blob: eb9cde5c8918fc1fb4cf61d96db40aac5590292a [file] [log] [blame]
//===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines SValBuilder, the base class for all (complete) SValBuilder
// implementations.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <optional>
#include <tuple>
using namespace clang;
using namespace ento;
//===----------------------------------------------------------------------===//
// Basic SVal creation.
//===----------------------------------------------------------------------===//
void SValBuilder::anchor() {}
SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
ProgramStateManager &stateMgr)
: Context(context), BasicVals(context, alloc),
SymMgr(context, BasicVals, alloc), MemMgr(context, alloc),
StateMgr(stateMgr),
AnOpts(
stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
ArrayIndexTy(context.LongLongTy),
ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
if (Loc::isLocType(type))
return makeNullWithType(type);
if (type->isIntegralOrEnumerationType())
return makeIntVal(0, type);
if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
type->isAnyComplexType())
return makeCompoundVal(type, BasicVals.getEmptySValList());
// FIXME: Handle floats.
return UnknownVal();
}
nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
BinaryOperator::Opcode op,
const llvm::APSInt &rhs,
QualType type) {
// The Environment ensures we always get a persistent APSInt in
// BasicValueFactory, so we don't need to get the APSInt from
// BasicValueFactory again.
assert(lhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
}
nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs,
BinaryOperator::Opcode op,
const SymExpr *rhs, QualType type) {
assert(rhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
}
nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
BinaryOperator::Opcode op,
const SymExpr *rhs, QualType type) {
assert(lhs && rhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
QualType type) {
assert(operand);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type));
}
nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand,
QualType fromTy, QualType toTy) {
assert(operand);
assert(!Loc::isLocType(toTy));
if (fromTy == toTy)
return nonloc::SymbolVal(operand);
return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
}
SVal SValBuilder::convertToArrayIndex(SVal val) {
if (val.isUnknownOrUndef())
return val;
// Common case: we have an appropriately sized integer.
if (std::optional<nonloc::ConcreteInt> CI =
val.getAs<nonloc::ConcreteInt>()) {
const llvm::APSInt& I = CI->getValue();
if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
return val;
}
return evalCast(val, ArrayIndexTy, QualType{});
}
nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
return makeTruthVal(boolean->getValue());
}
DefinedOrUnknownSVal
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
QualType T = region->getValueType();
if (T->isNullPtrType())
return makeZeroVal(T);
if (!SymbolManager::canSymbolicate(T))
return UnknownVal();
SymbolRef sym = SymMgr.getRegionValueSymbol(region);
if (Loc::isLocType(T))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
const Expr *Ex,
const LocationContext *LCtx,
unsigned Count) {
QualType T = Ex->getType();
if (T->isNullPtrType())
return makeZeroVal(T);
// Compute the type of the result. If the expression is not an R-value, the
// result should be a location.
QualType ExType = Ex->getType();
if (Ex->isGLValue())
T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
}
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
const Expr *expr,
const LocationContext *LCtx,
QualType type,
unsigned count) {
if (type->isNullPtrType())
return makeZeroVal(type);
if (!SymbolManager::canSymbolicate(type))
return UnknownVal();
SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
const LocationContext *LCtx,
QualType type,
unsigned visitCount) {
if (type->isNullPtrType())
return makeZeroVal(type);
if (!SymbolManager::canSymbolicate(type))
return UnknownVal();
SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
const LocationContext *LCtx,
unsigned VisitCount) {
QualType T = E->getType();
return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount);
}
DefinedOrUnknownSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
const LocationContext *LCtx,
QualType type, unsigned VisitCount) {
assert(Loc::isLocType(type));
assert(SymbolManager::canSymbolicate(type));
if (type->isNullPtrType())
return makeZeroVal(type);
SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount);
return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
}
loc::MemRegionVal SValBuilder::getAllocaRegionVal(const Expr *E,
const LocationContext *LCtx,
unsigned VisitCount) {
const AllocaRegion *R =
getRegionManager().getAllocaRegion(E, VisitCount, LCtx);
return loc::MemRegionVal(R);
}
DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
const MemRegion *region,
const Expr *expr, QualType type,
const LocationContext *LCtx,
unsigned count) {
assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
SymbolRef sym =
SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
const TypedValueRegion *region) {
QualType T = region->getValueType();
if (T->isNullPtrType())
return makeZeroVal(T);
if (!SymbolManager::canSymbolicate(T))
return UnknownVal();
SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
if (Loc::isLocType(T))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
assert(!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND)));
if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
// Sema treats pointers to static member functions as have function pointer
// type, so return a function pointer for the method.
