| //===--- InterpreterValuePrinter.cpp - Value printing utils -----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements routines for in-process value printing in clang-repl. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "IncrementalAction.h" |
| #include "InterpreterUtils.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/PrettyPrinter.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Frontend/CompilerInstance.h" |
| #include "clang/Interpreter/Interpreter.h" |
| #include "clang/Interpreter/Value.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Sema.h" |
| |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include <cassert> |
| #include <cmath> |
| #include <cstdarg> |
| #include <sstream> |
| #include <string> |
| |
| #define DEBUG_TYPE "interp-value" |
| |
| using namespace clang; |
| |
| static std::string DeclTypeToString(const QualType &QT, NamedDecl *D) { |
| std::string Str; |
| llvm::raw_string_ostream SS(Str); |
| if (QT.hasQualifiers()) |
| SS << QT.getQualifiers().getAsString() << " "; |
| SS << D->getQualifiedNameAsString(); |
| return Str; |
| } |
| |
| static std::string QualTypeToString(ASTContext &Ctx, QualType QT) { |
| PrintingPolicy Policy(Ctx.getPrintingPolicy()); |
| // Print the Allocator in STL containers, for instance. |
| Policy.SuppressDefaultTemplateArgs = false; |
| Policy.SuppressUnwrittenScope = true; |
| // Print 'a<b<c> >' rather than 'a<b<c>>'. |
| Policy.SplitTemplateClosers = true; |
| |
| struct LocalPrintingPolicyRAII { |
| ASTContext &Context; |
| PrintingPolicy Policy; |
| |
| LocalPrintingPolicyRAII(ASTContext &Ctx, PrintingPolicy &PP) |
| : Context(Ctx), Policy(Ctx.getPrintingPolicy()) { |
| Context.setPrintingPolicy(PP); |
| } |
| ~LocalPrintingPolicyRAII() { Context.setPrintingPolicy(Policy); } |
| } X(Ctx, Policy); |
| |
| const QualType NonRefTy = QT.getNonReferenceType(); |
| |
| if (const auto *TTy = llvm::dyn_cast<TagType>(NonRefTy)) |
| return DeclTypeToString(NonRefTy, TTy->getOriginalDecl()); |
| |
| if (const auto *TRy = dyn_cast<RecordType>(NonRefTy)) |
| return DeclTypeToString(NonRefTy, TRy->getOriginalDecl()); |
| |
| const QualType Canon = NonRefTy.getCanonicalType(); |
| |
| // FIXME: How a builtin type can be a function pointer type? |
| if (Canon->isBuiltinType() && !NonRefTy->isFunctionPointerType() && |
| !NonRefTy->isMemberPointerType()) |
| return Canon.getAsString(Ctx.getPrintingPolicy()); |
| |
| if (const auto *TDTy = dyn_cast<TypedefType>(NonRefTy)) { |
| // FIXME: TemplateSpecializationType & SubstTemplateTypeParmType checks |
| // are predominately to get STL containers to print nicer and might be |
| // better handled in GetFullyQualifiedName. |
| // |
| // std::vector<Type>::iterator is a TemplateSpecializationType |
| // std::vector<Type>::value_type is a SubstTemplateTypeParmType |
| // |
| QualType SSDesugar = TDTy->getLocallyUnqualifiedSingleStepDesugaredType(); |
| if (llvm::isa<SubstTemplateTypeParmType>(SSDesugar)) |
| return GetFullTypeName(Ctx, Canon); |
| else if (llvm::isa<TemplateSpecializationType>(SSDesugar)) |
| return GetFullTypeName(Ctx, NonRefTy); |
| return DeclTypeToString(NonRefTy, TDTy->getDecl()); |
| } |
| return GetFullTypeName(Ctx, NonRefTy); |
| } |
| |
| static std::string EnumToString(const Value &V) { |
| std::string Str; |
| llvm::raw_string_ostream SS(Str); |
| ASTContext &Ctx = const_cast<ASTContext &>(V.getASTContext()); |
| |
