardedAllocSlotSize); | 
 |       Stats.unlock(); | 
 |       return NewPtr; | 
 |     } | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 |     void *OldTaggedPtr = OldPtr; | 
 |     OldPtr = getHeaderTaggedPointer(OldPtr); | 
 |  | 
 |     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment))) | 
 |       reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr); | 
 |  | 
 |     Chunk::UnpackedHeader Header; | 
 |     Chunk::loadHeader(Cookie, OldPtr, &Header); | 
 |  | 
 |     if (UNLIKELY(Header.State != Chunk::State::Allocated)) | 
 |       reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr); | 
 |  | 
 |     // Pointer has to be allocated with a malloc-type function. Some | 
 |     // applications think that it is OK to realloc a memalign'ed pointer, which | 
 |     // will trigger this check. It really isn't. | 
 |     if (Options.get(OptionBit::DeallocTypeMismatch)) { | 
 |       if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc)) | 
 |         reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr, | 
 |                                   Header.OriginOrWasZeroed, | 
 |                                   Chunk::Origin::Malloc); | 
 |     } | 
 |  | 
 |     void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header); | 
 |     uptr BlockEnd; | 
 |     uptr OldSize; | 
 |     const uptr ClassId = Header.ClassId; | 
 |     if (LIKELY(ClassId)) { | 
 |       BlockEnd = reinterpret_cast<uptr>(BlockBegin) + | 
 |                  SizeClassMap::getSizeByClassId(ClassId); | 
 |       OldSize = Header.SizeOrUnusedBytes; | 
 |     } else { | 
 |       BlockEnd = SecondaryT::getBlockEnd(BlockBegin); | 
 |       OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) + | 
 |                             Header.SizeOrUnusedBytes); | 
 |     } | 
 |     // If the new chunk still fits in the previously allocated block (with a | 
 |     // reasonable delta), we just keep the old block, and update the chunk | 
 |     // header to reflect the size change. | 
 |     if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) { | 
 |       if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) { | 
 |         // If we have reduced the size, set the extra bytes to the fill value | 
 |         // so that we are ready to grow it again in the future. | 
 |         if (NewSize < OldSize) { | 
 |           const FillContentsMode FillContents = | 
 |               TSDRegistry.getDisableMemInit() ? NoFill | 
 |                                               : Options.getFillContentsMode(); | 
 |           if (FillContents != NoFill) { | 
 |             memset(reinterpret_cast<char *>(OldTaggedPtr) + NewSize, | 
 |                    FillContents == ZeroFill ? 0 : PatternFillByte, | 
 |                    OldSize - NewSize); | 
 |           } | 
 |         } | 
 |  | 
 |         Header.SizeOrUnusedBytes = | 
 |             (ClassId ? NewSize | 
 |                      : BlockEnd - | 
 |                            (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) & | 
 |             Chunk::SizeOrUnusedBytesMask; | 
 |         Chunk::storeHeader(Cookie, OldPtr, &Header); | 
 |         if (UNLIKELY(useMemoryTagging<AllocatorConfig>(Options))) { | 
 |           if (ClassId) { | 
 |             resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize, | 
 |                               reinterpret_cast<uptr>(OldTaggedPtr) + NewSize, | 
 |                               NewSize, untagPointer(BlockEnd)); | 
 |             storePrimaryAllocationStackMaybe(Options, OldPtr); | 
 |           } else { | 
 |             storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize); | 
 |           } | 
 |         } | 
 |         return OldTaggedPtr; | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise we allocate a new one, and deallocate the old one. Some | 
 |     // allocators will allocate an even larger chunk (by a fixed factor) to | 
 |     // allow for potential further in-place realloc. The gains of such a trick | 
 |     // are currently unclear. | 
 |     void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); | 
 |     if (LIKELY(NewPtr)) { | 
 |       memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize)); | 
 |       quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize); | 
 |     } | 
 |     return NewPtr; | 
 |   } | 
 |  | 
 |   // TODO(kostyak): disable() is currently best-effort. There are some small | 
 |   //                windows of time when an allocation could still succeed after | 
 |   //                this function finishes. We will revisit that later. | 
 |   void disable() NO_THREAD_SAFETY_ANALYSIS { | 
 |     initThreadMaybe(); | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     GuardedAlloc.disable(); | 
 | #endif | 
 |     TSDRegistry.disable(); | 
 |     Stats.disable(); | 
 |     if (!AllocatorConfig::getQuarantineDisabled()) | 
 |       Quarantine.disable(); | 
 |     Primary.disable(); | 
 |     Secondary.disable(); | 
 |     disableRingBuffer(); | 
 |   } | 
 |  | 
 |   void enable() NO_THREAD_SAFETY_ANALYSIS { | 
 |     initThreadMaybe(); | 
 |     enableRingBuffer(); | 
 |     Secondary.enable(); | 
 |     Primary.enable(); | 
 |     if (!AllocatorConfig::getQuarantineDisabled()) | 
 |       Quarantine.enable(); | 
 |     Stats.enable(); | 
 |     TSDRegistry.enable(); | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     GuardedAlloc.enable(); | 
 | #endif | 
 |   } | 
 |  | 
 |   // The function returns the amount of bytes required to store the statistics, | 
 |   // which might be larger than the amount of bytes provided. Note that the | 
 |   // statistics buffer is not necessarily constant between calls to this | 
 |   // function. This can be called with a null buffer or zero size for buffer | 
 |   // sizing purposes. | 
 |   uptr getStats(char *Buffer, uptr Size) { | 
 |     ScopedString Str; | 
 |     const uptr Length = getStats(&Str) + 1; | 
 |     if (Length < Size) | 
 |       Size = Length; | 
 |     if (Buffer && Size) { | 
 |       memcpy(Buffer, Str.data(), Size); | 
 |       Buffer[Size - 1] = '\0'; | 
 |     } | 
 |     return Length; | 
 |   } | 
 |  | 
 |   void printStats() { | 
 |     ScopedString Str; | 
 |     getStats(&Str); | 
 |     Str.output(); | 
 |   } | 
 |  | 
 |   void printFragmentationInfo() { | 
 |     ScopedString Str; | 
 |     Primary.getFragmentationInfo(&Str); | 
 |     // Secondary allocator dumps the fragmentation data in getStats(). | 
 |     Str.output(); | 
 |   } | 
 |  | 
 |   void releaseToOS(ReleaseToOS ReleaseType) { | 
 |     initThreadMaybe(); | 
 |     SCUDO_SCOPED_TRACE(GetReleaseToOSTraceName(ReleaseType)); | 
 |     if (ReleaseType == ReleaseToOS::ForceAll) | 
 |       drainCaches(); | 
 |     Primary.releaseToOS(ReleaseType); | 
 |     Secondary.releaseToOS(ReleaseType); | 
 |   } | 
 |  | 
 |   // Iterate over all chunks and call a callback for all busy chunks located | 
 |   // within the provided memory range. Said callback must not use this allocator | 
 |   // or a deadlock can ensue. This fits Android's malloc_iterate() needs. | 
 |   void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback, | 
 |                          void *Arg) { | 
 |     initThreadMaybe(); | 
 |     if (archSupportsMemoryTagging()) | 
