blob: f82288f1099e887e31eb24cfaf78fb86ccc1e92d [file] [log] [blame]
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::formatv;
namespace {
/// If `E` is a "clean" array subscript expression, return the type of the
/// accessed element. If the base of the subscript expression is modified by
/// pointer arithmetic (and not the beginning of a "full" memory region), this
/// always returns nullopt because that's the right (or the least bad) thing to
/// do for the diagnostic output that's relying on this.
static std::optional<QualType> determineElementType(const Expr *E,
const CheckerContext &C) {
const auto *ASE = dyn_cast<ArraySubscriptExpr>(E);
if (!ASE)
return std::nullopt;
const MemRegion *SubscriptBaseReg = C.getSVal(ASE->getBase()).getAsRegion();
if (!SubscriptBaseReg)
return std::nullopt;
// The base of the subscript expression is affected by pointer arithmetics,
// so we want to report byte offsets instead of indices.
if (isa<ElementRegion>(SubscriptBaseReg->StripCasts()))
return std::nullopt;
return ASE->getType();
}
static std::optional<int64_t>
determineElementSize(const std::optional<QualType> T, const CheckerContext &C) {
if (!T)
return std::nullopt;
return C.getASTContext().getTypeSizeInChars(*T).getQuantity();
}
class StateUpdateReporter {
const SubRegion *Reg;
const NonLoc ByteOffsetVal;
const std::optional<QualType> ElementType;
const std::optional<int64_t> ElementSize;
bool AssumedNonNegative = false;
std::optional<NonLoc> AssumedUpperBound = std::nullopt;
public:
StateUpdateReporter(const SubRegion *R, NonLoc ByteOffsVal, const Expr *E,
CheckerContext &C)
: Reg(R), ByteOffsetVal(ByteOffsVal),
ElementType(determineElementType(E, C)),
ElementSize(determineElementSize(ElementType, C)) {}
void recordNonNegativeAssumption() { AssumedNonNegative = true; }
void recordUpperBoundAssumption(NonLoc UpperBoundVal) {
AssumedUpperBound = UpperBoundVal;
}
bool assumedNonNegative() { return AssumedNonNegative; }
const NoteTag *createNoteTag(CheckerContext &C) const;
private:
std::string getMessage(PathSensitiveBugReport &BR) const;
/// Return true if information about the value of `Sym` can put constraints
/// on some symbol which is interesting within the bug report `BR`.
/// In particular, this returns true when `Sym` is interesting within `BR`;
/// but it also returns true if `Sym` is an expression that contains integer
/// constants and a single symbolic operand which is interesting (in `BR`).
/// We need to use this instead of plain `BR.isInteresting()` because if we
/// are analyzing code like
/// int array[10];
/// int f(int arg) {
/// return array[arg] && array[arg + 10];
/// }
/// then the byte offsets are `arg * 4` and `(arg + 10) * 4`, which are not
/// sub-expressions of each other (but `getSimplifiedOffsets` is smart enough
/// to detect this out of bounds access).
static bool providesInformationAboutInteresting(SymbolRef Sym,
PathSensitiveBugReport &BR);
static bool providesInformationAboutInteresting(SVal SV,
PathSensitiveBugReport &BR) {
return providesInformationAboutInteresting(SV.getAsSymbol(), BR);
}
};
struct Messages {
std::string Short, Full;
};
// NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt`
// instead of `PreStmt` because the current implementation passes the whole
// expression to `CheckerContext::getSVal()` which only works after the
// symbolic evaluation of the expression. (To turn them into `PreStmt`
// callbacks, we'd need to duplicate the logic that evaluates these
// expressions.) The `MemberExpr` callback would work as `PreStmt` but it's
// defined as `PostStmt` for the sake of consistency with the other callbacks.
