blob: 05ad5ecbfaa0cff6e311750f7499d848e9c17b6e [file] [log] [blame]
//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/PrettyDeclStackTrace.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/AttributeCommonInfo.h"
#include "clang/Basic/Attributes.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/EnterExpressionEvaluationContext.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/SemaCUDA.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaOpenMP.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include <optional>
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
///
/// Called type-id in C++.
TypeResult Parser::ParseTypeName(SourceRange *Range, DeclaratorContext Context,
AccessSpecifier AS, Decl **OwnedType,
ParsedAttributes *Attrs) {
DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
if (DSC == DeclSpecContext::DSC_normal)
DSC = DeclSpecContext::DSC_type_specifier;
// Parse the common declaration-specifiers piece.
DeclSpec DS(AttrFactory);
if (Attrs)
DS.addAttributes(*Attrs);
ParseSpecifierQualifierList(DS, AS, DSC);
if (OwnedType)
*OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
// Move declspec attributes to ParsedAttributes
if (Attrs) {
llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
for (ParsedAttr &AL : DS.getAttributes()) {
if (AL.isDeclspecAttribute())
ToBeMoved.push_back(&AL);
}
for (ParsedAttr *AL : ToBeMoved)
Attrs->takeOneFrom(DS.getAttributes(), AL);
}
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), Context);
ParseDeclarator(DeclaratorInfo);
if (Range)
*Range = DeclaratorInfo.getSourceRange();
if (DeclaratorInfo.isInvalidType())
return true;
return Actions.ActOnTypeName(DeclaratorInfo);
}
/// Normalizes an attribute name by dropping prefixed and suffixed __.
static StringRef normalizeAttrName(StringRef Name) {
if (Name.size() >= 4 && Name.starts_with("__") && Name.ends_with("__"))
return Name.drop_front(2).drop_back(2);
return Name;
}
/// isAttributeLateParsed - Return true if the attribute has arguments that
/// require late parsing.
static bool isAttributeLateParsed(const IdentifierInfo &II) {
#define CLANG_ATTR_LATE_PARSED_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_LATE_PARSED_LIST
}
/// Check if the a start and end source location expand to the same macro.
static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
return false;
SourceManager &SM = PP.getSourceManager();
if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
return false;
bool AttrStartIsInMacro =
Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
bool AttrEndIsInMacro =
Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
return AttrStartIsInMacro && AttrEndIsInMacro;
}
void Parser::ParseAttributes(unsigned WhichAttrKinds, ParsedAttributes &Attrs,
LateParsedAttrList *LateAttrs) {
bool MoreToParse;
do {
// Assume there's nothing left to parse, but if any attributes are in fact
// parsed, loop to ensure all specified attribute combinations are parsed.
MoreToParse = false;
if (WhichAttrKinds & PAKM_CXX11)
MoreToParse |= MaybeParseCXX11Attributes(Attrs);
if (WhichAttrKinds & PAKM_GNU)
MoreToParse |= MaybeParseGNUAttributes(Attrs, LateAttrs);
if (WhichAttrKinds & PAKM_Declspec)
MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs);
} while (MoreToParse);
}
/// ParseGNUAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// Whether an attribute takes an 'identifier' is determined by the
/// attrib-name. GCC's behavior here is not worth imitating:
///
/// * In C mode, if the attribute argument list starts with an identifier
/// followed by a ',' or an ')', and the identifier doesn't resolve to
/// a type, it is parsed as an identifier. If the attribute actually
/// wanted an expression, it's out of luck (but it turns out that no
/// attributes work that way, because C constant expressions are very
/// limited).
/// * In C++ mode, if the attribute argument list starts with an identifier,
/// and the attribute *wants* an identifier, it is parsed as an identifier.
/// At block scope, any additional tokens between the identifier and the
/// ',' or ')' are ignored, otherwise they produce a parse error.
///
/// We follow the C++ model, but don't allow junk after the identifier.
void Parser::ParseGNUAttributes(ParsedAttributes &Attrs,
LateParsedAttrList *LateAttrs, Declarator *D) {
assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc = StartLoc;
while (Tok.is(tok::kw___attribute)) {
SourceLocation AttrTokLoc = ConsumeToken();
unsigned OldNumAttrs = Attrs.size();
unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
return;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
return;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
do {
// Eat preceeding commas to allow __attribute__((,,,foo))
while (TryConsumeToken(tok::comma))
;
// Expect an identifier or declaration specifier (const, int, etc.)
if (Tok.isAnnotation())
break;
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteAttribute(AttributeCommonInfo::Syntax::AS_GNU);
break;
}
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
if (!AttrName)
break;
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::Form::GNU());
continue;
}
// Handle "parameterized" attributes
if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, &EndLoc, nullptr,
SourceLocation(), ParsedAttr::Form::GNU(), D);
continue;
}
// Handle attributes with arguments that require late parsing.
LateParsedAttribute *LA =
new LateParsedAttribute(this, *AttrName, AttrNameLoc);
LateAttrs->push_back(LA);
// Attributes in a class are parsed at the end of the class, along
// with other late-parsed declarations.
if (!ClassStack.empty() && !LateAttrs->parseSoon())
getCurrentClass().LateParsedDeclarations.push_back(LA);
// Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
// recursively consumes balanced parens.
LA->Toks.push_back(Tok);
ConsumeParen();
// Consume everything up to and including the matching right parens.
ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
Token Eof;
Eof.startToken();
Eof.setLocation(Tok.getLocation());
LA->Toks.push_back(Eof);
} while (Tok.is(tok::comma));
if (ExpectAndConsume(tok::r_paren))
SkipUntil(tok::r_paren, StopAtSemi);
SourceLocation Loc = Tok.getLocation();
if (ExpectAndConsume(tok::r_paren))
SkipUntil(tok::r_paren, StopAtSemi);
EndLoc = Loc;
// If this was declared in a macro, attach the macro IdentifierInfo to the
// parsed attribute.
auto &SM = PP.getSourceManager();
if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
StringRef FoundName =
Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i)
Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
if (LateAttrs) {
for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
(*LateAttrs)[i]->MacroII = MacroII;
}
}
}
Attrs.Range = SourceRange(StartLoc, EndLoc);
}
/// Determine whether the given attribute has an identifier argument.
static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
#define CLANG_ATTR_IDENTIFIER_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
}
/// Determine whether the given attribute has an identifier argument.
static ParsedAttributeArgumentsProperties
attributeStringLiteralListArg(const llvm::Triple &T, const IdentifierInfo &II) {
#define CLANG_ATTR_STRING_LITERAL_ARG_LIST
return llvm::StringSwitch<uint32_t>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(0);
#undef CLANG_ATTR_STRING_LITERAL_ARG_LIST
}
/// Determine whether the given attribute has a variadic identifier argument.
static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
#define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
}
/// Determine whether the given attribute treats kw_this as an identifier.
static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
#define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
}
/// Determine if an attribute accepts parameter packs.
static bool attributeAcceptsExprPack(const IdentifierInfo &II) {
#define CLANG_ATTR_ACCEPTS_EXPR_PACK
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_ACCEPTS_EXPR_PACK
}
/// Determine whether the given attribute parses a type argument.
static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
#define CLANG_ATTR_TYPE_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_TYPE_ARG_LIST
}
/// Determine whether the given attribute requires parsing its arguments
/// in an unevaluated context or not.
static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
#define CLANG_ATTR_ARG_CONTEXT_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_ARG_CONTEXT_LIST
}
IdentifierLoc *Parser::ParseIdentifierLoc() {
assert(Tok.is(tok::identifier) && "expected an identifier");
IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
return IL;
}
void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Form Form) {
BalancedDelimiterTracker Parens(*this, tok::l_paren);
Parens.consumeOpen();
TypeResult T;
if (Tok.isNot(tok::r_paren))
T = ParseTypeName();
if (Parens.consumeClose())
return;
if (T.isInvalid())
return;
if (T.isUsable())
Attrs.addNewTypeAttr(&AttrName,
SourceRange(AttrNameLoc, Parens.getCloseLocation()),
ScopeName, ScopeLoc, T.get(), Form);
else
Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
ScopeName, ScopeLoc, nullptr, 0, Form);
}
ExprResult
Parser::ParseUnevaluatedStringInAttribute(const IdentifierInfo &AttrName) {
if (Tok.is(tok::l_paren)) {
BalancedDelimiterTracker Paren(*this, tok::l_paren);
Paren.consumeOpen();
ExprResult Res = ParseUnevaluatedStringInAttribute(AttrName);
Paren.consumeClose();
return Res;
}
if (!isTokenStringLiteral()) {
Diag(Tok.getLocation(), diag::err_expected_string_literal)
<< /*in attribute...*/ 4 << AttrName.getName();
return ExprError();
}
return ParseUnevaluatedStringLiteralExpression();
}
bool Parser::ParseAttributeArgumentList(
const IdentifierInfo &AttrName, SmallVectorImpl<Expr *> &Exprs,
ParsedAttributeArgumentsProperties ArgsProperties) {
bool SawError = false;
unsigned Arg = 0;
while (true) {
ExprResult Expr;
if (ArgsProperties.isStringLiteralArg(Arg)) {
Expr = ParseUnevaluatedStringInAttribute(AttrName);
} else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
Expr = ParseBraceInitializer();
} else {
Expr = ParseAssignmentExpression();
}
Expr = Actions.CorrectDelayedTyposInExpr(Expr);
if (Tok.is(tok::ellipsis))
Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
else if (Tok.is(tok::code_completion)) {
// There's nothing to suggest in here as we parsed a full expression.
// Instead fail and propagate the error since caller might have something
// the suggest, e.g. signature help in function call. Note that this is
// performed before pushing the \p Expr, so that signature help can report
// current argument correctly.
SawError = true;
cutOffParsing();
break;
}
if (Expr.isInvalid()) {
SawError = true;
break;
}
Exprs.push_back(Expr.get());
if (Tok.isNot(tok::comma))
break;
// Move to the next argument, remember where the comma was.
Token Comma = Tok;
ConsumeToken();
checkPotentialAngleBracketDelimiter(Comma);
Arg++;
}
if (SawError) {
// Ensure typos get diagnosed when errors were encountered while parsing the
// expression list.
for (auto &E : Exprs) {
ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
if (Expr.isUsable())
E = Expr.get();
}
}
return SawError;
}
unsigned Parser::ParseAttributeArgsCommon(
IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
// Ignore the left paren location for now.
ConsumeParen();
bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
bool AttributeHasVariadicIdentifierArg =
attributeHasVariadicIdentifierArg(*AttrName);
// Interpret "kw_this" as an identifier if the attributed requests it.
if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
Tok.setKind(tok::identifier);
ArgsVector ArgExprs;
if (Tok.is(tok::identifier)) {
// If this attribute wants an 'identifier' argument, make it so.
bool IsIdentifierArg = AttributeHasVariadicIdentifierArg ||
attributeHasIdentifierArg(*AttrName);
ParsedAttr::Kind AttrKind =
ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
// If we don't know how to parse this attribute, but this is the only
// token in this argument, assume it's meant to be an identifier.
if (AttrKind == ParsedAttr::UnknownAttribute ||
AttrKind == ParsedAttr::IgnoredAttribute) {
const Token &Next = NextToken();
IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
}
if (IsIdentifierArg)
ArgExprs.push_back(ParseIdentifierLoc());
}
ParsedType TheParsedType;
if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
// Eat the comma.
if (!ArgExprs.empty())
ConsumeToken();
if (AttributeIsTypeArgAttr) {
// FIXME: Multiple type arguments are not implemented.
TypeResult T = ParseTypeName();
if (T.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return 0;
}
if (T.isUsable())
TheParsedType = T.get();
} else if (AttributeHasVariadicIdentifierArg) {
// Parse variadic identifier arg. This can either consume identifiers or
// expressions. Variadic identifier args do not support parameter packs
// because those are typically used for attributes with enumeration
// arguments, and those enumerations are not something the user could
// express via a pack.
do {
// Interpret "kw_this" as an identifier if the attributed requests it.
if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
Tok.setKind(tok::identifier);
ExprResult ArgExpr;
if (Tok.is(tok::identifier)) {
ArgExprs.push_back(ParseIdentifierLoc());
} else {
bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
EnterExpressionEvaluationContext Unevaluated(
Actions,
Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
: Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult ArgExpr(
Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
if (ArgExpr.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return 0;
}
ArgExprs.push_back(ArgExpr.get());
}
// Eat the comma, move to the next argument
} while (TryConsumeToken(tok::comma));
} else {
// General case. Parse all available expressions.
bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
EnterExpressionEvaluationContext Unevaluated(
Actions, Uneval
? Sema::ExpressionEvaluationContext::Unevaluated
: Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprVector ParsedExprs;
ParsedAttributeArgumentsProperties ArgProperties =
attributeStringLiteralListArg(getTargetInfo().getTriple(), *AttrName);
if (ParseAttributeArgumentList(*AttrName, ParsedExprs, ArgProperties)) {
SkipUntil(tok::r_paren, StopAtSemi);
return 0;
}
// Pack expansion must currently be explicitly supported by an attribute.
for (size_t I = 0; I < ParsedExprs.size(); ++I) {
if (!isa<PackExpansionExpr>(ParsedExprs[I]))
continue;
if (!attributeAcceptsExprPack(*AttrName)) {
Diag(Tok.getLocation(),
diag::err_attribute_argument_parm_pack_not_supported)
<< AttrName;
SkipUntil(tok::r_paren, StopAtSemi);
return 0;
}
}
ArgExprs.insert(ArgExprs.end(), ParsedExprs.begin(), ParsedExprs.end());
}
}
SourceLocation RParen = Tok.getLocation();
if (!ExpectAndConsume(tok::r_paren)) {
SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
ScopeName, ScopeLoc, TheParsedType, Form);
} else {
Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
ArgExprs.data(), ArgExprs.size(), Form);
}
}
if (EndLoc)
*EndLoc = RParen;
return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
}
/// Parse the arguments to a parameterized GNU attribute or
/// a C++11 attribute in "gnu" namespace.
void Parser::ParseGNUAttributeArgs(
IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form, Declarator *D) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
ParsedAttr::Kind AttrKind =
ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
if (AttrKind == ParsedAttr::AT_Availability) {
ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Form);
return;
} else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
return;
} else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
return;
} else if (AttrKind == ParsedAttr::AT_SwiftNewType) {
ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Form);
return;
} else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
return;
} else if (attributeIsTypeArgAttr(*AttrName)) {
ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, ScopeName,
ScopeLoc, Form);
return;
} else if (AttrKind == ParsedAttr::AT_CountedBy) {
ParseBoundsAttribute(*AttrName, AttrNameLoc, Attrs, ScopeName, ScopeLoc,
Form);
return;
}
// These may refer to the function arguments, but need to be parsed early to
// participate in determining whether it's a redeclaration.
std::optional<ParseScope> PrototypeScope;
if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
D && D->isFunctionDeclarator()) {
DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
Scope::FunctionDeclarationScope |
Scope::DeclScope);
for (unsigned i = 0; i != FTI.NumParams; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
}
}
ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Form);
}
unsigned Parser::ParseClangAttributeArgs(
IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
ParsedAttr::Kind AttrKind =
ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
switch (AttrKind) {
default:
return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
case ParsedAttr::AT_ExternalSourceSymbol:
ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
break;
case ParsedAttr::AT_Availability:
ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Form);
break;
case ParsedAttr::AT_ObjCBridgeRelated:
ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
break;
case ParsedAttr::AT_SwiftNewType:
ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Form);
break;
case ParsedAttr::AT_TypeTagForDatatype:
ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Form);
break;
}
return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
}
bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs) {
unsigned ExistingAttrs = Attrs.size();
// If the attribute isn't known, we will not attempt to parse any
// arguments.
if (!hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, AttrName,
getTargetInfo(), getLangOpts())) {
// Eat the left paren, then skip to the ending right paren.
ConsumeParen();
SkipUntil(tok::r_paren);
return false;
}
SourceLocation OpenParenLoc = Tok.getLocation();
if (AttrName->getName() == "property") {
// The property declspec is more complex in that it can take one or two
// assignment expressions as a parameter, but the lhs of the assignment
// must be named get or put.
BalancedDelimiterTracker T(*this, tok::l_paren);
T.expectAndConsume(diag::err_expected_lparen_after,
AttrName->getNameStart(), tok::r_paren);
enum AccessorKind {
AK_Invalid = -1,
AK_Put = 0,
AK_Get = 1 // indices into AccessorNames
};
IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
bool HasInvalidAccessor = false;
// Parse the accessor specifications.
while (true) {
// Stop if this doesn't look like an accessor spec.
if (!Tok.is(tok::identifier)) {
// If the user wrote a completely empty list, use a special diagnostic.
if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
AccessorNames[AK_Put] == nullptr &&
AccessorNames[AK_Get] == nullptr) {
Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
break;
}
Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
break;
}
AccessorKind Kind;
SourceLocation KindLoc = Tok.getLocation();
StringRef KindStr = Tok.getIdentifierInfo()->getName();
if (KindStr == "get") {
Kind = AK_Get;
} else if (KindStr == "put") {
Kind = AK_Put;
// Recover from the common mistake of using 'set' instead of 'put'.
} else if (KindStr == "set") {
Diag(KindLoc, diag::err_ms_property_has_set_accessor)
<< FixItHint::CreateReplacement(KindLoc, "put");
Kind = AK_Put;
// Handle the mistake of forgetting the accessor kind by skipping
// this accessor.
} else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
ConsumeToken();
HasInvalidAccessor = true;
goto next_property_accessor;
// Otherwise, complain about the unknown accessor kind.
} else {
Diag(KindLoc, diag::err_ms_property_unknown_accessor);
HasInvalidAccessor = true;
Kind = AK_Invalid;
// Try to keep parsing unless it doesn't look like an accessor spec.
if (!NextToken().is(tok::equal))
break;
}
// Consume the identifier.
ConsumeToken();
// Consume the '='.
if (!TryConsumeToken(tok::equal)) {
Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
<< KindStr;
break;
}
// Expect the method name.
if (!Tok.is(tok::identifier)) {
Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
break;
}
if (Kind == AK_Invalid) {
// Just drop invalid accessors.
} else if (AccessorNames[Kind] != nullptr) {
// Complain about the repeated accessor, ignore it, and keep parsing.
Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
} else {
AccessorNames[Kind] = Tok.getIdentifierInfo();
}
ConsumeToken();
next_property_accessor:
// Keep processing accessors until we run out.
if (TryConsumeToken(tok::comma))
continue;
// If we run into the ')', stop without consuming it.
if (Tok.is(tok::r_paren))
break;
Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
break;
}
// Only add the property attribute if it was well-formed.
if (!HasInvalidAccessor)
Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
AccessorNames[AK_Get], AccessorNames[AK_Put],
ParsedAttr::Form::Declspec());
T.skipToEnd();
return !HasInvalidAccessor;
}
unsigned NumArgs =
ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
SourceLocation(), ParsedAttr::Form::Declspec());
// If this attribute's args were parsed, and it was expected to have
// arguments but none were provided, emit a diagnostic.
if (ExistingAttrs < Attrs.size() && Attrs.back().getMaxArgs() && !NumArgs) {
Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
return false;
}
return true;
}
/// [MS] decl-specifier:
/// __declspec ( extended-decl-modifier-seq )
///
/// [MS] extended-decl-modifier-seq:
/// extended-decl-modifier[opt]
/// extended-decl-modifier extended-decl-modifier-seq
void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs) {
assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc = StartLoc;
while (Tok.is(tok::kw___declspec)) {
ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
tok::r_paren))
return;
// An empty declspec is perfectly legal and should not warn. Additionally,
// you can specify multiple attributes per declspec.
while (Tok.isNot(tok::r_paren)) {
// Attribute not present.
if (TryConsumeToken(tok::comma))
continue;
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteAttribute(AttributeCommonInfo::AS_Declspec);
return;
}
// We expect either a well-known identifier or a generic string. Anything
// else is a malformed declspec.
bool IsString = Tok.getKind() == tok::string_literal;
if (!IsString && Tok.getKind() != tok::identifier &&
Tok.getKind() != tok::kw_restrict) {
Diag(Tok, diag::err_ms_declspec_type);
T.skipToEnd();
return;
}
IdentifierInfo *AttrName;
SourceLocation AttrNameLoc;
if (IsString) {
SmallString<8> StrBuffer;
bool Invalid = false;
StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
if (Invalid) {
T.skipToEnd();
return;
}
AttrName = PP.getIdentifierInfo(Str);
AttrNameLoc = ConsumeStringToken();
} else {
AttrName = Tok.getIdentifierInfo();
AttrNameLoc = ConsumeToken();
}
bool AttrHandled = false;
// Parse attribute arguments.
if (Tok.is(tok::l_paren))
AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
else if (AttrName->getName() == "property")
// The property attribute must have an argument list.
Diag(Tok.getLocation(), diag::err_expected_lparen_after)
<< AttrName->getName();
if (!AttrHandled)
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::Form::Declspec());
}
T.consumeClose();
EndLoc = T.getCloseLocation();
}
Attrs.Range = SourceRange(StartLoc, EndLoc);
}
void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (true) {
auto Kind = Tok.getKind();
switch (Kind) {
case tok::kw___fastcall:
case tok::kw___stdcall:
case tok::kw___thiscall:
case tok::kw___regcall:
case tok::kw___cdecl:
case tok::kw___vectorcall:
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___ptr32:
case tok::kw___sptr:
case tok::kw___uptr: {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
Kind);
break;
}
default:
return;
}
}
}
void Parser::ParseWebAssemblyFuncrefTypeAttribute(ParsedAttributes &attrs) {
assert(Tok.is(tok::kw___funcref));
SourceLocation StartLoc = Tok.getLocation();
if (!getTargetInfo().getTriple().isWasm()) {
ConsumeToken();
Diag(StartLoc, diag::err_wasm_funcref_not_wasm);
return;
}
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
/*ScopeLoc=*/SourceLocation{}, /*Args=*/nullptr, /*numArgs=*/0,
tok::kw___funcref);
}
void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
if (EndLoc.isValid()) {
SourceRange Range(StartLoc, EndLoc);
Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
}
}
SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
SourceLocation EndLoc;
while (true) {
switch (Tok.getKind()) {
case tok::kw_const:
case tok::kw_volatile:
case tok::kw___fastcall:
case tok::kw___stdcall:
case tok::kw___thiscall:
case tok::kw___cdecl:
case tok::kw___vectorcall:
case tok::kw___ptr32:
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___unaligned:
case tok::kw___sptr:
case tok::kw___uptr:
EndLoc = ConsumeToken();
break;
default:
return EndLoc;
}
}
}
void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___pascal)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
tok::kw___pascal);
}
}
void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___kernel)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
tok::kw___kernel);
}
}
void Parser::ParseCUDAFunctionAttributes(ParsedAttributes &attrs) {
while (Tok.is(tok::kw___noinline__)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
tok::kw___noinline__);
}
}
void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = Tok.getLocation();
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
Tok.getKind());
}
bool Parser::isHLSLQualifier(const Token &Tok) const {
return Tok.is(tok::kw_groupshared);
}
void Parser::ParseHLSLQualifiers(ParsedAttributes &Attrs) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
auto Kind = Tok.getKind();
SourceLocation AttrNameLoc = ConsumeToken();
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind);
}
void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
// Treat these like attributes, even though they're type specifiers.
while (true) {
auto Kind = Tok.getKind();
switch (Kind) {
case tok::kw__Nonnull:
case tok::kw__Nullable:
case tok::kw__Nullable_result:
case tok::kw__Null_unspecified: {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (!getLangOpts().ObjC)
Diag(AttrNameLoc, diag::ext_nullability)
<< AttrName;
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
Kind);
break;
}
default:
return;
}
}
}
static bool VersionNumberSeparator(const char Separator) {
return (Separator == '.' || Separator == '_');
}
/// Parse a version number.
///
/// version:
/// simple-integer
/// simple-integer '.' simple-integer
/// simple-integer '_' simple-integer
/// simple-integer '.' simple-integer '.' simple-integer
/// simple-integer '_' simple-integer '_' simple-integer
VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
if (!Tok.is(tok::numeric_constant)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
// Parse the major (and possibly minor and subminor) versions, which
// are stored in the numeric constant. We utilize a quirk of the
// lexer, which is that it handles something like 1.2.3 as a single
// numeric constant, rather than two separate tokens.
SmallString<512> Buffer;
Buffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &Buffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
if (Invalid)
return VersionTuple();
// Parse the major version.
unsigned AfterMajor = 0;
unsigned Major = 0;
while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
++AfterMajor;
}
if (AfterMajor == 0) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
if (AfterMajor == ActualLength) {
ConsumeToken();
// We only had a single version component.
if (Major == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major);
}
const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
if (!VersionNumberSeparator(AfterMajorSeparator)
|| (AfterMajor + 1 == ActualLength)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
// Parse the minor version.
unsigned AfterMinor = AfterMajor + 1;
unsigned Minor = 0;
while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
++AfterMinor;
}
if (AfterMinor == ActualLength) {
ConsumeToken();
// We had major.minor.
if (Major == 0 && Minor == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major, Minor);
}
const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
// If what follows is not a '.' or '_', we have a problem.
if (!VersionNumberSeparator(AfterMinorSeparator)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
// Warn if separators, be it '.' or '_', do not match.
if (AfterMajorSeparator != AfterMinorSeparator)
Diag(Tok, diag::warn_expected_consistent_version_separator);
// Parse the subminor version.
unsigned AfterSubminor = AfterMinor + 1;
unsigned Subminor = 0;
while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
++AfterSubminor;
}
if (AfterSubminor != ActualLength) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
ConsumeToken();
return VersionTuple(Major, Minor, Subminor);
}
/// Parse the contents of the "availability" attribute.
///
/// availability-attribute:
/// 'availability' '(' platform ',' opt-strict version-arg-list,
/// opt-replacement, opt-message')'
///
/// platform:
/// identifier
///
/// opt-strict:
/// 'strict' ','
///
/// version-arg-list:
/// version-arg
/// version-arg ',' version-arg-list
///
/// version-arg:
/// 'introduced' '=' version
/// 'deprecated' '=' version
/// 'obsoleted' = version
/// 'unavailable'
/// opt-replacement:
/// 'replacement' '=' <string>
/// opt-message:
/// 'message' '=' <string>
void Parser::ParseAvailabilityAttribute(
IdentifierInfo &Availability, SourceLocation AvailabilityLoc,
ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
enum { Introduced, Deprecated, Obsoleted, Unknown };
AvailabilityChange Changes[Unknown];
ExprResult MessageExpr, ReplacementExpr;
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
return;
}
// Parse the platform name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_platform);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
IdentifierLoc *Platform = ParseIdentifierLoc();
if (const IdentifierInfo *const Ident = Platform->Ident) {
// Disallow xrOS for availability attributes.
if (Ident->getName().contains("xrOS") || Ident->getName().contains("xros"))
Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Ident;
// Canonicalize platform name from "macosx" to "macos".
else if (Ident->getName() == "macosx")
Platform->Ident = PP.getIdentifierInfo("macos");
// Canonicalize platform name from "macosx_app_extension" to
// "macos_app_extension".
else if (Ident->getName() == "macosx_app_extension")
Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
else
Platform->Ident = PP.getIdentifierInfo(
AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
}
// Parse the ',' following the platform name.