 |       Base = untagPointer(Base); | 
 |     const uptr From = Base; | 
 |     const uptr To = Base + Size; | 
 |     bool MayHaveTaggedPrimary = | 
 |         allocatorSupportsMemoryTagging<AllocatorConfig>() && | 
 |         systemSupportsMemoryTagging(); | 
 |     auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback, | 
 |                    Arg](uptr Block) { | 
 |       if (Block < From || Block >= To) | 
 |         return; | 
 |       uptr Chunk; | 
 |       Chunk::UnpackedHeader Header; | 
 |       if (MayHaveTaggedPrimary) { | 
 |         // A chunk header can either have a zero tag (tagged primary) or the | 
 |         // header tag (secondary, or untagged primary). We don't know which so | 
 |         // try both. | 
 |         ScopedDisableMemoryTagChecks x; | 
 |         if (!getChunkFromBlock(Block, &Chunk, &Header) && | 
 |             !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) | 
 |           return; | 
 |       } else { | 
 |         if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) | 
 |           return; | 
 |       } | 
 |       if (Header.State == Chunk::State::Allocated) { | 
 |         uptr TaggedChunk = Chunk; | 
 |         if (allocatorSupportsMemoryTagging<AllocatorConfig>()) | 
 |           TaggedChunk = untagPointer(TaggedChunk); | 
 |         if (useMemoryTagging<AllocatorConfig>(Primary.Options.load())) | 
 |           TaggedChunk = loadTag(Chunk); | 
 |         Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header), | 
 |                  Arg); | 
 |       } | 
 |     }; | 
 |     Primary.iterateOverBlocks(Lambda); | 
 |     Secondary.iterateOverBlocks(Lambda); | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg); | 
 | #endif | 
 |   } | 
 |  | 
 |   bool canReturnNull() { | 
 |     initThreadMaybe(); | 
 |     return Primary.Options.load().get(OptionBit::MayReturnNull); | 
 |   } | 
 |  | 
 |   bool setOption(Option O, sptr Value) { | 
 |     initThreadMaybe(); | 
 |     if (O == Option::MemtagTuning) { | 
 |       // Enabling odd/even tags involves a tradeoff between use-after-free | 
 |       // detection and buffer overflow detection. Odd/even tags make it more | 
 |       // likely for buffer overflows to be detected by increasing the size of | 
 |       // the guaranteed "red zone" around the allocation, but on the other hand | 
 |       // use-after-free is less likely to be detected because the tag space for | 
 |       // any particular chunk is cut in half. Therefore we use this tuning | 
 |       // setting to control whether odd/even tags are enabled. | 
 |       if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW) | 
 |         Primary.Options.set(OptionBit::UseOddEvenTags); | 
 |       else if (Value == M_MEMTAG_TUNING_UAF) | 
 |         Primary.Options.clear(OptionBit::UseOddEvenTags); | 
 |       return true; | 
 |     } else { | 
 |       // We leave it to the various sub-components to decide whether or not they | 
 |       // want to handle the option, but we do not want to short-circuit | 
 |       // execution if one of the setOption was to return false. | 
 |       const bool PrimaryResult = Primary.setOption(O, Value); | 
 |       const bool SecondaryResult = Secondary.setOption(O, Value); | 
 |       const bool RegistryResult = TSDRegistry.setOption(O, Value); | 
 |       return PrimaryResult && SecondaryResult && RegistryResult; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Return the usable size for a given chunk. Technically we lie, as we just | 
 |   // report the actual size of a chunk. This is done to counteract code actively | 
 |   // writing past the end of a chunk (like sqlite3) when the usable size allows | 
 |   // for it, which then forces realloc to copy the usable size of a chunk as | 
 |   // opposed to its actual size. | 
 |   uptr getUsableSize(const void *Ptr) { | 
 |     if (UNLIKELY(!Ptr)) | 
 |       return 0; | 
 |  | 
 |     return getAllocSize(Ptr); | 
 |   } | 
 |  | 
 |   uptr getAllocSize(const void *Ptr) { | 
 |     initThreadMaybe(); | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) | 
 |       return GuardedAlloc.getSize(Ptr); | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 |     Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr)); | 
 |     Chunk::UnpackedHeader Header; | 
 |     Chunk::loadHeader(Cookie, Ptr, &Header); | 
 |  | 
 |     // Getting the alloc size of a chunk only makes sense if it's allocated. | 
 |     if (UNLIKELY(Header.State != Chunk::State::Allocated)) | 
 |       reportInvalidChunkState(AllocatorAction::Sizing, Ptr); | 
 |  | 
 |     return getSize(Ptr, &Header); | 
 |   } | 
 |  | 
 |   void getStats(StatCounters S) { | 
 |     initThreadMaybe(); | 
 |     Stats.get(S); | 
 |   } | 
 |  | 
 |   // Returns true if the pointer provided was allocated by the current | 
 |   // allocator instance, which is compliant with tcmalloc's ownership concept. | 
 |   // A corrupted chunk will not be reported as owned, which is WAI. | 
 |   bool isOwned(const void *Ptr) { | 
 |     initThreadMaybe(); | 
 |     // If the allocation is not owned, the tags could be wrong. | 
 |     ScopedDisableMemoryTagChecks x( | 
 |         useMemoryTagging<AllocatorConfig>(Primary.Options.load())); | 
 | #ifdef GWP_ASAN_HOOKS | 
 |     if (GuardedAlloc.pointerIsMine(Ptr)) | 
 |       return true; | 
 | #endif // GWP_ASAN_HOOKS | 
 |     if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)) | 
 |       return false; | 
 |     Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr)); | 
 |     Chunk::UnpackedHeader Header; | 
 |     return Chunk::isValid(Cookie, Ptr, &Header) && | 
 |            Header.State == Chunk::State::Allocated; | 
 |   } | 
 |  | 
 |   bool useMemoryTaggingTestOnly() const { | 
 |     return useMemoryTagging<AllocatorConfig>(Primary.Options.load()); | 
 |   } | 
 |   void disableMemoryTagging() { | 
 |     // If we haven't been initialized yet, we need to initialize now in order to | 
 |     // prevent a future call to initThreadMaybe() from enabling memory tagging | 
 |     // based on feature detection. But don't call initThreadMaybe() because it | 
 |     // may end up calling the allocator (via pthread_atfork, via the post-init | 
 |     // callback), which may cause mappings to be created with memory tagging | 
 |     // enabled. | 
 |     TSDRegistry.initOnceMaybe(this); | 
 |     if (allocatorSupportsMemoryTagging<AllocatorConfig>()) { | 
 |       Secondary.disableMemoryTagging(); | 
 |       Primary.Options.clear(OptionBit::UseMemoryTagging); | 
 |     } | 
 |   } | 
 |  | 
 |   void setTrackAllocationStacks(bool Track) { | 
 |     initThreadMaybe(); | 
 |     if (getFlags()->allocation_ring_buffer_size <= 0) { | 
 |       DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks)); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (Track) { | 
 |       initRingBufferMaybe(); | 
 |       Primary.Options.set(OptionBit::TrackAllocationStacks); | 
 |     } else | 
 |       Primary.Options.clear(OptionBit::TrackAllocationStacks); | 
 |   } | 
 |  | 
 |   void setFillContents(FillContentsMode FillContents) { | 
 |     initThreadMaybe(); | 
 |     Primary.Options.setFillContentsMode(FillContents); | 
 |   } | 
 |  | 
 |   void setAddLargeAllocationSlack(bool AddSlack) { | 