| uint64_t Data = V.convertTo<uint64_t>(); |
| bool IsFirst = true; |
| llvm::APSInt AP = Ctx.MakeIntValue(Data, V.getType()); |
| |
| auto *ED = V.getType()->castAsEnumDecl(); |
| for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; ++I) { |
| if (I->getInitVal() == AP) { |
| if (!IsFirst) |
| SS << " ? "; |
| SS << "(" + I->getQualifiedNameAsString() << ")"; |
| IsFirst = false; |
| } |
| } |
| llvm::SmallString<64> APStr; |
| AP.toString(APStr, /*Radix=*/10); |
| SS << " : " << QualTypeToString(Ctx, ED->getIntegerType()) << " " << APStr; |
| return Str; |
| } |
| |
| static std::string FunctionToString(const Value &V, const void *Ptr) { |
| std::string Str; |
| llvm::raw_string_ostream SS(Str); |
| SS << "Function @" << Ptr; |
| |
| const DeclContext *PTU = V.getASTContext().getTranslationUnitDecl(); |
| // Find the last top-level-stmt-decl. This is a forward iterator but the |
| // partial translation unit should not be large. |
| const TopLevelStmtDecl *TLSD = nullptr; |
| for (const Decl *D : PTU->noload_decls()) |
| if (isa<TopLevelStmtDecl>(D)) |
| TLSD = cast<TopLevelStmtDecl>(D); |
| |
| // Get __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void |
| // *OpaqueType, void *Val); |
| const FunctionDecl *FD = nullptr; |
| if (auto *InterfaceCall = llvm::dyn_cast<CallExpr>(TLSD->getStmt())) { |
| const auto *Arg = InterfaceCall->getArg(/*Val*/ 3); |
| // Get rid of cast nodes. |
| while (const CastExpr *CastE = llvm::dyn_cast<CastExpr>(Arg)) |
| Arg = CastE->getSubExpr(); |
| if (const DeclRefExpr *DeclRefExp = llvm::dyn_cast<DeclRefExpr>(Arg)) |
| FD = llvm::dyn_cast<FunctionDecl>(DeclRefExp->getDecl()); |
| |
| if (FD) { |
| SS << '\n'; |
| const clang::FunctionDecl *FDef; |
| if (FD->hasBody(FDef)) |
| FDef->print(SS); |
| } |
| } |
| return Str; |
| } |
| |
| static std::string VoidPtrToString(const void *Ptr) { |
| std::string Str; |
| llvm::raw_string_ostream SS(Str); |
| SS << Ptr; |
| return Str; |
| } |
| |
| static std::string CharPtrToString(const char *Ptr) { |
| if (!Ptr) |
| return "0"; |
| |
| std::string Result = "\""; |
| Result += Ptr; |
| Result += '"'; |
| return Result; |
| } |
| |
| namespace clang { |
| |
| struct ValueRef : public Value { |
| ValueRef(const Interpreter *In, void *Ty) : Value(In, Ty) { |
| // Tell the base class to not try to deallocate if it manages the value. |
| IsManuallyAlloc = false; |
| } |
| }; |
| |
| std::string Interpreter::ValueDataToString(const Value &V) const { |
| Sema &S = getCompilerInstance()->getSema(); |
| ASTContext &Ctx = S.getASTContext(); |
| |
| QualType QT = V.getType(); |
| |
| if (const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(QT)) { |
| QualType ElemTy = CAT->getElementType(); |
| size_t ElemCount = Ctx.getConstantArrayElementCount(CAT); |
| const Type *BaseTy = CAT->getBaseElementTypeUnsafe(); |
| size_t ElemSize = Ctx.getTypeSizeInChars(BaseTy).getQuantity(); |
| |
| // Treat null terminated char arrays as strings basically. |
| if (ElemTy->isCharType()) { |
| char last = *(char *)(((uintptr_t)V.getPtr()) + ElemCount * ElemSize - 1); |
| if (last == '\0') |
| return CharPtrToString((char *)V.getPtr()); |
| } |
| |
| std::string Result = "{ "; |
| for (unsigned Idx = 0, N = CAT->getZExtSize(); Idx < N; ++Idx) { |
| ValueRef InnerV = ValueRef(this, ElemTy.getAsOpaquePtr()); |
| if (ElemTy->isBuiltinType()) { |
| // Single dim arrays, advancing. |
| uintptr_t Offset = (uintptr_t)V.getPtr() + Idx * ElemSize; |