// We don't need to play a similar trick for static member fields
// because these are represented as plain VarDecls and not FieldDecls
// in the AST.
if (!MD->isImplicitObjectMemberFunction())
return getFunctionPointer(MD);
}
return nonloc::PointerToMember(ND);
}
DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
}
DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
CanQualType locTy,
const LocationContext *locContext,
unsigned blockCount) {
const BlockCodeRegion *BC =
MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
blockCount);
return loc::MemRegionVal(BD);
}
std::optional<loc::MemRegionVal>
SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) {
if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty))
return loc::MemRegionVal(*OptR);
return std::nullopt;
}
/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
const StackFrameContext *SFC) {
return loc::MemRegionVal(
getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
}
/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
const StackFrameContext *SFC) {
const Type *T = D->getTypeForDecl();
QualType PT = getContext().getPointerType(QualType(T, 0));
return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
}
std::optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
E = E->IgnoreParens();
switch (E->getStmtClass()) {
// Handle expressions that we treat differently from the AST's constant
// evaluator.
case Stmt::AddrLabelExprClass:
return makeLoc(cast<AddrLabelExpr>(E));
case Stmt::CXXScalarValueInitExprClass:
case Stmt::ImplicitValueInitExprClass:
return makeZeroVal(E->getType());
case Stmt::ObjCStringLiteralClass: {
const auto *SL = cast<ObjCStringLiteral>(E);
return makeLoc(getRegionManager().getObjCStringRegion(SL));
}
case Stmt::StringLiteralClass: {
const auto *SL = cast<StringLiteral>(E);
return makeLoc(getRegionManager().getStringRegion(SL));
}
case Stmt::PredefinedExprClass: {
const auto *PE = cast<PredefinedExpr>(E);
assert(PE->getFunctionName() &&
"Since we analyze only instantiated functions, PredefinedExpr "
"should have a function name.");
return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
}
// Fast-path some expressions to avoid the overhead of going through the AST's
// constant evaluator
case Stmt::CharacterLiteralClass: {
const auto *C = cast<CharacterLiteral>(E);
return makeIntVal(C->getValue(), C->getType());
}
case Stmt::CXXBoolLiteralExprClass:
return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
case Stmt::TypeTraitExprClass: {
const auto *TE = cast<TypeTraitExpr>(E);
return makeTruthVal(TE->getValue(), TE->getType());
}
case Stmt::IntegerLiteralClass:
return makeIntVal(cast<IntegerLiteral>(E));
case Stmt::ObjCBoolLiteralExprClass:
return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
case Stmt::CXXNullPtrLiteralExprClass:
return makeNullWithType(E->getType());
case Stmt::CStyleCastExprClass:
case Stmt::CXXFunctionalCastExprClass:
case Stmt::CXXConstCastExprClass:
case Stmt::CXXReinterpretCastExprClass:
case Stmt::CXXStaticCastExprClass:
case Stmt::ImplicitCastExprClass: {
const auto *CE = cast<CastExpr>(E);
switch (CE->getCastKind()) {
default:
break;
case CK_ArrayToPointerDecay:
case CK_IntegralToPointer:
case CK_NoOp:
case CK_BitCast: {
const Expr *SE = CE->getSubExpr();
std::optional<SVal> Val = getConstantVal(SE);
if (!Val)
return std::nullopt;
return evalCast(*Val, CE->getType(), SE->getType());
}
}
[[fallthrough]];
}
// If we don't have a special case, fall back to the AST's constant evaluator.
default: {
// Don't try to come up with a value for materialized temporaries.
if (E->isGLValue())
return std::nullopt;
ASTContext &Ctx = getContext();
Expr::EvalResult Result;
if (E->EvaluateAsInt(Result, Ctx))
return makeIntVal(Result.Val.getInt());
if (Loc::isLocType(E->getType()))
if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
return makeNullWithType(E->getType());
return std::nullopt;
}
}
}
SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
NonLoc LHS, NonLoc RHS,
QualType ResultTy) {
SymbolRef symLHS = LHS.getAsSymbol();
SymbolRef symRHS = RHS.getAsSymbol();
// TODO: When the Max Complexity is reached, we should conjure a symbol
// instead of generating an Unknown value and propagate the taint info to it.