class ArrayBoundCheckerV2 : public Checker<check::PostStmt<ArraySubscriptExpr>,
check::PostStmt<UnaryOperator>,
check::PostStmt<MemberExpr>> {
BugType BT{this, "Out-of-bound access"};
BugType TaintBT{this, "Out-of-bound access", categories::TaintedData};
void performCheck(const Expr *E, CheckerContext &C) const;
void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, Messages Msgs,
NonLoc Offset, std::optional<NonLoc> Extent,
bool IsTaintBug = false) const;
static void markPartsInteresting(PathSensitiveBugReport &BR,
ProgramStateRef ErrorState, NonLoc Val,
bool MarkTaint);
static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
static bool isIdiomaticPastTheEndPtr(const Expr *E, ProgramStateRef State,
NonLoc Offset, NonLoc Limit,
CheckerContext &C);
static bool isInAddressOf(const Stmt *S, ASTContext &AC);
public:
void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const {
performCheck(E, C);
}
void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const {
if (E->getOpcode() == UO_Deref)
performCheck(E, C);
}
void checkPostStmt(const MemberExpr *E, CheckerContext &C) const {
if (E->isArrow())
performCheck(E->getBase(), C);
}
};
} // anonymous namespace
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
static std::optional<std::pair<const SubRegion *, NonLoc>>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) {
QualType T = SVB.getArrayIndexType();
auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>();
};
const SubRegion *OwnerRegion = nullptr;
std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex();
const ElementRegion *CurRegion =
dyn_cast_or_null<ElementRegion>(Location.getAsRegion());
while (CurRegion) {
const auto Index = CurRegion->getIndex().getAs<NonLoc>();
if (!Index)
return std::nullopt;
QualType ElemType = CurRegion->getElementType();
// FIXME: The following early return was presumably added to safeguard the
// getTypeSizeInChars() call (which doesn't accept an incomplete type), but
// it seems that `ElemType` cannot be incomplete at this point.
if (ElemType->isIncompleteType())
return std::nullopt;
// Calculate Delta = Index * sizeof(ElemType).
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
auto Delta = EvalBinOp(BO_Mul, *Index, Size);
if (!Delta)
return std::nullopt;
// Perform Offset += Delta.
Offset = EvalBinOp(BO_Add, *Offset, *Delta);
if (!Offset)
return std::nullopt;
OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>();
// When this is just another ElementRegion layer, we need to continue the
// offset calculations:
CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion);
}
if (OwnerRegion)
return std::make_pair(OwnerRegion, *Offset);
return std::nullopt;
}
// NOTE: This function is the "heart" of this checker. It simplifies
// inequalities with transformations that are valid (and very elementary) in
// pure mathematics, but become invalid if we use them in C++ number model
// where the calculations may overflow.
// Due to the overflow issues I think it's impossible (or at least not
// practical) to integrate this kind of simplification into the resolution of
// arbitrary inequalities (i.e. the code of `evalBinOp`); but this function
// produces valid results when the calculations are handling memory offsets
// and every value is well below SIZE_MAX.
// TODO: This algorithm should be moved to a central location where it's
// available for other checkers that need to compare memory offsets.
// NOTE: the simplification preserves the order of the two operands in a
// mathematical sense, but it may change the result produced by a C++
// comparison operator (and the automatic type conversions).
// For example, consider a comparison "X+1 < 0", where the LHS is stored as a
// size_t and the RHS is stored in an int. (As size_t is unsigned, this
// comparison is false for all values of "X".) However, the simplification may
// turn it into "X < -1", which is still always false in a mathematical sense,
// but can produce a true result when evaluated by `evalBinOp` (which follows
// the rules of C++ and casts -1 to SIZE_MAX).
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant =
APSIntType(extent.getValue()).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, becasue multiplication by zero
// is simplified by the engine.
if ((extent.getValue() % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() / constant),
svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
static bool isNegative(SValBuilder &SVB, ProgramStateRef State, NonLoc Value) {
const llvm::APSInt *MaxV = SVB.getMaxValue(State, Value);
return MaxV && MaxV->isNegative();
}
static bool isUnsigned(SValBuilder &SVB, NonLoc Value) {
QualType T = Value.getType(SVB.getContext());
return T->isUnsignedIntegerType();
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
// If the optional argument CheckEquality is true, then use BO_EQ instead of
// the default BO_LT after consistently applying the same simplification steps.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB, bool CheckEquality = false) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
// We want to perform a _mathematical_ comparison between the numbers `Value`
// and `Threshold`; but `evalBinOpNN` evaluates a C/C++ operator that may
// perform automatic conversions. For example the number -1 is less than the
// number 1000, but -1 < `1000ull` will evaluate to `false` because the `int`
// -1 is converted to ULONGLONG_MAX.