| InnerV.setRawBits((void *)Offset, ElemSize * 8); |
| } else { |
| // Multi dim arrays, position to the next dimension. |
| size_t Stride = ElemCount / N; |
| uintptr_t Offset = ((uintptr_t)V.getPtr()) + Idx * Stride * ElemSize; |
| InnerV.setPtr((void *)Offset); |
| } |
| |
| Result += ValueDataToString(InnerV); |
| |
| // Skip the \0 if the char types |
| if (Idx < N - 1) |
| Result += ", "; |
| } |
| Result += " }"; |
| return Result; |
| } |
| |
| QualType DesugaredTy = QT.getDesugaredType(Ctx); |
| QualType NonRefTy = DesugaredTy.getNonReferenceType(); |
| |
| // FIXME: Add support for user defined printers. |
| // LookupResult R = LookupUserDefined(S, QT); |
| // if (!R.empty()) |
| // return CallUserSpecifiedPrinter(R, V); |
| |
| // If it is a builtin type dispatch to the builtin overloads. |
| if (auto *BT = DesugaredTy.getCanonicalType()->getAs<BuiltinType>()) { |
| |
| auto formatFloating = [](auto Val, char Suffix = '\0') -> std::string { |
| std::string Out; |
| llvm::raw_string_ostream SS(Out); |
| |
| if (std::isnan(Val) || std::isinf(Val)) { |
| SS << llvm::format("%g", Val); |
| return SS.str(); |
| } |
| if (Val == static_cast<decltype(Val)>(static_cast<int64_t>(Val))) |
| SS << llvm::format("%.1f", Val); |
| else if (std::abs(Val) < 1e-4 || std::abs(Val) > 1e6 || Suffix == 'f') |
| SS << llvm::format("%#.6g", Val); |
| else if (Suffix == 'L') |
| SS << llvm::format("%#.12Lg", Val); |
| else |
| SS << llvm::format("%#.8g", Val); |
| |
| if (Suffix != '\0') |
| SS << Suffix; |
| return SS.str(); |
| }; |
| |
| std::string Str; |
| llvm::raw_string_ostream SS(Str); |
| switch (BT->getKind()) { |
| default: |
| return "{ error: unknown builtin type '" + std::to_string(BT->getKind()) + |
| " '}"; |
| case clang::BuiltinType::Bool: |
| SS << ((V.getBool()) ? "true" : "false"); |
| return Str; |
| case clang::BuiltinType::Char_S: |
| SS << '\'' << V.getChar_S() << '\''; |
| return Str; |
| case clang::BuiltinType::SChar: |
| SS << '\'' << V.getSChar() << '\''; |
| return Str; |
| case clang::BuiltinType::Char_U: |
| SS << '\'' << V.getChar_U() << '\''; |
| return Str; |
| case clang::BuiltinType::UChar: |
| SS << '\'' << V.getUChar() << '\''; |
| return Str; |
| case clang::BuiltinType::Short: |
| SS << V.getShort(); |
| return Str; |
| case clang::BuiltinType::UShort: |
| SS << V.getUShort(); |
| return Str; |
| case clang::BuiltinType::Int: |
| SS << V.getInt(); |
| return Str; |
| case clang::BuiltinType::UInt: |
| SS << V.getUInt(); |
| return Str; |
| case clang::BuiltinType::Long: |
| SS << V.getLong(); |
| return Str; |
| case clang::BuiltinType::ULong: |
| SS << V.getULong(); |
| return Str; |
| case clang::BuiltinType::LongLong: |
| SS << V.getLongLong(); |
| return Str; |
| case clang::BuiltinType::ULongLong: |
| SS << V.getULongLong(); |
| return Str; |
| case clang::BuiltinType::Float: |
| return formatFloating(V.getFloat(), /*suffix=*/'f'); |
| |
| case clang::BuiltinType::Double: |
| return formatFloating(V.getDouble()); |
| |
| case clang::BuiltinType::LongDouble: |
| return formatFloating(V.getLongDouble(), /*suffix=*/'L'); |
| } |
| } |
| |
| if ((NonRefTy->isPointerType() || NonRefTy->isMemberPointerType()) && |
| NonRefTy->getPointeeType()->isFunctionProtoType()) |
| return FunctionToString(V, V.getPtr()); |
| |
| if (NonRefTy->isFunctionType()) |
| return FunctionToString(V, &V); |
| |
| if (NonRefTy->isEnumeralType()) |
| return EnumToString(V); |