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// If we haven't grabbed the pointers for the identifiers
// "introduced", "deprecated", and "obsoleted", do so now.
if (!Ident_introduced) {
Ident_introduced = PP.getIdentifierInfo("introduced");
Ident_deprecated = PP.getIdentifierInfo("deprecated");
Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
Ident_unavailable = PP.getIdentifierInfo("unavailable");
Ident_message = PP.getIdentifierInfo("message");
Ident_strict = PP.getIdentifierInfo("strict");
Ident_replacement = PP.getIdentifierInfo("replacement");
}
// Parse the optional "strict", the optional "replacement" and the set of
// introductions/deprecations/removals.
SourceLocation UnavailableLoc, StrictLoc;
do {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_change);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
IdentifierInfo *Keyword = Tok.getIdentifierInfo();
SourceLocation KeywordLoc = ConsumeToken();
if (Keyword == Ident_strict) {
if (StrictLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword << SourceRange(StrictLoc);
}
StrictLoc = KeywordLoc;
continue;
}
if (Keyword == Ident_unavailable) {
if (UnavailableLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword << SourceRange(UnavailableLoc);
}
UnavailableLoc = KeywordLoc;
continue;
}
if (Keyword == Ident_deprecated && Platform->Ident &&
Platform->Ident->isStr("swift")) {
// For swift, we deprecate for all versions.
if (Changes[Deprecated].KeywordLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword
<< SourceRange(Changes[Deprecated].KeywordLoc);
}
Changes[Deprecated].KeywordLoc = KeywordLoc;
// Use a fake version here.
Changes[Deprecated].Version = VersionTuple(1);
continue;
}
if (Tok.isNot(tok::equal)) {
Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
ConsumeToken();
if (Keyword == Ident_message || Keyword == Ident_replacement) {
if (!isTokenStringLiteral()) {
Diag(Tok, diag::err_expected_string_literal)
<< /*Source='availability attribute'*/2;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
if (Keyword == Ident_message) {
MessageExpr = ParseUnevaluatedStringLiteralExpression();
break;
} else {
ReplacementExpr = ParseUnevaluatedStringLiteralExpression();
continue;
}
}
// Special handling of 'NA' only when applied to introduced or
// deprecated.
if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
Tok.is(tok::identifier)) {
IdentifierInfo *NA = Tok.getIdentifierInfo();
if (NA->getName() == "NA") {
ConsumeToken();
if (Keyword == Ident_introduced)
UnavailableLoc = KeywordLoc;
continue;
}
}
SourceRange VersionRange;
VersionTuple Version = ParseVersionTuple(VersionRange);
if (Version.empty()) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
unsigned Index;
if (Keyword == Ident_introduced)
Index = Introduced;
else if (Keyword == Ident_deprecated)
Index = Deprecated;
else if (Keyword == Ident_obsoleted)
Index = Obsoleted;
else
Index = Unknown;
if (Index < Unknown) {
if (!Changes[Index].KeywordLoc.isInvalid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
}
Changes[Index].KeywordLoc = KeywordLoc;
Changes[Index].Version = Version;
Changes[Index].VersionRange = VersionRange;
} else {
Diag(KeywordLoc, diag::err_availability_unknown_change)
<< Keyword << VersionRange;
}
} while (TryConsumeToken(tok::comma));
// Closing ')'.
if (T.consumeClose())
return;
if (endLoc)
*endLoc = T.getCloseLocation();
// The 'unavailable' availability cannot be combined with any other
// availability changes. Make sure that hasn't happened.
if (UnavailableLoc.isValid()) {
bool Complained = false;
for (unsigned Index = Introduced; Index != Unknown; ++Index) {
if (Changes[Index].KeywordLoc.isValid()) {
if (!Complained) {
Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
Complained = true;
}
// Clear out the availability.
Changes[Index] = AvailabilityChange();
}
}
}
// Record this attribute
attrs.addNew(&Availability,
SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName,
ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated],
Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Form,
StrictLoc, ReplacementExpr.get());
}
/// Parse the contents of the "external_source_symbol" attribute.
///
/// external-source-symbol-attribute:
/// 'external_source_symbol' '(' keyword-arg-list ')'
///
/// keyword-arg-list:
/// keyword-arg
/// keyword-arg ',' keyword-arg-list
///
/// keyword-arg:
/// 'language' '=' <string>
/// 'defined_in' '=' <string>
/// 'USR' '=' <string>
/// 'generated_declaration'
void Parser::ParseExternalSourceSymbolAttribute(
IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return;
// Initialize the pointers for the keyword identifiers when required.
if (!Ident_language) {
Ident_language = PP.getIdentifierInfo("language");
Ident_defined_in = PP.getIdentifierInfo("defined_in");
Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
Ident_USR = PP.getIdentifierInfo("USR");
}
ExprResult Language;
bool HasLanguage = false;
ExprResult DefinedInExpr;
bool HasDefinedIn = false;
IdentifierLoc *GeneratedDeclaration = nullptr;
ExprResult USR;
bool HasUSR = false;
// Parse the language/defined_in/generated_declaration keywords
do {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_external_source_symbol_expected_keyword);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
SourceLocation KeywordLoc = Tok.getLocation();
IdentifierInfo *Keyword = Tok.getIdentifierInfo();
if (Keyword == Ident_generated_declaration) {
if (GeneratedDeclaration) {
Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
GeneratedDeclaration = ParseIdentifierLoc();
continue;
}
if (Keyword != Ident_language && Keyword != Ident_defined_in &&
Keyword != Ident_USR) {
Diag(Tok, diag::err_external_source_symbol_expected_keyword);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
ConsumeToken();
if (ExpectAndConsume(tok::equal, diag::err_expected_after,
Keyword->getName())) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn,
HadUSR = HasUSR;
if (Keyword == Ident_language)
HasLanguage = true;
else if (Keyword == Ident_USR)
HasUSR = true;
else
HasDefinedIn = true;
if (!isTokenStringLiteral()) {
Diag(Tok, diag::err_expected_string_literal)
<< /*Source='external_source_symbol attribute'*/ 3
<< /*language | source container | USR*/ (
Keyword == Ident_language
? 0
: (Keyword == Ident_defined_in ? 1 : 2));
SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
continue;
}
if (Keyword == Ident_language) {
if (HadLanguage) {
Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
<< Keyword;
ParseUnevaluatedStringLiteralExpression();
continue;
}
Language = ParseUnevaluatedStringLiteralExpression();
} else if (Keyword == Ident_USR) {
if (HadUSR) {
Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
<< Keyword;
ParseUnevaluatedStringLiteralExpression();
continue;
}
USR = ParseUnevaluatedStringLiteralExpression();
} else {
assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
if (HadDefinedIn) {
Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
<< Keyword;
ParseUnevaluatedStringLiteralExpression();
continue;
}
DefinedInExpr = ParseUnevaluatedStringLiteralExpression();
}
} while (TryConsumeToken(tok::comma));
// Closing ')'.
if (T.consumeClose())
return;
if (EndLoc)
*EndLoc = T.getCloseLocation();
ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration,
USR.get()};
Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
ScopeName, ScopeLoc, Args, std::size(Args), Form);
}
/// Parse the contents of the "objc_bridge_related" attribute.
/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
/// related_class:
/// Identifier
///
/// opt-class_method:
/// Identifier: | <empty>
///
/// opt-instance_method:
/// Identifier | <empty>
///
void Parser::ParseObjCBridgeRelatedAttribute(
IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
return;
}
// Parse the related class name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_objcbridge_related_expected_related_class);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
IdentifierLoc *RelatedClass = ParseIdentifierLoc();
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Parse class method name. It's non-optional in the sense that a trailing
// comma is required, but it can be the empty string, and then we record a
// nullptr.
IdentifierLoc *ClassMethod = nullptr;
if (Tok.is(tok::identifier)) {
ClassMethod = ParseIdentifierLoc();
if (!TryConsumeToken(tok::colon)) {
Diag(Tok, diag::err_objcbridge_related_selector_name);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
}
if (!TryConsumeToken(tok::comma)) {
if (Tok.is(tok::colon))
Diag(Tok, diag::err_objcbridge_related_selector_name);
else
Diag(Tok, diag::err_expected) << tok::comma;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Parse instance method name. Also non-optional but empty string is
// permitted.
IdentifierLoc *InstanceMethod = nullptr;
if (Tok.is(tok::identifier))
InstanceMethod = ParseIdentifierLoc();
else if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Closing ')'.
if (T.consumeClose())
return;
if (EndLoc)
*EndLoc = T.getCloseLocation();
// Record this attribute
Attrs.addNew(&ObjCBridgeRelated,
SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod,
Form);
}
void Parser::ParseSwiftNewTypeAttribute(
IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
BalancedDelimiterTracker T(*this, tok::l_paren);
// Opening '('
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
return;
}
if (Tok.is(tok::r_paren)) {
Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
T.consumeClose();
return;
}
if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) {
Diag(Tok, diag::warn_attribute_type_not_supported)
<< &AttrName << Tok.getIdentifierInfo();
if (!isTokenSpecial())
ConsumeToken();
T.consumeClose();
return;
}
auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
// Closing ')'
if (T.consumeClose())
return;
if (EndLoc)
*EndLoc = T.getCloseLocation();
ArgsUnion Args[] = {SwiftType};
Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()),
ScopeName, ScopeLoc, Args, std::size(Args), Form);
}
void Parser::ParseTypeTagForDatatypeAttribute(
IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Form Form) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
T.skipToEnd();
return;
}
IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
if (ExpectAndConsume(tok::comma)) {
T.skipToEnd();
return;
}
SourceRange MatchingCTypeRange;
TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
if (MatchingCType.isInvalid()) {
T.skipToEnd();
return;
}
bool LayoutCompatible = false;
bool MustBeNull = false;
while (TryConsumeToken(tok::comma)) {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
T.skipToEnd();
return;
}
IdentifierInfo *Flag = Tok.getIdentifierInfo();
if (Flag->isStr("layout_compatible"))
LayoutCompatible = true;
else if (Flag->isStr("must_be_null"))
MustBeNull = true;
else {
Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
T.skipToEnd();
return;
}
ConsumeToken(); // consume flag
}
if (!T.consumeClose()) {
Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
ArgumentKind, MatchingCType.get(),
LayoutCompatible, MustBeNull, Form);
}
if (EndLoc)
*EndLoc = T.getCloseLocation();
}
/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
/// of a C++11 attribute-specifier in a location where an attribute is not
/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
/// situation.
///
/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
/// this doesn't appear to actually be an attribute-specifier, and the caller
/// should try to parse it.
bool Parser::DiagnoseProhibitedCXX11Attribute() {
assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
case CAK_NotAttributeSpecifier:
// No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
return false;
case CAK_InvalidAttributeSpecifier:
Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
return false;
case CAK_AttributeSpecifier:
// Parse and discard the attributes.
SourceLocation BeginLoc = ConsumeBracket();
ConsumeBracket();
SkipUntil(tok::r_square);
assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
SourceLocation EndLoc = ConsumeBracket();
Diag(BeginLoc, diag::err_attributes_not_allowed)
<< SourceRange(BeginLoc, EndLoc);
return true;
}
llvm_unreachable("All cases handled above.");
}
/// We have found the opening square brackets of a C++11
/// attribute-specifier in a location where an attribute is not permitted, but
/// we know where the attributes ought to be written. Parse them anyway, and
/// provide a fixit moving them to the right place.
void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributes &Attrs,
SourceLocation CorrectLocation) {
assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
Tok.is(tok::kw_alignas) || Tok.isRegularKeywordAttribute());
// Consume the attributes.
auto Keyword =
Tok.isRegularKeywordAttribute() ? Tok.getIdentifierInfo() : nullptr;
SourceLocation Loc = Tok.getLocation();
ParseCXX11Attributes(Attrs);
CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
// FIXME: use err_attributes_misplaced
(Keyword ? Diag(Loc, diag::err_keyword_not_allowed) << Keyword
: Diag(Loc, diag::err_attributes_not_allowed))
<< FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
<< FixItHint::CreateRemoval(AttrRange);
}
void Parser::DiagnoseProhibitedAttributes(
const ParsedAttributesView &Attrs, const SourceLocation CorrectLocation) {
auto *FirstAttr = Attrs.empty() ? nullptr : &Attrs.front();
if (CorrectLocation.isValid()) {
CharSourceRange AttrRange(Attrs.Range, true);
(FirstAttr && FirstAttr->isRegularKeywordAttribute()
? Diag(CorrectLocation, diag::err_keyword_misplaced) << FirstAttr
: Diag(CorrectLocation, diag::err_attributes_misplaced))
<< FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
<< FixItHint::CreateRemoval(AttrRange);
} else {
const SourceRange &Range = Attrs.Range;
(FirstAttr && FirstAttr->isRegularKeywordAttribute()
? Diag(Range.getBegin(), diag::err_keyword_not_allowed) << FirstAttr
: Diag(Range.getBegin(), diag::err_attributes_not_allowed))
<< Range;
}
}
void Parser::ProhibitCXX11Attributes(ParsedAttributes &Attrs,
unsigned AttrDiagID,
unsigned KeywordDiagID,
bool DiagnoseEmptyAttrs,
bool WarnOnUnknownAttrs) {
if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) {
// An attribute list has been parsed, but it was empty.
// This is the case for [[]].
const auto &LangOpts = getLangOpts();
auto &SM = PP.getSourceManager();
Token FirstLSquare;
Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts);
if (FirstLSquare.is(tok::l_square)) {
std::optional<Token> SecondLSquare =
Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts);
if (SecondLSquare && SecondLSquare->is(tok::l_square)) {
// The attribute range starts with [[, but is empty. So this must
// be [[]], which we are supposed to diagnose because
// DiagnoseEmptyAttrs is true.
Diag(Attrs.Range.getBegin(), AttrDiagID) << Attrs.Range;
return;
}
}
}
for (const ParsedAttr &AL : Attrs) {
if (AL.isRegularKeywordAttribute()) {
Diag(AL.getLoc(), KeywordDiagID) << AL;
AL.setInvalid();
continue;
}
if (!AL.isStandardAttributeSyntax())
continue;
if (AL.getKind() == ParsedAttr::UnknownAttribute) {
if (WarnOnUnknownAttrs)
Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
<< AL << AL.getRange();
} else {
Diag(AL.getLoc(), AttrDiagID) << AL;
AL.setInvalid();
}
}
}
void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributes &Attrs) {
for (const ParsedAttr &PA : Attrs) {
if (PA.isStandardAttributeSyntax() || PA.isRegularKeywordAttribute())
Diag(PA.getLoc(), diag::ext_cxx11_attr_placement)
<< PA << PA.isRegularKeywordAttribute() << PA.getRange();
}
}
// Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
// applies to var, not the type Foo.
// As an exception to the rule, __declspec(align(...)) before the
// class-key affects the type instead of the variable.
// Also, Microsoft-style [attributes] seem to affect the type instead of the
// variable.
// This function moves attributes that should apply to the type off DS to Attrs.
void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributes &Attrs,
DeclSpec &DS,
Sema::TagUseKind TUK) {
if (TUK == Sema::TUK_Reference)
return;
llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
for (ParsedAttr &AL : DS.getAttributes()) {
if ((AL.getKind() == ParsedAttr::AT_Aligned &&
AL.isDeclspecAttribute()) ||
AL.isMicrosoftAttribute())
ToBeMoved.push_back(&AL);
}
for (ParsedAttr *AL : ToBeMoved) {
DS.getAttributes().remove(AL);
Attrs.addAtEnd(AL);
}
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a DeclaratorContext value. This returns the
/// location of the semicolon in DeclEnd.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] template-declaration
/// [C++] namespace-definition
/// [C++] using-directive
/// [C++] using-declaration
/// [C++11/C11] static_assert-declaration
/// others... [FIXME]
///
Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
SourceLocation &DeclEnd,
ParsedAttributes &DeclAttrs,
ParsedAttributes &DeclSpecAttrs,
SourceLocation *DeclSpecStart) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
// Must temporarily exit the objective-c container scope for
// parsing c none objective-c decls.
ObjCDeclContextSwitch ObjCDC(*this);
Decl *SingleDecl = nullptr;
switch (Tok.getKind()) {
case tok::kw_template:
case tok::kw_export:
ProhibitAttributes(DeclAttrs);
ProhibitAttributes(DeclSpecAttrs);
return ParseDeclarationStartingWithTemplate(Context, DeclEnd, DeclAttrs);
case tok::kw_inline:
// Could be the start of an inline namespace. Allowed as an ext in C++03.
if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
ProhibitAttributes(DeclAttrs);
ProhibitAttributes(DeclSpecAttrs);
SourceLocation InlineLoc = ConsumeToken();
return ParseNamespace(Context, DeclEnd, InlineLoc);
}
return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
true, nullptr, DeclSpecStart);
case tok::kw_cbuffer:
case tok::kw_tbuffer:
SingleDecl = ParseHLSLBuffer(DeclEnd);
break;
case tok::kw_namespace:
ProhibitAttributes(DeclAttrs);
ProhibitAttributes(DeclSpecAttrs);
return ParseNamespace(Context, DeclEnd);
case tok::kw_using: {
ParsedAttributes Attrs(AttrFactory);
takeAndConcatenateAttrs(DeclAttrs, DeclSpecAttrs, Attrs);
return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
DeclEnd, Attrs);
}
case tok::kw_static_assert:
case tok::kw__Static_assert:
ProhibitAttributes(DeclAttrs);
ProhibitAttributes(DeclSpecAttrs);
SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
break;
default:
return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
true, nullptr, DeclSpecStart);
}
// This routine returns a DeclGroup, if the thing we parsed only contains a
// single decl, convert it now.
return Actions.ConvertDeclToDeclGroup(SingleDecl);
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
/// init-declarator-list ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive
/// [OMP] allocate-directive [TODO]
///
/// for-range-declaration: [C++11 6.5p1: stmt.ranged]
/// attribute-specifier-seq[opt] type-specifier-seq declarator
///
/// If RequireSemi is false, this does not check for a ';' at the end of the
/// declaration. If it is true, it checks for and eats it.
///
/// If FRI is non-null, we might be parsing a for-range-declaration instead
/// of a simple-declaration. If we find that we are, we also parse the
/// for-range-initializer, and place it here.
///
/// DeclSpecStart is used when decl-specifiers are parsed before parsing
/// the Declaration. The SourceLocation for this Decl is set to
/// DeclSpecStart if DeclSpecStart is non-null.
Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
DeclaratorContext Context, SourceLocation &DeclEnd,
ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs,
bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) {
// Need to retain these for diagnostics before we add them to the DeclSepc.
ParsedAttributesView OriginalDeclSpecAttrs;
OriginalDeclSpecAttrs.addAll(DeclSpecAttrs.begin(), DeclSpecAttrs.end());
OriginalDeclSpecAttrs.Range = DeclSpecAttrs.Range;
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this);
DS.takeAttributesFrom(DeclSpecAttrs);
ParsedTemplateInfo TemplateInfo;
DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
ParseDeclarationSpecifiers(DS, TemplateInfo, AS_none, DSContext);
// If we had a free-standing type definition with a missing semicolon, we
// may get this far before the problem becomes obvious.
if (DS.hasTagDefinition() &&
DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
return nullptr;
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
ProhibitAttributes(DeclAttrs);
DeclEnd = Tok.getLocation();
if (RequireSemi) ConsumeToken();
RecordDecl *AnonRecord = nullptr;
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
Actions.ActOnDefinedDeclarationSpecifier(TheDecl);
DS.complete(TheDecl);
if (AnonRecord) {
Decl* decls[] = {AnonRecord, TheDecl};
return Actions.BuildDeclaratorGroup(decls);
}
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
if (DS.hasTagDefinition())
Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl());
if (DeclSpecStart)
DS.SetRangeStart(*DeclSpecStart);
return ParseDeclGroup(DS, Context, DeclAttrs, TemplateInfo, &DeclEnd, FRI);
}
/// Returns true if this might be the start of a declarator, or a common typo
/// for a declarator.
bool Parser::MightBeDeclarator(DeclaratorContext Context) {
switch (Tok.getKind()) {
case tok::annot_cxxscope:
case tok::annot_template_id:
case tok::caret:
case tok::code_completion:
case tok::coloncolon:
case tok::ellipsis:
case tok::kw___attribute:
case tok::kw_operator:
case tok::l_paren:
case tok::star:
return true;
case tok::amp:
case tok::ampamp:
return getLangOpts().CPlusPlus;
case tok::l_square: // Might be an attribute on an unnamed bit-field.
return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 &&
NextToken().is(tok::l_square);
case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus;
case tok::identifier:
switch (NextToken().getKind()) {
case tok::code_completion:
case tok::coloncolon:
case tok::comma:
case tok::equal:
case tok::equalequal: // Might be a typo for '='.
case tok::kw_alignas:
case tok::kw_asm:
case tok::kw___attribute:
case tok::l_brace:
case tok::l_paren:
case tok::l_square:
case tok::less:
case tok::r_brace:
case tok::r_paren:
case tok::r_square:
case tok::semi:
return true;
case tok::colon:
// At namespace scope, 'identifier:' is probably a typo for 'identifier::'
// and in block scope it's probably a label. Inside a class definition,
// this is a bit-field.
return Context == DeclaratorContext::Member ||
(getLangOpts().CPlusPlus && Context == DeclaratorContext::File);
case tok::identifier: // Possible virt-specifier.
return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
default:
return Tok.isRegularKeywordAttribute();
}
default:
return Tok.isRegularKeywordAttribute();
}
}
/// Skip until we reach something which seems like a sensible place to pick
/// up parsing after a malformed declaration. This will sometimes stop sooner
/// than SkipUntil(tok::r_brace) would, but will never stop later.
void Parser::SkipMalformedDecl() {
while (true) {
switch (Tok.getKind()) {
case tok::l_brace:
// Skip until matching }, then stop. We've probably skipped over
// a malformed class or function definition or similar.
ConsumeBrace();
SkipUntil(tok::r_brace);
if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
// This declaration isn't over yet. Keep skipping.
continue;
}
TryConsumeToken(tok::semi);
return;
case tok::l_square:
ConsumeBracket();
SkipUntil(tok::r_square);
continue;
case tok::l_paren:
ConsumeParen();
SkipUntil(tok::r_paren);
continue;
case tok::r_brace:
return;
case tok::semi:
ConsumeToken();
return;
case tok::kw_inline:
// 'inline namespace' at the start of a line is almost certainly
// a good place to pick back up parsing, except in an Objective-C
// @interface context.
if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
(!ParsingInObjCContainer || CurParsedObjCImpl))
return;
break;
case tok::kw_namespace:
// 'namespace' at the start of a line is almost certainly a good
// place to pick back up parsing, except in an Objective-C
// @interface context.
if (Tok.isAtStartOfLine() &&
(!ParsingInObjCContainer || CurParsedObjCImpl))
return;
break;
case tok::at:
// @end is very much like } in Objective-C contexts.
if (NextToken().isObjCAtKeyword(tok::objc_end) &&
ParsingInObjCContainer)
return;
break;
case tok::minus:
case tok::plus:
// - and + probably start new method declarations in Objective-C contexts.
if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
return;
break;
case tok::eof:
case tok::annot_module_begin:
case tok::annot_module_end:
case tok::annot_module_include:
case tok::annot_repl_input_end:
return;
default:
break;
}
ConsumeAnyToken();
}
}
/// ParseDeclGroup - Having concluded that this is either a function
/// definition or a group of object declarations, actually parse the
/// result.
Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
DeclaratorContext Context,
ParsedAttributes &Attrs,
ParsedTemplateInfo &TemplateInfo,
SourceLocation *DeclEnd,
ForRangeInit *FRI) {
// Parse the first declarator.
// Consume all of the attributes from `Attrs` by moving them to our own local
// list. This ensures that we will not attempt to interpret them as statement
// attributes higher up the callchain.
ParsedAttributes LocalAttrs(AttrFactory);
LocalAttrs.takeAllFrom(Attrs);
ParsingDeclarator D(*this, DS, LocalAttrs, Context);
if (TemplateInfo.TemplateParams)
D.setTemplateParameterLists(*TemplateInfo.TemplateParams);
bool IsTemplateSpecOrInst =
(TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
ParseDeclarator(D);
if (IsTemplateSpecOrInst)
SAC.done();
// Bail out if the first declarator didn't seem well-formed.
if (!D.hasName() && !D.mayOmitIdentifier()) {
SkipMalformedDecl();
return nullptr;
}
if (getLangOpts().HLSL)
MaybeParseHLSLAnnotations(D);
if (Tok.is(tok::kw_requires))
ParseTrailingRequiresClause(D);
// Save late-parsed attributes for now; they need to be parsed in the
// appropriate function scope after the function Decl has been constructed.
// These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
LateParsedAttrList LateParsedAttrs(true);
if (D.isFunctionDeclarator()) {
MaybeParseGNUAttributes(D, &LateParsedAttrs);
// The _Noreturn keyword can't appear here, unlike the GNU noreturn
// attribute. If we find the keyword here, tell the user to put it
// at the start instead.
if (Tok.is(tok::kw__Noreturn)) {
SourceLocation Loc = ConsumeToken();
const char *PrevSpec;
unsigned DiagID;
// We can offer a fixit if it's valid to mark this function as _Noreturn
// and we don't have any other declarators in this declaration.
bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
MaybeParseGNUAttributes(D, &LateParsedAttrs);
Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
Diag(Loc, diag::err_c11_noreturn_misplaced)
<< (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
<< (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
: FixItHint());
}
// Check to see if we have a function *definition* which must have a body.
if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteAfterFunctionEquals(D);
return nullptr;
}
// We're at the point where the parsing of function declarator is finished.
//
// A common error is that users accidently add a virtual specifier
// (e.g. override) in an out-line method definition.
// We attempt to recover by stripping all these specifiers coming after
// the declarator.
while (auto Specifier = isCXX11VirtSpecifier()) {
Diag(Tok, diag::err_virt_specifier_outside_class)
<< VirtSpecifiers::getSpecifierName(Specifier)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
}
// Look at the next token to make sure that this isn't a function
// declaration. We have to check this because __attribute__ might be the
// start of a function definition in GCC-extended K&R C.
if (!isDeclarationAfterDeclarator()) {
// Function definitions are only allowed at file scope and in C++ classes.
