blob: 0971daa1f36663f0bb17177e1b65f84dfddfc786 [file] [log] [blame]
//===- DependencyDirectivesScanner.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the interface for scanning header and source files to get the
/// minimum necessary preprocessor directives for evaluating includes. It
/// reduces the source down to #define, #include, #import, @import, and any
/// conditional preprocessor logic that contains one of those.
///
//===----------------------------------------------------------------------===//
#include "clang/Lex/DependencyDirectivesScanner.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Pragma.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include <optional>
using namespace clang;
using namespace clang::dependency_directives_scan;
using namespace llvm;
namespace {
struct DirectiveWithTokens {
DirectiveKind Kind;
unsigned NumTokens;
DirectiveWithTokens(DirectiveKind Kind, unsigned NumTokens)
: Kind(Kind), NumTokens(NumTokens) {}
};
/// Does an efficient "scan" of the sources to detect the presence of
/// preprocessor (or module import) directives and collects the raw lexed tokens
/// for those directives so that the \p Lexer can "replay" them when the file is
/// included.
///
/// Note that the behavior of the raw lexer is affected by the language mode,
/// while at this point we want to do a scan and collect tokens once,
/// irrespective of the language mode that the file will get included in. To
/// compensate for that the \p Lexer, while "replaying", will adjust a token
/// where appropriate, when it could affect the preprocessor's state.
/// For example in a directive like
///
/// \code
/// #if __has_cpp_attribute(clang::fallthrough)
/// \endcode
///
/// The preprocessor needs to see '::' as 'tok::coloncolon' instead of 2
/// 'tok::colon'. The \p Lexer will adjust if it sees consecutive 'tok::colon'
/// while in C++ mode.
struct Scanner {
Scanner(StringRef Input,
SmallVectorImpl<dependency_directives_scan::Token> &Tokens,
DiagnosticsEngine *Diags, SourceLocation InputSourceLoc)
: Input(Input), Tokens(Tokens), Diags(Diags),
InputSourceLoc(InputSourceLoc), LangOpts(getLangOptsForDepScanning()),
TheLexer(InputSourceLoc, LangOpts, Input.begin(), Input.begin(),
Input.end()) {}
static LangOptions getLangOptsForDepScanning() {
LangOptions LangOpts;
// Set the lexer to use 'tok::at' for '@', instead of 'tok::unknown'.
LangOpts.ObjC = true;
LangOpts.LineComment = true;
// FIXME: we do not enable C11 or C++11, so we are missing u/u8/U"" and
// R"()" literals.
return LangOpts;
}
/// Lex the provided source and emit the directive tokens.
///
/// \returns True on error.
bool scan(SmallVectorImpl<Directive> &Directives);
private:
/// Lexes next token and advances \p First and the \p Lexer.
[[nodiscard]] dependency_directives_scan::Token &
lexToken(const char *&First, const char *const End);
dependency_directives_scan::Token &lexIncludeFilename(const char *&First,
const char *const End);
void skipLine(const char *&First, const char *const End);
void skipDirective(StringRef Name, const char *&First, const char *const End);
/// Returns the spelling of a string literal or identifier after performing
/// any processing needed to handle \c clang::Token::NeedsCleaning.
StringRef cleanStringIfNeeded(const dependency_directives_scan::Token &Tok);
/// Lexes next token and if it is identifier returns its string, otherwise
/// it skips the current line and returns \p std::nullopt.
///
/// In any case (whatever the token kind) \p First and the \p Lexer will
/// advance beyond the token.
[[nodiscard]] std::optional<StringRef>
tryLexIdentifierOrSkipLine(const char *&First, const char *const End);
/// Used when it is certain that next token is an identifier.
[[nodiscard]] StringRef lexIdentifier(const char *&First,
const char *const End);
/// Lexes next token and returns true iff it is an identifier that matches \p
/// Id, otherwise it skips the current line and returns false.
///
/// In any case (whatever the token kind) \p First and the \p Lexer will
/// advance beyond the token.
[[nodiscard]] bool isNextIdentifierOrSkipLine(StringRef Id,
const char *&First,
const char *const End);
/// Lexes next token and returns true iff it matches the kind \p K.
/// Otherwise it skips the current line and returns false.
///
/// In any case (whatever the token kind) \p First and the \p Lexer will
/// advance beyond the token.