 |     initThreadMaybe(); | 
 |     if (AddSlack) | 
 |       Primary.Options.set(OptionBit::AddLargeAllocationSlack); | 
 |     else | 
 |       Primary.Options.clear(OptionBit::AddLargeAllocationSlack); | 
 |   } | 
 |  | 
 |   const char *getStackDepotAddress() { | 
 |     initThreadMaybe(); | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     return RB ? reinterpret_cast<char *>(RB->Depot) : nullptr; | 
 |   } | 
 |  | 
 |   uptr getStackDepotSize() { | 
 |     initThreadMaybe(); | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     return RB ? RB->StackDepotSize : 0; | 
 |   } | 
 |  | 
 |   const char *getRegionInfoArrayAddress() const { | 
 |     return Primary.getRegionInfoArrayAddress(); | 
 |   } | 
 |  | 
 |   static uptr getRegionInfoArraySize() { | 
 |     return PrimaryT::getRegionInfoArraySize(); | 
 |   } | 
 |  | 
 |   const char *getRingBufferAddress() { | 
 |     initThreadMaybe(); | 
 |     return reinterpret_cast<char *>(getRingBuffer()); | 
 |   } | 
 |  | 
 |   uptr getRingBufferSize() { | 
 |     initThreadMaybe(); | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     return RB && RB->RingBufferElements | 
 |                ? ringBufferSizeInBytes(RB->RingBufferElements) | 
 |                : 0; | 
 |   } | 
 |  | 
 |   static const uptr MaxTraceSize = 64; | 
 |  | 
 |   static void collectTraceMaybe(const StackDepot *Depot, | 
 |                                 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) { | 
 |     uptr RingPos, Size; | 
 |     if (!Depot->find(Hash, &RingPos, &Size)) | 
 |       return; | 
 |     for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I) | 
 |       Trace[I] = static_cast<uintptr_t>(Depot->at(RingPos + I)); | 
 |   } | 
 |  | 
 |   static void getErrorInfo(struct scudo_error_info *ErrorInfo, | 
 |                            uintptr_t FaultAddr, const char *DepotPtr, | 
 |                            size_t DepotSize, const char *RegionInfoPtr, | 
 |                            const char *RingBufferPtr, size_t RingBufferSize, | 
 |                            const char *Memory, const char *MemoryTags, | 
 |                            uintptr_t MemoryAddr, size_t MemorySize) { | 
 |     // N.B. we need to support corrupted data in any of the buffers here. We get | 
 |     // this information from an external process (the crashing process) that | 
 |     // should not be able to crash the crash dumper (crash_dump on Android). | 
 |     // See also the get_error_info_fuzzer. | 
 |     *ErrorInfo = {}; | 
 |     if (!allocatorSupportsMemoryTagging<AllocatorConfig>() || | 
 |         MemoryAddr + MemorySize < MemoryAddr) | 
 |       return; | 
 |  | 
 |     const StackDepot *Depot = nullptr; | 
 |     if (DepotPtr) { | 
 |       // check for corrupted StackDepot. First we need to check whether we can | 
 |       // read the metadata, then whether the metadata matches the size. | 
 |       if (DepotSize < sizeof(*Depot)) | 
 |         return; | 
 |       Depot = reinterpret_cast<const StackDepot *>(DepotPtr); | 
 |       if (!Depot->isValid(DepotSize)) | 
 |         return; | 
 |     } | 
 |  | 
 |     size_t NextErrorReport = 0; | 
 |  | 
 |     // Check for OOB in the current block and the two surrounding blocks. Beyond | 
 |     // that, UAF is more likely. | 
 |     if (extractTag(FaultAddr) != 0) | 
 |       getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, | 
 |                          RegionInfoPtr, Memory, MemoryTags, MemoryAddr, | 
 |                          MemorySize, 0, 2); | 
 |  | 
 |     // Check the ring buffer. For primary allocations this will only find UAF; | 
 |     // for secondary allocations we can find either UAF or OOB. | 
 |     getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, | 
 |                            RingBufferPtr, RingBufferSize); | 
 |  | 
 |     // Check for OOB in the 28 blocks surrounding the 3 we checked earlier. | 
 |     // Beyond that we are likely to hit false positives. | 
 |     if (extractTag(FaultAddr) != 0) | 
 |       getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, | 
 |                          RegionInfoPtr, Memory, MemoryTags, MemoryAddr, | 
 |                          MemorySize, 2, 16); | 
 |   } | 
 |  | 
 | private: | 
 |   typedef typename PrimaryT::SizeClassMap SizeClassMap; | 
 |  | 
 |   static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG; | 
 |   static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable. | 
 |   static const uptr MinAlignment = 1UL << MinAlignmentLog; | 
 |   static const uptr MaxAlignment = 1UL << MaxAlignmentLog; | 
 |   static const uptr MaxAllowedMallocSize = | 
 |       FIRST_32_SECOND_64(1UL << 31, 1ULL << 40); | 
 |  | 
 |   static_assert(MinAlignment >= sizeof(Chunk::PackedHeader), | 
 |                 "Minimal alignment must at least cover a chunk header."); | 
 |   static_assert(!allocatorSupportsMemoryTagging<AllocatorConfig>() || | 
 |                     MinAlignment >= archMemoryTagGranuleSize(), | 
 |                 ""); | 
 |  | 
 |   static const u32 BlockMarker = 0x44554353U; | 
 |  | 
 |   // These are indexes into an "array" of 32-bit values that store information | 
 |   // inline with a chunk that is relevant to diagnosing memory tag faults, where | 
 |   // 0 corresponds to the address of the user memory. This means that only | 
 |   // negative indexes may be used. The smallest index that may be used is -2, | 
 |   // which corresponds to 8 bytes before the user memory, because the chunk | 
 |   // header size is 8 bytes and in allocators that support memory tagging the | 
 |   // minimum alignment is at least the tag granule size (16 on aarch64). | 
 |   static const sptr MemTagAllocationTraceIndex = -2; | 
 |   static const sptr MemTagAllocationTidIndex = -1; | 
 |  | 
 |   u32 Cookie = 0; | 
 |   u32 QuarantineMaxChunkSize = 0; | 
 |  | 
 |   GlobalStats Stats; | 
 |   PrimaryT Primary; | 
 |   SecondaryT Secondary; | 
 |   QuarantineT Quarantine; | 
 |   TSDRegistryT TSDRegistry; | 
 |   pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT; | 
 |  | 
 | #ifdef GWP_ASAN_HOOKS | 
 |   gwp_asan::GuardedPoolAllocator GuardedAlloc; | 
 |   uptr GuardedAllocSlotSize = 0; | 
 | #endif // GWP_ASAN_HOOKS | 
 |  | 
 |   struct AllocationRingBuffer { | 
 |     struct Entry { | 
 |       atomic_uptr Ptr; | 
 |       atomic_uptr AllocationSize; | 
 |       atomic_u32 AllocationTrace; | 
 |       atomic_u32 AllocationTid; | 
 |       atomic_u32 DeallocationTrace; | 
 |       atomic_u32 DeallocationTid; | 
 |     }; | 
 |     StackDepot *Depot = nullptr; | 
 |     uptr StackDepotSize = 0; | 
 |     MemMapT RawRingBufferMap; | 
 |     MemMapT RawStackDepotMap; | 
 |     u32 RingBufferElements = 0; | 
 |     atomic_uptr Pos; | 
 |     // An array of Size (at least one) elements of type Entry is immediately | 
 |     // following to this struct. | 
 |   }; | 
 |   static_assert(sizeof(AllocationRingBuffer) % | 
 |                         alignof(typename AllocationRingBuffer::Entry) == | 
 |                     0, | 
 |                 "invalid alignment"); | 
 |  | 
 |   // Lock to initialize the RingBuffer | 
 |   HybridMutex RingBufferInitLock; | 
 |  | 
 |   // Pointer to memory mapped area starting with AllocationRingBuffer struct, | 