// The C++ inline method definition case is handled elsewhere, so we only
// need to handle the file scope definition case.
if (Context == DeclaratorContext::File) {
if (isStartOfFunctionDefinition(D)) {
// C++23 [dcl.typedef] p1:
// The typedef specifier shall not be [...], and it shall not be
// used in the decl-specifier-seq of a parameter-declaration nor in
// the decl-specifier-seq of a function-definition.
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
// If the user intended to write 'typename', we should have already
// suggested adding it elsewhere. In any case, recover by ignoring
// 'typedef' and suggest removing it.
Diag(DS.getStorageClassSpecLoc(),
diag::err_function_declared_typedef)
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
DS.ClearStorageClassSpecs();
}
Decl *TheDecl = nullptr;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
// If the declarator-id is not a template-id, issue a diagnostic
// and recover by ignoring the 'template' keyword.
Diag(Tok, diag::err_template_defn_explicit_instantiation) << 0;
TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
&LateParsedAttrs);
} else {
SourceLocation LAngleLoc =
PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(D.getIdentifierLoc(),
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< FixItHint::CreateInsertion(LAngleLoc, "<>");
// Recover as if it were an explicit specialization.
TemplateParameterLists FakedParamLists;
FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
std::nullopt, LAngleLoc, nullptr));
TheDecl = ParseFunctionDefinition(
D,
ParsedTemplateInfo(&FakedParamLists,
/*isSpecialization=*/true,
/*lastParameterListWasEmpty=*/true),
&LateParsedAttrs);
}
} else {
TheDecl =
ParseFunctionDefinition(D, TemplateInfo, &LateParsedAttrs);
}
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
if (isDeclarationSpecifier(ImplicitTypenameContext::No) ||
Tok.is(tok::kw_namespace)) {
// If there is an invalid declaration specifier or a namespace
// definition right after the function prototype, then we must be in a
// missing semicolon case where this isn't actually a body. Just fall
// through into the code that handles it as a prototype, and let the
// top-level code handle the erroneous declspec where it would
// otherwise expect a comma or semicolon. Note that
// isDeclarationSpecifier already covers 'inline namespace', since
// 'inline' can be a declaration specifier.
} else {
Diag(Tok, diag::err_expected_fn_body);
SkipUntil(tok::semi);
return nullptr;
}
} else {
if (Tok.is(tok::l_brace)) {
Diag(Tok, diag::err_function_definition_not_allowed);
SkipMalformedDecl();
return nullptr;
}
}
}
}
if (ParseAsmAttributesAfterDeclarator(D))
return nullptr;
// C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
// must parse and analyze the for-range-initializer before the declaration is
// analyzed.
//
// Handle the Objective-C for-in loop variable similarly, although we
// don't need to parse the container in advance.
if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
bool IsForRangeLoop = false;
if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
IsForRangeLoop = true;
EnterExpressionEvaluationContext ForRangeInitContext(
Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated,
/*LambdaContextDecl=*/nullptr,
Sema::ExpressionEvaluationContextRecord::EK_Other,
getLangOpts().CPlusPlus23);
// P2718R0 - Lifetime extension in range-based for loops.
if (getLangOpts().CPlusPlus23) {
auto &LastRecord = Actions.ExprEvalContexts.back();
LastRecord.InLifetimeExtendingContext = true;
}
if (getLangOpts().OpenMP)
Actions.OpenMP().startOpenMPCXXRangeFor();
if (Tok.is(tok::l_brace))
FRI->RangeExpr = ParseBraceInitializer();
else
FRI->RangeExpr = ParseExpression();
// Before c++23, ForRangeLifetimeExtendTemps should be empty.
assert(
getLangOpts().CPlusPlus23 ||
Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty());
// Move the collected materialized temporaries into ForRangeInit before
// ForRangeInitContext exit.
FRI->LifetimeExtendTemps = std::move(
Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps);
}
Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
if (IsForRangeLoop) {
Actions.ActOnCXXForRangeDecl(ThisDecl);
} else {
// Obj-C for loop
if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
VD->setObjCForDecl(true);
}
Actions.FinalizeDeclaration(ThisDecl);
D.complete(ThisDecl);
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
}
SmallVector<Decl *, 8> DeclsInGroup;
Decl *FirstDecl =
ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo, FRI);
if (LateParsedAttrs.size() > 0)
ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
D.complete(FirstDecl);
if (FirstDecl)
DeclsInGroup.push_back(FirstDecl);
bool ExpectSemi = Context != DeclaratorContext::ForInit;
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
SourceLocation CommaLoc;
while (TryConsumeToken(tok::comma, CommaLoc)) {
if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
// This comma was followed by a line-break and something which can't be
// the start of a declarator. The comma was probably a typo for a
// semicolon.
Diag(CommaLoc, diag::err_expected_semi_declaration)
<< FixItHint::CreateReplacement(CommaLoc, ";");
ExpectSemi = false;
break;
}
// C++23 [temp.pre]p5:
// In a template-declaration, explicit specialization, or explicit
// instantiation the init-declarator-list in the declaration shall
// contain at most one declarator.
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
D.isFirstDeclarator()) {
Diag(CommaLoc, diag::err_multiple_template_declarators)
<< TemplateInfo.Kind;
}
// Parse the next declarator.
D.clear();
D.setCommaLoc(CommaLoc);
// Accept attributes in an init-declarator. In the first declarator in a
// declaration, these would be part of the declspec. In subsequent
// declarators, they become part of the declarator itself, so that they
// don't apply to declarators after *this* one. Examples:
// short __attribute__((common)) var; -> declspec
// short var __attribute__((common)); -> declarator
// short x, __attribute__((common)) var; -> declarator
MaybeParseGNUAttributes(D);
// MSVC parses but ignores qualifiers after the comma as an extension.
if (getLangOpts().MicrosoftExt)
DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
ParseDeclarator(D);
if (getLangOpts().HLSL)
MaybeParseHLSLAnnotations(D);
if (!D.isInvalidType()) {
// C++2a [dcl.decl]p1
// init-declarator:
// declarator initializer[opt]
// declarator requires-clause
if (Tok.is(tok::kw_requires))
ParseTrailingRequiresClause(D);
Decl *ThisDecl = ParseDeclarationAfterDeclarator(D, TemplateInfo);
D.complete(ThisDecl);
if (ThisDecl)
DeclsInGroup.push_back(ThisDecl);
}
}
if (DeclEnd)
*DeclEnd = Tok.getLocation();
if (ExpectSemi && ExpectAndConsumeSemi(
Context == DeclaratorContext::File
? diag::err_invalid_token_after_toplevel_declarator
: diag::err_expected_semi_declaration)) {
// Okay, there was no semicolon and one was expected. If we see a
// declaration specifier, just assume it was missing and continue parsing.
// Otherwise things are very confused and we skip to recover.
if (!isDeclarationSpecifier(ImplicitTypenameContext::No))
SkipMalformedDecl();
}
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
}
/// Parse an optional simple-asm-expr and attributes, and attach them to a
/// declarator. Returns true on an error.
bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, StopBeforeMatch);
return true;
}
D.setAsmLabel(AsmLabel.get());
D.SetRangeEnd(Loc);
}
MaybeParseGNUAttributes(D);
return false;
}
/// Parse 'declaration' after parsing 'declaration-specifiers
/// declarator'. This method parses the remainder of the declaration
/// (including any attributes or initializer, among other things) and
/// finalizes the declaration.
///
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
/// [C++] declarator initializer[opt]
///
/// [C++] initializer:
/// [C++] '=' initializer-clause
/// [C++] '(' expression-list ')'
/// [C++0x] '=' 'default' [TODO]
/// [C++0x] '=' 'delete'
/// [C++0x] braced-init-list
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Decl *Parser::ParseDeclarationAfterDeclarator(
Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
if (ParseAsmAttributesAfterDeclarator(D))
return nullptr;
return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
}
Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
// RAII type used to track whether we're inside an initializer.
struct InitializerScopeRAII {
Parser &P;
Declarator &D;
Decl *ThisDecl;
InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
: P(P), D(D), ThisDecl(ThisDecl) {
if (ThisDecl && P.getLangOpts().CPlusPlus) {
Scope *S = nullptr;
if (D.getCXXScopeSpec().isSet()) {
P.EnterScope(0);
S = P.getCurScope();
}
P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
}
}
~InitializerScopeRAII() { pop(); }
void pop() {
if (ThisDecl && P.getLangOpts().CPlusPlus) {
Scope *S = nullptr;
if (D.getCXXScopeSpec().isSet())
S = P.getCurScope();
P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
if (S)
P.ExitScope();
}
ThisDecl = nullptr;
}
};
enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced };
InitKind TheInitKind;
// If a '==' or '+=' is found, suggest a fixit to '='.
if (isTokenEqualOrEqualTypo())
TheInitKind = InitKind::Equal;
else if (Tok.is(tok::l_paren))
TheInitKind = InitKind::CXXDirect;
else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
(!CurParsedObjCImpl || !D.isFunctionDeclarator()))
TheInitKind = InitKind::CXXBraced;
else
TheInitKind = InitKind::Uninitialized;
if (TheInitKind != InitKind::Uninitialized)
D.setHasInitializer();
// Inform Sema that we just parsed this declarator.
Decl *ThisDecl = nullptr;
Decl *OuterDecl = nullptr;
switch (TemplateInfo.Kind) {
case ParsedTemplateInfo::NonTemplate:
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
break;
case ParsedTemplateInfo::Template:
case ParsedTemplateInfo::ExplicitSpecialization: {
ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
*TemplateInfo.TemplateParams,
D);
if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) {
// Re-direct this decl to refer to the templated decl so that we can
// initialize it.
ThisDecl = VT->getTemplatedDecl();
OuterDecl = VT;
}
break;
}
case ParsedTemplateInfo::ExplicitInstantiation: {
if (Tok.is(tok::semi)) {
DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
if (ThisRes.isInvalid()) {
SkipUntil(tok::semi, StopBeforeMatch);
return nullptr;
}
ThisDecl = ThisRes.get();
} else {
// FIXME: This check should be for a variable template instantiation only.
// Check that this is a valid instantiation
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
// If the declarator-id is not a template-id, issue a diagnostic and
// recover by ignoring the 'template' keyword.
Diag(Tok, diag::err_template_defn_explicit_instantiation)
<< 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
} else {
SourceLocation LAngleLoc =
PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(D.getIdentifierLoc(),
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< FixItHint::CreateInsertion(LAngleLoc, "<>");
// Recover as if it were an explicit specialization.
TemplateParameterLists FakedParamLists;
FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
std::nullopt, LAngleLoc, nullptr));
ThisDecl =
Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
}
}
break;
}
}
SemaCUDA::CUDATargetContextRAII X(Actions.CUDA(),
SemaCUDA::CTCK_InitGlobalVar, ThisDecl);
switch (TheInitKind) {
// Parse declarator '=' initializer.
case InitKind::Equal: {
SourceLocation EqualLoc = ConsumeToken();
if (Tok.is(tok::kw_delete)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 1 /* delete */;
else
Diag(ConsumeToken(), diag::err_deleted_non_function);
SkipDeletedFunctionBody();
} else if (Tok.is(tok::kw_default)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 0 /* default */;
else
Diag(ConsumeToken(), diag::err_default_special_members)
<< getLangOpts().CPlusPlus20;
} else {
InitializerScopeRAII InitScope(*this, D, ThisDecl);
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
return nullptr;
}
PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
ExprResult Init = ParseInitializer();
// If this is the only decl in (possibly) range based for statement,
// our best guess is that the user meant ':' instead of '='.
if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
<< FixItHint::CreateReplacement(EqualLoc, ":");
// We are trying to stop parser from looking for ';' in this for
// statement, therefore preventing spurious errors to be issued.
FRI->ColonLoc = EqualLoc;
Init = ExprError();
FRI->RangeExpr = Init;
}
InitScope.pop();
if (Init.isInvalid()) {
SmallVector<tok::TokenKind, 2> StopTokens;
StopTokens.push_back(tok::comma);
if (D.getContext() == DeclaratorContext::ForInit ||
D.getContext() == DeclaratorContext::SelectionInit)
StopTokens.push_back(tok::r_paren);
SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.get(),
/*DirectInit=*/false);
}
break;
}
case InitKind::CXXDirect: {
// Parse C++ direct initializer: '(' expression-list ')'
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ExprVector Exprs;
InitializerScopeRAII InitScope(*this, D, ThisDecl);
auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
auto RunSignatureHelp = [&]() {
QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
ThisVarDecl->getType()->getCanonicalTypeInternal(),
ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
/*Braced=*/false);
CalledSignatureHelp = true;
return PreferredType;
};
auto SetPreferredType = [&] {
PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
};
llvm::function_ref<void()> ExpressionStarts;
if (ThisVarDecl) {
// ParseExpressionList can sometimes succeed even when ThisDecl is not
// VarDecl. This is an error and it is reported in a call to
// Actions.ActOnInitializerError(). However, we call
// ProduceConstructorSignatureHelp only on VarDecls.
ExpressionStarts = SetPreferredType;
}
bool SawError = ParseExpressionList(Exprs, ExpressionStarts);
InitScope.pop();
if (SawError) {
if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
Actions.ProduceConstructorSignatureHelp(
ThisVarDecl->getType()->getCanonicalTypeInternal(),
ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
/*Braced=*/false);
CalledSignatureHelp = true;
}
Actions.ActOnInitializerError(ThisDecl);
SkipUntil(tok::r_paren, StopAtSemi);
} else {
// Match the ')'.
T.consumeClose();
ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
T.getCloseLocation(),
Exprs);
Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
/*DirectInit=*/true);
}
break;
}
case InitKind::CXXBraced: {
// Parse C++0x braced-init-list.
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
InitializerScopeRAII InitScope(*this, D, ThisDecl);
PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
ExprResult Init(ParseBraceInitializer());
InitScope.pop();
if (Init.isInvalid()) {
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
break;
}
case InitKind::Uninitialized: {
Actions.ActOnUninitializedDecl(ThisDecl);
break;
}
}
Actions.FinalizeDeclaration(ThisDecl);
return OuterDecl ? OuterDecl : ThisDecl;
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(
DeclSpec &DS, ImplicitTypenameContext AllowImplicitTypename,
AccessSpecifier AS, DeclSpecContext DSC) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
/// TODO: diagnose attribute-specifiers and alignment-specifiers.
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC, nullptr,
AllowImplicitTypename);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
Diag(Tok, diag::err_expected_type);
DS.SetTypeSpecError();
} else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
Diag(Tok, diag::err_typename_requires_specqual);
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
}
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadStorageClassSpecLoc(),
diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specifier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
if (DS.isInlineSpecified())
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isVirtualSpecified())
Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.hasExplicitSpecifier())
Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isNoreturnSpecified())
Diag(DS.getNoreturnSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
// Issue diagnostic and remove constexpr specifier if present.
if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
<< static_cast<int>(DS.getConstexprSpecifier());
DS.ClearConstexprSpec();
}
}
/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
/// specified token is valid after the identifier in a declarator which
/// immediately follows the declspec. For example, these things are valid:
///
/// int x [ 4]; // direct-declarator
/// int x ( int y); // direct-declarator
/// int(int x ) // direct-declarator
/// int x ; // simple-declaration
/// int x = 17; // init-declarator-list
/// int x , y; // init-declarator-list
/// int x __asm__ ("foo"); // init-declarator-list
/// int x : 4; // struct-declarator
/// int x { 5}; // C++'0x unified initializers
///
/// This is not, because 'x' does not immediately follow the declspec (though
/// ')' happens to be valid anyway).
/// int (x)
///
static bool isValidAfterIdentifierInDeclarator(const Token &T) {
return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
tok::colon);
}
/// ParseImplicitInt - This method is called when we have an non-typename
/// identifier in a declspec (which normally terminates the decl spec) when
/// the declspec has no type specifier. In this case, the declspec is either
/// malformed or is "implicit int" (in K&R and C89).
///
/// This method handles diagnosing this prettily and returns false if the
/// declspec is done being processed. If it recovers and thinks there may be
/// other pieces of declspec after it, it returns true.
///
bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC,
ParsedAttributes &Attrs) {
assert(Tok.is(tok::identifier) && "should have identifier");
SourceLocation Loc = Tok.getLocation();
// If we see an identifier that is not a type name, we normally would
// parse it as the identifier being declared. However, when a typename
// is typo'd or the definition is not included, this will incorrectly
// parse the typename as the identifier name and fall over misparsing
// later parts of the diagnostic.
//
// As such, we try to do some look-ahead in cases where this would
// otherwise be an "implicit-int" case to see if this is invalid. For
// example: "static foo_t x = 4;" In this case, if we parsed foo_t as
// an identifier with implicit int, we'd get a parse error because the
// next token is obviously invalid for a type. Parse these as a case
// with an invalid type specifier.
assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
// Since we know that this either implicit int (which is rare) or an
// error, do lookahead to try to do better recovery. This never applies
// within a type specifier. Outside of C++, we allow this even if the
// language doesn't "officially" support implicit int -- we support
// implicit int as an extension in some language modes.
if (!isTypeSpecifier(DSC) && getLangOpts().isImplicitIntAllowed() &&
isValidAfterIdentifierInDeclarator(NextToken())) {
// If this token is valid for implicit int, e.g. "static x = 4", then
// we just avoid eating the identifier, so it will be parsed as the
// identifier in the declarator.
return false;
}
// Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
// for incomplete declarations such as `pipe p`.
if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
return false;
if (getLangOpts().CPlusPlus &&
DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
// Don't require a type specifier if we have the 'auto' storage class
// specifier in C++98 -- we'll promote it to a type specifier.
if (SS)
AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
return false;
}
if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
getLangOpts().MSVCCompat) {
// Lookup of an unqualified type name has failed in MSVC compatibility mode.
// Give Sema a chance to recover if we are in a template with dependent base
// classes.
if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
*Tok.getIdentifierInfo(), Tok.getLocation(),
DSC == DeclSpecContext::DSC_template_type_arg)) {
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
Actions.getASTContext().getPrintingPolicy());
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
return false;
}
}
// Otherwise, if we don't consume this token, we are going to emit an
// error anyway. Try to recover from various common problems. Check
// to see if this was a reference to a tag name without a tag specified.
// This is a common problem in C (saying 'foo' instead of 'struct foo').
//
// C++ doesn't need this, and isTagName doesn't take SS.
if (SS == nullptr) {
const char *TagName = nullptr, *FixitTagName = nullptr;
tok::TokenKind TagKind = tok::unknown;
switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
default: break;
case DeclSpec::TST_enum:
TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
case DeclSpec::TST_union:
TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
case DeclSpec::TST_struct:
TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
case DeclSpec::TST_interface:
TagName="__interface"; FixitTagName = "__interface ";
TagKind=tok::kw___interface;break;
case DeclSpec::TST_class:
TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
}
if (TagName) {
IdentifierInfo *TokenName = Tok.getIdentifierInfo();
LookupResult R(Actions, TokenName, SourceLocation(),
Sema::LookupOrdinaryName);
Diag(Loc, diag::err_use_of_tag_name_without_tag)
<< TokenName << TagName << getLangOpts().CPlusPlus
<< FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
if (Actions.LookupParsedName(R, getCurScope(), SS)) {
for (LookupResult::iterator I = R.begin(), IEnd = R.end();
I != IEnd; ++I)
Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
<< TokenName << TagName;
}
// Parse this as a tag as if the missing tag were present.
if (TagKind == tok::kw_enum)
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
DeclSpecContext::DSC_normal);
else
ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
/*EnteringContext*/ false,
DeclSpecContext::DSC_normal, Attrs);
return true;
}
}
// Determine whether this identifier could plausibly be the name of something
// being declared (with a missing type).
if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
DSC == DeclSpecContext::DSC_class)) {
// Look ahead to the next token to try to figure out what this declaration
// was supposed to be.
switch (NextToken().getKind()) {
case tok::l_paren: {
// static x(4); // 'x' is not a type
// x(int n); // 'x' is not a type
// x (*p)[]; // 'x' is a type
//
// Since we're in an error case, we can afford to perform a tentative
// parse to determine which case we're in.
TentativeParsingAction PA(*this);
ConsumeToken();
TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
PA.Revert();
if (TPR != TPResult::False) {
// The identifier is followed by a parenthesized declarator.
// It's supposed to be a type.
break;
}
// If we're in a context where we could be declaring a constructor,
// check whether this is a constructor declaration with a bogus name.
if (DSC == DeclSpecContext::DSC_class ||
(DSC == DeclSpecContext::DSC_top_level && SS)) {
IdentifierInfo *II = Tok.getIdentifierInfo();
if (Actions.isCurrentClassNameTypo(II, SS)) {
Diag(Loc, diag::err_constructor_bad_name)
<< Tok.getIdentifierInfo() << II
<< FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
Tok.setIdentifierInfo(II);
}
}
// Fall through.
[[fallthrough]];
}
case tok::comma:
case tok::equal:
case tok::kw_asm:
case tok::l_brace:
case tok::l_square:
case tok::semi:
// This looks like a variable or function declaration. The type is
// probably missing. We're done parsing decl-specifiers.
// But only if we are not in a function prototype scope.
if (getCurScope()->isFunctionPrototypeScope())
break;
if (SS)
AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
return false;
default:
// This is probably supposed to be a type. This includes cases like:
// int f(itn);
// struct S { unsigned : 4; };
break;
}
}
// This is almost certainly an invalid type name. Let Sema emit a diagnostic
// and attempt to recover.
ParsedType T;
IdentifierInfo *II = Tok.getIdentifierInfo();
bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
IsTemplateName);
if (T) {
// The action has suggested that the type T could be used. Set that as
// the type in the declaration specifiers, consume the would-be type
// name token, and we're done.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
Actions.getASTContext().getPrintingPolicy());
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// There may be other declaration specifiers after this.
return true;
} else if (II != Tok.getIdentifierInfo()) {
// If no type was suggested, the correction is to a keyword
Tok.setKind(II->getTokenID());
// There may be other declaration specifiers after this.
return true;
}
// Otherwise, the action had no suggestion for us. Mark this as an error.
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// Eat any following template arguments.
if (IsTemplateName) {
SourceLocation LAngle, RAngle;
TemplateArgList Args;
ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
}
// TODO: Could inject an invalid typedef decl in an enclosing scope to
// avoid rippling error messages on subsequent uses of the same type,
// could be useful if #include was forgotten.
return true;
}
/// Determine the declaration specifier context from the declarator
/// context.
///
/// \param Context the declarator context, which is one of the
/// DeclaratorContext enumerator values.
Parser::DeclSpecContext
Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
switch (Context) {
case DeclaratorContext::Member:
return DeclSpecContext::DSC_class;
case DeclaratorContext::File:
return DeclSpecContext::DSC_top_level;
case DeclaratorContext::TemplateParam:
return DeclSpecContext::DSC_template_param;
case DeclaratorContext::TemplateArg:
return DeclSpecContext::DSC_template_arg;
case DeclaratorContext::TemplateTypeArg:
return DeclSpecContext::DSC_template_type_arg;
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::TrailingReturnVar:
return DeclSpecContext::DSC_trailing;
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
return DeclSpecContext::DSC_alias_declaration;
case DeclaratorContext::Association:
return DeclSpecContext::DSC_association;
case DeclaratorContext::TypeName:
return DeclSpecContext::DSC_type_specifier;
case DeclaratorContext::Condition:
return DeclSpecContext::DSC_condition;
case DeclaratorContext::ConversionId:
return DeclSpecContext::DSC_conv_operator;
case DeclaratorContext::CXXNew:
return DeclSpecContext::DSC_new;
case DeclaratorContext::Prototype:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::FunctionalCast:
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::RequiresExpr:
return DeclSpecContext::DSC_normal;
}
llvm_unreachable("Missing DeclaratorContext case");
}
/// ParseAlignArgument - Parse the argument to an alignment-specifier.
///
/// [C11] type-id
/// [C11] constant-expression
/// [C++0x] type-id ...[opt]
/// [C++0x] assignment-expression ...[opt]
ExprResult Parser::ParseAlignArgument(StringRef KWName, SourceLocation Start,
SourceLocation &EllipsisLoc, bool &IsType,
ParsedType &TypeResult) {
ExprResult ER;
if (isTypeIdInParens()) {
SourceLocation TypeLoc = Tok.getLocation();
ParsedType Ty = ParseTypeName().get();
SourceRange TypeRange(Start, Tok.getLocation());
if (Actions.ActOnAlignasTypeArgument(KWName, Ty, TypeLoc, TypeRange))
return ExprError();
TypeResult = Ty;
IsType = true;
} else {
ER = ParseConstantExpression();
IsType = false;
}
if (getLangOpts().CPlusPlus11)
TryConsumeToken(tok::ellipsis, EllipsisLoc);
return ER;
}
/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
/// attribute to Attrs.
///
/// alignment-specifier:
/// [C11] '_Alignas' '(' type-id ')'
/// [C11] '_Alignas' '(' constant-expression ')'
/// [C++11] 'alignas' '(' type-id ...[opt] ')'
/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
SourceLocation *EndLoc) {
assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
"Not an alignment-specifier!");
Token KWTok = Tok;
IdentifierInfo *KWName = KWTok.getIdentifierInfo();
auto Kind = KWTok.getKind();
SourceLocation KWLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return;
bool IsType;
ParsedType TypeResult;
SourceLocation EllipsisLoc;
ExprResult ArgExpr =
ParseAlignArgument(PP.getSpelling(KWTok), T.getOpenLocation(),
EllipsisLoc, IsType, TypeResult);
if (ArgExpr.isInvalid()) {
T.skipToEnd();
return;
}
T.consumeClose();
if (EndLoc)
*EndLoc = T.getCloseLocation();
if (IsType) {
Attrs.addNewTypeAttr(KWName, KWLoc, nullptr, KWLoc, TypeResult, Kind,
EllipsisLoc);
} else {
ArgsVector ArgExprs;
ArgExprs.push_back(ArgExpr.get());
Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, Kind,
EllipsisLoc);
}
}
/// Bounds attributes (e.g., counted_by):
/// AttrName '(' expression ')'
void Parser::ParseBoundsAttribute(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Form Form) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
BalancedDelimiterTracker Parens(*this, tok::l_paren);
Parens.consumeOpen();
if (Tok.is(tok::r_paren)) {
Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
Parens.consumeClose();
return;
}
ArgsVector ArgExprs;
// Don't evaluate argument when the attribute is ignored.
using ExpressionKind =
Sema::ExpressionEvaluationContextRecord::ExpressionKind;
EnterExpressionEvaluationContext EC(
Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, nullptr,
ExpressionKind::EK_BoundsAttrArgument);
ExprResult ArgExpr(
Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
if (ArgExpr.isInvalid()) {
Parens.skipToEnd();
return;
}
ArgExprs.push_back(ArgExpr.get());
Parens.consumeClose();
ASTContext &Ctx = Actions.getASTContext();
ArgExprs.push_back(IntegerLiteral::Create(
Ctx, llvm::APInt(Ctx.getTypeSize(Ctx.getSizeType()), 0),
Ctx.getSizeType(), SourceLocation()));
Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Form);
}
ExprResult Parser::ParseExtIntegerArgument() {
assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
"Not an extended int type");
ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return ExprError();
ExprResult ER = ParseConstantExpression();
if (ER.isInvalid()) {
T.skipToEnd();
return ExprError();
}
if(T.consumeClose())
return ExprError();
return ER;
}
/// Determine whether we're looking at something that might be a declarator
/// in a simple-declaration. If it can't possibly be a declarator, maybe
/// diagnose a missing semicolon after a prior tag definition in the decl
/// specifier.