[[nodiscard]] bool isNextTokenOrSkipLine(tok::TokenKind K, const char *&First,
const char *const End);
/// Lexes next token and if it is string literal, returns its string.
/// Otherwise, it skips the current line and returns \p std::nullopt.
///
/// In any case (whatever the token kind) \p First and the \p Lexer will
/// advance beyond the token.
[[nodiscard]] std::optional<StringRef>
tryLexStringLiteralOrSkipLine(const char *&First, const char *const End);
[[nodiscard]] bool scanImpl(const char *First, const char *const End);
[[nodiscard]] bool lexPPLine(const char *&First, const char *const End);
[[nodiscard]] bool lexAt(const char *&First, const char *const End);
[[nodiscard]] bool lexModule(const char *&First, const char *const End);
[[nodiscard]] bool lexDefine(const char *HashLoc, const char *&First,
const char *const End);
[[nodiscard]] bool lexPragma(const char *&First, const char *const End);
[[nodiscard]] bool lex_Pragma(const char *&First, const char *const End);
[[nodiscard]] bool lexEndif(const char *&First, const char *const End);
[[nodiscard]] bool lexDefault(DirectiveKind Kind, const char *&First,
const char *const End);
[[nodiscard]] bool lexModuleDirectiveBody(DirectiveKind Kind,
const char *&First,
const char *const End);
void lexPPDirectiveBody(const char *&First, const char *const End);
DirectiveWithTokens &pushDirective(DirectiveKind Kind) {
Tokens.append(CurDirToks);
DirsWithToks.emplace_back(Kind, CurDirToks.size());
CurDirToks.clear();
return DirsWithToks.back();
}
void popDirective() {
Tokens.pop_back_n(DirsWithToks.pop_back_val().NumTokens);
}
DirectiveKind topDirective() const {
return DirsWithToks.empty() ? pp_none : DirsWithToks.back().Kind;
}
unsigned getOffsetAt(const char *CurPtr) const {
return CurPtr - Input.data();
}
/// Reports a diagnostic if the diagnostic engine is provided. Always returns
/// true at the end.
bool reportError(const char *CurPtr, unsigned Err);
StringMap<char> SplitIds;
StringRef Input;
SmallVectorImpl<dependency_directives_scan::Token> &Tokens;
DiagnosticsEngine *Diags;
SourceLocation InputSourceLoc;
const char *LastTokenPtr = nullptr;
/// Keeps track of the tokens for the currently lexed directive. Once a
/// directive is fully lexed and "committed" then the tokens get appended to
/// \p Tokens and \p CurDirToks is cleared for the next directive.
SmallVector<dependency_directives_scan::Token, 32> CurDirToks;
/// The directives that were lexed along with the number of tokens that each
/// directive contains. The tokens of all the directives are kept in \p Tokens
/// vector, in the same order as the directives order in \p DirsWithToks.
SmallVector<DirectiveWithTokens, 64> DirsWithToks;
LangOptions LangOpts;
Lexer TheLexer;
};
} // end anonymous namespace
bool Scanner::reportError(const char *CurPtr, unsigned Err) {
if (!Diags)
return true;
assert(CurPtr >= Input.data() && "invalid buffer ptr");
Diags->Report(InputSourceLoc.getLocWithOffset(getOffsetAt(CurPtr)), Err);
return true;
}
static void skipOverSpaces(const char *&First, const char *const End) {
while (First != End && isHorizontalWhitespace(*First))
++First;
}
[[nodiscard]] static bool isRawStringLiteral(const char *First,
const char *Current) {
assert(First <= Current);
// Check if we can even back up.
if (*Current != '"' || First == Current)
return false;
// Check for an "R".
--Current;
if (*Current != 'R')
return false;
if (First == Current || !isAsciiIdentifierContinue(*--Current))
return true;
// Check for a prefix of "u", "U", or "L".
if (*Current == 'u' || *Current == 'U' || *Current == 'L')
return First == Current || !isAsciiIdentifierContinue(*--Current);
// Check for a prefix of "u8".
if (*Current != '8' || First == Current || *Current-- != 'u')
return false;
return First == Current || !isAsciiIdentifierContinue(*--Current);
}
static void skipRawString(const char *&First, const char *const End) {
assert(First[0] == '"');
assert(First[-1] == 'R');
const char *Last = ++First;
while (Last != End && *Last != '(')
++Last;
if (Last == End) {
First = Last; // Hit the end... just give up.
return;
}
StringRef Terminator(First, Last - First);
for (;;) {
// Move First to just past the next ")".