const unsigned MaxComp = AnOpts.MaxSymbolComplexity;
if (symLHS && symRHS &&
(symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
return makeNonLoc(symLHS, Op, symRHS, ResultTy);
if (symLHS && symLHS->computeComplexity() < MaxComp)
if (std::optional<nonloc::ConcreteInt> rInt =
RHS.getAs<nonloc::ConcreteInt>())
return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
if (symRHS && symRHS->computeComplexity() < MaxComp)
if (std::optional<nonloc::ConcreteInt> lInt =
LHS.getAs<nonloc::ConcreteInt>())
return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
return UnknownVal();
}
SVal SValBuilder::evalMinus(NonLoc X) {
switch (X.getKind()) {
case nonloc::ConcreteIntKind:
return makeIntVal(-X.castAs<nonloc::ConcreteInt>().getValue());
case nonloc::SymbolValKind:
return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus,
X.getType(Context));
default:
return UnknownVal();
}
}
SVal SValBuilder::evalComplement(NonLoc X) {
switch (X.getKind()) {
case nonloc::ConcreteIntKind:
return makeIntVal(~X.castAs<nonloc::ConcreteInt>().getValue());
case nonloc::SymbolValKind:
return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not,
X.getType(Context));
default:
return UnknownVal();
}
}
SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
SVal operand, QualType type) {
auto OpN = operand.getAs<NonLoc>();
if (!OpN)
return UnknownVal();
if (opc == UO_Minus)
return evalMinus(*OpN);
if (opc == UO_Not)
return evalComplement(*OpN);
llvm_unreachable("Unexpected unary operator");
}
SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
SVal lhs, SVal rhs, QualType type) {
if (lhs.isUndef() || rhs.isUndef())
return UndefinedVal();
if (lhs.isUnknown() || rhs.isUnknown())
return UnknownVal();
if (isa<nonloc::LazyCompoundVal>(lhs) || isa<nonloc::LazyCompoundVal>(rhs)) {
return UnknownVal();
}
if (op == BinaryOperatorKind::BO_Cmp) {
// We can't reason about C++20 spaceship operator yet.
//
// FIXME: Support C++20 spaceship operator.
// The main problem here is that the result is not integer.
return UnknownVal();
}
if (std::optional<Loc> LV = lhs.getAs<Loc>()) {
if (std::optional<Loc> RV = rhs.getAs<Loc>())
return evalBinOpLL(state, op, *LV, *RV, type);
return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
}
if (const std::optional<Loc> RV = rhs.getAs<Loc>()) {
const auto IsCommutative = [](BinaryOperatorKind Op) {
return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor ||
Op == BO_Or;
};
if (IsCommutative(op)) {
// Swap operands.
return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
}
// If the right operand is a concrete int location then we have nothing
// better but to treat it as a simple nonloc.
if (auto RV = rhs.getAs<loc::ConcreteInt>()) {
const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue());
return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), RhsAsLoc, type);
}
}
return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
type);
}
ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
SVal rhs) {
return state->isNonNull(evalEQ(state, lhs, rhs));
}
SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
}
DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
DefinedOrUnknownSVal lhs,
DefinedOrUnknownSVal rhs) {
return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
.castAs<DefinedOrUnknownSVal>();
}
/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
/// Assumes the input types are canonical.
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
QualType FromTy) {
while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
Qualifiers Quals1, Quals2;
ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
// Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
// spaces) are identical.
Quals1.removeCVRQualifiers();
Quals2.removeCVRQualifiers();
if (Quals1 != Quals2)
return false;
}
// If we are casting to void, the 'From' value can be used to represent the
// 'To' value.
//
// FIXME: Doing this after unwrapping the types doesn't make any sense. A
// cast from 'int**' to 'void**' is not special in the way that a cast from
// 'int*' to 'void*' is.
if (ToTy->isVoidType())
return true;
if (ToTy != FromTy)
return false;
return true;
}
// Handles casts of type CK_IntegralCast.
// At the moment, this function will redirect to evalCast, except when the range
// of the original value is known to be greater than the max of the target type.
SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
QualType castTy, QualType originalTy) {
// No truncations if target type is big enough.
if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
return evalCast(val, castTy, originalTy);
SymbolRef se = val.getAsSymbol();
if (!se) // Let evalCast handle non symbolic expressions.
return evalCast(val, castTy, originalTy);
// Find the maximum value of the target type.
APSIntType ToType(getContext().getTypeSize(castTy),
castTy->isUnsignedIntegerType());
llvm::APSInt ToTypeMax = ToType.getMaxValue();
NonLoc ToTypeMaxVal = makeIntVal(ToTypeMax);
// Check the range of the symbol being casted against the maximum value of the
// target type.
NonLoc FromVal = val.castAs<NonLoc>();
QualType CmpTy = getConditionType();
NonLoc CompVal =
evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
ProgramStateRef IsNotTruncated, IsTruncated;
std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
if (!IsNotTruncated && IsTruncated) {
// Symbol is truncated so we evaluate it as a cast.
return makeNonLoc(se, originalTy, castTy);
}
return evalCast(val, castTy, originalTy);
}
//===----------------------------------------------------------------------===//
// Cast method.
// `evalCast` and its helper `EvalCastVisitor`
//===----------------------------------------------------------------------===//
namespace {
class EvalCastVisitor : public SValVisitor<EvalCastVisitor, SVal> {
private:
SValBuilder &VB;
ASTContext &Context;
QualType CastTy, OriginalTy;
public:
EvalCastVisitor(SValBuilder &VB, QualType CastTy, QualType OriginalTy)
: VB(VB), Context(VB.getContext()), CastTy(CastTy),
OriginalTy(OriginalTy) {}
SVal Visit(SVal V) {
if (CastTy.isNull())
return V;
CastTy = Context.getCanonicalType(CastTy);
const bool IsUnknownOriginalType = OriginalTy.isNull();
if (!IsUnknownOriginalType) {
OriginalTy = Context.getCanonicalType(OriginalTy);
if (CastTy == OriginalTy)
return V;
// FIXME: Move this check to the most appropriate
// evalCastKind/evalCastSubKind function. For const casts, casts to void,
// just propagate the value.
if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType())
if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy),
Context.getPointerType(OriginalTy)))
return V;
}
return SValVisitor::Visit(V);
}
SVal VisitUndefinedVal(UndefinedVal V) { return V; }
SVal VisitUnknownVal(UnknownVal V) { return V; }
SVal VisitConcreteInt(loc::ConcreteInt V) {
// Pointer to bool.
if (CastTy->isBooleanType())
return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
// Pointer to integer.
if (CastTy->isIntegralOrEnumerationType()) {
llvm::APSInt Value = V.getValue();
VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
return VB.makeIntVal(Value);
}
// Pointer to any pointer.
if (Loc::isLocType(CastTy)) {
llvm::APSInt Value = V.getValue();
VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
return loc::ConcreteInt(VB.getBasicValueFactory().getValue(Value));
}
// Pointer to whatever else.
return UnknownVal();
}
SVal VisitGotoLabel(loc::GotoLabel V) {
// Pointer to bool.
if (CastTy->isBooleanType())
// Labels are always true.
return VB.makeTruthVal(true, CastTy);
// Pointer to integer.
if (CastTy->isIntegralOrEnumerationType()) {
const unsigned BitWidth = Context.getIntWidth(CastTy);
return VB.makeLocAsInteger(V, BitWidth);
}
const bool IsUnknownOriginalType = OriginalTy.isNull();
if (!IsUnknownOriginalType) {
// Array to pointer.
if (isa<ArrayType>(OriginalTy))
if (CastTy->isPointerType() || CastTy->isReferenceType())
return UnknownVal();
}
// Pointer to any pointer.
if (Loc::isLocType(CastTy))
return V;
// Pointer to whatever else.
return UnknownVal();
}
SVal VisitMemRegionVal(loc::MemRegionVal V) {
// Pointer to bool.
if (CastTy->isBooleanType()) {
const MemRegion *R = V.getRegion();
if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
if (FD->isWeak())
// FIXME: Currently we are using an extent symbol here,
// because there are no generic region address metadata
// symbols to use, only content metadata.