///
/// \return \c true if an error occurred and this can't be any kind of
/// declaration.
bool
Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
DeclSpecContext DSContext,
LateParsedAttrList *LateAttrs) {
assert(DS.hasTagDefinition() && "shouldn't call this");
bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
DSContext == DeclSpecContext::DSC_top_level);
if (getLangOpts().CPlusPlus &&
Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
tok::annot_template_id) &&
TryAnnotateCXXScopeToken(EnteringContext)) {
SkipMalformedDecl();
return true;
}
bool HasScope = Tok.is(tok::annot_cxxscope);
// Make a copy in case GetLookAheadToken invalidates the result of NextToken.
Token AfterScope = HasScope ? NextToken() : Tok;
// Determine whether the following tokens could possibly be a
// declarator.
bool MightBeDeclarator = true;
if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
// A declarator-id can't start with 'typename'.
MightBeDeclarator = false;
} else if (AfterScope.is(tok::annot_template_id)) {
// If we have a type expressed as a template-id, this cannot be a
// declarator-id (such a type cannot be redeclared in a simple-declaration).
TemplateIdAnnotation *Annot =
static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
if (Annot->Kind == TNK_Type_template)
MightBeDeclarator = false;
} else if (AfterScope.is(tok::identifier)) {
const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
// These tokens cannot come after the declarator-id in a
// simple-declaration, and are likely to come after a type-specifier.
if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
tok::annot_cxxscope, tok::coloncolon)) {
// Missing a semicolon.
MightBeDeclarator = false;
} else if (HasScope) {
// If the declarator-id has a scope specifier, it must redeclare a
// previously-declared entity. If that's a type (and this is not a
// typedef), that's an error.
CXXScopeSpec SS;
Actions.RestoreNestedNameSpecifierAnnotation(
Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
IdentifierInfo *Name = AfterScope.getIdentifierInfo();
Sema::NameClassification Classification = Actions.ClassifyName(
getCurScope(), SS, Name, AfterScope.getLocation(), Next,
/*CCC=*/nullptr);
switch (Classification.getKind()) {
case Sema::NC_Error:
SkipMalformedDecl();
return true;
case Sema::NC_Keyword:
llvm_unreachable("typo correction is not possible here");
case Sema::NC_Type:
case Sema::NC_TypeTemplate:
case Sema::NC_UndeclaredNonType:
case Sema::NC_UndeclaredTemplate:
// Not a previously-declared non-type entity.
MightBeDeclarator = false;
break;
case Sema::NC_Unknown:
case Sema::NC_NonType:
case Sema::NC_DependentNonType:
case Sema::NC_OverloadSet:
case Sema::NC_VarTemplate:
case Sema::NC_FunctionTemplate:
case Sema::NC_Concept:
// Might be a redeclaration of a prior entity.
break;
}
}
}
if (MightBeDeclarator)
return false;
const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
diag::err_expected_after)
<< DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
// Try to recover from the typo, by dropping the tag definition and parsing
// the problematic tokens as a type.
//
// FIXME: Split the DeclSpec into pieces for the standalone
// declaration and pieces for the following declaration, instead
// of assuming that all the other pieces attach to new declaration,
// and call ParsedFreeStandingDeclSpec as appropriate.
DS.ClearTypeSpecType();
ParsedTemplateInfo NotATemplate;
ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
return false;
}
/// ParseDeclarationSpecifiers
/// declaration-specifiers: [C99 6.7]
/// storage-class-specifier declaration-specifiers[opt]
/// type-specifier declaration-specifiers[opt]
/// [C99] function-specifier declaration-specifiers[opt]
/// [C11] alignment-specifier declaration-specifiers[opt]
/// [GNU] attributes declaration-specifiers[opt]
/// [Clang] '__module_private__' declaration-specifiers[opt]
/// [ObjC1] '__kindof' declaration-specifiers[opt]
///
/// storage-class-specifier: [C99 6.7.1]
/// 'typedef'
/// 'extern'
/// 'static'
/// 'auto'
/// 'register'
/// [C++] 'mutable'
/// [C++11] 'thread_local'
/// [C11] '_Thread_local'
/// [GNU] '__thread'
/// function-specifier: [C99 6.7.4]
/// [C99] 'inline'
/// [C++] 'virtual'
/// [C++] 'explicit'
/// [OpenCL] '__kernel'
/// 'friend': [C++ dcl.friend]
/// 'constexpr': [C++0x dcl.constexpr]
void Parser::ParseDeclarationSpecifiers(
DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS,
DeclSpecContext DSContext, LateParsedAttrList *LateAttrs,
ImplicitTypenameContext AllowImplicitTypename) {
if (DS.getSourceRange().isInvalid()) {
// Start the range at the current token but make the end of the range
// invalid. This will make the entire range invalid unless we successfully
// consume a token.
DS.SetRangeStart(Tok.getLocation());
DS.SetRangeEnd(SourceLocation());
}
// If we are in a operator context, convert it back into a type specifier
// context for better error handling later on.
if (DSContext == DeclSpecContext::DSC_conv_operator) {
// No implicit typename here.
AllowImplicitTypename = ImplicitTypenameContext::No;
DSContext = DeclSpecContext::DSC_type_specifier;
}
bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
DSContext == DeclSpecContext::DSC_top_level);
bool AttrsLastTime = false;
ParsedAttributes attrs(AttrFactory);
// We use Sema's policy to get bool macros right.
PrintingPolicy Policy = Actions.getPrintingPolicy();
while (true) {
bool isInvalid = false;
bool isStorageClass = false;
const char *PrevSpec = nullptr;
unsigned DiagID = 0;
// This value needs to be set to the location of the last token if the last
// token of the specifier is already consumed.
SourceLocation ConsumedEnd;
// HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
// implementation for VS2013 uses _Atomic as an identifier for one of the
// classes in <atomic>.
//
// A typedef declaration containing _Atomic<...> is among the places where
// the class is used. If we are currently parsing such a declaration, treat
// the token as an identifier.
if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
!DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
Tok.setKind(tok::identifier);
SourceLocation Loc = Tok.getLocation();
// Helper for image types in OpenCL.
auto handleOpenCLImageKW = [&] (StringRef Ext, TypeSpecifierType ImageTypeSpec) {
// Check if the image type is supported and otherwise turn the keyword into an identifier
// because image types from extensions are not reserved identifiers.
if (!StringRef(Ext).empty() && !getActions().getOpenCLOptions().isSupported(Ext, getLangOpts())) {
Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
Tok.setKind(tok::identifier);
return false;
}
isInvalid = DS.SetTypeSpecType(ImageTypeSpec, Loc, PrevSpec, DiagID, Policy);
return true;
};
// Turn off usual access checking for template specializations and
// instantiations.
bool IsTemplateSpecOrInst =
(TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
switch (Tok.getKind()) {
default:
if (Tok.isRegularKeywordAttribute())
goto Attribute;
DoneWithDeclSpec:
if (!AttrsLastTime)
ProhibitAttributes(attrs);
else {
// Reject C++11 / C23 attributes that aren't type attributes.
for (const ParsedAttr &PA : attrs) {
if (!PA.isCXX11Attribute() && !PA.isC23Attribute() &&
!PA.isRegularKeywordAttribute())
continue;
if (PA.getKind() == ParsedAttr::UnknownAttribute)
// We will warn about the unknown attribute elsewhere (in
// SemaDeclAttr.cpp)
continue;
// GCC ignores this attribute when placed on the DeclSpec in [[]]
// syntax, so we do the same.
if (PA.getKind() == ParsedAttr::AT_VectorSize) {
Diag(PA.getLoc(), diag::warn_attribute_ignored) << PA;
PA.setInvalid();
continue;
}
// We reject AT_LifetimeBound and AT_AnyX86NoCfCheck, even though they
// are type attributes, because we historically haven't allowed these
// to be used as type attributes in C++11 / C23 syntax.
if (PA.isTypeAttr() && PA.getKind() != ParsedAttr::AT_LifetimeBound &&
PA.getKind() != ParsedAttr::AT_AnyX86NoCfCheck)
continue;
Diag(PA.getLoc(), diag::err_attribute_not_type_attr)
<< PA << PA.isRegularKeywordAttribute();
PA.setInvalid();
}
DS.takeAttributesFrom(attrs);
}
// If this is not a declaration specifier token, we're done reading decl
// specifiers. First verify that DeclSpec's are consistent.
DS.Finish(Actions, Policy);
return;
// alignment-specifier
case tok::kw__Alignas:
diagnoseUseOfC11Keyword(Tok);
[[fallthrough]];
case tok::kw_alignas:
// _Alignas and alignas (C23, not C++) should parse the same way. The C++
// parsing for alignas happens through the usual attribute parsing. This
// ensures that an alignas specifier can appear in a type position in C
// despite that not being valid in C++.
if (getLangOpts().C23 || Tok.getKind() == tok::kw__Alignas) {
if (Tok.getKind() == tok::kw_alignas)
Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
ParseAlignmentSpecifier(DS.getAttributes());
continue;
}
[[fallthrough]];
case tok::l_square:
if (!isAllowedCXX11AttributeSpecifier())
goto DoneWithDeclSpec;
Attribute:
ProhibitAttributes(attrs);
// FIXME: It would be good to recover by accepting the attributes,
// but attempting to do that now would cause serious
// madness in terms of diagnostics.
attrs.clear();
attrs.Range = SourceRange();
ParseCXX11Attributes(attrs);
AttrsLastTime = true;
continue;
case tok::code_completion: {
Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
if (DS.hasTypeSpecifier()) {
bool AllowNonIdentifiers
= (getCurScope()->getFlags() & (Scope::ControlScope |
Scope::BlockScope |
Scope::TemplateParamScope |
Scope::FunctionPrototypeScope |
Scope::AtCatchScope)) == 0;
bool AllowNestedNameSpecifiers
= DSContext == DeclSpecContext::DSC_top_level ||
(DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
cutOffParsing();
Actions.CodeCompleteDeclSpec(getCurScope(), DS,
AllowNonIdentifiers,
AllowNestedNameSpecifiers);
return;
}
// Class context can appear inside a function/block, so prioritise that.
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
: Sema::PCC_Template;
else if (DSContext == DeclSpecContext::DSC_class)
CCC = Sema::PCC_Class;
else if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
CCC = Sema::PCC_LocalDeclarationSpecifiers;
else if (CurParsedObjCImpl)
CCC = Sema::PCC_ObjCImplementation;
cutOffParsing();
Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
return;
}
case tok::coloncolon: // ::foo::bar
// C++ scope specifier. Annotate and loop, or bail out on error.
if (getLangOpts().CPlusPlus &&
TryAnnotateCXXScopeToken(EnteringContext)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (Tok.is(tok::coloncolon)) // ::new or ::delete
goto DoneWithDeclSpec;
continue;
case tok::annot_cxxscope: {
if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
goto DoneWithDeclSpec;
CXXScopeSpec SS;
if (TemplateInfo.TemplateParams)
SS.setTemplateParamLists(*TemplateInfo.TemplateParams);
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
Tok.getAnnotationRange(),
SS);
// We are looking for a qualified typename.
Token Next = NextToken();
TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id)
? takeTemplateIdAnnotation(Next)
: nullptr;
if (TemplateId && TemplateId->hasInvalidName()) {
// We found something like 'T::U<Args> x', but U is not a template.
// Assume it was supposed to be a type.
DS.SetTypeSpecError();
ConsumeAnnotationToken();
break;
}
if (TemplateId && TemplateId->Kind == TNK_Type_template) {
// We have a qualified template-id, e.g., N::A<int>
// If this would be a valid constructor declaration with template
// arguments, we will reject the attempt to form an invalid type-id
// referring to the injected-class-name when we annotate the token,
// per C++ [class.qual]p2.
//
// To improve diagnostics for this case, parse the declaration as a
// constructor (and reject the extra template arguments later).
if ((DSContext == DeclSpecContext::DSC_top_level ||
DSContext == DeclSpecContext::DSC_class) &&
TemplateId->Name &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
isConstructorDeclarator(/*Unqualified=*/false,
/*DeductionGuide=*/false,
DS.isFriendSpecified())) {
// The user meant this to be an out-of-line constructor
// definition, but template arguments are not allowed
// there. Just allow this as a constructor; we'll
// complain about it later.
goto DoneWithDeclSpec;
}
DS.getTypeSpecScope() = SS;
ConsumeAnnotationToken(); // The C++ scope.
assert(Tok.is(tok::annot_template_id) &&
"ParseOptionalCXXScopeSpecifier not working");
AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
continue;
}
if (TemplateId && TemplateId->Kind == TNK_Concept_template) {
DS.getTypeSpecScope() = SS;
// This is probably a qualified placeholder-specifier, e.g., ::C<int>
// auto ... Consume the scope annotation and continue to consume the
// template-id as a placeholder-specifier. Let the next iteration
// diagnose a missing auto.
ConsumeAnnotationToken();
continue;
}
if (Next.is(tok::annot_typename)) {
DS.getTypeSpecScope() = SS;
ConsumeAnnotationToken(); // The C++ scope.
TypeResult T = getTypeAnnotation(Tok);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
Tok.getAnnotationEndLoc(),
PrevSpec, DiagID, T, Policy);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeAnnotationToken(); // The typename
}
if (AllowImplicitTypename == ImplicitTypenameContext::Yes &&
Next.is(tok::annot_template_id) &&
static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
->Kind == TNK_Dependent_template_name) {
DS.getTypeSpecScope() = SS;
ConsumeAnnotationToken(); // The C++ scope.
AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
continue;
}
if (Next.isNot(tok::identifier))
goto DoneWithDeclSpec;
// Check whether this is a constructor declaration. If we're in a
// context where the identifier could be a class name, and it has the
// shape of a constructor declaration, process it as one.
if ((DSContext == DeclSpecContext::DSC_top_level ||
DSContext == DeclSpecContext::DSC_class) &&
Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
&SS) &&
isConstructorDeclarator(/*Unqualified=*/false,
/*DeductionGuide=*/false,
DS.isFriendSpecified(),
&TemplateInfo))
goto DoneWithDeclSpec;
// C++20 [temp.spec] 13.9/6.
// This disables the access checking rules for function template explicit
// instantiation and explicit specialization:
// - `return type`.
SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
ParsedType TypeRep = Actions.getTypeName(
*Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS,
false, false, nullptr,
/*IsCtorOrDtorName=*/false,
/*WantNontrivialTypeSourceInfo=*/true,
isClassTemplateDeductionContext(DSContext), AllowImplicitTypename);
if (IsTemplateSpecOrInst)
SAC.done();
// If the referenced identifier is not a type, then this declspec is
// erroneous: We already checked about that it has no type specifier, and
// C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
// typename.
if (!TypeRep) {
if (TryAnnotateTypeConstraint())
goto DoneWithDeclSpec;
if (Tok.isNot(tok::annot_cxxscope) ||
NextToken().isNot(tok::identifier))
continue;
// Eat the scope spec so the identifier is current.
ConsumeAnnotationToken();
ParsedAttributes Attrs(AttrFactory);
if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
if (!Attrs.empty()) {
AttrsLastTime = true;
attrs.takeAllFrom(Attrs);
}
continue;
}
goto DoneWithDeclSpec;
}
DS.getTypeSpecScope() = SS;
ConsumeAnnotationToken(); // The C++ scope.
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep, Policy);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The typename.
continue;
}
case tok::annot_typename: {
// If we've previously seen a tag definition, we were almost surely
// missing a semicolon after it.
if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
goto DoneWithDeclSpec;
TypeResult T = getTypeAnnotation(Tok);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, T, Policy);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeAnnotationToken(); // The typename
continue;
}
case tok::kw___is_signed:
// GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
// typically treats it as a trait. If we see __is_signed as it appears
// in libstdc++, e.g.,
//
// static const bool __is_signed;
//
// then treat __is_signed as an identifier rather than as a keyword.
if (DS.getTypeSpecType() == TST_bool &&
DS.getTypeQualifiers() == DeclSpec::TQ_const &&
DS.getStorageClassSpec() == DeclSpec::SCS_static)
TryKeywordIdentFallback(true);
// We're done with the declaration-specifiers.
goto DoneWithDeclSpec;
// typedef-name
case tok::kw___super:
case tok::kw_decltype:
case tok::identifier:
ParseIdentifier: {
// This identifier can only be a typedef name if we haven't already seen
// a type-specifier. Without this check we misparse:
// typedef int X; struct Y { short X; }; as 'short int'.
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
// If the token is an identifier named "__declspec" and Microsoft
// extensions are not enabled, it is likely that there will be cascading
// parse errors if this really is a __declspec attribute. Attempt to
// recognize that scenario and recover gracefully.
if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
Tok.getIdentifierInfo()->getName().equals("__declspec")) {
Diag(Loc, diag::err_ms_attributes_not_enabled);
// The next token should be an open paren. If it is, eat the entire
// attribute declaration and continue.
if (NextToken().is(tok::l_paren)) {
// Consume the __declspec identifier.
ConsumeToken();
// Eat the parens and everything between them.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
assert(false && "Not a left paren?");
return;
}
T.skipToEnd();
continue;
}
}
// In C++, check to see if this is a scope specifier like foo::bar::, if
// so handle it as such. This is important for ctor parsing.
if (getLangOpts().CPlusPlus) {
// C++20 [temp.spec] 13.9/6.
// This disables the access checking rules for function template
// explicit instantiation and explicit specialization:
// - `return type`.
SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
const bool Success = TryAnnotateCXXScopeToken(EnteringContext);
if (IsTemplateSpecOrInst)
SAC.done();
if (Success) {
if (IsTemplateSpecOrInst)
SAC.redelay();
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::identifier))
continue;
}
// Check for need to substitute AltiVec keyword tokens.
if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
break;
// [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
// allow the use of a typedef name as a type specifier.
if (DS.isTypeAltiVecVector())
goto DoneWithDeclSpec;
if (DSContext == DeclSpecContext::DSC_objc_method_result &&
isObjCInstancetype()) {
ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
assert(TypeRep);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep, Policy);
if (isInvalid)
break;
DS.SetRangeEnd(Loc);
ConsumeToken();
continue;
}
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
isConstructorDeclarator(/*Unqualified=*/true,
/*DeductionGuide=*/false,
DS.isFriendSpecified()))
goto DoneWithDeclSpec;
ParsedType TypeRep = Actions.getTypeName(
*Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
false, false, nullptr, false, false,
isClassTemplateDeductionContext(DSContext));
// If this is not a typedef name, don't parse it as part of the declspec,
// it must be an implicit int or an error.
if (!TypeRep) {
if (TryAnnotateTypeConstraint())
goto DoneWithDeclSpec;
if (Tok.isNot(tok::identifier))
continue;
ParsedAttributes Attrs(AttrFactory);
if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
if (!Attrs.empty()) {
AttrsLastTime = true;
attrs.takeAllFrom(Attrs);
}
continue;
}
goto DoneWithDeclSpec;
}
// Likewise, if this is a context where the identifier could be a template
// name, check whether this is a deduction guide declaration.
CXXScopeSpec SS;
if (getLangOpts().CPlusPlus17 &&
(DSContext == DeclSpecContext::DSC_class ||
DSContext == DeclSpecContext::DSC_top_level) &&
Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
Tok.getLocation(), SS) &&
isConstructorDeclarator(/*Unqualified*/ true,
/*DeductionGuide*/ true))
goto DoneWithDeclSpec;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep, Policy);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The identifier
// Objective-C supports type arguments and protocol references
// following an Objective-C object or object pointer
// type. Handle either one of them.
if (Tok.is(tok::less) && getLangOpts().ObjC) {
SourceLocation NewEndLoc;
TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
Loc, TypeRep, /*consumeLastToken=*/true,
NewEndLoc);
if (NewTypeRep.isUsable()) {
DS.UpdateTypeRep(NewTypeRep.get());
DS.SetRangeEnd(NewEndLoc);
}
}
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// type-name or placeholder-specifier
case tok::annot_template_id: {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->hasInvalidName()) {
DS.SetTypeSpecError();
break;
}
if (TemplateId->Kind == TNK_Concept_template) {
// If we've already diagnosed that this type-constraint has invalid
// arguments, drop it and just form 'auto' or 'decltype(auto)'.
if (TemplateId->hasInvalidArgs())
TemplateId = nullptr;
// Any of the following tokens are likely the start of the user
// forgetting 'auto' or 'decltype(auto)', so diagnose.
// Note: if updating this list, please make sure we update
// isCXXDeclarationSpecifier's check for IsPlaceholderSpecifier to have
// a matching list.
if (NextToken().isOneOf(tok::identifier, tok::kw_const,
tok::kw_volatile, tok::kw_restrict, tok::amp,
tok::ampamp)) {
Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
<< FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
// Attempt to continue as if 'auto' was placed here.
isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
TemplateId, Policy);
break;
}
if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
goto DoneWithDeclSpec;
if (TemplateId && !isInvalid && Actions.CheckTypeConstraint(TemplateId))
TemplateId = nullptr;
ConsumeAnnotationToken();
SourceLocation AutoLoc = Tok.getLocation();
if (TryConsumeToken(tok::kw_decltype)) {
BalancedDelimiterTracker Tracker(*this, tok::l_paren);
if (Tracker.consumeOpen()) {
// Something like `void foo(Iterator decltype i)`
Diag(Tok, diag::err_expected) << tok::l_paren;
} else {
if (!TryConsumeToken(tok::kw_auto)) {
// Something like `void foo(Iterator decltype(int) i)`
Tracker.skipToEnd();
Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
<< FixItHint::CreateReplacement(SourceRange(AutoLoc,
Tok.getLocation()),
"auto");
} else {
Tracker.consumeClose();
}
}
ConsumedEnd = Tok.getLocation();
DS.setTypeArgumentRange(Tracker.getRange());
// Even if something went wrong above, continue as if we've seen
// `decltype(auto)`.
isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec,
DiagID, TemplateId, Policy);
} else {
isInvalid = DS.SetTypeSpecType(TST_auto, AutoLoc, PrevSpec, DiagID,
TemplateId, Policy);
}
break;
}
if (TemplateId->Kind != TNK_Type_template &&
TemplateId->Kind != TNK_Undeclared_template) {
// This template-id does not refer to a type name, so we're
// done with the type-specifiers.
goto DoneWithDeclSpec;
}
// If we're in a context where the template-id could be a
// constructor name or specialization, check whether this is a
// constructor declaration.
if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
isConstructorDeclarator(/*Unqualified=*/true,
/*DeductionGuide=*/false,
DS.isFriendSpecified()))
goto DoneWithDeclSpec;
// Turn the template-id annotation token into a type annotation
// token, then try again to parse it as a type-specifier.
CXXScopeSpec SS;
AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
continue;
}
// Attributes support.
case tok::kw___attribute:
case tok::kw___declspec:
ParseAttributes(PAKM_GNU | PAKM_Declspec, DS.getAttributes(), LateAttrs);
continue;
// Microsoft single token adornments.
case tok::kw___forceinline: {
isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = Tok.getLocation();
DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
nullptr, 0, tok::kw___forceinline);
break;
}
case tok::kw___unaligned:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw___sptr:
case tok::kw___uptr:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___regcall:
case tok::kw___vectorcall:
ParseMicrosoftTypeAttributes(DS.getAttributes());
continue;
case tok::kw___funcref:
ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
continue;
// Borland single token adornments.
case tok::kw___pascal:
ParseBorlandTypeAttributes(DS.getAttributes());
continue;
// OpenCL single token adornments.
case tok::kw___kernel:
ParseOpenCLKernelAttributes(DS.getAttributes());
continue;
// CUDA/HIP single token adornments.
case tok::kw___noinline__:
ParseCUDAFunctionAttributes(DS.getAttributes());
continue;
// Nullability type specifiers.
case tok::kw__Nonnull:
case tok::kw__Nullable:
case tok::kw__Nullable_result:
case tok::kw__Null_unspecified:
ParseNullabilityTypeSpecifiers(DS.getAttributes());
continue;
// Objective-C 'kindof' types.
case tok::kw___kindof:
DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
nullptr, 0, tok::kw___kindof);
(void)ConsumeToken();
continue;
// storage-class-specifier
case tok::kw_typedef:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw_extern:
if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
Diag(Tok, diag::ext_thread_before) << "extern";
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw___private_extern__:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
Loc, PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw_static:
if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
Diag(Tok, diag::ext_thread_before) << "static";
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw_auto:
if (getLangOpts().CPlusPlus11 || getLangOpts().C23) {
if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
PrevSpec, DiagID, Policy);
if (!isInvalid && !getLangOpts().C23)
Diag(Tok, diag::ext_auto_storage_class)
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
} else
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
DiagID, Policy);
} else
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw___auto_type:
Diag(Tok, diag::ext_auto_type);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_register:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw_mutable:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
PrevSpec, DiagID, Policy);
isStorageClass = true;
break;
case tok::kw___thread:
isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
PrevSpec, DiagID);
isStorageClass = true;
break;
case tok::kw_thread_local:
if (getLangOpts().C23)
Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
// We map thread_local to _Thread_local in C23 mode so it retains the C
// semantics rather than getting the C++ semantics.
