blob: b20e6efcebfd10fb944e1a1b5961aa681ed7d8aa [file] [log] [blame]
//===------ Interpreter.cpp - Incremental Compilation and Execution -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the component which performs incremental code
// compilation and execution.
//
//===----------------------------------------------------------------------===//
#include "DeviceOffload.h"
#include "IncrementalExecutor.h"
#include "IncrementalParser.h"
#include "InterpreterUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
using namespace clang;
// FIXME: Figure out how to unify with namespace init_convenience from
// tools/clang-import-test/clang-import-test.cpp
namespace {
/// Retrieves the clang CC1 specific flags out of the compilation's jobs.
/// \returns NULL on error.
static llvm::Expected<const llvm::opt::ArgStringList *>
GetCC1Arguments(DiagnosticsEngine *Diagnostics,
driver::Compilation *Compilation) {
// We expect to get back exactly one Command job, if we didn't something
// failed. Extract that job from the Compilation.
const driver::JobList &Jobs = Compilation->getJobs();
if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin()))
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed. "
"Unable to create a driver job");
// The one job we find should be to invoke clang again.
const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin()));
if (llvm::StringRef(Cmd->getCreator().getName()) != "clang")
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed");
return &Cmd->getArguments();
}
static llvm::Expected<std::unique_ptr<CompilerInstance>>
CreateCI(const llvm::opt::ArgStringList &Argv) {
std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
// Register the support for object-file-wrapped Clang modules.
// FIXME: Clang should register these container operations automatically.
auto PCHOps = Clang->getPCHContainerOperations();
PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());
// Buffer diagnostics from argument parsing so that we can output them using
// a well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
bool Success = CompilerInvocation::CreateFromArgs(
Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags);
// Infer the builtin include path if unspecified.
if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
Clang->getHeaderSearchOpts().ResourceDir.empty())
Clang->getHeaderSearchOpts().ResourceDir =
CompilerInvocation::GetResourcesPath(Argv[0], nullptr);
// Create the actual diagnostics engine.
Clang->createDiagnostics();
if (!Clang->hasDiagnostics())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to create diagnostics engine");
DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
if (!Success)
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to flush diagnostics");
// FIXME: Merge with CompilerInstance::ExecuteAction.
llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release();
Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB);
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Target is missing");
Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts());
// Don't clear the AST before backend codegen since we do codegen multiple
// times, reusing the same AST.
Clang->getCodeGenOpts().ClearASTBeforeBackend = false;
Clang->getFrontendOpts().DisableFree = false;
Clang->getCodeGenOpts().DisableFree = false;
return std::move(Clang);
}
} // anonymous namespace
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::create(std::string TT,
std::vector<const char *> &ClangArgv) {
// If we don't know ClangArgv0 or the address of main() at this point, try
// to guess it anyway (it's possible on some platforms).
std::string MainExecutableName =
llvm::sys::fs::getMainExecutable(nullptr, nullptr);
ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str());
// Prepending -c to force the driver to do something if no action was
// specified. By prepending we allow users to override the default
// action and use other actions in incremental mode.
// FIXME: Print proper driver diagnostics if the driver flags are wrong.
// We do C++ by default; append right after argv[0] if no "-x" given
ClangArgv.insert(ClangArgv.end(), "-Xclang");
ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions");
ClangArgv.insert(ClangArgv.end(), "-c");
// Put a dummy C++ file on to ensure there's at least one compile job for the
// driver to construct.
ClangArgv.push_back("<<< inputs >>>");
// Buffer diagnostics from argument parsing so that we can output them using a
// well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts =
CreateAndPopulateDiagOpts(ClangArgv);
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags);
Driver.setCheckInputsExist(false); // the input comes from mem buffers
llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv);
std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF));
if (Compilation->getArgs().hasArg(driver::options::OPT_v))
Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false);
auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get());
if (auto Err = ErrOrCC1Args.takeError())
return std::move(Err);
return CreateCI(**ErrOrCC1Args);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCpp() {
std::vector<const char *> Argv;
Argv.reserve(5 + 1 + UserArgs.size());
Argv.push_back("-xc++");
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::createCuda(bool device) {
std::vector<const char *> Argv;
Argv.reserve(5 + 4 + UserArgs.size());
Argv.push_back("-xcuda");
if (device)
Argv.push_back("--cuda-device-only");
else
Argv.push_back("--cuda-host-only");
std::string SDKPathArg = "--cuda-path=";
if (!CudaSDKPath.empty()) {
SDKPathArg += CudaSDKPath;
Argv.push_back(SDKPathArg.c_str());
}
std::string ArchArg = "--offload-arch=";
if (!OffloadArch.empty()) {
ArchArg += OffloadArch;
Argv.push_back(ArchArg.c_str());
}
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaDevice() {
return IncrementalCompilerBuilder::createCuda(true);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaHost() {
return IncrementalCompilerBuilder::createCuda(false);
}
Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI,
llvm::Error &Err) {
llvm::ErrorAsOutParameter EAO(&Err);
auto LLVMCtx = std::make_unique<llvm::LLVMContext>();
TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx));
IncrParser = std::make_unique<IncrementalParser>(*this, std::move(CI),
*TSCtx->getContext(), Err);
}
Interpreter::~Interpreter() {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->cleanUp())
llvm::report_fatal_error(
llvm::Twine("Failed to clean up IncrementalExecutor: ") +
toString(std::move(Err)));
}
}
// These better to put in a runtime header but we can't. This is because we
// can't find the precise resource directory in unittests so we have to hard
// code them.