// To avoid automatic conversions, we evaluate the "obvious" cases without
// calling `evalBinOpNN`:
if (isNegative(SVB, State, Value) && isUnsigned(SVB, Threshold)) {
if (CheckEquality) {
// negative_value == unsigned_threshold is always false
return {nullptr, State};
}
// negative_value < unsigned_threshold is always true
return {State, nullptr};
}
if (isUnsigned(SVB, Value) && isNegative(SVB, State, Threshold)) {
// unsigned_value == negative_threshold and
// unsigned_value < negative_threshold are both always false
return {nullptr, State};
}
// FIXME: These special cases are sufficient for handling real-world
// comparisons, but in theory there could be contrived situations where
// automatic conversion of a symbolic value (which can be negative and can be
// positive) leads to incorrect results.
// NOTE: We NEED to use the `evalBinOpNN` call in the "common" case, because
// we want to ensure that assumptions coming from this precondition and
// assumptions coming from regular C/C++ operator calls are represented by
// constraints on the same symbolic expression. A solution that would
// evaluate these "mathematical" compariosns through a separate pathway would
// be a step backwards in this sense.
const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT;
auto BelowThreshold =
SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType())
.getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
static std::string getRegionName(const SubRegion *Region) {
if (std::string RegName = Region->getDescriptiveName(); !RegName.empty())
return RegName;
// Field regions only have descriptive names when their parent has a
// descriptive name; so we provide a fallback representation for them:
if (const auto *FR = Region->getAs<FieldRegion>()) {
if (StringRef Name = FR->getDecl()->getName(); !Name.empty())
return formatv("the field '{0}'", Name);
return "the unnamed field";
}
if (isa<AllocaRegion>(Region))
return "the memory returned by 'alloca'";
if (isa<SymbolicRegion>(Region) &&
isa<HeapSpaceRegion>(Region->getMemorySpace()))
return "the heap area";
if (isa<StringRegion>(Region))
return "the string literal";
return "the region";
}
static std::optional<int64_t> getConcreteValue(NonLoc SV) {
if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) {
return ConcreteVal->getValue().tryExtValue();
}
return std::nullopt;
}
static std::optional<int64_t> getConcreteValue(std::optional<NonLoc> SV) {
return SV ? getConcreteValue(*SV) : std::nullopt;
}
static Messages getPrecedesMsgs(const SubRegion *Region, NonLoc Offset) {
std::string RegName = getRegionName(Region);
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of " << RegName << " at negative byte offset";
if (auto ConcreteIdx = Offset.getAs<nonloc::ConcreteInt>())
Out << ' ' << ConcreteIdx->getValue();
return {formatv("Out of bound access to memory preceding {0}", RegName),
std::string(Buf)};
}
/// Try to divide `Val1` and `Val2` (in place) by `Divisor` and return true if
/// it can be performed (`Divisor` is nonzero and there is no remainder). The
/// values `Val1` and `Val2` may be nullopt and in that case the corresponding
/// division is considered to be successful.