// FIXME: diagnostics will show _Thread_local when the user wrote
// thread_local in source in C23 mode; we need some general way to
// identify which way the user spelled the keyword in source.
isInvalid = DS.SetStorageClassSpecThread(
getLangOpts().C23 ? DeclSpec::TSCS__Thread_local
: DeclSpec::TSCS_thread_local,
Loc, PrevSpec, DiagID);
isStorageClass = true;
break;
case tok::kw__Thread_local:
diagnoseUseOfC11Keyword(Tok);
isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
Loc, PrevSpec, DiagID);
isStorageClass = true;
break;
// function-specifier
case tok::kw_inline:
isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
break;
case tok::kw_virtual:
// C++ for OpenCL does not allow virtual function qualifier, to avoid
// function pointers restricted in OpenCL v2.0 s6.9.a.
if (getLangOpts().OpenCLCPlusPlus &&
!getActions().getOpenCLOptions().isAvailableOption(
"__cl_clang_function_pointers", getLangOpts())) {
DiagID = diag::err_openclcxx_virtual_function;
PrevSpec = Tok.getIdentifierInfo()->getNameStart();
isInvalid = true;
} else {
isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
}
break;
case tok::kw_explicit: {
SourceLocation ExplicitLoc = Loc;
SourceLocation CloseParenLoc;
ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
ConsumedEnd = ExplicitLoc;
ConsumeToken(); // kw_explicit
if (Tok.is(tok::l_paren)) {
if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) {
Diag(Tok.getLocation(), getLangOpts().CPlusPlus20
? diag::warn_cxx17_compat_explicit_bool
: diag::ext_explicit_bool);
ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
BalancedDelimiterTracker Tracker(*this, tok::l_paren);
Tracker.consumeOpen();
EnterExpressionEvaluationContext ConstantEvaluated(
Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExplicitExpr = ParseConstantExpressionInExprEvalContext();
ConsumedEnd = Tok.getLocation();
if (ExplicitExpr.isUsable()) {
CloseParenLoc = Tok.getLocation();
Tracker.consumeClose();
ExplicitSpec =
Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
} else
Tracker.skipToEnd();
} else {
Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool);
}
}
isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
ExplicitSpec, CloseParenLoc);
break;
}
case tok::kw__Noreturn:
diagnoseUseOfC11Keyword(Tok);
isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
break;
// friend
case tok::kw_friend:
if (DSContext == DeclSpecContext::DSC_class)
isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
else {
PrevSpec = ""; // not actually used by the diagnostic
DiagID = diag::err_friend_invalid_in_context;
isInvalid = true;
}
break;
// Modules
case tok::kw___module_private__:
isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
break;
// constexpr, consteval, constinit specifiers
case tok::kw_constexpr:
if (getLangOpts().C23)
Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, Loc,
PrevSpec, DiagID);
break;
case tok::kw_consteval:
isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Consteval, Loc,
PrevSpec, DiagID);
break;
case tok::kw_constinit:
isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constinit, Loc,
PrevSpec, DiagID);
break;
// type-specifier
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != TypeSpecifierWidth::Long)
isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec,
DiagID, Policy);
else
isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
PrevSpec, DiagID, Policy);
break;
case tok::kw___int64:
isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
PrevSpec, DiagID, Policy);
break;
case tok::kw_signed:
isInvalid =
DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Complex:
if (!getLangOpts().C99)
Diag(Tok, diag::ext_c99_feature) << Tok.getName();
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Imaginary:
if (!getLangOpts().C99)
Diag(Tok, diag::ext_c99_feature) << Tok.getName();
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
DiagID);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw__ExtInt:
case tok::kw__BitInt: {
DiagnoseBitIntUse(Tok);
ExprResult ER = ParseExtIntegerArgument();
if (ER.isInvalid())
continue;
isInvalid = DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
ConsumedEnd = PrevTokLocation;
break;
}
case tok::kw___int128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_half:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw___bf16:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw__Float16:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw__Accum:
assert(getLangOpts().FixedPoint &&
"This keyword is only used when fixed point types are enabled "
"with `-ffixed-point`");
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID,
Policy);
break;
case tok::kw__Fract:
assert(getLangOpts().FixedPoint &&
"This keyword is only used when fixed point types are enabled "
"with `-ffixed-point`");
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID,
Policy);
break;
case tok::kw__Sat:
assert(getLangOpts().FixedPoint &&
"This keyword is only used when fixed point types are enabled "
"with `-ffixed-point`");
isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
break;
case tok::kw___float128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw___ibm128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_char8_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_char16_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_char32_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw_bool:
if (getLangOpts().C23)
Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
[[fallthrough]];
case tok::kw__Bool:
if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
Diag(Tok, diag::ext_c99_feature) << Tok.getName();
if (Tok.is(tok::kw_bool) &&
DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
PrevSpec = ""; // Not used by the diagnostic.
DiagID = diag::err_bool_redeclaration;
// For better error recovery.
Tok.setKind(tok::identifier);
isInvalid = true;
} else {
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
DiagID, Policy);
}
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
DiagID, Policy);
break;
case tok::kw___vector:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw___bool:
isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_pipe:
if (!getLangOpts().OpenCL ||
getLangOpts().getOpenCLCompatibleVersion() < 200) {
// OpenCL 2.0 and later define this keyword. OpenCL 1.2 and earlier
// should support the "pipe" word as identifier.
Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
Tok.setKind(tok::identifier);
goto DoneWithDeclSpec;
} else if (!getLangOpts().OpenCLPipes) {
DiagID = diag::err_opencl_unknown_type_specifier;
PrevSpec = Tok.getIdentifierInfo()->getNameStart();
isInvalid = true;
} else
isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
break;
// We only need to enumerate each image type once.
#define IMAGE_READ_WRITE_TYPE(Type, Id, Ext)
#define IMAGE_WRITE_TYPE(Type, Id, Ext)
#define IMAGE_READ_TYPE(ImgType, Id, Ext) \
case tok::kw_##ImgType##_t: \
if (!handleOpenCLImageKW(Ext, DeclSpec::TST_##ImgType##_t)) \
goto DoneWithDeclSpec; \
break;
#include "clang/Basic/OpenCLImageTypes.def"
case tok::kw___unknown_anytype:
isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
PrevSpec, DiagID, Policy);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw___interface:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
// These are attributes following class specifiers.
// To produce better diagnostic, we parse them when
// parsing class specifier.
ParsedAttributes Attributes(AttrFactory);
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
EnteringContext, DSContext, Attributes);
// If there are attributes following class specifier,
// take them over and handle them here.
if (!Attributes.empty()) {
AttrsLastTime = true;
attrs.takeAllFrom(Attributes);
}
continue;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
continue;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLangOpts());
break;
// C++ typename-specifier:
case tok::kw_typename:
if (TryAnnotateTypeOrScopeToken()) {
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::kw_typename))
continue;
break;
// C23/GNU typeof support.
case tok::kw_typeof:
case tok::kw_typeof_unqual:
ParseTypeofSpecifier(DS);
continue;
case tok::annot_decltype:
ParseDecltypeSpecifier(DS);
continue;
case tok::annot_pack_indexing_type:
ParsePackIndexingType(DS);
continue;
case tok::annot_pragma_pack:
HandlePragmaPack();
continue;
case tok::annot_pragma_ms_pragma:
HandlePragmaMSPragma();
continue;
case tok::annot_pragma_ms_vtordisp:
HandlePragmaMSVtorDisp();
continue;
case tok::annot_pragma_ms_pointers_to_members:
HandlePragmaMSPointersToMembers();
continue;
#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
#include "clang/Basic/TransformTypeTraits.def"
// HACK: libstdc++ already uses '__remove_cv' as an alias template so we
// work around this by expecting all transform type traits to be suffixed
// with '('. They're an identifier otherwise.
if (!MaybeParseTypeTransformTypeSpecifier(DS))
goto ParseIdentifier;
continue;
case tok::kw__Atomic:
// C11 6.7.2.4/4:
// If the _Atomic keyword is immediately followed by a left parenthesis,
// it is interpreted as a type specifier (with a type name), not as a
// type qualifier.
diagnoseUseOfC11Keyword(Tok);
if (NextToken().is(tok::l_paren)) {
ParseAtomicSpecifier(DS);
continue;
}
isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
getLangOpts());
break;
// OpenCL address space qualifiers:
case tok::kw___generic:
// generic address space is introduced only in OpenCL v2.0
// see OpenCL C Spec v2.0 s6.5.5
// OpenCL v3.0 introduces __opencl_c_generic_address_space
// feature macro to indicate if generic address space is supported
if (!Actions.getLangOpts().OpenCLGenericAddressSpace) {
DiagID = diag::err_opencl_unknown_type_specifier;
PrevSpec = Tok.getIdentifierInfo()->getNameStart();
isInvalid = true;
break;
}
[[fallthrough]];
case tok::kw_private:
// It's fine (but redundant) to check this for __generic on the
// fallthrough path; we only form the __generic token in OpenCL mode.
if (!getLangOpts().OpenCL)
goto DoneWithDeclSpec;
[[fallthrough]];
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
// OpenCL access qualifiers:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS.getAttributes());
break;
case tok::kw_groupshared:
case tok::kw_in:
case tok::kw_inout:
case tok::kw_out:
// NOTE: ParseHLSLQualifiers will consume the qualifier token.
ParseHLSLQualifiers(DS.getAttributes());
continue;
case tok::less:
// GCC ObjC supports types like "<SomeProtocol>" as a synonym for
// "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
// but we support it.
if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
goto DoneWithDeclSpec;
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc;
TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
if (Type.isUsable()) {
if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
PrevSpec, DiagID, Type.get(),
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
DS.SetRangeEnd(EndLoc);
} else {
DS.SetTypeSpecError();
}
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
// If the specifier wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
assert(DiagID);
if (DiagID == diag::ext_duplicate_declspec ||
DiagID == diag::ext_warn_duplicate_declspec ||
DiagID == diag::err_duplicate_declspec)
Diag(Loc, DiagID) << PrevSpec
<< FixItHint::CreateRemoval(
SourceRange(Loc, DS.getEndLoc()));
else if (DiagID == diag::err_opencl_unknown_type_specifier) {
Diag(Loc, DiagID) << getLangOpts().getOpenCLVersionString() << PrevSpec
<< isStorageClass;
} else
Diag(Loc, DiagID) << PrevSpec;
}
if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
// After an error the next token can be an annotation token.
ConsumeAnyToken();
AttrsLastTime = false;
}
}
static void DiagnoseCountAttributedTypeInUnnamedAnon(ParsingDeclSpec &DS,
Parser &P) {
if (DS.getTypeSpecType() != DeclSpec::TST_struct)
return;
auto *RD = dyn_cast<RecordDecl>(DS.getRepAsDecl());
// We're only interested in unnamed, non-anonymous struct
if (!RD || !RD->getName().empty() || RD->isAnonymousStructOrUnion())
return;
for (auto *I : RD->decls()) {
auto *VD = dyn_cast<ValueDecl>(I);
if (!VD)
continue;
auto *CAT = VD->getType()->getAs<CountAttributedType>();
if (!CAT)
continue;
for (const auto &DD : CAT->dependent_decls()) {
if (!RD->containsDecl(DD.getDecl())) {
P.Diag(VD->getBeginLoc(),
diag::err_flexible_array_count_not_in_same_struct)
<< DD.getDecl();
P.Diag(DD.getDecl()->getBeginLoc(),
diag::note_flexible_array_counted_by_attr_field)
<< DD.getDecl();
}
}
}
}
/// ParseStructDeclaration - Parse a struct declaration without the terminating
/// semicolon.
///
/// Note that a struct declaration refers to a declaration in a struct,
/// not to the declaration of a struct.
///
/// struct-declaration:
/// [C23] attributes-specifier-seq[opt]
/// specifier-qualifier-list struct-declarator-list
/// [GNU] __extension__ struct-declaration
/// [GNU] specifier-qualifier-list
/// struct-declarator-list:
/// struct-declarator
/// struct-declarator-list ',' struct-declarator
/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
/// struct-declarator:
/// declarator
/// [GNU] declarator attributes[opt]
/// declarator[opt] ':' constant-expression
/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
///
void Parser::ParseStructDeclaration(
ParsingDeclSpec &DS,
llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseStructDeclaration(DS, FieldsCallback);
}
// Parse leading attributes.
ParsedAttributes Attrs(AttrFactory);
MaybeParseCXX11Attributes(Attrs);
// Parse the common specifier-qualifiers-list piece.
ParseSpecifierQualifierList(DS);
// If there are no declarators, this is a free-standing declaration
// specifier. Let the actions module cope with it.
if (Tok.is(tok::semi)) {
// C23 6.7.2.1p9 : "The optional attribute specifier sequence in a
// member declaration appertains to each of the members declared by the
// member declarator list; it shall not appear if the optional member
// declarator list is omitted."
ProhibitAttributes(Attrs);
RecordDecl *AnonRecord = nullptr;
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
assert(!AnonRecord && "Did not expect anonymous struct or union here");
DS.complete(TheDecl);
return;
}
// Read struct-declarators until we find the semicolon.
bool FirstDeclarator = true;
SourceLocation CommaLoc;
while (true) {
ParsingFieldDeclarator DeclaratorInfo(*this, DS, Attrs);
DeclaratorInfo.D.setCommaLoc(CommaLoc);
// Attributes are only allowed here on successive declarators.
if (!FirstDeclarator) {
// However, this does not apply for [[]] attributes (which could show up
// before or after the __attribute__ attributes).
DiagnoseAndSkipCXX11Attributes();
MaybeParseGNUAttributes(DeclaratorInfo.D);
DiagnoseAndSkipCXX11Attributes();
}
/// struct-declarator: declarator
/// struct-declarator: declarator[opt] ':' constant-expression
if (Tok.isNot(tok::colon)) {
// Don't parse FOO:BAR as if it were a typo for FOO::BAR.
ColonProtectionRAIIObject X(*this);
ParseDeclarator(DeclaratorInfo.D);
} else
DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
// Here, we now know that the unnamed struct is not an anonymous struct.
// Report an error if a counted_by attribute refers to a field in a
// different named struct.
DiagnoseCountAttributedTypeInUnnamedAnon(DS, *this);
if (TryConsumeToken(tok::colon)) {
ExprResult Res(ParseConstantExpression());
if (Res.isInvalid())
SkipUntil(tok::semi, StopBeforeMatch);
else
DeclaratorInfo.BitfieldSize = Res.get();
}
// If attributes exist after the declarator, parse them.
MaybeParseGNUAttributes(DeclaratorInfo.D);
// We're done with this declarator; invoke the callback.
FieldsCallback(DeclaratorInfo);
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (!TryConsumeToken(tok::comma, CommaLoc))
return;
FirstDeclarator = false;
}
}
/// ParseStructUnionBody
/// struct-contents:
/// struct-declaration-list
/// [EXT] empty
/// [GNU] "struct-declaration-list" without terminating ';'
/// struct-declaration-list:
/// struct-declaration
/// struct-declaration-list struct-declaration
/// [OBC] '@' 'defs' '(' class-name ')'
///
void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
DeclSpec::TST TagType, RecordDecl *TagDecl) {
PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
"parsing struct/union body");
assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
BalancedDelimiterTracker T(*this, tok::l_brace);
if (T.consumeOpen())
return;
ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
// While we still have something to read, read the declarations in the struct.
while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one struct-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
ConsumeExtraSemi(InsideStruct, TagType);
continue;
}
// Parse _Static_assert declaration.
if (Tok.isOneOf(tok::kw__Static_assert, tok::kw_static_assert)) {
SourceLocation DeclEnd;
ParseStaticAssertDeclaration(DeclEnd);
continue;
}
if (Tok.is(tok::annot_pragma_pack)) {
HandlePragmaPack();
continue;
}
if (Tok.is(tok::annot_pragma_align)) {
HandlePragmaAlign();
continue;
}
if (Tok.isOneOf(tok::annot_pragma_openmp, tok::annot_attr_openmp)) {
// Result can be ignored, because it must be always empty.
AccessSpecifier AS = AS_none;
ParsedAttributes Attrs(AttrFactory);
(void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
continue;
}
if (Tok.is(tok::annot_pragma_openacc)) {
ParseOpenACCDirectiveDecl();
continue;
}
if (tok::isPragmaAnnotation(Tok.getKind())) {
Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
<< DeclSpec::getSpecifierName(
TagType, Actions.getASTContext().getPrintingPolicy());
ConsumeAnnotationToken();
continue;
}
if (!Tok.is(tok::at)) {
auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
// Install the declarator into the current TagDecl.
Decl *Field =
Actions.ActOnField(getCurScope(), TagDecl,
FD.D.getDeclSpec().getSourceRange().getBegin(),
FD.D, FD.BitfieldSize);
FD.complete(Field);
};
// Parse all the comma separated declarators.
ParsingDeclSpec DS(*this);
ParseStructDeclaration(DS, CFieldCallback);
} else { // Handle @defs
ConsumeToken();
if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
Diag(Tok, diag::err_unexpected_at);
SkipUntil(tok::semi);
continue;
}
ConsumeToken();
ExpectAndConsume(tok::l_paren);
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
SkipUntil(tok::semi);
continue;
}
SmallVector<Decl *, 16> Fields;
Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
Tok.getIdentifierInfo(), Fields);
ConsumeToken();
ExpectAndConsume(tok::r_paren);
}
if (TryConsumeToken(tok::semi))
continue;
if (Tok.is(tok::r_brace)) {
ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
break;
}
ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
// Skip to end of block or statement to avoid ext-warning on extra ';'.
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
// If we stopped at a ';', eat it.
TryConsumeToken(tok::semi);
}
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
// If attributes exist after struct contents, parse them.
MaybeParseGNUAttributes(attrs);
SmallVector<Decl *, 32> FieldDecls(TagDecl->fields());
Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
T.getOpenLocation(), T.getCloseLocation(), attrs);
StructScope.Exit();
Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
}
/// ParseEnumSpecifier
/// enum-specifier: [C99 6.7.2.2]
/// 'enum' identifier[opt] '{' enumerator-list '}'
///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}' attributes[opt]
/// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}'
/// 'enum' identifier
/// [GNU] 'enum' attributes[opt] identifier
///
/// [C++11] enum-head '{' enumerator-list[opt] '}'
/// [C++11] enum-head '{' enumerator-list ',' '}'
///
/// enum-head: [C++11]
/// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
/// enum-key attribute-specifier-seq[opt] nested-name-specifier
/// identifier enum-base[opt]
///
/// enum-key: [C++11]
/// 'enum'
/// 'enum' 'class'
/// 'enum' 'struct'
///
/// enum-base: [C++11]
/// ':' type-specifier-seq
///
/// [C++] elaborated-type-specifier:
/// [C++] 'enum' nested-name-specifier[opt] identifier
///
void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC) {
// Parse the tag portion of this.
if (Tok.is(tok::code_completion)) {
// Code completion for an enum name.
cutOffParsing();
Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
DS.SetTypeSpecError(); // Needed by ActOnUsingDeclaration.
return;
}
// If attributes exist after tag, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
SourceLocation ScopedEnumKWLoc;
bool IsScopedUsingClassTag = false;
// In C++11, recognize 'enum class' and 'enum struct'.
if (Tok.isOneOf(tok::kw_class, tok::kw_struct) && getLangOpts().CPlusPlus) {
Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
: diag::ext_scoped_enum);
IsScopedUsingClassTag = Tok.is(tok::kw_class);
ScopedEnumKWLoc = ConsumeToken();
// Attributes are not allowed between these keywords. Diagnose,
// but then just treat them like they appeared in the right place.
ProhibitAttributes(attrs);
// They are allowed afterwards, though.
MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
}
// C++11 [temp.explicit]p12:
// The usual access controls do not apply to names used to specify
// explicit instantiations.
// We extend this to also cover explicit specializations. Note that
// we don't suppress if this turns out to be an elaborated type
// specifier.
bool shouldDelayDiagsInTag =
(TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
// Determine whether this declaration is permitted to have an enum-base.
AllowDefiningTypeSpec AllowEnumSpecifier =
isDefiningTypeSpecifierContext(DSC, getLangOpts().CPlusPlus);
bool CanBeOpaqueEnumDeclaration =
DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC);
bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC ||
getLangOpts().MicrosoftExt) &&
(AllowEnumSpecifier == AllowDefiningTypeSpec::Yes ||
CanBeOpaqueEnumDeclaration);
CXXScopeSpec &SS = DS.getTypeSpecScope();
if (getLangOpts().CPlusPlus) {
// "enum foo : bar;" is not a potential typo for "enum foo::bar;".
ColonProtectionRAIIObject X(*this);
CXXScopeSpec Spec;
if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
/*ObjectHasErrors=*/false,
/*EnteringContext=*/true))
return;
if (Spec.isSet() && Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
DS.SetTypeSpecError();
if (Tok.isNot(tok::l_brace)) {
// Has no name and is not a definition.
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, StopAtSemi);
return;
}
}
SS = Spec;
}
// Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
Tok.isNot(tok::colon)) {
Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
DS.SetTypeSpecError();
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, StopAtSemi);
return;
}
// If an identifier is present, consume and remember it.
IdentifierInfo *Name = nullptr;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
if (!Name && ScopedEnumKWLoc.isValid()) {
// C++0x 7.2p2: The optional identifier shall not be omitted in the
// declaration of a scoped enumeration.
Diag(Tok, diag::err_scoped_enum_missing_identifier);
ScopedEnumKWLoc = SourceLocation();
IsScopedUsingClassTag = false;
}
// Okay, end the suppression area. We'll decide whether to emit the
// diagnostics in a second.
if (shouldDelayDiagsInTag)
diagsFromTag.done();
TypeResult BaseType;
SourceRange BaseRange;
bool CanBeBitfield =
getCurScope()->isClassScope() && ScopedEnumKWLoc.isInvalid() && Name;
// Parse the fixed underlying type.
if (Tok.is(tok::colon)) {
// This might be an enum-base or part of some unrelated enclosing context.
//
// 'enum E : base' is permitted in two circumstances:
//
// 1) As a defining-type-specifier, when followed by '{'.
// 2) As the sole constituent of a complete declaration -- when DS is empty
// and the next token is ';'.
//
// The restriction to defining-type-specifiers is important to allow parsing
// a ? new enum E : int{}
// _Generic(a, enum E : int{})
// properly.
//
// One additional consideration applies:
//
// C++ [dcl.enum]p1:
// A ':' following "enum nested-name-specifier[opt] identifier" within
// the decl-specifier-seq of a member-declaration is parsed as part of
// an enum-base.
//
// Other language modes supporting enumerations with fixed underlying types
// do not have clear rules on this, so we disambiguate to determine whether
// the tokens form a bit-field width or an enum-base.
if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) {
// Outside C++11, do not interpret the tokens as an enum-base if they do
// not make sense as one. In C++11, it's an error if this happens.
if (getLangOpts().CPlusPlus11)
Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield);
} else if (CanHaveEnumBase || !ColonIsSacred) {
SourceLocation ColonLoc = ConsumeToken();
// Parse a type-specifier-seq as a type. We can't just ParseTypeName here,
// because under -fms-extensions,
// enum E : int *p;
// declares 'enum E : int; E *p;' not 'enum E : int*; E p;'.
DeclSpec DS(AttrFactory);
// enum-base is not assumed to be a type and therefore requires the
// typename keyword [p0634r3].
ParseSpecifierQualifierList(DS, ImplicitTypenameContext::No, AS,
DeclSpecContext::DSC_type_specifier);
Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
DeclaratorContext::TypeName);
BaseType = Actions.ActOnTypeName(DeclaratorInfo);
BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd());
if (!getLangOpts().ObjC && !getLangOpts().C23) {
if (getLangOpts().CPlusPlus11)
Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type)
<< BaseRange;
else if (getLangOpts().CPlusPlus)
Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type)
<< BaseRange;
else if (getLangOpts().MicrosoftExt)
Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type)
<< BaseRange;
else
Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type)
<< BaseRange;
}
}
}
// There are four options here. If we have 'friend enum foo;' then this is a
// friend declaration, and cannot have an accompanying definition. If we have
// 'enum foo;', then this is a forward declaration. If we have
// 'enum foo {...' then this is a definition. Otherwise we have something
// like 'enum foo xyz', a reference.
//
// This is needed to handle stuff like this right (C99 6.7.2.3p11):
// enum foo {..}; void bar() { enum foo; } <- new foo in bar.
// enum foo {..}; void bar() { enum foo x; } <- use of old foo.
//
Sema::TagUseKind TUK;
if (AllowEnumSpecifier == AllowDefiningTypeSpec::No)
TUK = Sema::TUK_Reference;
else if (Tok.is(tok::l_brace)) {
if (DS.isFriendSpecified()) {
Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
<< SourceRange(DS.getFriendSpecLoc());
ConsumeBrace();
SkipUntil(tok::r_brace, StopAtSemi);
// Discard any other definition-only pieces.
attrs.clear();
ScopedEnumKWLoc = SourceLocation();
IsScopedUsingClassTag = false;
BaseType = TypeResult();
TUK = Sema::TUK_Friend;
} else {
TUK = Sema::TUK_Definition;
}
} else if (!isTypeSpecifier(DSC) &&
(Tok.is(tok::semi) ||
(Tok.isAtStartOfLine() &&
!isValidAfterTypeSpecifier(CanBeBitfield)))) {
// An opaque-enum-declaration is required to be standalone (no preceding or
// following tokens in the declaration). Sema enforces this separately by
// diagnosing anything else in the DeclSpec.
TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
if (Tok.isNot(tok::semi)) {
// A semicolon was missing after this declaration. Diagnose and recover.
ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
PP.EnterToken(Tok, /*IsReinject=*/true);
Tok.setKind(tok::semi);
}
} else {
TUK = Sema::TUK_Reference;
}
bool IsElaboratedTypeSpecifier =
TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend;
// If this is an elaborated type specifier nested in a larger declaration,
// and we delayed diagnostics before, just merge them into the current pool.
if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
diagsFromTag.redelay();
}
MultiTemplateParamsArg TParams;
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
TUK != Sema::TUK_Reference) {
if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
// Skip the rest of this declarator, up until the comma or semicolon.
Diag(Tok, diag::err_enum_template);
SkipUntil(tok::comma, StopAtSemi);
return;
}
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// Enumerations can't be explicitly instantiated.
DS.SetTypeSpecError();
Diag(StartLoc, diag::err_explicit_instantiation_enum);
return;
}
assert(TemplateInfo.TemplateParams && "no template parameters");
TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
TemplateInfo.TemplateParams->size());
SS.setTemplateParamLists(TParams);
}
if (!Name && TUK != Sema::TUK_Definition) {
Diag(Tok, diag::err_enumerator_unnamed_no_def);
DS.SetTypeSpecError();
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, StopAtSemi);
return;
}
// An elaborated-type-specifier has a much more constrained grammar:
//
// 'enum' nested-name-specifier[opt] identifier
//
// If we parsed any other bits, reject them now.