return nonloc::SymbolVal(
VB.getSymbolManager().getExtentSymbol(FTR));
if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
SymbolRef Sym = SymR->getSymbol();
QualType Ty = Sym->getType();
// This change is needed for architectures with varying
// pointer widths. See the amdgcn opencl reproducer with
// this change as an example: solver-sym-simplification-ptr-bool.cl
if (!Ty->isReferenceType())
return VB.makeNonLoc(
Sym, BO_NE, VB.getBasicValueFactory().getZeroWithTypeSize(Ty),
CastTy);
}
// Non-symbolic memory regions are always true.
return VB.makeTruthVal(true, CastTy);
}
const bool IsUnknownOriginalType = OriginalTy.isNull();
// Try to cast to array
const auto *ArrayTy =
IsUnknownOriginalType
? nullptr
: dyn_cast<ArrayType>(OriginalTy.getCanonicalType());
// Pointer to integer.
if (CastTy->isIntegralOrEnumerationType()) {
SVal Val = V;
// Array to integer.
if (ArrayTy) {
// We will always decay to a pointer.
QualType ElemTy = ArrayTy->getElementType();
Val = VB.getStateManager().ArrayToPointer(V, ElemTy);
// FIXME: Keep these here for now in case we decide soon that we
// need the original decayed type.
// QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
// QualType pointerTy = C.getPointerType(elemTy);
}
const unsigned BitWidth = Context.getIntWidth(CastTy);
return VB.makeLocAsInteger(Val.castAs<Loc>(), BitWidth);
}
// Pointer to pointer.
if (Loc::isLocType(CastTy)) {
if (IsUnknownOriginalType) {
// When retrieving symbolic pointer and expecting a non-void pointer,
// wrap them into element regions of the expected type if necessary.
// It is necessary to make sure that the retrieved value makes sense,
// because there's no other cast in the AST that would tell us to cast
// it to the correct pointer type. We might need to do that for non-void
// pointers as well.
// FIXME: We really need a single good function to perform casts for us
// correctly every time we need it.
const MemRegion *R = V.getRegion();
if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) {
if (const auto *SR = dyn_cast<SymbolicRegion>(R)) {
QualType SRTy = SR->getSymbol()->getType();
auto HasSameUnqualifiedPointeeType = [](QualType ty1,
QualType ty2) {
return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
ty2->getPointeeType().getCanonicalType().getTypePtr();
};
if (!HasSameUnqualifiedPointeeType(SRTy, CastTy)) {
if (auto OptMemRegV = VB.getCastedMemRegionVal(SR, CastTy))
return *OptMemRegV;
}
}
}
// Next fixes pointer dereference using type different from its initial
// one. See PR37503 and PR49007 for details.
if (const auto *ER = dyn_cast<ElementRegion>(R)) {
if (auto OptMemRegV = VB.getCastedMemRegionVal(ER, CastTy))
return *OptMemRegV;
}
return V;
}
if (OriginalTy->isIntegralOrEnumerationType() ||
OriginalTy->isBlockPointerType() ||
OriginalTy->isFunctionPointerType())
return V;
// Array to pointer.
if (ArrayTy) {
// Are we casting from an array to a pointer? If so just pass on
// the decayed value.
if (CastTy->isPointerType() || CastTy->isReferenceType()) {
// We will always decay to a pointer.
QualType ElemTy = ArrayTy->getElementType();
return VB.getStateManager().ArrayToPointer(V, ElemTy);
}
// Are we casting from an array to an integer? If so, cast the decayed
// pointer value to an integer.
assert(CastTy->isIntegralOrEnumerationType());
}
// Other pointer to pointer.
assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
CastTy->isReferenceType());
// We get a symbolic function pointer for a dereference of a function
// pointer, but it is of function type. Example:
// struct FPRec {
// void (*my_func)(int * x);
// };
//
// int bar(int x);
//
// int f1_a(struct FPRec* foo) {
// int x;
// (*foo->my_func)(&x);
// return bar(x)+1; // no-warning
// }
// Get the result of casting a region to a different type.
const MemRegion *R = V.getRegion();
if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
return *OptMemRegV;
}
// Pointer to whatever else.