 |   // and immediately followed by Size elements of type Entry. | 
 |   atomic_uptr RingBufferAddress = {}; | 
 |  | 
 |   AllocationRingBuffer *getRingBuffer() { | 
 |     return reinterpret_cast<AllocationRingBuffer *>( | 
 |         atomic_load(&RingBufferAddress, memory_order_acquire)); | 
 |   } | 
 |  | 
 |   // The following might get optimized out by the compiler. | 
 |   NOINLINE void performSanityChecks() { | 
 |     // Verify that the header offset field can hold the maximum offset. In the | 
 |     // case of the Secondary allocator, it takes care of alignment and the | 
 |     // offset will always be small. In the case of the Primary, the worst case | 
 |     // scenario happens in the last size class, when the backend allocation | 
 |     // would already be aligned on the requested alignment, which would happen | 
 |     // to be the maximum alignment that would fit in that size class. As a | 
 |     // result, the maximum offset will be at most the maximum alignment for the | 
 |     // last size class minus the header size, in multiples of MinAlignment. | 
 |     Chunk::UnpackedHeader Header = {}; | 
 |     const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex( | 
 |                                          SizeClassMap::MaxSize - MinAlignment); | 
 |     const uptr MaxOffset = | 
 |         (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; | 
 |     Header.Offset = MaxOffset & Chunk::OffsetMask; | 
 |     if (UNLIKELY(Header.Offset != MaxOffset)) | 
 |       reportSanityCheckError("offset"); | 
 |  | 
 |     // Verify that we can fit the maximum size or amount of unused bytes in the | 
 |     // header. Given that the Secondary fits the allocation to a page, the worst | 
 |     // case scenario happens in the Primary. It will depend on the second to | 
 |     // last and last class sizes, as well as the dynamic base for the Primary. | 
 |     // The following is an over-approximation that works for our needs. | 
 |     const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1; | 
 |     Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; | 
 |     if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)) | 
 |       reportSanityCheckError("size (or unused bytes)"); | 
 |  | 
 |     const uptr LargestClassId = SizeClassMap::LargestClassId; | 
 |     Header.ClassId = LargestClassId; | 
 |     if (UNLIKELY(Header.ClassId != LargestClassId)) | 
 |       reportSanityCheckError("class ID"); | 
 |   } | 
 |  | 
 |   static inline void *getBlockBegin(const void *Ptr, | 
 |                                     Chunk::UnpackedHeader *Header) { | 
 |     return reinterpret_cast<void *>( | 
 |         reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() - | 
 |         (static_cast<uptr>(Header->Offset) << MinAlignmentLog)); | 
 |   } | 
 |  | 
 |   // Return the size of a chunk as requested during its allocation. | 
 |   inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) { | 
 |     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; | 
 |     if (LIKELY(Header->ClassId)) | 
 |       return SizeOrUnusedBytes; | 
 |     if (allocatorSupportsMemoryTagging<AllocatorConfig>()) | 
 |       Ptr = untagPointer(const_cast<void *>(Ptr)); | 
 |     return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) - | 
 |            reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes; | 
 |   } | 
 |  | 
 |   ALWAYS_INLINE void *initChunk(const uptr ClassId, const Chunk::Origin Origin, | 
 |                                 void *Block, const uptr UserPtr, | 
 |                                 const uptr SizeOrUnusedBytes, | 
 |                                 const FillContentsMode FillContents) { | 
 |     // Compute the default pointer before adding the header tag | 
 |     const uptr DefaultAlignedPtr = | 
 |         reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(); | 
 |  | 
 |     Block = addHeaderTag(Block); | 
 |     // Only do content fill when it's from primary allocator because secondary | 
 |     // allocator has filled the content. | 
 |     if (ClassId != 0 && UNLIKELY(FillContents != NoFill)) { | 
 |       // This condition is not necessarily unlikely, but since memset is | 
 |       // costly, we might as well mark it as such. | 
 |       memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte, | 
 |              PrimaryT::getSizeByClassId(ClassId)); | 
 |     } | 
 |  | 
 |     Chunk::UnpackedHeader Header = {}; | 
 |  | 
 |     if (UNLIKELY(DefaultAlignedPtr != UserPtr)) { | 
 |       const uptr Offset = UserPtr - DefaultAlignedPtr; | 
 |       DCHECK_GE(Offset, 2 * sizeof(u32)); | 
 |       // The BlockMarker has no security purpose, but is specifically meant for | 
 |       // the chunk iteration function that can be used in debugging situations. | 
 |       // It is the only situation where we have to locate the start of a chunk | 
 |       // based on its block address. | 
 |       reinterpret_cast<u32 *>(Block)[0] = BlockMarker; | 
 |       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset); | 
 |       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; | 
 |     } | 
 |  | 
 |     Header.ClassId = ClassId & Chunk::ClassIdMask; | 
 |     Header.State = Chunk::State::Allocated; | 
 |     Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; | 
 |     Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask; | 
 |     Chunk::storeHeader(Cookie, reinterpret_cast<void *>(addHeaderTag(UserPtr)), | 
 |                        &Header); | 
 |  | 
 |     return reinterpret_cast<void *>(UserPtr); | 
 |   } | 
 |  | 
 |   NOINLINE void * | 
 |   initChunkWithMemoryTagging(const uptr ClassId, const Chunk::Origin Origin, | 
 |                              void *Block, const uptr UserPtr, const uptr Size, | 
 |                              const uptr SizeOrUnusedBytes, | 
 |                              const FillContentsMode FillContents) { | 
 |     const Options Options = Primary.Options.load(); | 
 |     DCHECK(useMemoryTagging<AllocatorConfig>(Options)); | 
 |  | 
 |     // Compute the default pointer before adding the header tag | 
 |     const uptr DefaultAlignedPtr = | 
 |         reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(); | 
 |  | 
 |     void *Ptr = reinterpret_cast<void *>(UserPtr); | 
 |     void *TaggedPtr = Ptr; | 
 |  | 
 |     if (LIKELY(ClassId)) { | 
 |       // Init the primary chunk. | 
 |       // | 
 |       // We only need to zero or tag the contents for Primary backed | 
 |       // allocations. We only set tags for primary allocations in order to avoid | 
 |       // faulting potentially large numbers of pages for large secondary | 
 |       // allocations. We assume that guard pages are enough to protect these | 
 |       // allocations. | 
 |       // | 
 |       // FIXME: When the kernel provides a way to set the background tag of a | 
 |       // mapping, we should be able to tag secondary allocations as well. | 
 |       // | 
 |       // When memory tagging is enabled, zeroing the contents is done as part of | 
 |       // setting the tag. | 
 |  | 
 |       Chunk::UnpackedHeader Header; | 
 |       const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId); | 
 |       const uptr BlockUptr = reinterpret_cast<uptr>(Block); | 
 |       const uptr BlockEnd = BlockUptr + BlockSize; | 