| |
| if (NonRefTy->isNullPtrType()) |
| return "nullptr\n"; |
| |
| // FIXME: Add support for custom printers in C. |
| if (NonRefTy->isPointerType()) { |
| if (NonRefTy->getPointeeType()->isCharType()) |
| return CharPtrToString((char *)V.getPtr()); |
| |
| return VoidPtrToString(V.getPtr()); |
| } |
| |
| // Fall back to printing just the address of the unknown object. |
| return "@" + VoidPtrToString(V.getPtr()); |
| } |
| |
| std::string Interpreter::ValueTypeToString(const Value &V) const { |
| ASTContext &Ctx = const_cast<ASTContext &>(V.getASTContext()); |
| QualType QT = V.getType(); |
| |
| std::string QTStr = QualTypeToString(Ctx, QT); |
| |
| if (QT->isReferenceType()) |
| QTStr += " &"; |
| |
| return QTStr; |
| } |
| |
| llvm::Expected<llvm::orc::ExecutorAddr> |
| Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) const { |
| assert(CXXRD && "Cannot compile a destructor for a nullptr"); |
| if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end()) |
| return Dtor->getSecond(); |
| |
| if (CXXRD->hasIrrelevantDestructor()) |
| return llvm::orc::ExecutorAddr{}; |
| |
| CXXDestructorDecl *DtorRD = |
| getCompilerInstance()->getSema().LookupDestructor(CXXRD); |
| |
| llvm::StringRef Name = |
| Act->getCodeGen()->GetMangledName(GlobalDecl(DtorRD, Dtor_Base)); |
| auto AddrOrErr = getSymbolAddress(Name); |
| if (!AddrOrErr) |
| return AddrOrErr.takeError(); |
| |
| Dtors[CXXRD] = *AddrOrErr; |
| return AddrOrErr; |
| } |
| |
| enum InterfaceKind { NoAlloc, WithAlloc, CopyArray, NewTag }; |
| |
| class InterfaceKindVisitor |
| : public TypeVisitor<InterfaceKindVisitor, InterfaceKind> { |
| |
| Sema &S; |
| Expr *E; |
| llvm::SmallVectorImpl<Expr *> &Args; |
| |
| public: |
| InterfaceKindVisitor(Sema &S, Expr *E, llvm::SmallVectorImpl<Expr *> &Args) |
| : S(S), E(E), Args(Args) {} |
| |
| InterfaceKind computeInterfaceKind(QualType Ty) { |
| return Visit(Ty.getTypePtr()); |
| } |
| |
| InterfaceKind VisitRecordType(const RecordType *Ty) { |
| return InterfaceKind::WithAlloc; |
| } |
| |
| InterfaceKind VisitMemberPointerType(const MemberPointerType *Ty) { |
| return InterfaceKind::WithAlloc; |
| } |
| |
| InterfaceKind VisitConstantArrayType(const ConstantArrayType *Ty) { |
| return InterfaceKind::CopyArray; |
| } |
| |
| InterfaceKind VisitFunctionType(const FunctionType *Ty) { |
| HandlePtrType(Ty); |
| return InterfaceKind::NoAlloc; |
| } |
| |
| InterfaceKind VisitPointerType(const PointerType *Ty) { |
| HandlePtrType(Ty); |
| return InterfaceKind::NoAlloc; |
| } |
| |
| InterfaceKind VisitReferenceType(const ReferenceType *Ty) { |
| ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E); |
| assert(!AddrOfE.isInvalid() && "Can not create unary expression"); |
| Args.push_back(AddrOfE.get()); |
| return InterfaceKind::NoAlloc; |
| } |
| |
| InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { |
| if (Ty->isNullPtrType()) |
| Args.push_back(E); |
| else if (Ty->isFloatingType()) |
| Args.push_back(E); |
| else if (Ty->isIntegralOrEnumerationType()) |
| HandleIntegralOrEnumType(Ty); |
| else if (Ty->isVoidType()) { |
| // Do we need to still run `E`? |
| } |
| |
| return InterfaceKind::NoAlloc; |
| } |
| |
| InterfaceKind VisitEnumType(const EnumType *Ty) { |
| HandleIntegralOrEnumType(Ty); |
| return InterfaceKind::NoAlloc; |
| } |
| |
| private: |
| // Force cast these types to the uint that fits the register size. That way we |