First = Last;
while (First != End && *First != ')')
++First;
if (First == End)
return;
++First;
// Look ahead for the terminator sequence.
Last = First;
while (Last != End && size_t(Last - First) < Terminator.size() &&
Terminator[Last - First] == *Last)
++Last;
// Check if we hit it (or the end of the file).
if (Last == End) {
First = Last;
return;
}
if (size_t(Last - First) < Terminator.size())
continue;
if (*Last != '"')
continue;
First = Last + 1;
return;
}
}
// Returns the length of EOL, either 0 (no end-of-line), 1 (\n) or 2 (\r\n)
static unsigned isEOL(const char *First, const char *const End) {
if (First == End)
return 0;
if (End - First > 1 && isVerticalWhitespace(First[0]) &&
isVerticalWhitespace(First[1]) && First[0] != First[1])
return 2;
return !!isVerticalWhitespace(First[0]);
}
static void skipString(const char *&First, const char *const End) {
assert(*First == '\'' || *First == '"' || *First == '<');
const char Terminator = *First == '<' ? '>' : *First;
for (++First; First != End && *First != Terminator; ++First) {
// String and character literals don't extend past the end of the line.
if (isVerticalWhitespace(*First))
return;
if (*First != '\\')
continue;
// Skip past backslash to the next character. This ensures that the
// character right after it is skipped as well, which matters if it's
// the terminator.
if (++First == End)
return;
if (!isWhitespace(*First))
continue;
// Whitespace after the backslash might indicate a line continuation.
const char *FirstAfterBackslashPastSpace = First;
skipOverSpaces(FirstAfterBackslashPastSpace, End);
if (unsigned NLSize = isEOL(FirstAfterBackslashPastSpace, End)) {
// Advance the character pointer to the next line for the next
// iteration.
First = FirstAfterBackslashPastSpace + NLSize - 1;
}
}
if (First != End)
++First; // Finish off the string.
}
// Returns the length of the skipped newline
static unsigned skipNewline(const char *&First, const char *End) {
if (First == End)
return 0;
assert(isVerticalWhitespace(*First));
unsigned Len = isEOL(First, End);
assert(Len && "expected newline");
First += Len;
return Len;
}
static bool wasLineContinuation(const char *First, unsigned EOLLen) {
return *(First - (int)EOLLen - 1) == '\\';
}
static void skipToNewlineRaw(const char *&First, const char *const End) {
for (;;) {
if (First == End)
return;
unsigned Len = isEOL(First, End);
if (Len)
return;
do {
if (++First == End)
return;
Len = isEOL(First, End);
} while (!Len);
if (First[-1] != '\\')
return;
First += Len;
// Keep skipping lines...
}
}
static void skipLineComment(const char *&First, const char *const End) {
assert(First[0] == '/' && First[1] == '/');
First += 2;
skipToNewlineRaw(First, End);
}
static void skipBlockComment(const char *&First, const char *const End) {
assert(First[0] == '/' && First[1] == '*');
if (End - First < 4) {
First = End;
return;
}
for (First += 3; First != End; ++First)
if (First[-1] == '*' && First[0] == '/') {
++First;
return;
}
}
/// \returns True if the current single quotation mark character is a C++14
/// digit separator.
static bool isQuoteCppDigitSeparator(const char *const Start,
const char *const Cur,
const char *const End) {
assert(*Cur == '\'' && "expected quotation character");
// skipLine called in places where we don't expect a valid number
// body before `start` on the same line, so always return false at the start.
if (Start == Cur)
return false;
// The previous character must be a valid PP number character.
// Make sure that the L, u, U, u8 prefixes don't get marked as a
// separator though.
char Prev = *(Cur - 1);
if (Prev == 'L' || Prev == 'U' || Prev == 'u')
return false;
if (Prev == '8' && (Cur - 1 != Start) && *(Cur - 2) == 'u')
return false;
if (!isPreprocessingNumberBody(Prev))
return false;
// The next character should be a valid identifier body character.
return (Cur + 1) < End && isAsciiIdentifierContinue(*(Cur + 1));
}
void Scanner::skipLine(const char *&First, const char *const End) {
for (;;) {
assert(First <= End);
if (First == End)
return;
if (isVerticalWhitespace(*First)) {
skipNewline(First, End);
return;
}
const char *Start = First;
while (First != End && !isVerticalWhitespace(*First)) {
// Iterate over strings correctly to avoid comments and newlines.