 |       // If possible, try to reuse the UAF tag that was set by deallocate(). | 
 |       // For simplicity, only reuse tags if we have the same start address as | 
 |       // the previous allocation. This handles the majority of cases since | 
 |       // most allocations will not be more aligned than the minimum alignment. | 
 |       // | 
 |       // We need to handle situations involving reclaimed chunks, and retag | 
 |       // the reclaimed portions if necessary. In the case where the chunk is | 
 |       // fully reclaimed, the chunk's header will be zero, which will trigger | 
 |       // the code path for new mappings and invalid chunks that prepares the | 
 |       // chunk from scratch. There are three possibilities for partial | 
 |       // reclaiming: | 
 |       // | 
 |       // (1) Header was reclaimed, data was partially reclaimed. | 
 |       // (2) Header was not reclaimed, all data was reclaimed (e.g. because | 
 |       //     data started on a page boundary). | 
 |       // (3) Header was not reclaimed, data was partially reclaimed. | 
 |       // | 
 |       // Case (1) will be handled in the same way as for full reclaiming, | 
 |       // since the header will be zero. | 
 |       // | 
 |       // We can detect case (2) by loading the tag from the start | 
 |       // of the chunk. If it is zero, it means that either all data was | 
 |       // reclaimed (since we never use zero as the chunk tag), or that the | 
 |       // previous allocation was of size zero. Either way, we need to prepare | 
 |       // a new chunk from scratch. | 
 |       // | 
 |       // We can detect case (3) by moving to the next page (if covered by the | 
 |       // chunk) and loading the tag of its first granule. If it is zero, it | 
 |       // means that all following pages may need to be retagged. On the other | 
 |       // hand, if it is nonzero, we can assume that all following pages are | 
 |       // still tagged, according to the logic that if any of the pages | 
 |       // following the next page were reclaimed, the next page would have been | 
 |       // reclaimed as well. | 
 |       uptr TaggedUserPtr; | 
 |       uptr PrevUserPtr; | 
 |       if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) && | 
 |           PrevUserPtr == UserPtr && | 
 |           (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) { | 
 |         uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes; | 
 |         const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached()); | 
 |         if (NextPage < PrevEnd && loadTag(NextPage) != NextPage) | 
 |           PrevEnd = NextPage; | 
 |         TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr); | 
 |         resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd); | 
 |         if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) { | 
 |           // If an allocation needs to be zeroed (i.e. calloc) we can normally | 
 |           // avoid zeroing the memory now since we can rely on memory having | 
 |           // been zeroed on free, as this is normally done while setting the | 
 |           // UAF tag. But if tagging was disabled per-thread when the memory | 
 |           // was freed, it would not have been retagged and thus zeroed, and | 
 |           // therefore it needs to be zeroed now. | 
 |           memset(TaggedPtr, 0, | 
 |                  Min(Size, roundUp(PrevEnd - TaggedUserPtr, | 
 |                                    archMemoryTagGranuleSize()))); | 
 |         } else if (Size) { | 
 |           // Clear any stack metadata that may have previously been stored in | 
 |           // the chunk data. | 
 |           memset(TaggedPtr, 0, archMemoryTagGranuleSize()); | 
 |         } | 
 |       } else { | 
 |         const uptr OddEvenMask = | 
 |             computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId); | 
 |         TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd); | 
 |       } | 
 |       storePrimaryAllocationStackMaybe(Options, Ptr); | 
 |     } else { | 
 |       // Init the secondary chunk. | 
 |  | 
 |       Block = addHeaderTag(Block); | 
 |       Ptr = addHeaderTag(Ptr); | 
 |       storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr)); | 
 |       storeSecondaryAllocationStackMaybe(Options, Ptr, Size); | 
 |     } | 
 |  | 
 |     Chunk::UnpackedHeader Header = {}; | 
 |  | 
 |     if (UNLIKELY(DefaultAlignedPtr != UserPtr)) { | 
 |       const uptr Offset = UserPtr - DefaultAlignedPtr; | 
 |       DCHECK_GE(Offset, 2 * sizeof(u32)); | 
 |       // The BlockMarker has no security purpose, but is specifically meant for | 
 |       // the chunk iteration function that can be used in debugging situations. | 
 |       // It is the only situation where we have to locate the start of a chunk | 
 |       // based on its block address. | 
 |       reinterpret_cast<u32 *>(Block)[0] = BlockMarker; | 
 |       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset); | 
 |       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; | 
 |     } | 
 |  | 
 |     Header.ClassId = ClassId & Chunk::ClassIdMask; | 
 |     Header.State = Chunk::State::Allocated; | 
 |     Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; | 
 |     Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask; | 
 |     Chunk::storeHeader(Cookie, Ptr, &Header); | 
 |  | 
 |     return TaggedPtr; | 
 |   } | 
 |  | 
 |   void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr, | 
 |                                    Chunk::UnpackedHeader *Header, | 
 |                                    uptr Size) NO_THREAD_SAFETY_ANALYSIS { | 
 |     void *Ptr = getHeaderTaggedPointer(TaggedPtr); | 
 |     // If the quarantine is disabled, the actual size of a chunk is 0 or larger | 
 |     // than the maximum allowed, we return a chunk directly to the backend. | 
 |     // This purposefully underflows for Size == 0. | 
 |     const bool BypassQuarantine = AllocatorConfig::getQuarantineDisabled() || | 
 |                                   !Quarantine.getCacheSize() || | 
 |                                   ((Size - 1) >= QuarantineMaxChunkSize) || | 
 |                                   !Header->ClassId; | 
 |     if (BypassQuarantine) | 
 |       Header->State = Chunk::State::Available; | 
 |     else | 
 |       Header->State = Chunk::State::Quarantined; | 
 |  | 
 |     if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) | 
 |       Header->OriginOrWasZeroed = 0U; | 
 |     else { | 
 |       Header->OriginOrWasZeroed = | 
 |           Header->ClassId && !TSDRegistry.getDisableMemInit(); | 
 |     } | 
 |  | 
 |     Chunk::storeHeader(Cookie, Ptr, Header); | 
 |  | 
 |     if (BypassQuarantine) { | 
 |       void *BlockBegin; | 
 |       if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) { | 
 |         // Must do this after storeHeader because loadHeader uses a tagged ptr. | 
 |         if (allocatorSupportsMemoryTagging<AllocatorConfig>()) | 
 |           Ptr = untagPointer(Ptr); | 
 |         BlockBegin = getBlockBegin(Ptr, Header); | 
 |       } else { | 
 |         BlockBegin = retagBlock(Options, TaggedPtr, Ptr, Header, Size, true); | 
 |       } | 
 |  | 
 |       const uptr ClassId = Header->ClassId; | 