| // reduce the number of overloads of `__clang_Interpreter_SetValueNoAlloc`. |
| void HandleIntegralOrEnumType(const Type *Ty) { |
| ASTContext &Ctx = S.getASTContext(); |
| uint64_t PtrBits = Ctx.getTypeSize(Ctx.VoidPtrTy); |
| QualType UIntTy = Ctx.getBitIntType(/*Unsigned=*/true, PtrBits); |
| TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(UIntTy); |
| ExprResult CastedExpr = |
| S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); |
| assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr"); |
| Args.push_back(CastedExpr.get()); |
| } |
| |
| void HandlePtrType(const Type *Ty) { |
| ASTContext &Ctx = S.getASTContext(); |
| TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy); |
| ExprResult CastedExpr = |
| S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); |
| assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression"); |
| Args.push_back(CastedExpr.get()); |
| } |
| }; |
| |
| static constexpr llvm::StringRef VPName[] = { |
| "__clang_Interpreter_SetValueNoAlloc", |
| "__clang_Interpreter_SetValueWithAlloc", |
| "__clang_Interpreter_SetValueCopyArr", "__ci_newtag"}; |
| |
| // This synthesizes a call expression to a speciall |
| // function that is responsible for generating the Value. |
| // In general, we transform c++: |
| // clang-repl> x |
| // To: |
| // // 1. If x is a built-in type like int, float. |
| // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); |
| // // 2. If x is a struct, and a lvalue. |
| // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, |
| // &x); |
| // // 3. If x is a struct, but a rvalue. |
| // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, |
| // xQualType)) (x); |
| llvm::Expected<Expr *> Interpreter::convertExprToValue(Expr *E) { |
| Sema &S = getCompilerInstance()->getSema(); |
| ASTContext &Ctx = S.getASTContext(); |
| |
| // Find the value printing builtins. |
| if (!ValuePrintingInfo[0]) { |
| assert(llvm::all_of(ValuePrintingInfo, [](Expr *E) { return !E; })); |
| |
| auto LookupInterface = [&](Expr *&Interface, |
| llvm::StringRef Name) -> llvm::Error { |
| LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), |
| Sema::LookupOrdinaryName, |
| RedeclarationKind::ForVisibleRedeclaration); |
| S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl()); |
| if (R.empty()) |
| return llvm::make_error<llvm::StringError>( |
| Name + " not found!", llvm::inconvertibleErrorCode()); |
| |
| CXXScopeSpec CSS; |
| Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get(); |
| return llvm::Error::success(); |
| }; |
| if (llvm::Error Err = |
| LookupInterface(ValuePrintingInfo[NoAlloc], VPName[NoAlloc])) |
| return std::move(Err); |
| |
| if (llvm::Error Err = |
| LookupInterface(ValuePrintingInfo[CopyArray], VPName[CopyArray])) |
| return std::move(Err); |
| |
| if (llvm::Error Err = |
| LookupInterface(ValuePrintingInfo[WithAlloc], VPName[WithAlloc])) |
| return std::move(Err); |
| |
| if (Ctx.getLangOpts().CPlusPlus) { |
| if (llvm::Error Err = |
| LookupInterface(ValuePrintingInfo[NewTag], VPName[NewTag])) |
| return std::move(Err); |
| } |
| } |
| |
| llvm::SmallVector<Expr *, 4> AdjustedArgs; |
| // Create parameter `ThisInterp`. |
| AdjustedArgs.push_back(CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this)); |
| |
| // Create parameter `OutVal`. |
| AdjustedArgs.push_back( |
| CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue)); |
| |
| // Build `__clang_Interpreter_SetValue*` call. |
| |