if (*First == '"' ||
(*First == '\'' && !isQuoteCppDigitSeparator(Start, First, End))) {
LastTokenPtr = First;
if (isRawStringLiteral(Start, First))
skipRawString(First, End);
else
skipString(First, End);
continue;
}
// Iterate over comments correctly.
if (*First != '/' || End - First < 2) {
LastTokenPtr = First;
++First;
continue;
}
if (First[1] == '/') {
// "//...".
skipLineComment(First, End);
continue;
}
if (First[1] != '*') {
LastTokenPtr = First;
++First;
continue;
}
// "/*...*/".
skipBlockComment(First, End);
}
if (First == End)
return;
// Skip over the newline.
unsigned Len = skipNewline(First, End);
if (!wasLineContinuation(First, Len)) // Continue past line-continuations.
break;
}
}
void Scanner::skipDirective(StringRef Name, const char *&First,
const char *const End) {
if (llvm::StringSwitch<bool>(Name)
.Case("warning", true)
.Case("error", true)
.Default(false))
// Do not process quotes or comments.
skipToNewlineRaw(First, End);
else
skipLine(First, End);
}
static void skipWhitespace(const char *&First, const char *const End) {
for (;;) {
assert(First <= End);
skipOverSpaces(First, End);
if (End - First < 2)
return;
if (First[0] == '\\' && isVerticalWhitespace(First[1])) {
skipNewline(++First, End);
continue;
}
// Check for a non-comment character.
if (First[0] != '/')
return;
// "// ...".
if (First[1] == '/') {
skipLineComment(First, End);
return;
}
// Cannot be a comment.
if (First[1] != '*')
return;
// "/*...*/".
skipBlockComment(First, End);
}
}
bool Scanner::lexModuleDirectiveBody(DirectiveKind Kind, const char *&First,
const char *const End) {
const char *DirectiveLoc = Input.data() + CurDirToks.front().Offset;
for (;;) {
const dependency_directives_scan::Token &Tok = lexToken(First, End);
if (Tok.is(tok::eof))
return reportError(
DirectiveLoc,
diag::err_dep_source_scanner_missing_semi_after_at_import);
if (Tok.is(tok::semi))
break;
}
pushDirective(Kind);
skipWhitespace(First, End);
if (First == End)
return false;
if (!isVerticalWhitespace(*First))
return reportError(
DirectiveLoc, diag::err_dep_source_scanner_unexpected_tokens_at_import);
skipNewline(First, End);
return false;
}
dependency_directives_scan::Token &Scanner::lexToken(const char *&First,
const char *const End) {
clang::Token Tok;
TheLexer.LexFromRawLexer(Tok);
First = Input.data() + TheLexer.getCurrentBufferOffset();
assert(First <= End);
unsigned Offset = TheLexer.getCurrentBufferOffset() - Tok.getLength();
CurDirToks.emplace_back(Offset, Tok.getLength(), Tok.getKind(),
Tok.getFlags());
return CurDirToks.back();
}
dependency_directives_scan::Token &
Scanner::lexIncludeFilename(const char *&First, const char *const End) {
clang::Token Tok;
TheLexer.LexIncludeFilename(Tok);
First = Input.data() + TheLexer.getCurrentBufferOffset();
assert(First <= End);
unsigned Offset = TheLexer.getCurrentBufferOffset() - Tok.getLength();
CurDirToks.emplace_back(Offset, Tok.getLength(), Tok.getKind(),
Tok.getFlags());
return CurDirToks.back();
}
void Scanner::lexPPDirectiveBody(const char *&First, const char *const End) {
while (true) {
const dependency_directives_scan::Token &Tok = lexToken(First, End);
if (Tok.is(tok::eod))
break;
}
}
StringRef
Scanner::cleanStringIfNeeded(const dependency_directives_scan::Token &Tok) {
bool NeedsCleaning = Tok.Flags & clang::Token::NeedsCleaning;
if (LLVM_LIKELY(!NeedsCleaning))
return Input.slice(Tok.Offset, Tok.getEnd());
SmallString<64> Spelling;
Spelling.resize(Tok.Length);
// FIXME: C++11 raw string literals need special handling (see getSpellingSlow
// in the Lexer). Currently we cannot see them due to our LangOpts.