//
// MSVC and (for now at least) Objective-C permit a full enum-specifier
// or opaque-enum-declaration anywhere.
if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt &&
!getLangOpts().ObjC) {
ProhibitCXX11Attributes(attrs, diag::err_attributes_not_allowed,
diag::err_keyword_not_allowed,
/*DiagnoseEmptyAttrs=*/true);
if (BaseType.isUsable())
Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier)
<< (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange;
else if (ScopedEnumKWLoc.isValid())
Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class)
<< FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag;
}
stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
SkipBodyInfo SkipBody;
if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
NextToken().is(tok::identifier))
SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
NextToken().getIdentifierInfo(),
NextToken().getLocation());
bool Owned = false;
bool IsDependent = false;
const char *PrevSpec = nullptr;
unsigned DiagID;
Decl *TagDecl =
Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS,
Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(),
TParams, Owned, IsDependent, ScopedEnumKWLoc,
IsScopedUsingClassTag,
BaseType, DSC == DeclSpecContext::DSC_type_specifier,
DSC == DeclSpecContext::DSC_template_param ||
DSC == DeclSpecContext::DSC_template_type_arg,
OffsetOfState, &SkipBody).get();
if (SkipBody.ShouldSkip) {
assert(TUK == Sema::TUK_Definition && "can only skip a definition");
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
T.skipToEnd();
if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TagDecl, Owned,
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
if (IsDependent) {
// This enum has a dependent nested-name-specifier. Handle it as a
// dependent tag.
if (!Name) {
DS.SetTypeSpecError();
Diag(Tok, diag::err_expected_type_name_after_typename);
return;
}
TypeResult Type = Actions.ActOnDependentTag(
getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
if (Type.isInvalid()) {
DS.SetTypeSpecError();
return;
}
if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, Type.get(),
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
if (!TagDecl) {
// The action failed to produce an enumeration tag. If this is a
// definition, consume the entire definition.
if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
ConsumeBrace();
SkipUntil(tok::r_brace, StopAtSemi);
}
DS.SetTypeSpecError();
return;
}
if (Tok.is(tok::l_brace) && TUK == Sema::TUK_Definition) {
Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
ParseEnumBody(StartLoc, D);
if (SkipBody.CheckSameAsPrevious &&
!Actions.ActOnDuplicateDefinition(TagDecl, SkipBody)) {
DS.SetTypeSpecError();
return;
}
}
if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TagDecl, Owned,
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// ParseEnumBody - Parse a {} enclosed enumerator-list.
/// enumerator-list:
/// enumerator
/// enumerator-list ',' enumerator
/// enumerator:
/// enumeration-constant attributes[opt]
/// enumeration-constant attributes[opt] '=' constant-expression
/// enumeration-constant:
/// identifier
///
void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
// Enter the scope of the enum body and start the definition.
ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
// C does not allow an empty enumerator-list, C++ does [dcl.enum].
if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
Diag(Tok, diag::err_empty_enum);
SmallVector<Decl *, 32> EnumConstantDecls;
SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
Decl *LastEnumConstDecl = nullptr;
// Parse the enumerator-list.
while (Tok.isNot(tok::r_brace)) {
// Parse enumerator. If failed, try skipping till the start of the next
// enumerator definition.
if (Tok.isNot(tok::identifier)) {
Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
TryConsumeToken(tok::comma))
continue;
break;
}
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
// If attributes exist after the enumerator, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
if (isAllowedCXX11AttributeSpecifier()) {
if (getLangOpts().CPlusPlus)
Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_ns_enum_attribute
: diag::ext_ns_enum_attribute)
<< 1 /*enumerator*/;
ParseCXX11Attributes(attrs);
}
SourceLocation EqualLoc;
ExprResult AssignedVal;
EnumAvailabilityDiags.emplace_back(*this);
EnterExpressionEvaluationContext ConstantEvaluated(
Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
if (TryConsumeToken(tok::equal, EqualLoc)) {
AssignedVal = ParseConstantExpressionInExprEvalContext();
if (AssignedVal.isInvalid())
SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
}
// Install the enumerator constant into EnumDecl.
Decl *EnumConstDecl = Actions.ActOnEnumConstant(
getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
EqualLoc, AssignedVal.get());
EnumAvailabilityDiags.back().done();
EnumConstantDecls.push_back(EnumConstDecl);
LastEnumConstDecl = EnumConstDecl;
if (Tok.is(tok::identifier)) {
// We're missing a comma between enumerators.
SourceLocation Loc = getEndOfPreviousToken();
Diag(Loc, diag::err_enumerator_list_missing_comma)
<< FixItHint::CreateInsertion(Loc, ", ");
continue;
}
// Emumerator definition must be finished, only comma or r_brace are
// allowed here.
SourceLocation CommaLoc;
if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
if (EqualLoc.isValid())
Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
<< tok::comma;
else
Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
if (TryConsumeToken(tok::comma, CommaLoc))
continue;
} else {
break;
}
}
// If comma is followed by r_brace, emit appropriate warning.
if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
Diag(CommaLoc, getLangOpts().CPlusPlus ?
diag::ext_enumerator_list_comma_cxx :
diag::ext_enumerator_list_comma_c)
<< FixItHint::CreateRemoval(CommaLoc);
else if (getLangOpts().CPlusPlus11)
Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
<< FixItHint::CreateRemoval(CommaLoc);
break;
}
}
// Eat the }.
T.consumeClose();
// If attributes exist after the identifier list, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
getCurScope(), attrs);
// Now handle enum constant availability diagnostics.
assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
EnumAvailabilityDiags[i].redelay();
PD.complete(EnumConstantDecls[i]);
}
EnumScope.Exit();
Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
// The next token must be valid after an enum definition. If not, a ';'
// was probably forgotten.
bool CanBeBitfield = getCurScope()->isClassScope();
if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
// Push this token back into the preprocessor and change our current token
// to ';' so that the rest of the code recovers as though there were an
// ';' after the definition.
PP.EnterToken(Tok, /*IsReinject=*/true);
Tok.setKind(tok::semi);
}
}
/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
/// is definitely a type-specifier. Return false if it isn't part of a type
/// specifier or if we're not sure.
bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
switch (Tok.getKind()) {
default: return false;
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char8_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw__ExtInt:
case tok::kw__BitInt:
case tok::kw___bf16:
case tok::kw_half:
case tok::kw_float:
case tok::kw_double:
case tok::kw__Accum:
case tok::kw__Fract:
case tok::kw__Float16:
case tok::kw___float128:
case tok::kw___ibm128:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
#include "clang/Basic/OpenCLImageTypes.def"
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw___interface:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// typedef-name
case tok::annot_typename:
return true;
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a specifier-qualifier-list.
bool Parser::isTypeSpecifierQualifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
if (TryAltiVecVectorToken())
return true;
[[fallthrough]];
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return isTypeSpecifierQualifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
if (TryAnnotateTypeOrScopeToken())
return true;
return isTypeSpecifierQualifier();
// GNU attributes support.
case tok::kw___attribute:
// C23/GNU typeof support.
case tok::kw_typeof:
case tok::kw_typeof_unqual:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char8_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw__ExtInt:
case tok::kw__BitInt:
case tok::kw_half:
case tok::kw___bf16:
case tok::kw_float:
case tok::kw_double:
case tok::kw__Accum:
case tok::kw__Fract:
case tok::kw__Float16:
case tok::kw___float128:
case tok::kw___ibm128:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
#include "clang/Basic/OpenCLImageTypes.def"
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw___interface:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
case tok::kw__Sat:
// Debugger support.
case tok::kw___unknown_anytype:
// typedef-name
case tok::annot_typename:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLangOpts().ObjC;
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___regcall:
case tok::kw___vectorcall:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___pascal:
case tok::kw___unaligned:
case tok::kw__Nonnull:
case tok::kw__Nullable:
case tok::kw__Nullable_result:
case tok::kw__Null_unspecified:
case tok::kw___kindof:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___generic:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
case tok::kw___funcref:
return true;
case tok::kw_private:
return getLangOpts().OpenCL;
// C11 _Atomic
case tok::kw__Atomic:
return true;
// HLSL type qualifiers
case tok::kw_groupshared:
case tok::kw_in:
case tok::kw_inout:
case tok::kw_out:
return getLangOpts().HLSL;
}
}
Parser::DeclGroupPtrTy Parser::ParseTopLevelStmtDecl() {
assert(PP.isIncrementalProcessingEnabled() && "Not in incremental mode");
// Parse a top-level-stmt.
Parser::StmtVector Stmts;
ParsedStmtContext SubStmtCtx = ParsedStmtContext();
ParseScope FnScope(this, Scope::FnScope | Scope::DeclScope |
Scope::CompoundStmtScope);
TopLevelStmtDecl *TLSD = Actions.ActOnStartTopLevelStmtDecl(getCurScope());
StmtResult R = ParseStatementOrDeclaration(Stmts, SubStmtCtx);
if (!R.isUsable())
return nullptr;
Actions.ActOnFinishTopLevelStmtDecl(TLSD, R.get());
if (Tok.is(tok::annot_repl_input_end) &&
Tok.getAnnotationValue() != nullptr) {
ConsumeAnnotationToken();
TLSD->setSemiMissing();
}
SmallVector<Decl *, 2> DeclsInGroup;
DeclsInGroup.push_back(TLSD);
// Currently happens for things like -fms-extensions and use `__if_exists`.
for (Stmt *S : Stmts) {
// Here we should be safe as `__if_exists` and friends are not introducing
// new variables which need to live outside file scope.
TopLevelStmtDecl *D = Actions.ActOnStartTopLevelStmtDecl(getCurScope());
Actions.ActOnFinishTopLevelStmtDecl(D, S);
DeclsInGroup.push_back(D);
}
return Actions.BuildDeclaratorGroup(DeclsInGroup);
}
/// isDeclarationSpecifier() - Return true if the current token is part of a
/// declaration specifier.
///
/// \param AllowImplicitTypename whether this is a context where T::type [T
/// dependent] can appear.
/// \param DisambiguatingWithExpression True to indicate that the purpose of
/// this check is to disambiguate between an expression and a declaration.
bool Parser::isDeclarationSpecifier(
ImplicitTypenameContext AllowImplicitTypename,
bool DisambiguatingWithExpression) {
switch (Tok.getKind()) {
default: return false;
// OpenCL 2.0 and later define this keyword.
case tok::kw_pipe:
return getLangOpts().OpenCL &&
getLangOpts().getOpenCLCompatibleVersion() >= 200;
case tok::identifier: // foo::bar
// Unfortunate hack to support "Class.factoryMethod" notation.
if (getLangOpts().ObjC && NextToken().is(tok::period))
return false;
if (TryAltiVecVectorToken())
return true;
[[fallthrough]];
case tok::kw_decltype: // decltype(T())::type
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename))
return true;
if (TryAnnotateTypeConstraint())
return true;
if (Tok.is(tok::identifier))
return false;
// If we're in Objective-C and we have an Objective-C class type followed
// by an identifier and then either ':' or ']', in a place where an
// expression is permitted, then this is probably a class message send
// missing the initial '['. In this case, we won't consider this to be
// the start of a declaration.
if (DisambiguatingWithExpression &&
isStartOfObjCClassMessageMissingOpenBracket())
return false;
return isDeclarationSpecifier(AllowImplicitTypename);
case tok::coloncolon: // ::foo::bar
if (!getLangOpts().CPlusPlus)
return false;
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
return isDeclarationSpecifier(ImplicitTypenameContext::No);
// storage-class-specifier
case tok::kw_typedef:
case tok::kw_extern:
case tok::kw___private_extern__:
case tok::kw_static:
case tok::kw_auto:
case tok::kw___auto_type:
case tok::kw_register:
case tok::kw___thread:
case tok::kw_thread_local:
case tok::kw__Thread_local:
// Modules
case tok::kw___module_private__:
// Debugger support
case tok::kw___unknown_anytype:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char8_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw__ExtInt:
case tok::kw__BitInt:
case tok::kw_half:
case tok::kw___bf16:
case tok::kw_float:
case tok::kw_double:
case tok::kw__Accum:
case tok::kw__Fract:
case tok::kw__Float16:
case tok::kw___float128:
case tok::kw___ibm128:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
case tok::kw___interface:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
case tok::kw__Sat:
// function-specifier
case tok::kw_inline:
case tok::kw_virtual:
case tok::kw_explicit:
case tok::kw__Noreturn:
// alignment-specifier
case tok::kw__Alignas:
// friend keyword.
case tok::kw_friend:
// static_assert-declaration
case tok::kw_static_assert:
case tok::kw__Static_assert:
// C23/GNU typeof support.
case tok::kw_typeof:
case tok::kw_typeof_unqual:
// GNU attributes.
case tok::kw___attribute:
// C++11 decltype and constexpr.
case tok::annot_decltype:
case tok::annot_pack_indexing_type:
case tok::kw_constexpr:
// C++20 consteval and constinit.
case tok::kw_consteval:
case tok::kw_constinit:
// C11 _Atomic
case tok::kw__Atomic:
return true;
case tok::kw_alignas:
// alignas is a type-specifier-qualifier in C23, which is a kind of
// declaration-specifier. Outside of C23 mode (including in C++), it is not.
return getLangOpts().C23;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLangOpts().ObjC;
// typedef-name
case tok::annot_typename:
return !DisambiguatingWithExpression ||
!isStartOfObjCClassMessageMissingOpenBracket();
// placeholder-type-specifier
case tok::annot_template_id: {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->hasInvalidName())
return true;
// FIXME: What about type templates that have only been annotated as
// annot_template_id, not as annot_typename?
return isTypeConstraintAnnotation() &&
(NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
}
case tok::annot_cxxscope: {
TemplateIdAnnotation *TemplateId =
NextToken().is(tok::annot_template_id)
? takeTemplateIdAnnotation(NextToken())
: nullptr;
if (TemplateId && TemplateId->hasInvalidName())
return true;
// FIXME: What about type templates that have only been annotated as
// annot_template_id, not as annot_typename?
if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
return true;
return isTypeConstraintAnnotation() &&
GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
}
case tok::kw___declspec:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___regcall:
case tok::kw___vectorcall:
case tok::kw___w64:
case tok::kw___sptr:
case tok::kw___uptr:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___forceinline:
case tok::kw___pascal:
case tok::kw___unaligned:
case tok::kw__Nonnull:
case tok::kw__Nullable:
case tok::kw__Nullable_result:
case tok::kw__Null_unspecified:
case tok::kw___kindof:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___generic:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
#include "clang/Basic/OpenCLImageTypes.def"
case tok::kw___funcref:
case tok::kw_groupshared:
return true;
case tok::kw_private:
return getLangOpts().OpenCL;
}
}
bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide,
DeclSpec::FriendSpecified IsFriend,
const ParsedTemplateInfo *TemplateInfo) {
RevertingTentativeParsingAction TPA(*this);
// Parse the C++ scope specifier.
CXXScopeSpec SS;
if (TemplateInfo && TemplateInfo->TemplateParams)
SS.setTemplateParamLists(*TemplateInfo->TemplateParams);
if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHasErrors=*/false,
/*EnteringContext=*/true)) {
return false;
}
// Parse the constructor name.
if (Tok.is(tok::identifier)) {
// We already know that we have a constructor name; just consume
// the token.
ConsumeToken();
} else if (Tok.is(tok::annot_template_id)) {
ConsumeAnnotationToken();
} else {
return false;
}
// There may be attributes here, appertaining to the constructor name or type
// we just stepped past.
SkipCXX11Attributes();
// Current class name must be followed by a left parenthesis.
if (Tok.isNot(tok::l_paren)) {
return false;
}
ConsumeParen();
// A right parenthesis, or ellipsis followed by a right parenthesis signals
// that we have a constructor.
if (Tok.is(tok::r_paren) ||
(Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
return true;
}
// A C++11 attribute here signals that we have a constructor, and is an
// attribute on the first constructor parameter.
if (getLangOpts().CPlusPlus11 &&
isCXX11AttributeSpecifier(/*Disambiguate*/ false,
/*OuterMightBeMessageSend*/ true)) {
return true;
}
// If we need to, enter the specified scope.
DeclaratorScopeObj DeclScopeObj(*this, SS);
if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
DeclScopeObj.EnterDeclaratorScope();
// Optionally skip Microsoft attributes.
ParsedAttributes Attrs(AttrFactory);
MaybeParseMicrosoftAttributes(Attrs);
// Check whether the next token(s) are part of a declaration
// specifier, in which case we have the start of a parameter and,
// therefore, we know that this is a constructor.
// Due to an ambiguity with implicit typename, the above is not enough.
// Additionally, check to see if we are a friend.
// If we parsed a scope specifier as well as friend,
// we might be parsing a friend constructor.
bool IsConstructor = false;
ImplicitTypenameContext ITC = IsFriend && !SS.isSet()
? ImplicitTypenameContext::No
: ImplicitTypenameContext::Yes;
// Constructors cannot have this parameters, but we support that scenario here
// to improve diagnostic.
if (Tok.is(tok::kw_this)) {
ConsumeToken();
return isDeclarationSpecifier(ITC);
}
if (isDeclarationSpecifier(ITC))
IsConstructor = true;
else if (Tok.is(tok::identifier) ||
(Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
// We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
// This might be a parenthesized member name, but is more likely to
// be a constructor declaration with an invalid argument type. Keep
// looking.
if (Tok.is(tok::annot_cxxscope))
ConsumeAnnotationToken();
ConsumeToken();
// If this is not a constructor, we must be parsing a declarator,
// which must have one of the following syntactic forms (see the
// grammar extract at the start of ParseDirectDeclarator):
switch (Tok.getKind()) {
case tok::l_paren:
// C(X ( int));
case tok::l_square:
// C(X [ 5]);
// C(X [ [attribute]]);
case tok::coloncolon:
// C(X :: Y);
// C(X :: *p);
// Assume this isn't a constructor, rather than assuming it's a
// constructor with an unnamed parameter of an ill-formed type.
break;
case tok::r_paren:
// C(X )
// Skip past the right-paren and any following attributes to get to
// the function body or trailing-return-type.
ConsumeParen();
SkipCXX11Attributes();
if (DeductionGuide) {
// C(X) -> ... is a deduction guide.
IsConstructor = Tok.is(tok::arrow);
break;
}
if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
// Assume these were meant to be constructors:
// C(X) : (the name of a bit-field cannot be parenthesized).
// C(X) try (this is otherwise ill-formed).
IsConstructor = true;
}
if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
// If we have a constructor name within the class definition,
// assume these were meant to be constructors:
// C(X) {
// C(X) ;
// ... because otherwise we would be declaring a non-static data
// member that is ill-formed because it's of the same type as its
// surrounding class.
//
// FIXME: We can actually do this whether or not the name is qualified,
// because if it is qualified in this context it must be being used as
// a constructor name.
// currently, so we're somewhat conservative here.
IsConstructor = IsUnqualified;
}
break;
default:
IsConstructor = true;
break;
}
}
return IsConstructor;
}
/// ParseTypeQualifierListOpt
/// type-qualifier-list: [C99 6.7.5]
/// type-qualifier
/// [vendor] attributes
/// [ only if AttrReqs & AR_VendorAttributesParsed ]
/// type-qualifier-list type-qualifier
/// [vendor] type-qualifier-list attributes
/// [ only if AttrReqs & AR_VendorAttributesParsed ]
/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
/// [ only if AttReqs & AR_CXX11AttributesParsed ]
/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
/// AttrRequirements bitmask values.
void Parser::ParseTypeQualifierListOpt(
DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
bool IdentifierRequired,
std::optional<llvm::function_ref<void()>> CodeCompletionHandler) {
if ((AttrReqs & AR_CXX11AttributesParsed) &&
isAllowedCXX11AttributeSpecifier()) {
ParsedAttributes Attrs(AttrFactory);
ParseCXX11Attributes(Attrs);
DS.takeAttributesFrom(Attrs);
}
SourceLocation EndLoc;
while (true) {
bool isInvalid = false;
const char *PrevSpec = nullptr;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::code_completion:
cutOffParsing();
if (CodeCompletionHandler)
(*CodeCompletionHandler)();
else
Actions.CodeCompleteTypeQualifiers(DS);
return;
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw__Atomic:
if (!AtomicAllowed)
goto DoneWithTypeQuals;
diagnoseUseOfC11Keyword(Tok);
isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
getLangOpts());
break;
// OpenCL qualifiers:
case tok::kw_private:
if (!getLangOpts().OpenCL)
goto DoneWithTypeQuals;
[[fallthrough]];
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
case tok::kw___generic:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS.getAttributes());
break;
case tok::kw_groupshared:
case tok::kw_in:
case tok::kw_inout:
case tok::kw_out:
// NOTE: ParseHLSLQualifiers will consume the qualifier token.
ParseHLSLQualifiers(DS.getAttributes());
continue;
case tok::kw___unaligned:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw___uptr:
// GNU libc headers in C mode use '__uptr' as an identifier which conflicts
// with the MS modifier keyword.
if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
if (TryKeywordIdentFallback(false))
continue;
}
[[fallthrough]];
case tok::kw___sptr:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___regcall:
case tok::kw___vectorcall:
if (AttrReqs & AR_DeclspecAttributesParsed) {
ParseMicrosoftTypeAttributes(DS.getAttributes());
continue;
}
goto DoneWithTypeQuals;
case tok::kw___funcref:
ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
continue;
goto DoneWithTypeQuals;
case tok::kw___pascal:
if (AttrReqs & AR_VendorAttributesParsed) {
ParseBorlandTypeAttributes(DS.getAttributes());
continue;
}
goto DoneWithTypeQuals;
// Nullability type specifiers.
case tok::kw__Nonnull:
case tok::kw__Nullable:
case tok::kw__Nullable_result:
case tok::kw__Null_unspecified:
ParseNullabilityTypeSpecifiers(DS.getAttributes());
continue;
// Objective-C 'kindof' types.
case tok::kw___kindof:
DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
nullptr, 0, tok::kw___kindof);
(void)ConsumeToken();
continue;
case tok::kw___attribute:
if (AttrReqs & AR_GNUAttributesParsedAndRejected)
// When GNU attributes are expressly forbidden, diagnose their usage.
Diag(Tok, diag::err_attributes_not_allowed);
// Parse the attributes even if they are rejected to ensure that error
// recovery is graceful.
if (AttrReqs & AR_GNUAttributesParsed ||
AttrReqs & AR_GNUAttributesParsedAndRejected) {
ParseGNUAttributes(DS.getAttributes());
continue; // do *not* consume the next token!
}
// otherwise, FALL THROUGH!
[[fallthrough]];
default:
DoneWithTypeQuals:
// If this is not a type-qualifier token, we're done reading type
// qualifiers. First verify that DeclSpec's are consistent.
DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
if (EndLoc.isValid())
DS.SetRangeEnd(EndLoc);
return;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
Diag(Tok, DiagID) << PrevSpec;
}
EndLoc = ConsumeToken();
}
}
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
void Parser::ParseDeclarator(Declarator &D) {
/// This implements the 'declarator' production in the C grammar, then checks
/// for well-formedness and issues diagnostics.
Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
});
}
static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
DeclaratorContext TheContext) {
if (Kind == tok::star || Kind == tok::caret)
return true;
// OpenCL 2.0 and later define this keyword.
if (Kind == tok::kw_pipe && Lang.OpenCL &&
Lang.getOpenCLCompatibleVersion() >= 200)
return true;
if (!Lang.CPlusPlus)
return false;
if (Kind == tok::amp)
return true;
// We parse rvalue refs in C++03, because otherwise the errors are scary.
// But we must not parse them in conversion-type-ids and new-type-ids, since
// those can be legitimately followed by a && operator.
// (The same thing can in theory happen after a trailing-return-type, but
// since those are a C++11 feature, there is no rejects-valid issue there.)
if (Kind == tok::ampamp)
return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionId &&
TheContext != DeclaratorContext::CXXNew);
return false;
}
// Indicates whether the given declarator is a pipe declarator.
static bool isPipeDeclarator(const Declarator &D) {
const unsigned NumTypes = D.getNumTypeObjects();
for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
return true;
return false;
}
/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
/// is parsed by the function passed to it. Pass null, and the direct-declarator
/// isn't parsed at all, making this function effectively parse the C++
/// ptr-operator production.
///
/// If the grammar of this construct is extended, matching changes must also be
/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
/// isConstructorDeclarator.
///
/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
/// [C] pointer[opt] direct-declarator
/// [C++] direct-declarator
/// [C++] ptr-operator declarator
///
/// pointer: [C99 6.7.5]
/// '*' type-qualifier-list[opt]
/// '*' type-qualifier-list[opt] pointer
///
/// ptr-operator:
/// '*' cv-qualifier-seq[opt]
/// '&'
/// [C++0x] '&&'
/// [GNU] '&' restrict[opt] attributes[opt]
/// [GNU?] '&&' restrict[opt] attributes[opt]
/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
void Parser::ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser) {
if (Diags.hasAllExtensionsSilenced())
D.setExtension();
// C++ member pointers start with a '::' or a nested-name.
// Member pointers get special handling, since there's no place for the
// scope spec in the generic path below.
if (getLangOpts().CPlusPlus &&
(Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
(Tok.is(tok::identifier) &&
(NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
Tok.is(tok::annot_cxxscope))) {
bool EnteringContext = D.getContext() == DeclaratorContext::File ||
D.getContext() == DeclaratorContext::Member;
CXXScopeSpec SS;
SS.setTemplateParamLists(D.getTemplateParameterLists());
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHasErrors=*/false, EnteringContext);
if (SS.isNotEmpty()) {
if (Tok.isNot(tok::star)) {
// The scope spec really belongs to the direct-declarator.
if (D.mayHaveIdentifier())
D.getCXXScopeSpec() = SS;
else
AnnotateScopeToken(SS, true);
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
if (SS.isValid()) {
checkCompoundToken(SS.getEndLoc(), tok::coloncolon,
CompoundToken::MemberPtr);
}
SourceLocation StarLoc = ConsumeToken();
D.SetRangeEnd(StarLoc);
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recurse to parse whatever is left.
Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
ParseDeclaratorInternal(D, DirectDeclParser);
});
// Sema will have to catch (syntactically invalid) pointers into global
// scope. It has to catch pointers into namespace scope anyway.
D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()),
std::move(DS.getAttributes()),
/* Don't replace range end. */ SourceLocation());
return;
}
}
tok::TokenKind Kind = Tok.getKind();
if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclarator(D)) {
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS);
D.AddTypeInfo(
DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
std::move(DS.getAttributes()), SourceLocation());
}
// Not a pointer, C++ reference, or block.
if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
// Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
// '&&' -> rvalue reference
SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
D.SetRangeEnd(Loc);
if (Kind == tok::star || Kind == tok::caret) {
// Is a pointer.