static bool tryDividePair(std::optional<int64_t> &Val1,
std::optional<int64_t> &Val2, int64_t Divisor) {
if (!Divisor)
return false;
const bool Val1HasRemainder = Val1 && *Val1 % Divisor;
const bool Val2HasRemainder = Val2 && *Val2 % Divisor;
if (!Val1HasRemainder && !Val2HasRemainder) {
if (Val1)
*Val1 /= Divisor;
if (Val2)
*Val2 /= Divisor;
return true;
}
return false;
}
static Messages getExceedsMsgs(ASTContext &ACtx, const SubRegion *Region,
NonLoc Offset, NonLoc Extent, SVal Location,
bool AlsoMentionUnderflow) {
std::string RegName = getRegionName(Region);
const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>();
assert(EReg && "this checker only handles element access");
QualType ElemType = EReg->getElementType();
std::optional<int64_t> OffsetN = getConcreteValue(Offset);
std::optional<int64_t> ExtentN = getConcreteValue(Extent);
int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity();
bool UseByteOffsets = !tryDividePair(OffsetN, ExtentN, ElemSize);
const char *OffsetOrIndex = UseByteOffsets ? "byte offset" : "index";
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of ";
if (!ExtentN && !UseByteOffsets)
Out << "'" << ElemType.getAsString() << "' element in ";
Out << RegName << " at ";
if (AlsoMentionUnderflow) {
Out << "a negative or overflowing " << OffsetOrIndex;
} else if (OffsetN) {
Out << OffsetOrIndex << " " << *OffsetN;
} else {
Out << "an overflowing " << OffsetOrIndex;
}
if (ExtentN) {
Out << ", while it holds only ";
if (*ExtentN != 1)
Out << *ExtentN;
else
Out << "a single";
if (UseByteOffsets)
Out << " byte";
else
Out << " '" << ElemType.getAsString() << "' element";
if (*ExtentN > 1)
Out << "s";
}
return {formatv("Out of bound access to memory {0} {1}",
AlsoMentionUnderflow ? "around" : "after the end of",
RegName),
std::string(Buf)};
}
static Messages getTaintMsgs(const SubRegion *Region, const char *OffsetName,
bool AlsoMentionUnderflow) {
std::string RegName = getRegionName(Region);
return {formatv("Potential out of bound access to {0} with tainted {1}",
RegName, OffsetName),
formatv("Access of {0} with a tainted {1} that may be {2}too large",
RegName, OffsetName,
AlsoMentionUnderflow ? "negative or " : "")};
}
const NoteTag *StateUpdateReporter::createNoteTag(CheckerContext &C) const {
// Don't create a note tag if we didn't assume anything:
if (!AssumedNonNegative && !AssumedUpperBound)
return nullptr;
return C.getNoteTag([*this](PathSensitiveBugReport &BR) -> std::string {
return getMessage(BR);
});
}
std::string StateUpdateReporter::getMessage(PathSensitiveBugReport &BR) const {
bool ShouldReportNonNegative = AssumedNonNegative;
if (!providesInformationAboutInteresting(ByteOffsetVal, BR)) {
if (AssumedUpperBound &&
providesInformationAboutInteresting(*AssumedUpperBound, BR)) {
// Even if the byte offset isn't interesting (e.g. it's a constant value),
// the assumption can still be interesting if it provides information
// about an interesting symbolic upper bound.
ShouldReportNonNegative = false;
} else {
// We don't have anything interesting, don't report the assumption.
return "";
}
}
std::optional<int64_t> OffsetN = getConcreteValue(ByteOffsetVal);
std::optional<int64_t> ExtentN = getConcreteValue(AssumedUpperBound);
const bool UseIndex =
ElementSize && tryDividePair(OffsetN, ExtentN, *ElementSize);
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Assuming ";
if (UseIndex) {
Out << "index ";
if (OffsetN)
Out << "'" << OffsetN << "' ";
} else if (AssumedUpperBound) {
Out << "byte offset ";
if (OffsetN)
Out << "'" << OffsetN << "' ";
} else {
Out << "offset ";
}
Out << "is";
if (ShouldReportNonNegative) {
Out << " non-negative";
}
if (AssumedUpperBound) {
if (ShouldReportNonNegative)
Out << " and";
Out << " less than ";
if (ExtentN)
Out << *ExtentN << ", ";
if (UseIndex && ElementType)
Out << "the number of '" << ElementType->getAsString()
<< "' elements in ";
else
Out << "the extent of ";
Out << getRegionName(Reg);
}
return std::string(Out.str());
}
bool StateUpdateReporter::providesInformationAboutInteresting(
SymbolRef Sym, PathSensitiveBugReport &BR) {
if (!Sym)
return false;
for (SymbolRef PartSym : Sym->symbols()) {
// The interestingess mark may appear on any layer as we're stripping off
// the SymIntExpr, UnarySymExpr etc. layers...