unsigned SpellingLength = 0;
const char *BufPtr = Input.begin() + Tok.Offset;
const char *AfterIdent = Input.begin() + Tok.getEnd();
while (BufPtr < AfterIdent) {
auto [Char, Size] = Lexer::getCharAndSizeNoWarn(BufPtr, LangOpts);
Spelling[SpellingLength++] = Char;
BufPtr += Size;
}
return SplitIds.try_emplace(StringRef(Spelling.begin(), SpellingLength), 0)
.first->first();
}
std::optional<StringRef>
Scanner::tryLexIdentifierOrSkipLine(const char *&First, const char *const End) {
const dependency_directives_scan::Token &Tok = lexToken(First, End);
if (Tok.isNot(tok::raw_identifier)) {
if (!Tok.is(tok::eod))
skipLine(First, End);
return std::nullopt;
}
return cleanStringIfNeeded(Tok);
}
StringRef Scanner::lexIdentifier(const char *&First, const char *const End) {
std::optional<StringRef> Id = tryLexIdentifierOrSkipLine(First, End);
assert(Id && "expected identifier token");
return *Id;
}
bool Scanner::isNextIdentifierOrSkipLine(StringRef Id, const char *&First,
const char *const End) {
if (std::optional<StringRef> FoundId =
tryLexIdentifierOrSkipLine(First, End)) {
if (*FoundId == Id)
return true;
skipLine(First, End);
}
return false;
}
bool Scanner::isNextTokenOrSkipLine(tok::TokenKind K, const char *&First,
const char *const End) {
const dependency_directives_scan::Token &Tok = lexToken(First, End);
if (Tok.is(K))
return true;
skipLine(First, End);
return false;
}
std::optional<StringRef>
Scanner::tryLexStringLiteralOrSkipLine(const char *&First,
const char *const End) {
const dependency_directives_scan::Token &Tok = lexToken(First, End);
if (!tok::isStringLiteral(Tok.Kind)) {
if (!Tok.is(tok::eod))
skipLine(First, End);
return std::nullopt;
}
return cleanStringIfNeeded(Tok);
}
bool Scanner::lexAt(const char *&First, const char *const End) {
// Handle "@import".
// Lex '@'.
const dependency_directives_scan::Token &AtTok = lexToken(First, End);
assert(AtTok.is(tok::at));
(void)AtTok;
if (!isNextIdentifierOrSkipLine("import", First, End))
return false;
return lexModuleDirectiveBody(decl_at_import, First, End);
}
bool Scanner::lexModule(const char *&First, const char *const End) {
StringRef Id = lexIdentifier(First, End);
bool Export = false;
if (Id == "export") {
Export = true;
std::optional<StringRef> NextId = tryLexIdentifierOrSkipLine(First, End);
if (!NextId)
return false;
Id = *NextId;
}
if (Id != "module" && Id != "import") {
skipLine(First, End);
return false;
}
skipWhitespace(First, End);
// Ignore this as a module directive if the next character can't be part of
// an import.
switch (*First) {
case ':':
case '<':
case '"':
break;
default:
if (!isAsciiIdentifierContinue(*First)) {
skipLine(First, End);
return false;
}
}
TheLexer.seek(getOffsetAt(First), /*IsAtStartOfLine*/ false);
DirectiveKind Kind;
if (Id == "module")
Kind = Export ? cxx_export_module_decl : cxx_module_decl;
else
Kind = Export ? cxx_export_import_decl : cxx_import_decl;
return lexModuleDirectiveBody(Kind, First, End);
}
bool Scanner::lex_Pragma(const char *&First, const char *const End) {
if (!isNextTokenOrSkipLine(tok::l_paren, First, End))
return false;
std::optional<StringRef> Str = tryLexStringLiteralOrSkipLine(First, End);
if (!Str || !isNextTokenOrSkipLine(tok::r_paren, First, End))
return false;
SmallString<64> Buffer(*Str);
prepare_PragmaString(Buffer);
// Use a new scanner instance since the tokens will be inside the allocated
// string. We should already have captured all the relevant tokens in the
// current scanner.