DeclSpec DS(AttrFactory);
// GNU attributes are not allowed here in a new-type-id, but Declspec and
// C++11 attributes are allowed.
unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
((D.getContext() != DeclaratorContext::CXXNew)
? AR_GNUAttributesParsed
: AR_GNUAttributesParsedAndRejected);
ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
D.ExtendWithDeclSpec(DS);
// Recursively parse the declarator.
Actions.runWithSufficientStackSpace(
D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
if (Kind == tok::star)
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getPointer(
DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
std::move(DS.getAttributes()), SourceLocation());
else
// Remember that we parsed a Block type, and remember the type-quals.
D.AddTypeInfo(
DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
std::move(DS.getAttributes()), SourceLocation());
} else {
// Is a reference
DeclSpec DS(AttrFactory);
// Complain about rvalue references in C++03, but then go on and build
// the declarator.
if (Kind == tok::ampamp)
Diag(Loc, getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_rvalue_reference :
diag::ext_rvalue_reference);
// GNU-style and C++11 attributes are allowed here, as is restrict.
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// C++ 8.3.2p1: cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef or of a
// template type argument, in which case the cv-qualifiers are ignored.
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(DS.getConstSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "const";
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
Diag(DS.getVolatileSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "volatile";
// 'restrict' is permitted as an extension.
if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
Diag(DS.getAtomicSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "_Atomic";
}
// Recursively parse the declarator.
Actions.runWithSufficientStackSpace(
D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
if (D.getNumTypeObjects() > 0) {
// C++ [dcl.ref]p4: There shall be no references to references.
DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
if (InnerChunk.Kind == DeclaratorChunk::Reference) {
if (const IdentifierInfo *II = D.getIdentifier())
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< II;
else
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< "type name";
// Once we've complained about the reference-to-reference, we
// can go ahead and build the (technically ill-formed)
// declarator: reference collapsing will take care of it.
}
}
// Remember that we parsed a reference type.
D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
Kind == tok::amp),
std::move(DS.getAttributes()), SourceLocation());
}
}
// When correcting from misplaced brackets before the identifier, the location
// is saved inside the declarator so that other diagnostic messages can use
// them. This extracts and returns that location, or returns the provided
// location if a stored location does not exist.
static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
SourceLocation Loc) {
if (D.getName().StartLocation.isInvalid() &&
D.getName().EndLocation.isValid())
return D.getName().EndLocation;
return Loc;
}
/// ParseDirectDeclarator
/// direct-declarator: [C99 6.7.5]
/// [C99] identifier
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// [C++11] direct-declarator '[' constant-expression[opt] ']'
/// attribute-specifier-seq[opt]
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
/// [C++] direct-declarator '(' parameter-declaration-clause ')'
/// cv-qualifier-seq[opt] exception-specification[opt]
/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
/// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
/// ref-qualifier[opt] exception-specification[opt]
/// [C++] declarator-id
/// [C++11] declarator-id attribute-specifier-seq[opt]
///
/// declarator-id: [C++ 8]
/// '...'[opt] id-expression
/// '::'[opt] nested-name-specifier[opt] type-name
///
/// id-expression: [C++ 5.1]
/// unqualified-id
/// qualified-id
///
/// unqualified-id: [C++ 5.1]
/// identifier
/// operator-function-id
/// conversion-function-id
/// '~' class-name
/// template-id
///
/// C++17 adds the following, which we also handle here:
///
/// simple-declaration:
/// <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
///
/// Note, any additional constructs added here may need corresponding changes
/// in isConstructorDeclarator.
void Parser::ParseDirectDeclarator(Declarator &D) {
DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
// This might be a C++17 structured binding.
if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
D.getCXXScopeSpec().isEmpty())
return ParseDecompositionDeclarator(D);
// Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
// this context it is a bitfield. Also in range-based for statement colon
// may delimit for-range-declaration.
ColonProtectionRAIIObject X(
*this, D.getContext() == DeclaratorContext::Member ||
(D.getContext() == DeclaratorContext::ForInit &&
getLangOpts().CPlusPlus11));
// ParseDeclaratorInternal might already have parsed the scope.
if (D.getCXXScopeSpec().isEmpty()) {
bool EnteringContext = D.getContext() == DeclaratorContext::File ||
D.getContext() == DeclaratorContext::Member;
ParseOptionalCXXScopeSpecifier(
D.getCXXScopeSpec(), /*ObjectType=*/nullptr,
/*ObjectHasErrors=*/false, EnteringContext);
}
// C++23 [basic.scope.namespace]p1:
// For each non-friend redeclaration or specialization whose target scope
// is or is contained by the scope, the portion after the declarator-id,
// class-head-name, or enum-head-name is also included in the scope.
// C++23 [basic.scope.class]p1:
// For each non-friend redeclaration or specialization whose target scope
// is or is contained by the scope, the portion after the declarator-id,
// class-head-name, or enum-head-name is also included in the scope.
//
// FIXME: We should not be doing this for friend declarations; they have
// their own special lookup semantics specified by [basic.lookup.unqual]p6.
if (D.getCXXScopeSpec().isValid()) {
if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
else if (getObjCDeclContext()) {
// Ensure that we don't interpret the next token as an identifier when
// dealing with declarations in an Objective-C container.
D.SetIdentifier(nullptr, Tok.getLocation());
D.setInvalidType(true);
ConsumeToken();
goto PastIdentifier;
}
}
// C++0x [dcl.fct]p14:
// There is a syntactic ambiguity when an ellipsis occurs at the end of a
// parameter-declaration-clause without a preceding comma. In this case,
// the ellipsis is parsed as part of the abstract-declarator if the type
// of the parameter either names a template parameter pack that has not
// been expanded or contains auto; otherwise, it is parsed as part of the
// parameter-declaration-clause.
if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
!((D.getContext() == DeclaratorContext::Prototype ||
D.getContext() == DeclaratorContext::LambdaExprParameter ||
D.getContext() == DeclaratorContext::BlockLiteral) &&
NextToken().is(tok::r_paren) && !D.hasGroupingParens() &&
!Actions.containsUnexpandedParameterPacks(D) &&
D.getDeclSpec().getTypeSpecType() != TST_auto)) {
SourceLocation EllipsisLoc = ConsumeToken();
if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
// The ellipsis was put in the wrong place. Recover, and explain to
// the user what they should have done.
ParseDeclarator(D);
if (EllipsisLoc.isValid())
DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
return;
} else
D.setEllipsisLoc(EllipsisLoc);
// The ellipsis can't be followed by a parenthesized declarator. We
// check for that in ParseParenDeclarator, after we have disambiguated
// the l_paren token.
}
if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
tok::tilde)) {
// We found something that indicates the start of an unqualified-id.
// Parse that unqualified-id.
bool AllowConstructorName;
bool AllowDeductionGuide;
if (D.getDeclSpec().hasTypeSpecifier()) {
AllowConstructorName = false;
AllowDeductionGuide = false;
} else if (D.getCXXScopeSpec().isSet()) {
AllowConstructorName = (D.getContext() == DeclaratorContext::File ||
D.getContext() == DeclaratorContext::Member);
AllowDeductionGuide = false;
} else {
AllowConstructorName = (D.getContext() == DeclaratorContext::Member);
AllowDeductionGuide = (D.getContext() == DeclaratorContext::File ||
D.getContext() == DeclaratorContext::Member);
}
bool HadScope = D.getCXXScopeSpec().isValid();
SourceLocation TemplateKWLoc;
if (ParseUnqualifiedId(D.getCXXScopeSpec(),
/*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/true,
/*AllowDestructorName=*/true, AllowConstructorName,
AllowDeductionGuide, &TemplateKWLoc,
D.getName()) ||
// Once we're past the identifier, if the scope was bad, mark the
// whole declarator bad.
D.getCXXScopeSpec().isInvalid()) {
D.SetIdentifier(nullptr, Tok.getLocation());
D.setInvalidType(true);
} else {
// ParseUnqualifiedId might have parsed a scope specifier during error
// recovery. If it did so, enter that scope.
if (!HadScope && D.getCXXScopeSpec().isValid() &&
Actions.ShouldEnterDeclaratorScope(getCurScope(),
D.getCXXScopeSpec()))
DeclScopeObj.EnterDeclaratorScope();
// Parsed the unqualified-id; update range information and move along.
if (D.getSourceRange().getBegin().isInvalid())
D.SetRangeBegin(D.getName().getSourceRange().getBegin());
D.SetRangeEnd(D.getName().getSourceRange().getEnd());
}
goto PastIdentifier;
}
if (D.getCXXScopeSpec().isNotEmpty()) {
// We have a scope specifier but no following unqualified-id.
Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
diag::err_expected_unqualified_id)
<< /*C++*/1;
D.SetIdentifier(nullptr, Tok.getLocation());
goto PastIdentifier;
}
} else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
assert(!getLangOpts().CPlusPlus &&
"There's a C++-specific check for tok::identifier above");
assert(Tok.getIdentifierInfo() && "Not an identifier?");
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
D.SetRangeEnd(Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
} else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
// We're not allowed an identifier here, but we got one. Try to figure out
// if the user was trying to attach a name to the type, or whether the name
// is some unrelated trailing syntax.
bool DiagnoseIdentifier = false;
if (D.hasGroupingParens())
// An identifier within parens is unlikely to be intended to be anything
// other than a name being "declared".
DiagnoseIdentifier = true;
else if (D.getContext() == DeclaratorContext::TemplateArg)
// T<int N> is an accidental identifier; T<int N indicates a missing '>'.
DiagnoseIdentifier =
NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
else if (D.getContext() == DeclaratorContext::AliasDecl ||
D.getContext() == DeclaratorContext::AliasTemplate)
// The most likely error is that the ';' was forgotten.
DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
else if ((D.getContext() == DeclaratorContext::TrailingReturn ||
D.getContext() == DeclaratorContext::TrailingReturnVar) &&
!isCXX11VirtSpecifier(Tok))
DiagnoseIdentifier = NextToken().isOneOf(
tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
if (DiagnoseIdentifier) {
Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
<< FixItHint::CreateRemoval(Tok.getLocation());
D.SetIdentifier(nullptr, Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
}
}
if (Tok.is(tok::l_paren)) {
// If this might be an abstract-declarator followed by a direct-initializer,
// check whether this is a valid declarator chunk. If it can't be, assume
// that it's an initializer instead.
if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
RevertingTentativeParsingAction PA(*this);
if (TryParseDeclarator(true, D.mayHaveIdentifier(), true,
D.getDeclSpec().getTypeSpecType() == TST_auto) ==
TPResult::False) {
D.SetIdentifier(nullptr, Tok.getLocation());
goto PastIdentifier;
}
}
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
// Example: 'char (*X)' or 'int (*XX)(void)'
ParseParenDeclarator(D);
// If the declarator was parenthesized, we entered the declarator
// scope when parsing the parenthesized declarator, then exited
// the scope already. Re-enter the scope, if we need to.
if (D.getCXXScopeSpec().isSet()) {
// If there was an error parsing parenthesized declarator, declarator
// scope may have been entered before. Don't do it again.
if (!D.isInvalidType() &&
Actions.ShouldEnterDeclaratorScope(getCurScope(),
D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
} else if (D.mayOmitIdentifier()) {
// This could be something simple like "int" (in which case the declarator
// portion is empty), if an abstract-declarator is allowed.
D.SetIdentifier(nullptr, Tok.getLocation());
// The grammar for abstract-pack-declarator does not allow grouping parens.
// FIXME: Revisit this once core issue 1488 is resolved.
if (D.hasEllipsis() && D.hasGroupingParens())
Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
diag::ext_abstract_pack_declarator_parens);
} else {
if (Tok.getKind() == tok::annot_pragma_parser_crash)
LLVM_BUILTIN_TRAP;
if (Tok.is(tok::l_square))
return ParseMisplacedBracketDeclarator(D);
if (D.getContext() == DeclaratorContext::Member) {
// Objective-C++: Detect C++ keywords and try to prevent further errors by
// treating these keyword as valid member names.
if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
!Tok.isAnnotation() && Tok.getIdentifierInfo() &&
Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
diag::err_expected_member_name_or_semi_objcxx_keyword)
<< Tok.getIdentifierInfo()
<< (D.getDeclSpec().isEmpty() ? SourceRange()
: D.getDeclSpec().getSourceRange());
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
D.SetRangeEnd(Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
}
Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
diag::err_expected_member_name_or_semi)
<< (D.getDeclSpec().isEmpty() ? SourceRange()
: D.getDeclSpec().getSourceRange());
} else {
if (Tok.getKind() == tok::TokenKind::kw_while) {
Diag(Tok, diag::err_while_loop_outside_of_a_function);
} else if (getLangOpts().CPlusPlus) {
if (Tok.isOneOf(tok::period, tok::arrow))
Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
else {
SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
if (Tok.isAtStartOfLine() && Loc.isValid())
Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
<< getLangOpts().CPlusPlus;
else
Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
diag::err_expected_unqualified_id)
<< getLangOpts().CPlusPlus;
}
} else {
Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
diag::err_expected_either)
<< tok::identifier << tok::l_paren;
}
}
D.SetIdentifier(nullptr, Tok.getLocation());
D.setInvalidType(true);
}
PastIdentifier:
assert(D.isPastIdentifier() &&
"Haven't past the location of the identifier yet?");
// Don't parse attributes unless we have parsed an unparenthesized name.
if (D.hasName() && !D.getNumTypeObjects())
MaybeParseCXX11Attributes(D);
while (true) {
if (Tok.is(tok::l_paren)) {
bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope|
(IsFunctionDeclaration
? Scope::FunctionDeclarationScope : 0));
// The paren may be part of a C++ direct initializer, eg. "int x(1);".
// In such a case, check if we actually have a function declarator; if it
// is not, the declarator has been fully parsed.
bool IsAmbiguous = false;
if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
// C++2a [temp.res]p5
// A qualified-id is assumed to name a type if
// - [...]
// - it is a decl-specifier of the decl-specifier-seq of a
// - [...]
// - parameter-declaration in a member-declaration [...]
// - parameter-declaration in a declarator of a function or function
// template declaration whose declarator-id is qualified [...]
auto AllowImplicitTypename = ImplicitTypenameContext::No;
if (D.getCXXScopeSpec().isSet())
AllowImplicitTypename =
(ImplicitTypenameContext)Actions.isDeclaratorFunctionLike(D);
else if (D.getContext() == DeclaratorContext::Member) {
AllowImplicitTypename = ImplicitTypenameContext::Yes;
}
// The name of the declarator, if any, is tentatively declared within
// a possible direct initializer.
TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
bool IsFunctionDecl =
isCXXFunctionDeclarator(&IsAmbiguous, AllowImplicitTypename);
TentativelyDeclaredIdentifiers.pop_back();
if (!IsFunctionDecl)
break;
}
ParsedAttributes attrs(AttrFactory);
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
if (IsFunctionDeclaration)
Actions.ActOnStartFunctionDeclarationDeclarator(D,
TemplateParameterDepth);
ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
if (IsFunctionDeclaration)
Actions.ActOnFinishFunctionDeclarationDeclarator(D);
PrototypeScope.Exit();
} else if (Tok.is(tok::l_square)) {
ParseBracketDeclarator(D);
} else if (Tok.isRegularKeywordAttribute()) {
// For consistency with attribute parsing.
Diag(Tok, diag::err_keyword_not_allowed) << Tok.getIdentifierInfo();
bool TakesArgs = doesKeywordAttributeTakeArgs(Tok.getKind());
ConsumeToken();
if (TakesArgs) {
BalancedDelimiterTracker T(*this, tok::l_paren);
if (!T.consumeOpen())
T.skipToEnd();
}
} else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
// This declarator is declaring a function, but the requires clause is
// in the wrong place:
// void (f() requires true);
// instead of
// void f() requires true;
// or
// void (f()) requires true;
Diag(Tok, diag::err_requires_clause_inside_parens);
ConsumeToken();
ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
!D.hasTrailingRequiresClause())
// We're already ill-formed if we got here but we'll accept it anyway.
D.setTrailingRequiresClause(TrailingRequiresClause.get());
} else {
break;
}
}
}
void Parser::ParseDecompositionDeclarator(Declarator &D) {
assert(Tok.is(tok::l_square));
// If this doesn't look like a structured binding, maybe it's a misplaced
// array declarator.
// FIXME: Consume the l_square first so we don't need extra lookahead for
// this.
if (!(NextToken().is(tok::identifier) &&
GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
!(NextToken().is(tok::r_square) &&
GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
return ParseMisplacedBracketDeclarator(D);
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
while (Tok.isNot(tok::r_square)) {
if (!Bindings.empty()) {
if (Tok.is(tok::comma))
ConsumeToken();
else {
if (Tok.is(tok::identifier)) {
SourceLocation EndLoc = getEndOfPreviousToken();
Diag(EndLoc, diag::err_expected)
<< tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
} else {
Diag(Tok, diag::err_expected_comma_or_rsquare);
}
SkipUntil(tok::r_square, tok::comma, tok::identifier,
StopAtSemi | StopBeforeMatch);
if (Tok.is(tok::comma))
ConsumeToken();
else if (Tok.isNot(tok::identifier))
break;
}
}
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
break;
}
Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
ConsumeToken();
}
if (Tok.isNot(tok::r_square))
// We've already diagnosed a problem here.
T.skipToEnd();
else {
// C++17 does not allow the identifier-list in a structured binding
// to be empty.
if (Bindings.empty())
Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
T.consumeClose();
}
return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
T.getCloseLocation());
}
/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
/// only called before the identifier, so these are most likely just grouping
/// parens for precedence. If we find that these are actually function
/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
///
/// direct-declarator:
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
///
void Parser::ParseParenDeclarator(Declarator &D) {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
assert(!D.isPastIdentifier() && "Should be called before passing identifier");
// Eat any attributes before we look at whether this is a grouping or function
// declarator paren. If this is a grouping paren, the attribute applies to
// the type being built up, for example:
// int (__attribute__(()) *x)(long y)
// If this ends up not being a grouping paren, the attribute applies to the
// first argument, for example:
// int (__attribute__(()) int x)
// In either case, we need to eat any attributes to be able to determine what
// sort of paren this is.
//
ParsedAttributes attrs(AttrFactory);
bool RequiresArg = false;
if (Tok.is(tok::kw___attribute)) {
ParseGNUAttributes(attrs);
// We require that the argument list (if this is a non-grouping paren) be
// present even if the attribute list was empty.
RequiresArg = true;
}
// Eat any Microsoft extensions.
ParseMicrosoftTypeAttributes(attrs);
// Eat any Borland extensions.
if (Tok.is(tok::kw___pascal))
ParseBorlandTypeAttributes(attrs);
// If we haven't past the identifier yet (or where the identifier would be
// stored, if this is an abstract declarator), then this is probably just
// grouping parens. However, if this could be an abstract-declarator, then
// this could also be the start of function arguments (consider 'void()').
bool isGrouping;
if (!D.mayOmitIdentifier()) {
// If this can't be an abstract-declarator, this *must* be a grouping
// paren, because we haven't seen the identifier yet.
isGrouping = true;
} else if (Tok.is(tok::r_paren) || // 'int()' is a function.
(getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
NextToken().is(tok::r_paren)) || // C++ int(...)
isDeclarationSpecifier(
ImplicitTypenameContext::No) || // 'int(int)' is a function.
isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
// This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
// considered to be a type, not a K&R identifier-list.
isGrouping = false;
} else {
// Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
isGrouping = true;
}
// If this is a grouping paren, handle:
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
if (isGrouping) {
SourceLocation EllipsisLoc = D.getEllipsisLoc();
D.setEllipsisLoc(SourceLocation());
bool hadGroupingParens = D.hasGroupingParens();
D.setGroupingParens(true);
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
// Match the ')'.
T.consumeClose();
D.AddTypeInfo(
DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
std::move(attrs), T.getCloseLocation());
D.setGroupingParens(hadGroupingParens);
// An ellipsis cannot be placed outside parentheses.
if (EllipsisLoc.isValid())
DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
return;
}
// Okay, if this wasn't a grouping paren, it must be the start of a function
// argument list. Recognize that this declarator will never have an
// identifier (and remember where it would have been), then call into
// ParseFunctionDeclarator to handle of argument list.
D.SetIdentifier(nullptr, Tok.getLocation());
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope | Scope::DeclScope |
(D.isFunctionDeclaratorAFunctionDeclaration()
? Scope::FunctionDeclarationScope : 0));
ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
PrototypeScope.Exit();
}
void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
const Declarator &D, const DeclSpec &DS,
std::optional<Sema::CXXThisScopeRAII> &ThisScope) {
// C++11 [expr.prim.general]p3:
// If a declaration declares a member function or member function
// template of a class X, the expression this is a prvalue of type
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
// and the end of the function-definition, member-declarator, or
// declarator.
// FIXME: currently, "static" case isn't handled correctly.
bool IsCXX11MemberFunction =
getLangOpts().CPlusPlus11 &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
(D.getContext() == DeclaratorContext::Member
? !D.getDeclSpec().isFriendSpecified()
: D.getContext() == DeclaratorContext::File &&
D.getCXXScopeSpec().isValid() &&
Actions.CurContext->isRecord());
if (!IsCXX11MemberFunction)
return;
Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
Q.addConst();
// FIXME: Collect C++ address spaces.
// If there are multiple different address spaces, the source is invalid.
// Carry on using the first addr space for the qualifiers of 'this'.
// The diagnostic will be given later while creating the function
// prototype for the method.
if (getLangOpts().OpenCLCPlusPlus) {
for (ParsedAttr &attr : DS.getAttributes()) {
LangAS ASIdx = attr.asOpenCLLangAS();
if (ASIdx != LangAS::Default) {
Q.addAddressSpace(ASIdx);
break;
}
}
}
ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
IsCXX11MemberFunction);
}
/// ParseFunctionDeclarator - We are after the identifier and have parsed the
/// declarator D up to a paren, which indicates that we are parsing function
/// arguments.
///
/// If FirstArgAttrs is non-null, then the caller parsed those attributes
/// immediately after the open paren - they will be applied to the DeclSpec
/// of the first parameter.
///
/// If RequiresArg is true, then the first argument of the function is required
/// to be present and required to not be an identifier list.
///
/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
/// (C++11) ref-qualifier[opt], exception-specification[opt],
/// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
/// (C++2a) the trailing requires-clause.
///
/// [C++11] exception-specification:
/// dynamic-exception-specification
/// noexcept-specification
///
void Parser::ParseFunctionDeclarator(Declarator &D,
ParsedAttributes &FirstArgAttrs,
BalancedDelimiterTracker &Tracker,
bool IsAmbiguous,
bool RequiresArg) {
assert(getCurScope()->isFunctionPrototypeScope() &&
"Should call from a Function scope");
// lparen is already consumed!
assert(D.isPastIdentifier() && "Should not call before identifier!");
// This should be true when the function has typed arguments.
// Otherwise, it is treated as a K&R-style function.
bool HasProto = false;
// Build up an array of information about the parsed arguments.
SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
// Remember where we see an ellipsis, if any.
SourceLocation EllipsisLoc;
DeclSpec DS(AttrFactory);
bool RefQualifierIsLValueRef = true;
SourceLocation RefQualifierLoc;
ExceptionSpecificationType ESpecType = EST_None;
SourceRange ESpecRange;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
ExprResult NoexceptExpr;
CachedTokens *ExceptionSpecTokens = nullptr;
ParsedAttributes FnAttrs(AttrFactory);
TypeResult TrailingReturnType;
SourceLocation TrailingReturnTypeLoc;
/* LocalEndLoc is the end location for the local FunctionTypeLoc.
EndLoc is the end location for the function declarator.
They differ for trailing return types. */
SourceLocation StartLoc, LocalEndLoc, EndLoc;
SourceLocation LParenLoc, RParenLoc;
LParenLoc = Tracker.getOpenLocation();
StartLoc = LParenLoc;
if (isFunctionDeclaratorIdentifierList()) {
if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
Tracker.consumeClose();
RParenLoc = Tracker.getCloseLocation();
LocalEndLoc = RParenLoc;
EndLoc = RParenLoc;
// If there are attributes following the identifier list, parse them and
// prohibit them.
MaybeParseCXX11Attributes(FnAttrs);
ProhibitAttributes(FnAttrs);
} else {
if (Tok.isNot(tok::r_paren))
ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
else if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
// OpenCL disallows functions without a prototype, but it doesn't enforce
// strict prototypes as in C23 because it allows a function definition to
// have an identifier list. See OpenCL 3.0 6.11/g for more details.
HasProto = ParamInfo.size() || getLangOpts().requiresStrictPrototypes() ||
getLangOpts().OpenCL;
// If we have the closing ')', eat it.
Tracker.consumeClose();
RParenLoc = Tracker.getCloseLocation();
LocalEndLoc = RParenLoc;
EndLoc = RParenLoc;
if (getLangOpts().CPlusPlus) {
// FIXME: Accept these components in any order, and produce fixits to
// correct the order if the user gets it wrong. Ideally we should deal
// with the pure-specifier in the same way.
// Parse cv-qualifier-seq[opt].
ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
/*AtomicAllowed*/ false,
/*IdentifierRequired=*/false,
llvm::function_ref<void()>([&]() {
Actions.CodeCompleteFunctionQualifiers(DS, D);
}));
if (!DS.getSourceRange().getEnd().isInvalid()) {
EndLoc = DS.getSourceRange().getEnd();
}
// Parse ref-qualifier[opt].
if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
EndLoc = RefQualifierLoc;
std::optional<Sema::CXXThisScopeRAII> ThisScope;
InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
// Parse exception-specification[opt].
// FIXME: Per [class.mem]p6, all exception-specifications at class scope
// should be delayed, including those for non-members (eg, friend
// declarations). But only applying this to member declarations is
// consistent with what other implementations do.
bool Delayed = D.isFirstDeclarationOfMember() &&
D.isFunctionDeclaratorAFunctionDeclaration();
if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
GetLookAheadToken(0).is(tok::kw_noexcept) &&
GetLookAheadToken(1).is(tok::l_paren) &&
GetLookAheadToken(2).is(tok::kw_noexcept) &&
GetLookAheadToken(3).is(tok::l_paren) &&
GetLookAheadToken(4).is(tok::identifier) &&
GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
// HACK: We've got an exception-specification
// noexcept(noexcept(swap(...)))
// or
// noexcept(noexcept(swap(...)) && noexcept(swap(...)))
// on a 'swap' member function. This is a libstdc++ bug; the lookup
// for 'swap' will only find the function we're currently declaring,
// whereas it expects to find a non-member swap through ADL. Turn off
// delayed parsing to give it a chance to find what it expects.