if (BR.isInteresting(PartSym))
return true;
// ...but if both sides of the expression are symbolic, then there is no
// practical algorithm to produce separate constraints for the two
// operands (from the single combined result).
if (isa<SymSymExpr>(PartSym))
return false;
}
return false;
}
void ArrayBoundCheckerV2::performCheck(const Expr *E, CheckerContext &C) const {
const SVal Location = C.getSVal(E);
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(E, C.getASTContext()))
return;
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset =
computeOffset(State, SVB, Location);
if (!RawOffset)
return;
auto [Reg, ByteOffset] = *RawOffset;
// The state updates will be reported as a single note tag, which will be
// composed by this helper class.
StateUpdateReporter SUR(Reg, ByteOffset, E, C);
// CHECK LOWER BOUND
const MemSpaceRegion *Space = Reg->getMemorySpace();
if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
// A symbolic region in unknown space represents an unknown pointer that
// may point into the middle of an array, so we don't look for underflows.
// Both conditions are significant because we want to check underflows in
// symbolic regions on the heap (which may be introduced by checkers like
// MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
// non-symbolic regions (e.g. a field subregion of a symbolic region) in
// unknown space.
auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold(
State, ByteOffset, SVB.makeZeroArrayIndex(), SVB);
if (PrecedesLowerBound) {
// The offset may be invalid (negative)...
if (!WithinLowerBound) {
// ...and it cannot be valid (>= 0), so report an error.
Messages Msgs = getPrecedesMsgs(Reg, ByteOffset);
reportOOB(C, PrecedesLowerBound, Msgs, ByteOffset, std::nullopt);
return;
}
// ...but it can be valid as well, so the checker will (optimistically)
// assume that it's valid and mention this in the note tag.
SUR.recordNonNegativeAssumption();
}
// Actually update the state. The "if" only fails in the extremely unlikely
// case when compareValueToThreshold returns {nullptr, nullptr} becasue
// evalBinOpNN fails to evaluate the less-than operator.
if (WithinLowerBound)
State = WithinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB);
if (auto KnownSize = Size.getAs<NonLoc>()) {
// In a situation where both overflow and overflow are possible (but the
// index is either tainted or known to be invalid), the logic of this
// checker will first assume that the offset is non-negative, and then
// (with this additional assumption) it will detect an overflow error.
// In this situation the warning message should mention both possibilities.
bool AlsoMentionUnderflow = SUR.assumedNonNegative();
auto [WithinUpperBound, ExceedsUpperBound] =
compareValueToThreshold(State, ByteOffset, *KnownSize, SVB);
if (ExceedsUpperBound) {
// The offset may be invalid (>= Size)...
if (!WithinUpperBound) {
// ...and it cannot be within bounds, so report an error, unless we can
// definitely determine that this is an idiomatic `&array[size]`
// expression that calculates the past-the-end pointer.
if (isIdiomaticPastTheEndPtr(E, ExceedsUpperBound, ByteOffset,
*KnownSize, C)) {
C.addTransition(ExceedsUpperBound, SUR.createNoteTag(C));
return;
}
Messages Msgs =
getExceedsMsgs(C.getASTContext(), Reg, ByteOffset, *KnownSize,
Location, AlsoMentionUnderflow);
reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize);
return;
}
// ...and it can be valid as well...
if (isTainted(State, ByteOffset)) {
// ...but it's tainted, so report an error.
// Diagnostic detail: saying "tainted offset" is always correct, but
// the common case is that 'idx' is tainted in 'arr[idx]' and then it's
// nicer to say "tainted index".
const char *OffsetName = "offset";
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E))
if (isTainted(State, ASE->getIdx(), C.getLocationContext()))
OffsetName = "index";
Messages Msgs = getTaintMsgs(Reg, OffsetName, AlsoMentionUnderflow);
reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize,
/*IsTaintBug=*/true);
return;
}
// ...and it isn't tainted, so the checker will (optimistically) assume
// that the offset is in bounds and mention this in the note tag.