// FIXME: There can be gross cases where one casts the result of a
// function (that returns a pointer) to some other value that happens to
// fit within that pointer value. We currently have no good way to model
// such operations. When this happens, the underlying operation is that
// the caller is reasoning about bits. Conceptually we are layering a
// "view" of a location on top of those bits. Perhaps we need to be more
// lazy about mutual possible views, even on an SVal? This may be
// necessary for bit-level reasoning as well.
return UnknownVal();
}
SVal VisitCompoundVal(nonloc::CompoundVal V) {
// Compound to whatever.
return UnknownVal();
}
SVal VisitConcreteInt(nonloc::ConcreteInt V) {
auto CastedValue = [V, this]() {
llvm::APSInt Value = V.getValue();
VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
return Value;
};
// Integer to bool.
if (CastTy->isBooleanType())
return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
// Integer to pointer.
if (CastTy->isIntegralOrEnumerationType())
return VB.makeIntVal(CastedValue());
// Integer to pointer.
if (Loc::isLocType(CastTy))
return VB.makeIntLocVal(CastedValue());
// Pointer to whatever else.
return UnknownVal();
}
SVal VisitLazyCompoundVal(nonloc::LazyCompoundVal V) {
// LazyCompound to whatever.
return UnknownVal();
}
SVal VisitLocAsInteger(nonloc::LocAsInteger V) {
Loc L = V.getLoc();
// Pointer as integer to bool.
if (CastTy->isBooleanType())
// Pass to Loc function.
return Visit(L);
const bool IsUnknownOriginalType = OriginalTy.isNull();
// Pointer as integer to pointer.
if (!IsUnknownOriginalType && Loc::isLocType(CastTy) &&
OriginalTy->isIntegralOrEnumerationType()) {
if (const MemRegion *R = L.getAsRegion())
if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
return *OptMemRegV;
return L;
}
// Pointer as integer with region to integer/pointer.
const MemRegion *R = L.getAsRegion();
if (!IsUnknownOriginalType && R) {
if (CastTy->isIntegralOrEnumerationType())
return VisitMemRegionVal(loc::MemRegionVal(R));
if (Loc::isLocType(CastTy)) {
assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
CastTy->isReferenceType());
// Delegate to store manager to get the result of casting a region to a
// different type. If the MemRegion* returned is NULL, this expression
// Evaluates to UnknownVal.
if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
return *OptMemRegV;
}
} else {
if (Loc::isLocType(CastTy)) {
if (IsUnknownOriginalType)
return VisitMemRegionVal(loc::MemRegionVal(R));
return L;
}
SymbolRef SE = nullptr;
if (R) {
if (const SymbolicRegion *SR =
dyn_cast<SymbolicRegion>(R->StripCasts())) {
SE = SR->getSymbol();
}
}
if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) {
// FIXME: Correctly support promotions/truncations.
const unsigned CastSize = Context.getIntWidth(CastTy);
if (CastSize == V.getNumBits())
return V;
return VB.makeLocAsInteger(L, CastSize);
}
}
// Pointer as integer to whatever else.
return UnknownVal();
}
SVal VisitSymbolVal(nonloc::SymbolVal V) {
SymbolRef SE = V.getSymbol();
const bool IsUnknownOriginalType = OriginalTy.isNull();
// Symbol to bool.
if (!IsUnknownOriginalType && CastTy->isBooleanType()) {
// Non-float to bool.
if (Loc::isLocType(OriginalTy) ||
OriginalTy->isIntegralOrEnumerationType() ||
OriginalTy->isMemberPointerType()) {
BasicValueFactory &BVF = VB.getBasicValueFactory();
return VB.makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy);
}
} else {
// Symbol to integer, float.
QualType T = Context.getCanonicalType(SE->getType());
// Produce SymbolCast if CastTy and T are different integers.
// NOTE: In the end the type of SymbolCast shall be equal to CastTy.
if (T->isIntegralOrUnscopedEnumerationType() &&
CastTy->isIntegralOrUnscopedEnumerationType()) {
AnalyzerOptions &Opts = VB.getStateManager()
.getOwningEngine()
.getAnalysisManager()
.getAnalyzerOptions();
// If appropriate option is disabled, ignore the cast.
// NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
if (!Opts.ShouldSupportSymbolicIntegerCasts)
return V;
return simplifySymbolCast(V, CastTy);
}
if (!Loc::isLocType(CastTy))
if (!IsUnknownOriginalType || !CastTy->isFloatingType() ||
T->isFloatingType())
return VB.makeNonLoc(SE, T, CastTy);
}
// FIXME: We should be able to cast NonLoc -> Loc
// (when Loc::isLocType(CastTy) is true)
// But it's hard to do as SymbolicRegions can't refer to SymbolCasts holding
// generic SymExprs. Check the commit message for the details.