Delayed = false;
}
ESpecType = tryParseExceptionSpecification(Delayed,
ESpecRange,
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr,
ExceptionSpecTokens);
if (ESpecType != EST_None)
EndLoc = ESpecRange.getEnd();
// Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
// after the exception-specification.
MaybeParseCXX11Attributes(FnAttrs);
// Parse trailing-return-type[opt].
LocalEndLoc = EndLoc;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
if (D.getDeclSpec().getTypeSpecType() == TST_auto)
StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
LocalEndLoc = Tok.getLocation();
SourceRange Range;
TrailingReturnType =
ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
TrailingReturnTypeLoc = Range.getBegin();
EndLoc = Range.getEnd();
}
} else {
MaybeParseCXX11Attributes(FnAttrs);
}
}
// Collect non-parameter declarations from the prototype if this is a function
// declaration. They will be moved into the scope of the function. Only do
// this in C and not C++, where the decls will continue to live in the
// surrounding context.
SmallVector<NamedDecl *, 0> DeclsInPrototype;
if (getCurScope()->isFunctionDeclarationScope() && !getLangOpts().CPlusPlus) {
for (Decl *D : getCurScope()->decls()) {
NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND || isa<ParmVarDecl>(ND))
continue;
DeclsInPrototype.push_back(ND);
}
// Sort DeclsInPrototype based on raw encoding of the source location.
// Scope::decls() is iterating over a SmallPtrSet so sort the Decls before
// moving to DeclContext. This provides a stable ordering for traversing
// Decls in DeclContext, which is important for tasks like ASTWriter for
// deterministic output.
llvm::sort(DeclsInPrototype, [](Decl *D1, Decl *D2) {
return D1->getLocation().getRawEncoding() <
D2->getLocation().getRawEncoding();
});
}
// Remember that we parsed a function type, and remember the attributes.
D.AddTypeInfo(DeclaratorChunk::getFunction(
HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
ParamInfo.size(), EllipsisLoc, RParenLoc,
RefQualifierIsLValueRef, RefQualifierLoc,
/*MutableLoc=*/SourceLocation(),
ESpecType, ESpecRange, DynamicExceptions.data(),
DynamicExceptionRanges.data(), DynamicExceptions.size(),
NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
ExceptionSpecTokens, DeclsInPrototype, StartLoc,
LocalEndLoc, D, TrailingReturnType, TrailingReturnTypeLoc,
&DS),
std::move(FnAttrs), EndLoc);
}
/// ParseRefQualifier - Parses a member function ref-qualifier. Returns
/// true if a ref-qualifier is found.
bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
SourceLocation &RefQualifierLoc) {
if (Tok.isOneOf(tok::amp, tok::ampamp)) {
Diag(Tok, getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_ref_qualifier :
diag::ext_ref_qualifier);
RefQualifierIsLValueRef = Tok.is(tok::amp);
RefQualifierLoc = ConsumeToken();
return true;
}
return false;
}
/// isFunctionDeclaratorIdentifierList - This parameter list may have an
/// identifier list form for a K&R-style function: void foo(a,b,c)
///
/// Note that identifier-lists are only allowed for normal declarators, not for
/// abstract-declarators.
bool Parser::isFunctionDeclaratorIdentifierList() {
return !getLangOpts().requiresStrictPrototypes()
&& Tok.is(tok::identifier)
&& !TryAltiVecVectorToken()
// K&R identifier lists can't have typedefs as identifiers, per C99
// 6.7.5.3p11.
&& (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
// Identifier lists follow a really simple grammar: the identifiers can
// be followed *only* by a ", identifier" or ")". However, K&R
// identifier lists are really rare in the brave new modern world, and
// it is very common for someone to typo a type in a non-K&R style
// list. If we are presented with something like: "void foo(intptr x,
// float y)", we don't want to start parsing the function declarator as
// though it is a K&R style declarator just because intptr is an
// invalid type.
//
// To handle this, we check to see if the token after the first
// identifier is a "," or ")". Only then do we parse it as an
// identifier list.
&& (!Tok.is(tok::eof) &&
(NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
}
/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
/// we found a K&R-style identifier list instead of a typed parameter list.
///
/// After returning, ParamInfo will hold the parsed parameters.
///
/// identifier-list: [C99 6.7.5]
/// identifier
/// identifier-list ',' identifier
///
void Parser::ParseFunctionDeclaratorIdentifierList(
Declarator &D,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
// We should never reach this point in C23 or C++.
assert(!getLangOpts().requiresStrictPrototypes() &&
"Cannot parse an identifier list in C23 or C++");
// If there was no identifier specified for the declarator, either we are in
// an abstract-declarator, or we are in a parameter declarator which was found
// to be abstract. In abstract-declarators, identifier lists are not valid:
// diagnose this.
if (!D.getIdentifier())
Diag(Tok, diag::ext_ident_list_in_param);
// Maintain an efficient lookup of params we have seen so far.
llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
do {
// If this isn't an identifier, report the error and skip until ')'.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
// Forget we parsed anything.
ParamInfo.clear();
return;
}
IdentifierInfo *ParmII = Tok.getIdentifierInfo();
// Reject 'typedef int y; int test(x, y)', but continue parsing.
if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
// Verify that the argument identifier has not already been mentioned.
if (!ParamsSoFar.insert(ParmII).second) {
Diag(Tok, diag::err_param_redefinition) << ParmII;
} else {
// Remember this identifier in ParamInfo.
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
Tok.getLocation(),
nullptr));
}
// Eat the identifier.
ConsumeToken();
// The list continues if we see a comma.
} while (TryConsumeToken(tok::comma));
}
/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
/// after the opening parenthesis. This function will not parse a K&R-style
/// identifier list.
///
/// DeclContext is the context of the declarator being parsed. If FirstArgAttrs
/// is non-null, then the caller parsed those attributes immediately after the
/// open paren - they will be applied to the DeclSpec of the first parameter.
///
/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
/// be the location of the ellipsis, if any was parsed.
///
/// parameter-type-list: [C99 6.7.5]
/// parameter-list
/// parameter-list ',' '...'
/// [C++] parameter-list '...'
///
/// parameter-list: [C99 6.7.5]
/// parameter-declaration
/// parameter-list ',' parameter-declaration
///
/// parameter-declaration: [C99 6.7.5]
/// declaration-specifiers declarator
/// [C++] declaration-specifiers declarator '=' assignment-expression
/// [C++11] initializer-clause
/// [GNU] declaration-specifiers declarator attributes
/// declaration-specifiers abstract-declarator[opt]
/// [C++] declaration-specifiers abstract-declarator[opt]
/// '=' assignment-expression
/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
/// [C++11] attribute-specifier-seq parameter-declaration
/// [C++2b] attribute-specifier-seq 'this' parameter-declaration
///
void Parser::ParseParameterDeclarationClause(
DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
SourceLocation &EllipsisLoc, bool IsACXXFunctionDeclaration) {
// Avoid exceeding the maximum function scope depth.
// See https://bugs.llvm.org/show_bug.cgi?id=19607
// Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
// getFunctionPrototypeDepth() - 1.
if (getCurScope()->getFunctionPrototypeDepth() - 1 >
ParmVarDecl::getMaxFunctionScopeDepth()) {
Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
<< ParmVarDecl::getMaxFunctionScopeDepth();
cutOffParsing();
return;
}
// C++2a [temp.res]p5
// A qualified-id is assumed to name a type if
// - [...]
// - it is a decl-specifier of the decl-specifier-seq of a
// - [...]
// - parameter-declaration in a member-declaration [...]
// - parameter-declaration in a declarator of a function or function
// template declaration whose declarator-id is qualified [...]
// - parameter-declaration in a lambda-declarator [...]
auto AllowImplicitTypename = ImplicitTypenameContext::No;
if (DeclaratorCtx == DeclaratorContext::Member ||
DeclaratorCtx == DeclaratorContext::LambdaExpr ||
DeclaratorCtx == DeclaratorContext::RequiresExpr ||
IsACXXFunctionDeclaration) {
AllowImplicitTypename = ImplicitTypenameContext::Yes;
}
do {
// FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
// before deciding this was a parameter-declaration-clause.
if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
break;
// Parse the declaration-specifiers.
// Just use the ParsingDeclaration "scope" of the declarator.
DeclSpec DS(AttrFactory);
ParsedAttributes ArgDeclAttrs(AttrFactory);
ParsedAttributes ArgDeclSpecAttrs(AttrFactory);
if (FirstArgAttrs.Range.isValid()) {
// If the caller parsed attributes for the first argument, add them now.
// Take them so that we only apply the attributes to the first parameter.
// We have already started parsing the decl-specifier sequence, so don't
// parse any parameter-declaration pieces that precede it.
ArgDeclSpecAttrs.takeAllFrom(FirstArgAttrs);
} else {
// Parse any C++11 attributes.
MaybeParseCXX11Attributes(ArgDeclAttrs);
// Skip any Microsoft attributes before a param.
MaybeParseMicrosoftAttributes(ArgDeclSpecAttrs);
}
SourceLocation DSStart = Tok.getLocation();
// Parse a C++23 Explicit Object Parameter
// We do that in all language modes to produce a better diagnostic.
SourceLocation ThisLoc;
if (getLangOpts().CPlusPlus && Tok.is(tok::kw_this)) {
ThisLoc = ConsumeToken();
// C++23 [dcl.fct]p6:
// An explicit-object-parameter-declaration is a parameter-declaration
// with a this specifier. An explicit-object-parameter-declaration
// shall appear only as the first parameter-declaration of a
// parameter-declaration-list of either:
// - a member-declarator that declares a member function, or
// - a lambda-declarator.
//
// The parameter-declaration-list of a requires-expression is not such
// a context.
if (DeclaratorCtx == DeclaratorContext::RequiresExpr)
Diag(ThisLoc, diag::err_requires_expr_explicit_object_parameter);
}
ParseDeclarationSpecifiers(DS, /*TemplateInfo=*/ParsedTemplateInfo(),
AS_none, DeclSpecContext::DSC_normal,
/*LateAttrs=*/nullptr, AllowImplicitTypename);
DS.takeAttributesFrom(ArgDeclSpecAttrs);
// Parse the declarator. This is "PrototypeContext" or
// "LambdaExprParameterContext", because we must accept either
// 'declarator' or 'abstract-declarator' here.
Declarator ParmDeclarator(DS, ArgDeclAttrs,
DeclaratorCtx == DeclaratorContext::RequiresExpr
? DeclaratorContext::RequiresExpr
: DeclaratorCtx == DeclaratorContext::LambdaExpr
? DeclaratorContext::LambdaExprParameter
: DeclaratorContext::Prototype);
ParseDeclarator(ParmDeclarator);
if (ThisLoc.isValid())
ParmDeclarator.SetRangeBegin(ThisLoc);
// Parse GNU attributes, if present.
MaybeParseGNUAttributes(ParmDeclarator);
if (getLangOpts().HLSL)
MaybeParseHLSLAnnotations(DS.getAttributes());
if (Tok.is(tok::kw_requires)) {
// User tried to define a requires clause in a parameter declaration,
// which is surely not a function declaration.
// void f(int (*g)(int, int) requires true);
Diag(Tok,
diag::err_requires_clause_on_declarator_not_declaring_a_function);
ConsumeToken();
Actions.CorrectDelayedTyposInExpr(
ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
}
// Remember this parsed parameter in ParamInfo.
const IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
// DefArgToks is used when the parsing of default arguments needs
// to be delayed.
std::unique_ptr<CachedTokens> DefArgToks;
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
ParmDeclarator.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
// Otherwise, we have something. Add it and let semantic analysis try
// to grok it and add the result to the ParamInfo we are building.
// Last chance to recover from a misplaced ellipsis in an attempted
// parameter pack declaration.
if (Tok.is(tok::ellipsis) &&
(NextToken().isNot(tok::r_paren) ||
(!ParmDeclarator.getEllipsisLoc().isValid() &&
!Actions.isUnexpandedParameterPackPermitted())) &&
Actions.containsUnexpandedParameterPacks(ParmDeclarator))
DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
// Now we are at the point where declarator parsing is finished.
//
// Try to catch keywords in place of the identifier in a declarator, and
// in particular the common case where:
// 1 identifier comes at the end of the declarator
// 2 if the identifier is dropped, the declarator is valid but anonymous
// (no identifier)
// 3 declarator parsing succeeds, and then we have a trailing keyword,
// which is never valid in a param list (e.g. missing a ',')
// And we can't handle this in ParseDeclarator because in general keywords
// may be allowed to follow the declarator. (And in some cases there'd be
// better recovery like inserting punctuation). ParseDeclarator is just
// treating this as an anonymous parameter, and fortunately at this point
// we've already almost done that.
//
// We care about case 1) where the declarator type should be known, and
// the identifier should be null.
if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName() &&
Tok.isNot(tok::raw_identifier) && !Tok.isAnnotation() &&
Tok.getIdentifierInfo() &&
Tok.getIdentifierInfo()->isKeyword(getLangOpts())) {
Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok);
// Consume the keyword.
ConsumeToken();
}
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
Decl *Param =
Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator, ThisLoc);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
// C.
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = Tok.getLocation();
// Parse the default argument
if (DeclaratorCtx == DeclaratorContext::Member) {
// If we're inside a class definition, cache the tokens
// corresponding to the default argument. We'll actually parse
// them when we see the end of the class definition.
DefArgToks.reset(new CachedTokens);
SourceLocation ArgStartLoc = NextToken().getLocation();
ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument);
Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
ArgStartLoc);
} else {
// Consume the '='.
ConsumeToken();
// The argument isn't actually potentially evaluated unless it is
// used.
EnterExpressionEvaluationContext Eval(
Actions,
Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
Param);
ExprResult DefArgResult;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
DefArgResult = ParseBraceInitializer();
} else {
if (Tok.is(tok::l_paren) && NextToken().is(tok::l_brace)) {
Diag(Tok, diag::err_stmt_expr_in_default_arg) << 0;
Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
/*DefaultArg=*/nullptr);
// Skip the statement expression and continue parsing
SkipUntil(tok::comma, StopBeforeMatch);
continue;
}
DefArgResult = ParseAssignmentExpression();
}
DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
if (DefArgResult.isInvalid()) {
Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
/*DefaultArg=*/nullptr);
SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
} else {
// Inform the actions module about the default argument
Actions.ActOnParamDefaultArgument(Param, EqualLoc,
DefArgResult.get());
}
}
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDeclarator.getIdentifierLoc(),
Param, std::move(DefArgToks)));
}
if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
if (!getLangOpts().CPlusPlus) {
// We have ellipsis without a preceding ',', which is ill-formed
// in C. Complain and provide the fix.
Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
<< FixItHint::CreateInsertion(EllipsisLoc, ", ");
} else if (ParmDeclarator.getEllipsisLoc().isValid() ||
Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
// It looks like this was supposed to be a parameter pack. Warn and
// point out where the ellipsis should have gone.
SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
<< ParmEllipsis.isValid() << ParmEllipsis;
if (ParmEllipsis.isValid()) {
Diag(ParmEllipsis,
diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
} else {
Diag(ParmDeclarator.getIdentifierLoc(),
diag::note_misplaced_ellipsis_vararg_add_ellipsis)
<< FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
"...")
<< !ParmDeclarator.hasName();
}
Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
<< FixItHint::CreateInsertion(EllipsisLoc, ", ");
}
// We can't have any more parameters after an ellipsis.
break;
}
// If the next token is a comma, consume it and keep reading arguments.
} while (TryConsumeToken(tok::comma));
}
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// [C++11] direct-declarator '[' constant-expression[opt] ']'
/// attribute-specifier-seq[opt]
void Parser::ParseBracketDeclarator(Declarator &D) {
if (CheckProhibitedCXX11Attribute())
return;
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
// C array syntax has many features, but by-far the most common is [] and [4].
// This code does a fast path to handle some of the most obvious cases.
if (Tok.getKind() == tok::r_square) {
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
// Remember that we parsed the empty array type.
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
T.getOpenLocation(),
T.getCloseLocation()),
std::move(attrs), T.getCloseLocation());
return;
} else if (Tok.getKind() == tok::numeric_constant &&
GetLookAheadToken(1).is(tok::r_square)) {
// [4] is very common. Parse the numeric constant expression.
ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
ConsumeToken();
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
T.getOpenLocation(),
T.getCloseLocation()),
std::move(attrs), T.getCloseLocation());
return;
} else if (Tok.getKind() == tok::code_completion) {
cutOffParsing();
Actions.CodeCompleteBracketDeclarator(getCurScope());
return;
}
// If valid, this location is the position where we read the 'static' keyword.
SourceLocation StaticLoc;
TryConsumeToken(tok::kw_static, StaticLoc);
// If there is a type-qualifier-list, read it now.
// Type qualifiers in an array subscript are a C99 feature.
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
// If we haven't already read 'static', check to see if there is one after the
// type-qualifier-list.
if (!StaticLoc.isValid())
TryConsumeToken(tok::kw_static, StaticLoc);
// Handle "direct-declarator [ type-qual-list[opt] * ]".
bool isStar = false;
ExprResult NumElements;
// Handle the case where we have '[*]' as the array size. However, a leading
// star could be the start of an expression, for example 'X[*p + 4]'. Verify
// the token after the star is a ']'. Since stars in arrays are
// infrequent, use of lookahead is not costly here.
if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
ConsumeToken(); // Eat the '*'.
if (StaticLoc.isValid()) {
Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
}
isStar = true;
} else if (Tok.isNot(tok::r_square)) {
// Note, in C89, this production uses the constant-expr production instead
// of assignment-expr. The only difference is that assignment-expr allows
// things like '=' and '*='. Sema rejects these in C89 mode because they
// are not i-c-e's, so we don't need to distinguish between the two here.
// Parse the constant-expression or assignment-expression now (depending
// on dialect).
if (getLangOpts().CPlusPlus) {
NumElements = ParseArrayBoundExpression();
} else {
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
NumElements =
Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
}
} else {
if (StaticLoc.isValid()) {
Diag(StaticLoc, diag::err_unspecified_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
}
}
// If there was an error parsing the assignment-expression, recover.
if (NumElements.isInvalid()) {
D.setInvalidType(true);
// If the expression was invalid, skip it.
SkipUntil(tok::r_square, StopAtSemi);
return;
}
T.consumeClose();
MaybeParseCXX11Attributes(DS.getAttributes());
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(
DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
isStar, NumElements.get(), T.getOpenLocation(),
T.getCloseLocation()),
std::move(DS.getAttributes()), T.getCloseLocation());
}
/// Diagnose brackets before an identifier.
void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
assert(Tok.is(tok::l_square) && "Missing opening bracket");
assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
SourceLocation StartBracketLoc = Tok.getLocation();
Declarator TempDeclarator(D.getDeclSpec(), ParsedAttributesView::none(),
D.getContext());
while (Tok.is(tok::l_square)) {
ParseBracketDeclarator(TempDeclarator);
}
// Stuff the location of the start of the brackets into the Declarator.
// The diagnostics from ParseDirectDeclarator will make more sense if
// they use this location instead.
if (Tok.is(tok::semi))
D.getName().EndLocation = StartBracketLoc;
SourceLocation SuggestParenLoc = Tok.getLocation();
// Now that the brackets are removed, try parsing the declarator again.
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
// Something went wrong parsing the brackets, in which case,
// ParseBracketDeclarator has emitted an error, and we don't need to emit
// one here.
if (TempDeclarator.getNumTypeObjects() == 0)
return;
// Determine if parens will need to be suggested in the diagnostic.
bool NeedParens = false;
if (D.getNumTypeObjects() != 0) {
switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
NeedParens = true;
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Paren:
break;
}
}
if (NeedParens) {
// Create a DeclaratorChunk for the inserted parens.
SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
SourceLocation());
}
// Adding back the bracket info to the end of the Declarator.
for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
D.AddTypeInfo(Chunk, TempDeclarator.getAttributePool(), SourceLocation());
}
// The missing identifier would have been diagnosed in ParseDirectDeclarator.
// If parentheses are required, always suggest them.
if (!D.getIdentifier() && !NeedParens)
return;
SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
// Generate the move bracket error message.
SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
if (NeedParens) {
Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
<< getLangOpts().CPlusPlus
<< FixItHint::CreateInsertion(SuggestParenLoc, "(")
<< FixItHint::CreateInsertion(EndLoc, ")")
<< FixItHint::CreateInsertionFromRange(
EndLoc, CharSourceRange(BracketRange, true))
<< FixItHint::CreateRemoval(BracketRange);
} else {
Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
<< getLangOpts().CPlusPlus
<< FixItHint::CreateInsertionFromRange(
EndLoc, CharSourceRange(BracketRange, true))
<< FixItHint::CreateRemoval(BracketRange);
}
}
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
/// [GNU/C++] typeof unary-expression
/// [C23] typeof-specifier:
/// typeof '(' typeof-specifier-argument ')'
/// typeof_unqual '(' typeof-specifier-argument ')'
///
/// typeof-specifier-argument:
/// expression
/// type-name
///
void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
assert(Tok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
"Not a typeof specifier");
bool IsUnqual = Tok.is(tok::kw_typeof_unqual);
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (getLangOpts().C23 && !II->getName().starts_with("__"))
Diag(Tok.getLocation(), diag::warn_c23_compat_keyword) << Tok.getName();
Token OpTok = Tok;
SourceLocation StartLoc = ConsumeToken();
bool HasParens = Tok.is(tok::l_paren);
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
bool isCastExpr;
ParsedType CastTy;
SourceRange CastRange;
ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
if (HasParens)
DS.setTypeArgumentRange(CastRange);
if (CastRange.getEnd().isInvalid())
// FIXME: Not accurate, the range gets one token more than it should.
DS.SetRangeEnd(Tok.getLocation());
else
DS.SetRangeEnd(CastRange.getEnd());
if (isCastExpr) {
if (!CastTy) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = nullptr;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualType
: DeclSpec::TST_typeofType,
StartLoc, PrevSpec,
DiagID, CastTy,
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
// If we get here, the operand to the typeof was an expression.
if (Operand.isInvalid()) {
DS.SetTypeSpecError();
return;
}
// We might need to transform the operand if it is potentially evaluated.
Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
if (Operand.isInvalid()) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = nullptr;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualExpr
: DeclSpec::TST_typeofExpr,
StartLoc, PrevSpec,
DiagID, Operand.get(),
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// [C11] atomic-specifier:
/// _Atomic ( type-name )
///
void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
"Not an atomic specifier");
SourceLocation StartLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen())
return;
TypeResult Result = ParseTypeName();
if (Result.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Match the ')'
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return;
DS.setTypeArgumentRange(T.getRange());
DS.SetRangeEnd(T.getCloseLocation());
const char *PrevSpec = nullptr;
unsigned DiagID;
if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
DiagID, Result.get(),
Actions.getASTContext().getPrintingPolicy()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
/// from TryAltiVecVectorToken.
bool Parser::TryAltiVecVectorTokenOutOfLine() {
Token Next = NextToken();
switch (Next.getKind()) {
default: return false;
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw___bool:
case tok::kw___pixel:
Tok.setKind(tok::kw___vector);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
Tok.setKind(tok::kw___vector);
return true;
}
if (Next.getIdentifierInfo() == Ident_bool ||
Next.getIdentifierInfo() == Ident_Bool) {
Tok.setKind(tok::kw___vector);
return true;
}
return false;
}
}
bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid) {
const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
if (Tok.getIdentifierInfo() == Ident_vector) {
Token Next = NextToken();
switch (Next.getKind()) {
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw___bool:
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
return true;
}
if (Next.getIdentifierInfo() == Ident_bool ||
Next.getIdentifierInfo() == Ident_Bool) {
isInvalid =
DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
return true;
}
break;
default:
break;
}
} else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
DS.isTypeAltiVecVector()) {
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
return true;
} else if ((Tok.getIdentifierInfo() == Ident_bool) &&
DS.isTypeAltiVecVector()) {
isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
return true;
}
return false;
}
TypeResult Parser::ParseTypeFromString(StringRef TypeStr, StringRef Context,
SourceLocation IncludeLoc) {
// Consume (unexpanded) tokens up to the end-of-directive.
SmallVector<Token, 4> Tokens;
{
// Create a new buffer from which we will parse the type.
auto &SourceMgr = PP.getSourceManager();
FileID FID = SourceMgr.createFileID(
llvm::MemoryBuffer::getMemBufferCopy(TypeStr, Context), SrcMgr::C_User,
0, 0, IncludeLoc);
// Form a new lexer that references the buffer.
Lexer L(FID, SourceMgr.getBufferOrFake(FID), PP);
L.setParsingPreprocessorDirective(true);
// Lex the tokens from that buffer.
Token Tok;
do {
L.Lex(Tok);
Tokens.push_back(Tok);
} while (Tok.isNot(tok::eod));
}
// Replace the "eod" token with an "eof" token identifying the end of
// the provided string.
Token &EndToken = Tokens.back();
EndToken.startToken();
EndToken.setKind(tok::eof);
EndToken.setLocation(Tok.getLocation());
EndToken.setEofData(TypeStr.data());
// Add the current token back.
Tokens.push_back(Tok);
// Enter the tokens into the token stream.
PP.EnterTokenStream(Tokens, /*DisableMacroExpansion=*/false,
/*IsReinject=*/false);
// Consume the current token so that we'll start parsing the tokens we
// added to the stream.
ConsumeAnyToken();
// Enter a new scope.
ParseScope LocalScope(this, 0);
// Parse the type.
TypeResult Result = ParseTypeName(nullptr);
// Check if we parsed the whole thing.
if (Result.isUsable() &&
(Tok.isNot(tok::eof) || Tok.getEofData() != TypeStr.data())) {
Diag(Tok.getLocation(), diag::err_type_unparsed);
}
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the 'end of directive' token.
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
// Consume the end token.
if (Tok.is(tok::eof) && Tok.getEofData() == TypeStr.data())
ConsumeAnyToken();
return Result;
}
void Parser::DiagnoseBitIntUse(const Token &Tok) {
// If the token is for _ExtInt, diagnose it as being deprecated. Otherwise,
// the token is about _BitInt and gets (potentially) diagnosed as use of an
// extension.
assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
"expected either an _ExtInt or _BitInt token!");
SourceLocation Loc = Tok.getLocation();
if (Tok.is(tok::kw__ExtInt)) {
Diag(Loc, diag::warn_ext_int_deprecated)
<< FixItHint::CreateReplacement(Loc, "_BitInt");
} else {
// In C23 mode, diagnose that the use is not compatible with pre-C23 modes.
// Otherwise, diagnose that the use is a Clang extension.
if (getLangOpts().C23)
Diag(Loc, diag::warn_c23_compat_keyword) << Tok.getName();
else
Diag(Loc, diag::ext_bit_int) << getLangOpts().CPlusPlus;
}
}