SUR.recordUpperBoundAssumption(*KnownSize);
}
// Actually update the state. The "if" only fails in the extremely unlikely
// case when compareValueToThreshold returns {nullptr, nullptr} becasue
// evalBinOpNN fails to evaluate the less-than operator.
if (WithinUpperBound)
State = WithinUpperBound;
}
// Add a transition, reporting the state updates that we accumulated.
C.addTransition(State, SUR.createNoteTag(C));
}
void ArrayBoundCheckerV2::markPartsInteresting(PathSensitiveBugReport &BR,
ProgramStateRef ErrorState,
NonLoc Val, bool MarkTaint) {
if (SymbolRef Sym = Val.getAsSymbol()) {
// If the offset is a symbolic value, iterate over its "parts" with
// `SymExpr::symbols()` and mark each of them as interesting.
// For example, if the offset is `x*4 + y` then we put interestingness onto
// the SymSymExpr `x*4 + y`, the SymIntExpr `x*4` and the two data symbols
// `x` and `y`.
for (SymbolRef PartSym : Sym->symbols())
BR.markInteresting(PartSym);
}
if (MarkTaint) {
// If the issue that we're reporting depends on the taintedness of the
// offset, then put interestingness onto symbols that could be the origin
// of the taint. Note that this may find symbols that did not appear in
// `Sym->symbols()` (because they're only loosely connected to `Val`).
for (SymbolRef Sym : getTaintedSymbols(ErrorState, Val))
BR.markInteresting(Sym);
}
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &C,
ProgramStateRef ErrorState, Messages Msgs,
NonLoc Offset, std::optional<NonLoc> Extent,
bool IsTaintBug /*=false*/) const {
ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState);
if (!ErrorNode)
return;
auto BR = std::make_unique<PathSensitiveBugReport>(
IsTaintBug ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode);
// FIXME: ideally we would just call trackExpressionValue() and that would
// "do the right thing": mark the relevant symbols as interesting, track the
// control dependencies and statements storing the relevant values and add
// helpful diagnostic pieces. However, right now trackExpressionValue() is
// a heap of unreliable heuristics, so it would cause several issues:
// - Interestingness is not applied consistently, e.g. if `array[x+10]`
// causes an overflow, then `x` is not marked as interesting.
// - We get irrelevant diagnostic pieces, e.g. in the code
// `int *p = (int*)malloc(2*sizeof(int)); p[3] = 0;`
// it places a "Storing uninitialized value" note on the `malloc` call
// (which is technically true, but irrelevant).
// If trackExpressionValue() becomes reliable, it should be applied instead
// of this custom markPartsInteresting().
markPartsInteresting(*BR, ErrorState, Offset, IsTaintBug);
if (Extent)
markPartsInteresting(*BR, ErrorState, *Extent, IsTaintBug);
C.emitReport(std::move(BR));
}
bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
SourceLocation Loc = S->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
bool ArrayBoundCheckerV2::isInAddressOf(const Stmt *S, ASTContext &ACtx) {
ParentMapContext &ParentCtx = ACtx.getParentMapContext();
do {
const DynTypedNodeList Parents = ParentCtx.getParents(*S);
if (Parents.empty())
return false;
S = Parents[0].get<Stmt>();
} while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S));
const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S);
return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf;
}
bool ArrayBoundCheckerV2::isIdiomaticPastTheEndPtr(const Expr *E,
ProgramStateRef State,
NonLoc Offset, NonLoc Limit,
CheckerContext &C) {
if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) {
auto [EqualsToThreshold, NotEqualToThreshold] = compareValueToThreshold(
State, Offset, Limit, C.getSValBuilder(), /*CheckEquality=*/true);
return EqualsToThreshold && !NotEqualToThreshold;
}
return false;
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}