| // Get rid of ExprWithCleanups. |
| if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E)) |
| E = EWC->getSubExpr(); |
| |
| QualType Ty = E->IgnoreImpCasts()->getType(); |
| QualType DesugaredTy = Ty.getDesugaredType(Ctx); |
| |
| // For lvalue struct, we treat it as a reference. |
| if (DesugaredTy->isRecordType() && E->isLValue()) { |
| DesugaredTy = Ctx.getLValueReferenceType(DesugaredTy); |
| Ty = Ctx.getLValueReferenceType(Ty); |
| } |
| |
| Expr *TypeArg = |
| CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)Ty.getAsOpaquePtr()); |
| // The QualType parameter `OpaqueType`, represented as `void*`. |
| AdjustedArgs.push_back(TypeArg); |
| |
| // We push the last parameter based on the type of the Expr. Note we need |
| // special care for rvalue struct. |
| InterfaceKindVisitor V(S, E, AdjustedArgs); |
| Scope *Scope = nullptr; |
| ExprResult SetValueE; |
| InterfaceKind Kind = V.computeInterfaceKind(DesugaredTy); |
| switch (Kind) { |
| case InterfaceKind::WithAlloc: |
| LLVM_FALLTHROUGH; |
| case InterfaceKind::CopyArray: { |
| // __clang_Interpreter_SetValueWithAlloc. |
| ExprResult AllocCall = |
| S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::WithAlloc], |
| E->getBeginLoc(), AdjustedArgs, E->getEndLoc()); |
| if (AllocCall.isInvalid()) |
| return llvm::make_error<llvm::StringError>( |
| "Cannot call to " + VPName[WithAlloc], |
| llvm::inconvertibleErrorCode()); |
| |
| TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation()); |
| |
| // Force CodeGen to emit destructor. |
| if (auto *RD = Ty->getAsCXXRecordDecl()) { |
| auto *Dtor = S.LookupDestructor(RD); |
| Dtor->addAttr(UsedAttr::CreateImplicit(Ctx)); |
| getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( |
| DeclGroupRef(Dtor)); |
| } |
| |
| // __clang_Interpreter_SetValueCopyArr. |
| if (Kind == InterfaceKind::CopyArray) { |
| const auto *CATy = cast<ConstantArrayType>(DesugaredTy.getTypePtr()); |
| size_t ArrSize = Ctx.getConstantArrayElementCount(CATy); |
| |
| if (!Ctx.getLangOpts().CPlusPlus) |
| ArrSize *= Ctx.getTypeSizeInChars(CATy->getBaseElementTypeUnsafe()) |
| .getQuantity(); |
| |
| Expr *ArrSizeExpr = IntegerLiteralExpr(Ctx, ArrSize); |
| Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; |
| SetValueE = |
| S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::CopyArray], |
| SourceLocation(), Args, SourceLocation()); |
| if (SetValueE.isInvalid()) |
| return llvm::make_error<llvm::StringError>( |
| "Cannot call to " + VPName[CopyArray], |
| llvm::inconvertibleErrorCode()); |
| break; |
| } |
| Expr *Args[] = {AllocCall.get(), ValuePrintingInfo[InterfaceKind::NewTag]}; |
| ExprResult CXXNewCall = S.BuildCXXNew( |
| E->getSourceRange(), |
| /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args, |
| /*PlacementRParen=*/SourceLocation(), |
| /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt, |
| E->getSourceRange(), E); |
| |
| if (CXXNewCall.isInvalid()) |
| return llvm::make_error<llvm::StringError>( |
| "Cannot build a call to placement new", |
| llvm::inconvertibleErrorCode()); |
| |
| SetValueE = S.ActOnFinishFullExpr(CXXNewCall.get(), |
| /*DiscardedValue=*/false); |
| break; |
| } |
| // __clang_Interpreter_SetValueNoAlloc. |
| case InterfaceKind::NoAlloc: { |
| SetValueE = |
| S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::NoAlloc], |
| E->getBeginLoc(), AdjustedArgs, E->getEndLoc()); |
| break; |
| } |
| default: |