SmallVector<dependency_directives_scan::Token> DiscardTokens;
const char *Begin = Buffer.c_str();
Scanner PragmaScanner{StringRef(Begin, Buffer.size()), DiscardTokens, Diags,
InputSourceLoc};
PragmaScanner.TheLexer.setParsingPreprocessorDirective(true);
if (PragmaScanner.lexPragma(Begin, Buffer.end()))
return true;
DirectiveKind K = PragmaScanner.topDirective();
if (K == pp_none) {
skipLine(First, End);
return false;
}
assert(Begin == Buffer.end());
pushDirective(K);
return false;
}
bool Scanner::lexPragma(const char *&First, const char *const End) {
std::optional<StringRef> FoundId = tryLexIdentifierOrSkipLine(First, End);
if (!FoundId)
return false;
StringRef Id = *FoundId;
auto Kind = llvm::StringSwitch<DirectiveKind>(Id)
.Case("once", pp_pragma_once)
.Case("push_macro", pp_pragma_push_macro)
.Case("pop_macro", pp_pragma_pop_macro)
.Case("include_alias", pp_pragma_include_alias)
.Default(pp_none);
if (Kind != pp_none) {
lexPPDirectiveBody(First, End);
pushDirective(Kind);
return false;
}
if (Id != "clang") {
skipLine(First, End);
return false;
}
FoundId = tryLexIdentifierOrSkipLine(First, End);
if (!FoundId)
return false;
Id = *FoundId;
// #pragma clang system_header
if (Id == "system_header") {
lexPPDirectiveBody(First, End);
pushDirective(pp_pragma_system_header);
return false;
}
if (Id != "module") {
skipLine(First, End);
return false;
}
// #pragma clang module.
if (!isNextIdentifierOrSkipLine("import", First, End))
return false;
// #pragma clang module import.
lexPPDirectiveBody(First, End);
pushDirective(pp_pragma_import);
return false;
}
bool Scanner::lexEndif(const char *&First, const char *const End) {
// Strip out "#else" if it's empty.
if (topDirective() == pp_else)
popDirective();
// If "#ifdef" is empty, strip it and skip the "#endif".
//
// FIXME: Once/if Clang starts disallowing __has_include in macro expansions,
// we can skip empty `#if` and `#elif` blocks as well after scanning for a
// literal __has_include in the condition. Even without that rule we could
// drop the tokens if we scan for identifiers in the condition and find none.
if (topDirective() == pp_ifdef || topDirective() == pp_ifndef) {
popDirective();
skipLine(First, End);
return false;
}
return lexDefault(pp_endif, First, End);
}
bool Scanner::lexDefault(DirectiveKind Kind, const char *&First,
const char *const End) {
lexPPDirectiveBody(First, End);
pushDirective(Kind);
return false;
}
static bool isStartOfRelevantLine(char First) {
switch (First) {
case '#':
case '@':
case 'i':
case 'e':
case 'm':
case '_':
return true;
}
return false;
}
bool Scanner::lexPPLine(const char *&First, const char *const End) {
assert(First != End);
skipWhitespace(First, End);
assert(First <= End);
if (First == End)
return false;
if (!isStartOfRelevantLine(*First)) {
skipLine(First, End);
assert(First <= End);
return false;
}
LastTokenPtr = First;
TheLexer.seek(getOffsetAt(First), /*IsAtStartOfLine*/ true);
auto ScEx1 = make_scope_exit([&]() {
/// Clear Scanner's CurDirToks before returning, in case we didn't push a
/// new directive.
CurDirToks.clear();
});
// Handle "@import".
if (*First == '@')
return lexAt(First, End);
if (*First == 'i' || *First == 'e' || *First == 'm')
return lexModule(First, End);
if (*First == '_') {
if (isNextIdentifierOrSkipLine("_Pragma", First, End))
return lex_Pragma(First, End);
return false;
}
// Handle preprocessing directives.
TheLexer.setParsingPreprocessorDirective(true);
auto ScEx2 = make_scope_exit(
[&]() { TheLexer.setParsingPreprocessorDirective(false); });
// Lex '#'.
const dependency_directives_scan::Token &HashTok = lexToken(First, End);
if (HashTok.is(tok::hashhash)) {
// A \p tok::hashhash at this location is passed by the preprocessor to the
// parser to interpret, like any other token. So for dependency scanning
// skip it like a normal token not affecting the preprocessor.