// Symbol to pointer and whatever else.
return UnknownVal();
}
SVal VisitPointerToMember(nonloc::PointerToMember V) {
// Member pointer to whatever.
return V;
}
/// Reduce cast expression by removing redundant intermediate casts.
/// E.g.
/// - (char)(short)(int x) -> (char)(int x)
/// - (int)(int x) -> int x
///
/// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol
/// that is applicable for cast operation.
/// \param CastTy -- QualType, which `V` shall be cast to.
/// \return SVal with simplified cast expression.
/// \note: Currently only support integral casts.
nonloc::SymbolVal simplifySymbolCast(nonloc::SymbolVal V, QualType CastTy) {
// We use seven conditions to recognize a simplification case.
// For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type -
// `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g.
// (char)(short)(uint x)
// ( sC )( sT )( uR x)
//
// C === R (the same type)
// (char)(char x) -> (char x)
// (long)(long x) -> (long x)
// Note: Comparisons operators below are for bit width.
// C == T
// (short)(short)(int x) -> (short)(int x)
// (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
// (long)(ullong)(char x) -> (long)(char x) (sizeof(long) ==
// sizeof(ullong))
// C < T
// (short)(int)(char x) -> (short)(char x)
// (char)(int)(short x) -> (char)(short x)
// (short)(int)(short x) -> (short x)
// C > T > uR
// (int)(short)(uchar x) -> (int)(uchar x)
// (uint)(short)(uchar x) -> (uint)(uchar x)
// (int)(ushort)(uchar x) -> (int)(uchar x)
// C > sT > sR
// (int)(short)(char x) -> (int)(char x)
// (uint)(short)(char x) -> (uint)(char x)
// C > sT == sR
// (int)(char)(char x) -> (int)(char x)
// (uint)(short)(short x) -> (uint)(short x)
// C > uT == uR
// (int)(uchar)(uchar x) -> (int)(uchar x)
// (uint)(ushort)(ushort x) -> (uint)(ushort x)
// (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) ==
// sizeof(uint))
SymbolRef SE = V.getSymbol();
QualType T = Context.getCanonicalType(SE->getType());
if (T == CastTy)
return V;
if (!isa<SymbolCast>(SE))
return VB.makeNonLoc(SE, T, CastTy);
SymbolRef RootSym = cast<SymbolCast>(SE)->getOperand();
QualType RT = RootSym->getType().getCanonicalType();
// FIXME support simplification from non-integers.
if (!RT->isIntegralOrEnumerationType())
return VB.makeNonLoc(SE, T, CastTy);
BasicValueFactory &BVF = VB.getBasicValueFactory();
APSIntType CTy = BVF.getAPSIntType(CastTy);
APSIntType TTy = BVF.getAPSIntType(T);
const auto WC = CTy.getBitWidth();
const auto WT = TTy.getBitWidth();
if (WC <= WT) {
const bool isSameType = (RT == CastTy);
if (isSameType)
return nonloc::SymbolVal(RootSym);
return VB.makeNonLoc(RootSym, RT, CastTy);
}
APSIntType RTy = BVF.getAPSIntType(RT);
const auto WR = RTy.getBitWidth();
const bool UT = TTy.isUnsigned();
const bool UR = RTy.isUnsigned();
if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR)))
return VB.makeNonLoc(RootSym, RT, CastTy);
return VB.makeNonLoc(SE, T, CastTy);
}
};
} // end anonymous namespace
/// Cast a given SVal to another SVal using given QualType's.
/// \param V -- SVal that should be casted.
/// \param CastTy -- QualType that V should be casted according to.
/// \param OriginalTy -- QualType which is associated to V. It provides
/// additional information about what type the cast performs from.
/// \returns the most appropriate casted SVal.
/// Note: Many cases don't use an exact OriginalTy. It can be extracted
/// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
/// It can be crucial in certain cases and generates different results.
/// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
/// only. This behavior is uncertain and should be improved.
SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) {
EvalCastVisitor TRV{*this, CastTy, OriginalTy};
return TRV.Visit(V);
}