| llvm_unreachable("Unhandled InterfaceKind"); |
| } |
| |
| // It could fail, like printing an array type in C. (not supported) |
| if (SetValueE.isInvalid()) |
| return E; |
| |
| return SetValueE.get(); |
| } |
| |
| } // namespace clang |
| |
| using namespace clang; |
| |
| // Temporary rvalue struct that need special care. |
| extern "C" { |
| REPL_EXTERNAL_VISIBILITY void * |
| __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, |
| void *OpaqueType) { |
| Value &VRef = *(Value *)OutVal; |
| VRef = Value(static_cast<Interpreter *>(This), OpaqueType); |
| return VRef.getPtr(); |
| } |
| |
| REPL_EXTERNAL_VISIBILITY void |
| __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, |
| ...) { |
| Value &VRef = *(Value *)OutVal; |
| Interpreter *I = static_cast<Interpreter *>(This); |
| VRef = Value(I, OpaqueType); |
| if (VRef.isVoid()) |
| return; |
| |
| va_list args; |
| va_start(args, /*last named param*/ OpaqueType); |
| |
| QualType QT = VRef.getType(); |
| if (VRef.getKind() == Value::K_PtrOrObj) { |
| VRef.setPtr(va_arg(args, void *)); |
| } else { |
| if (const auto *ED = QT->getAsEnumDecl()) |
| QT = ED->getIntegerType(); |
| switch (QT->castAs<BuiltinType>()->getKind()) { |
| default: |
| llvm_unreachable("unknown type kind!"); |
| break; |
| // Types shorter than int are resolved as int, else va_arg has UB. |
| case BuiltinType::Bool: |
| VRef.setBool(va_arg(args, int)); |
| break; |
| case BuiltinType::Char_S: |
| VRef.setChar_S(va_arg(args, int)); |
| break; |
| case BuiltinType::SChar: |
| VRef.setSChar(va_arg(args, int)); |
| break; |
| case BuiltinType::Char_U: |
| VRef.setChar_U(va_arg(args, unsigned)); |
| break; |
| case BuiltinType::UChar: |
| VRef.setUChar(va_arg(args, unsigned)); |
| break; |
| case BuiltinType::Short: |
| VRef.setShort(va_arg(args, int)); |
| break; |
| case BuiltinType::UShort: |
| VRef.setUShort(va_arg(args, unsigned)); |
| break; |
| case BuiltinType::Int: |
| VRef.setInt(va_arg(args, int)); |
| break; |
| case BuiltinType::UInt: |
| VRef.setUInt(va_arg(args, unsigned)); |
| break; |
| case BuiltinType::Long: |
| VRef.setLong(va_arg(args, long)); |
| break; |
| case BuiltinType::ULong: |
| VRef.setULong(va_arg(args, unsigned long)); |
| break; |
| case BuiltinType::LongLong: |
| VRef.setLongLong(va_arg(args, long long)); |
| break; |
| case BuiltinType::ULongLong: |
| VRef.setULongLong(va_arg(args, unsigned long long)); |
| break; |
| // Types shorter than double are resolved as double, else va_arg has UB. |
| case BuiltinType::Float: |
| VRef.setFloat(va_arg(args, double)); |
| break; |
| case BuiltinType::Double: |
| VRef.setDouble(va_arg(args, double)); |
| break; |
| case BuiltinType::LongDouble: |
| VRef.setLongDouble(va_arg(args, long double)); |
| break; |
| // See REPL_BUILTIN_TYPES. |
| } |
| } |
| va_end(args); |
| } |
| } |
| |
| // A trampoline to work around the fact that operator placement new cannot |
| // really be forward declared due to libc++ and libstdc++ declaration mismatch. |
| // FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same |
| // definition in the interpreter runtime. We should move it in a runtime header |
| // which gets included by the interpreter and here. |
| struct __clang_Interpreter_NewTag {}; |
| REPL_EXTERNAL_VISIBILITY void * |
| operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept { |
| // Just forward to the standard operator placement new. |
| return operator new(__sz, __p); |
| } |