skipLine(First, End);
assert(First <= End);
return false;
}
assert(HashTok.is(tok::hash));
(void)HashTok;
std::optional<StringRef> FoundId = tryLexIdentifierOrSkipLine(First, End);
if (!FoundId)
return false;
StringRef Id = *FoundId;
if (Id == "pragma")
return lexPragma(First, End);
auto Kind = llvm::StringSwitch<DirectiveKind>(Id)
.Case("include", pp_include)
.Case("__include_macros", pp___include_macros)
.Case("define", pp_define)
.Case("undef", pp_undef)
.Case("import", pp_import)
.Case("include_next", pp_include_next)
.Case("if", pp_if)
.Case("ifdef", pp_ifdef)
.Case("ifndef", pp_ifndef)
.Case("elif", pp_elif)
.Case("elifdef", pp_elifdef)
.Case("elifndef", pp_elifndef)
.Case("else", pp_else)
.Case("endif", pp_endif)
.Default(pp_none);
if (Kind == pp_none) {
skipDirective(Id, First, End);
return false;
}
if (Kind == pp_endif)
return lexEndif(First, End);
switch (Kind) {
case pp_include:
case pp___include_macros:
case pp_include_next:
case pp_import:
lexIncludeFilename(First, End);
break;
default:
break;
}
// Everything else.
return lexDefault(Kind, First, End);
}
static void skipUTF8ByteOrderMark(const char *&First, const char *const End) {
if ((End - First) >= 3 && First[0] == '\xef' && First[1] == '\xbb' &&
First[2] == '\xbf')
First += 3;
}
bool Scanner::scanImpl(const char *First, const char *const End) {
skipUTF8ByteOrderMark(First, End);
while (First != End)
if (lexPPLine(First, End))
return true;
return false;
}
bool Scanner::scan(SmallVectorImpl<Directive> &Directives) {
bool Error = scanImpl(Input.begin(), Input.end());
if (!Error) {
// Add an EOF on success.
if (LastTokenPtr &&
(Tokens.empty() || LastTokenPtr > Input.begin() + Tokens.back().Offset))
pushDirective(tokens_present_before_eof);
pushDirective(pp_eof);
}
ArrayRef<dependency_directives_scan::Token> RemainingTokens = Tokens;
for (const DirectiveWithTokens &DirWithToks : DirsWithToks) {
assert(RemainingTokens.size() >= DirWithToks.NumTokens);
Directives.emplace_back(DirWithToks.Kind,
RemainingTokens.take_front(DirWithToks.NumTokens));
RemainingTokens = RemainingTokens.drop_front(DirWithToks.NumTokens);
}
assert(RemainingTokens.empty());
return Error;
}
bool clang::scanSourceForDependencyDirectives(
StringRef Input, SmallVectorImpl<dependency_directives_scan::Token> &Tokens,
SmallVectorImpl<Directive> &Directives, DiagnosticsEngine *Diags,
SourceLocation InputSourceLoc) {
return Scanner(Input, Tokens, Diags, InputSourceLoc).scan(Directives);
}
void clang::printDependencyDirectivesAsSource(
StringRef Source,
ArrayRef<dependency_directives_scan::Directive> Directives,
llvm::raw_ostream &OS) {
// Add a space separator where it is convenient for testing purposes.
auto needsSpaceSeparator =
[](tok::TokenKind Prev,
const dependency_directives_scan::Token &Tok) -> bool {
if (Prev == Tok.Kind)
return !Tok.isOneOf(tok::l_paren, tok::r_paren, tok::l_square,
tok::r_square);
if (Prev == tok::raw_identifier &&
Tok.isOneOf(tok::hash, tok::numeric_constant, tok::string_literal,
tok::char_constant, tok::header_name))
return true;
if (Prev == tok::r_paren &&
Tok.isOneOf(tok::raw_identifier, tok::hash, tok::string_literal,
tok::char_constant, tok::unknown))
return true;
if (Prev == tok::comma &&
Tok.isOneOf(tok::l_paren, tok::string_literal, tok::less))
return true;
return false;
};
for (const dependency_directives_scan::Directive &Directive : Directives) {
if (Directive.Kind == tokens_present_before_eof)
OS << "<TokBeforeEOF>";
std::optional<tok::TokenKind> PrevTokenKind;
for (const dependency_directives_scan::Token &Tok : Directive.Tokens) {
if (PrevTokenKind && needsSpaceSeparator(*PrevTokenKind, Tok))
OS << ' ';
PrevTokenKind = Tok.Kind;
OS << Source.slice(Tok.Offset, Tok.getEnd());
}
}
}