 |       if (LIKELY(ClassId)) { | 
 |         bool CacheDrained; | 
 |         { | 
 |           typename TSDRegistryT::ScopedTSD TSD(TSDRegistry); | 
 |           CacheDrained = | 
 |               TSD->getSizeClassAllocator().deallocate(ClassId, BlockBegin); | 
 |         } | 
 |         // When we have drained some blocks back to the Primary from TSD, that | 
 |         // implies that we may have the chance to release some pages as well. | 
 |         // Note that in order not to block other thread's accessing the TSD, | 
 |         // release the TSD first then try the page release. | 
 |         if (CacheDrained) | 
 |           Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal); | 
 |       } else { | 
 |         Secondary.deallocate(Options, BlockBegin); | 
 |       } | 
 |     } else { | 
 |       if (UNLIKELY(useMemoryTagging<AllocatorConfig>(Options))) | 
 |         retagBlock(Options, TaggedPtr, Ptr, Header, Size, false); | 
 |       typename TSDRegistryT::ScopedTSD TSD(TSDRegistry); | 
 |       Quarantine.put(&TSD->getQuarantineCache(), | 
 |                      QuarantineCallback(*this, TSD->getSizeClassAllocator()), | 
 |                      Ptr, Size); | 
 |     } | 
 |   } | 
 |  | 
 |   NOINLINE void *retagBlock(const Options &Options, void *TaggedPtr, void *&Ptr, | 
 |                             Chunk::UnpackedHeader *Header, const uptr Size, | 
 |                             bool BypassQuarantine) { | 
 |     DCHECK(useMemoryTagging<AllocatorConfig>(Options)); | 
 |  | 
 |     const u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr)); | 
 |     storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size); | 
 |     if (Header->ClassId && !TSDRegistry.getDisableMemInit()) { | 
 |       uptr TaggedBegin, TaggedEnd; | 
 |       const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe( | 
 |           Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)), | 
 |           Header->ClassId); | 
 |       // Exclude the previous tag so that immediate use after free is | 
 |       // detected 100% of the time. | 
 |       setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin, | 
 |                    &TaggedEnd); | 
 |     } | 
 |  | 
 |     Ptr = untagPointer(Ptr); | 
 |     void *BlockBegin = getBlockBegin(Ptr, Header); | 
 |     if (BypassQuarantine && !Header->ClassId) { | 
 |       storeTags(reinterpret_cast<uptr>(BlockBegin), | 
 |                 reinterpret_cast<uptr>(Ptr)); | 
 |     } | 
 |  | 
 |     return BlockBegin; | 
 |   } | 
 |  | 
 |   bool getChunkFromBlock(uptr Block, uptr *Chunk, | 
 |                          Chunk::UnpackedHeader *Header) { | 
 |     *Chunk = | 
 |         Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block)); | 
 |     return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header); | 
 |   } | 
 |  | 
 |   static uptr getChunkOffsetFromBlock(const char *Block) { | 
 |     u32 Offset = 0; | 
 |     if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker) | 
 |       Offset = reinterpret_cast<const u32 *>(Block)[1]; | 
 |     return Offset + Chunk::getHeaderSize(); | 
 |   } | 
 |  | 
 |   // Set the tag of the granule past the end of the allocation to 0, to catch | 
 |   // linear overflows even if a previous larger allocation used the same block | 
 |   // and tag. Only do this if the granule past the end is in our block, because | 
 |   // this would otherwise lead to a SEGV if the allocation covers the entire | 
 |   // block and our block is at the end of a mapping. The tag of the next block's | 
 |   // header granule will be set to 0, so it will serve the purpose of catching | 
 |   // linear overflows in this case. | 
 |   // | 
 |   // For allocations of size 0 we do not end up storing the address tag to the | 
 |   // memory tag space, which getInlineErrorInfo() normally relies on to match | 
 |   // address tags against chunks. To allow matching in this case we store the | 
 |   // address tag in the first byte of the chunk. | 
 |   void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) { | 
 |     DCHECK_EQ(BlockEnd, untagPointer(BlockEnd)); | 
 |     uptr UntaggedEnd = untagPointer(End); | 
 |     if (UntaggedEnd != BlockEnd) { | 
 |       storeTag(UntaggedEnd); | 
 |       if (Size == 0) | 
 |         *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End); | 
 |     } | 
 |   } | 
 |  | 
 |   void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask, | 
 |                            uptr BlockEnd) { | 
 |     // Prepare the granule before the chunk to store the chunk header by setting | 
 |     // its tag to 0. Normally its tag will already be 0, but in the case where a | 
 |     // chunk holding a low alignment allocation is reused for a higher alignment | 
 |     // allocation, the chunk may already have a non-zero tag from the previous | 
 |     // allocation. | 
 |     storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize()); | 
 |  | 
 |     uptr TaggedBegin, TaggedEnd; | 
 |     setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd); | 
 |  | 
 |     storeEndMarker(TaggedEnd, Size, BlockEnd); | 
 |     return reinterpret_cast<void *>(TaggedBegin); | 
 |   } | 
 |  | 
 |   void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize, | 
 |                          uptr BlockEnd) { | 
 |     uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize()); | 
 |     uptr RoundNewPtr; | 
 |     if (RoundOldPtr >= NewPtr) { | 
 |       // If the allocation is shrinking we just need to set the tag past the end | 
 |       // of the allocation to 0. See explanation in storeEndMarker() above. | 
 |       RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize()); | 
 |     } else { | 
 |       // Set the memory tag of the region | 
 |       // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize())) | 
 |       // to the pointer tag stored in OldPtr. | 
 |       RoundNewPtr = storeTags(RoundOldPtr, NewPtr); | 
 |     } | 
 |     storeEndMarker(RoundNewPtr, NewSize, BlockEnd); | 
 |   } | 
 |  | 
 |   void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) { | 
 |     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) | 
 |       return; | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     if (!RB) | 
 |       return; | 
 |     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); | 
 |     Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(RB->Depot); | 
 |     Ptr32[MemTagAllocationTidIndex] = getThreadID(); | 
 |   } | 
 |  | 
 |   void storeRingBufferEntry(AllocationRingBuffer *RB, void *Ptr, | 
 |                             u32 AllocationTrace, u32 AllocationTid, | 
 |                             uptr AllocationSize, u32 DeallocationTrace, | 
 |                             u32 DeallocationTid) { | 
 |     uptr Pos = atomic_fetch_add(&RB->Pos, 1, memory_order_relaxed); | 
 |     typename AllocationRingBuffer::Entry *Entry = | 
 |         getRingBufferEntry(RB, Pos % RB->RingBufferElements); | 
 |  | 
 |     // First invalidate our entry so that we don't attempt to interpret a | 
 |     // partially written state in getSecondaryErrorInfo(). The fences below | 
 |     // ensure that the compiler does not move the stores to Ptr in between the | 
 |     // stores to the other fields. | 
 |     atomic_store_relaxed(&Entry->Ptr, 0); | 
 |  | 
 |     __atomic_signal_fence(__ATOMIC_SEQ_CST); | 
 |     atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace); | 
 |     atomic_store_relaxed(&Entry->AllocationTid, AllocationTid); | 
 |     atomic_store_relaxed(&Entry->AllocationSize, AllocationSize); | 
 |     atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace); | 
 |     atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid); | 
 |     __atomic_signal_fence(__ATOMIC_SEQ_CST); | 
 |  | 
 |     atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr)); | 
 |   } | 
 |  | 
 |   void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr, | 
 |                                           uptr Size) { | 
 |     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) | 
 |       return; | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     if (!RB) | 
 |       return; | 
 |     u32 Trace = collectStackTrace(RB->Depot); | 
 |     u32 Tid = getThreadID(); | 
 |  | 
 |     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); | 
 |     Ptr32[MemTagAllocationTraceIndex] = Trace; | 
 |     Ptr32[MemTagAllocationTidIndex] = Tid; | 
 |  | 
 |     storeRingBufferEntry(RB, untagPointer(Ptr), Trace, Tid, Size, 0, 0); | 
 |   } | 
 |  | 
 |   void storeDeallocationStackMaybe(const Options &Options, void *Ptr, | 
 |                                    u8 PrevTag, uptr Size) { | 
 |     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) | 
 |       return; | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     if (!RB) | 
 |       return; | 
 |     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); | 
 |     u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex]; | 
 |     u32 AllocationTid = Ptr32[MemTagAllocationTidIndex]; | 
 |  | 
 |     u32 DeallocationTrace = collectStackTrace(RB->Depot); | 
 |     u32 DeallocationTid = getThreadID(); | 
 |  | 
 |     storeRingBufferEntry(RB, addFixedTag(untagPointer(Ptr), PrevTag), | 
 |                          AllocationTrace, AllocationTid, Size, | 
 |                          DeallocationTrace, DeallocationTid); | 
 |   } | 
 |  | 
 |   static const size_t NumErrorReports = | 
 |       sizeof(((scudo_error_info *)nullptr)->reports) / | 
 |       sizeof(((scudo_error_info *)nullptr)->reports[0]); | 
 |  | 
 |   static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo, | 
 |                                  size_t &NextErrorReport, uintptr_t FaultAddr, | 
 |                                  const StackDepot *Depot, | 
 |                                  const char *RegionInfoPtr, const char *Memory, | 
 |                                  const char *MemoryTags, uintptr_t MemoryAddr, | 
 |                                  size_t MemorySize, size_t MinDistance, | 
 |                                  size_t MaxDistance) { | 
 |     uptr UntaggedFaultAddr = untagPointer(FaultAddr); | 
 |     u8 FaultAddrTag = extractTag(FaultAddr); | 
 |     BlockInfo Info = | 
 |         PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr); | 
 |  | 
 |     auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool { | 
 |       if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr || | 
 |           Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize) | 
 |         return false; | 
 |       *Data = &Memory[Addr - MemoryAddr]; | 
 |       *Tag = static_cast<u8>( | 
 |           MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]); | 
 |       return true; | 
 |     }; | 
 |  | 
 |     auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr, | 
 |                          Chunk::UnpackedHeader *Header, const u32 **Data, | 
 |                          u8 *Tag) { | 
 |       const char *BlockBegin; | 
 |       u8 BlockBeginTag; | 
 |       if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag)) | 
 |         return false; | 
 |       uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin); | 
 |       *ChunkAddr = Addr + ChunkOffset; | 
 |  | 
 |       const char *ChunkBegin; | 
 |       if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag)) | 
 |         return false; | 
 |       *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>( | 
 |           ChunkBegin - Chunk::getHeaderSize()); | 
 |       *Data = reinterpret_cast<const u32 *>(ChunkBegin); | 
 |  | 
 |       // Allocations of size 0 will have stashed the tag in the first byte of | 
 |       // the chunk, see storeEndMarker(). | 
 |       if (Header->SizeOrUnusedBytes == 0) | 
 |         *Tag = static_cast<u8>(*ChunkBegin); | 
 |  | 
 |       return true; | 
 |     }; | 
 |  | 
 |     if (NextErrorReport == NumErrorReports) | 
 |       return; | 
 |  | 
 |     auto CheckOOB = [&](uptr BlockAddr) { | 
 |       if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd) | 
 |         return false; | 
 |  | 
 |       uptr ChunkAddr; | 
 |       Chunk::UnpackedHeader Header; | 
 |       const u32 *Data; | 
 |       uint8_t Tag; | 
 |       if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) || | 
 |           Header.State != Chunk::State::Allocated || Tag != FaultAddrTag) | 
 |         return false; | 
 |  | 
 |       auto *R = &ErrorInfo->reports[NextErrorReport++]; | 
 |       R->error_type = | 
 |           UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW; | 
 |       R->allocation_address = ChunkAddr; | 
 |       R->allocation_size = Header.SizeOrUnusedBytes; | 
 |       if (Depot) { | 
 |         collectTraceMaybe(Depot, R->allocation_trace, | 
 |                           Data[MemTagAllocationTraceIndex]); | 
 |       } | 
 |       R->allocation_tid = Data[MemTagAllocationTidIndex]; | 
 |       return NextErrorReport == NumErrorReports; | 
 |     }; | 
 |  | 
 |     if (MinDistance == 0 && CheckOOB(Info.BlockBegin)) | 
 |       return; | 
 |  | 
 |     for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I) | 
 |       if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) || | 
 |           CheckOOB(Info.BlockBegin - I * Info.BlockSize)) | 
 |         return; | 
 |   } | 
 |  | 
 |   static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo, | 
 |                                      size_t &NextErrorReport, | 
 |                                      uintptr_t FaultAddr, | 
 |                                      const StackDepot *Depot, | 
 |                                      const char *RingBufferPtr, | 
 |                                      size_t RingBufferSize) { | 
 |     auto *RingBuffer = | 
 |         reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr); | 
 |     size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize); | 
 |     if (!RingBuffer || RingBufferElements == 0 || !Depot) | 
 |       return; | 
 |     uptr Pos = atomic_load_relaxed(&RingBuffer->Pos); | 
 |  | 
 |     for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements && | 
 |                            NextErrorReport != NumErrorReports; | 
 |          --I) { | 
 |       auto *Entry = getRingBufferEntry(RingBuffer, I % RingBufferElements); | 
 |       uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr); | 
 |       if (!EntryPtr) | 
 |         continue; | 
 |  | 
 |       uptr UntaggedEntryPtr = untagPointer(EntryPtr); | 
 |       uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize); | 
 |       u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace); | 
 |       u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid); | 
 |       u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace); | 
 |       u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid); | 
 |  | 
 |       if (DeallocationTid) { | 
 |         // For UAF we only consider in-bounds fault addresses because | 
 |         // out-of-bounds UAF is rare and attempting to detect it is very likely | 
 |         // to result in false positives. | 
 |         if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize) | 
 |           continue; | 
 |       } else { | 
 |         // Ring buffer OOB is only possible with secondary allocations. In this | 
 |         // case we are guaranteed a guard region of at least a page on either | 
 |         // side of the allocation (guard page on the right, guard page + tagged | 
 |         // region on the left), so ignore any faults outside of that range. | 
 |         if (FaultAddr < EntryPtr - getPageSizeCached() || | 
 |             FaultAddr >= EntryPtr + EntrySize + getPageSizeCached()) | 
 |           continue; | 
 |  | 
 |         // For UAF the ring buffer will contain two entries, one for the | 
 |         // allocation and another for the deallocation. Don't report buffer | 
 |         // overflow/underflow using the allocation entry if we have already | 
 |         // collected a report from the deallocation entry. | 
 |         bool Found = false; | 
 |         for (uptr J = 0; J != NextErrorReport; ++J) { | 
 |           if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) { | 
 |             Found = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (Found) | 
 |           continue; | 
 |       } | 
 |  | 
 |       auto *R = &ErrorInfo->reports[NextErrorReport++]; | 
 |       if (DeallocationTid) | 
 |         R->error_type = USE_AFTER_FREE; | 
 |       else if (FaultAddr < EntryPtr) | 
 |         R->error_type = BUFFER_UNDERFLOW; | 
 |       else | 
 |         R->error_type = BUFFER_OVERFLOW; | 
 |  | 
 |       R->allocation_address = UntaggedEntryPtr; | 
 |       R->allocation_size = EntrySize; | 
 |       collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace); | 
 |       R->allocation_tid = AllocationTid; | 
 |       collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace); | 
 |       R->deallocation_tid = DeallocationTid; | 
 |     } | 
 |   } | 
 |  | 
 |   uptr getStats(ScopedString *Str) { | 
 |     Primary.getStats(Str); | 
 |     Secondary.getStats(Str); | 
 |     if (!AllocatorConfig::getQuarantineDisabled()) | 
 |       Quarantine.getStats(Str); | 
 |     TSDRegistry.getStats(Str); | 
 |     return Str->length(); | 
 |   } | 
 |  | 
 |   static typename AllocationRingBuffer::Entry * | 
 |   getRingBufferEntry(AllocationRingBuffer *RB, uptr N) { | 
 |     char *RBEntryStart = | 
 |         &reinterpret_cast<char *>(RB)[sizeof(AllocationRingBuffer)]; | 
 |     return &reinterpret_cast<typename AllocationRingBuffer::Entry *>( | 
 |         RBEntryStart)[N]; | 
 |   } | 
 |   static const typename AllocationRingBuffer::Entry * | 
 |   getRingBufferEntry(const AllocationRingBuffer *RB, uptr N) { | 
 |     const char *RBEntryStart = | 
 |         &reinterpret_cast<const char *>(RB)[sizeof(AllocationRingBuffer)]; | 
 |     return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>( | 
 |         RBEntryStart)[N]; | 
 |   } | 
 |  | 
 |   void initRingBufferMaybe() { | 
 |     ScopedLock L(RingBufferInitLock); | 
 |     if (getRingBuffer() != nullptr) | 
 |       return; | 
 |  | 
 |     int ring_buffer_size = getFlags()->allocation_ring_buffer_size; | 
 |     if (ring_buffer_size <= 0) | 
 |       return; | 
 |  | 
 |     u32 AllocationRingBufferSize = static_cast<u32>(ring_buffer_size); | 
 |  | 
 |     // We store alloc and free stacks for each entry. | 
 |     constexpr u32 kStacksPerRingBufferEntry = 2; | 
 |     constexpr u32 kMaxU32Pow2 = ~(UINT32_MAX >> 1); | 
 |     static_assert(isPowerOfTwo(kMaxU32Pow2)); | 
 |     // On Android we always have 3 frames at the bottom: __start_main, | 
 |     // __libc_init, main, and 3 at the top: malloc, scudo_malloc and | 
 |     // Allocator::allocate. This leaves 10 frames for the user app. The next | 
 |     // smallest power of two (8) would only leave 2, which is clearly too | 
 |     // little. | 
 |     constexpr u32 kFramesPerStack = 16; | 
 |     static_assert(isPowerOfTwo(kFramesPerStack)); | 
 |  | 
 |     if (AllocationRingBufferSize > kMaxU32Pow2 / kStacksPerRingBufferEntry) | 
 |       return; | 
 |     u32 TabSize = static_cast<u32>(roundUpPowerOfTwo(kStacksPerRingBufferEntry * | 
 |                                                      AllocationRingBufferSize)); | 
 |     if (TabSize > UINT32_MAX / kFramesPerStack) | 
 |       return; | 
 |     u32 RingSize = static_cast<u32>(TabSize * kFramesPerStack); | 
 |  | 
 |     uptr StackDepotSize = sizeof(StackDepot) + sizeof(atomic_u64) * RingSize + | 
 |                           sizeof(atomic_u32) * TabSize; | 
 |     MemMapT DepotMap; | 
 |     DepotMap.map( | 
 |         /*Addr=*/0U, roundUp(StackDepotSize, getPageSizeCached()), | 
 |         "scudo:stack_depot"); | 
 |     auto *Depot = reinterpret_cast<StackDepot *>(DepotMap.getBase()); | 
 |     Depot->init(RingSize, TabSize); | 
 |  | 
 |     MemMapT MemMap; | 
 |     MemMap.map( | 
 |         /*Addr=*/0U, | 
 |         roundUp(ringBufferSizeInBytes(AllocationRingBufferSize), | 
 |                 getPageSizeCached()), | 
 |         "scudo:ring_buffer"); | 
 |     auto *RB = reinterpret_cast<AllocationRingBuffer *>(MemMap.getBase()); | 
 |     RB->RawRingBufferMap = MemMap; | 
 |     RB->RingBufferElements = AllocationRingBufferSize; | 
 |     RB->Depot = Depot; | 
 |     RB->StackDepotSize = StackDepotSize; | 
 |     RB->RawStackDepotMap = DepotMap; | 
 |  | 
 |     atomic_store(&RingBufferAddress, reinterpret_cast<uptr>(RB), | 
 |                  memory_order_release); | 
 |   } | 
 |  | 
 |   void unmapRingBuffer() { | 
 |     AllocationRingBuffer *RB = getRingBuffer(); | 
 |     if (RB == nullptr) | 
 |       return; | 
 |     // N.B. because RawStackDepotMap is part of RawRingBufferMap, the order | 
 |     // is very important. | 
 |     RB->RawStackDepotMap.unmap(); | 
 |     // Note that the `RB->RawRingBufferMap` is stored on the pages managed by | 
 |     // itself. Take over the ownership before calling unmap() so that any | 
 |     // operation along with unmap() won't touch inaccessible pages. | 
 |     MemMapT RawRingBufferMap = RB->RawRingBufferMap; | 
 |     RawRingBufferMap.unmap(); | 
 |     atomic_store(&RingBufferAddress, 0, memory_order_release); | 
 |   } | 
 |  | 
 |   static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) { | 
 |     return sizeof(AllocationRingBuffer) + | 
 |            RingBufferElements * sizeof(typename AllocationRingBuffer::Entry); | 
 |   } | 
 |  | 
 |   static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) { | 
 |     if (Bytes < sizeof(AllocationRingBuffer)) { | 
 |       return 0; | 
 |     } | 
 |     return (Bytes - sizeof(AllocationRingBuffer)) / | 
 |            sizeof(typename AllocationRingBuffer::Entry); | 
 |   } | 
 | }; | 
 |  | 
 | } // namespace scudo | 
 |  | 
 | #endif // SCUDO_COMBINED_H_ |