const char *const Runtimes = R"(
#ifdef __cplusplus
void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*);
void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*);
void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, void*);
void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, float);
void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, double);
void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, long double);
void __clang_Interpreter_SetValueNoAlloc(void*,void*,void*,unsigned long long);
struct __clang_Interpreter_NewTag{} __ci_newtag;
void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept;
template <class T, class = T (*)() /*disable for arrays*/>
void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) {
for (auto Idx = 0; Idx < Size; ++Idx)
new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]);
}
template <class T, unsigned long N>
void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) {
__clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size);
}
#endif // __cplusplus
)";
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::create(std::unique_ptr<CompilerInstance> CI) {
llvm::Error Err = llvm::Error::success();
auto Interp =
std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err));
if (Err)
return std::move(Err);
// Add runtime code and set a marker to hide it from user code. Undo will not
// go through that.
auto PTU = Interp->Parse(Runtimes);
if (!PTU)
return PTU.takeError();
Interp->markUserCodeStart();
Interp->ValuePrintingInfo.resize(4);
return std::move(Interp);
}
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI,
std::unique_ptr<CompilerInstance> DCI) {
// avoid writing fat binary to disk using an in-memory virtual file system
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS =
std::make_unique<llvm::vfs::InMemoryFileSystem>();
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS =
std::make_unique<llvm::vfs::OverlayFileSystem>(
llvm::vfs::getRealFileSystem());
OverlayVFS->pushOverlay(IMVFS);
CI->createFileManager(OverlayVFS);
auto Interp = Interpreter::create(std::move(CI));
if (auto E = Interp.takeError())
return std::move(E);
llvm::Error Err = llvm::Error::success();
auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>(
**Interp, std::move(DCI), *(*Interp)->IncrParser.get(),
*(*Interp)->TSCtx->getContext(), IMVFS, Err);
if (Err)
return std::move(Err);
(*Interp)->DeviceParser = std::move(DeviceParser);
return Interp;
}
const CompilerInstance *Interpreter::getCompilerInstance() const {
return IncrParser->getCI();
}
CompilerInstance *Interpreter::getCompilerInstance() {
return IncrParser->getCI();
}
llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() {
if (!IncrExecutor) {
if (auto Err = CreateExecutor())
return std::move(Err);
}
return IncrExecutor->GetExecutionEngine();
}
ASTContext &Interpreter::getASTContext() {
return getCompilerInstance()->getASTContext();
}
const ASTContext &Interpreter::getASTContext() const {
return getCompilerInstance()->getASTContext();
}
void Interpreter::markUserCodeStart() {
assert(!InitPTUSize && "We only do this once");
InitPTUSize = IncrParser->getPTUs().size();
}
size_t Interpreter::getEffectivePTUSize() const {
std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
assert(PTUs.size() >= InitPTUSize && "empty PTU list?");
return PTUs.size() - InitPTUSize;
}
llvm::Expected<PartialTranslationUnit &>
Interpreter::Parse(llvm::StringRef Code) {
// If we have a device parser, parse it first.
// The generated code will be included in the host compilation
if (DeviceParser) {
auto DevicePTU = DeviceParser->Parse(Code);
if (auto E = DevicePTU.takeError())
return std::move(E);
}
// Tell the interpreter sliently ignore unused expressions since value
// printing could cause it.
getCompilerInstance()->getDiagnostics().setSeverity(
clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation());
return IncrParser->Parse(Code);
}
static llvm::Expected<llvm::orc::JITTargetMachineBuilder>
createJITTargetMachineBuilder(const std::string &TT) {
if (TT == llvm::sys::getProcessTriple())
// This fails immediately if the target backend is not registered
return llvm::orc::JITTargetMachineBuilder::detectHost();
// If the target backend is not registered, LLJITBuilder::create() will fail
return llvm::orc::JITTargetMachineBuilder(llvm::Triple(TT));
}
llvm::Expected<std::unique_ptr<llvm::orc::LLJITBuilder>>
Interpreter::CreateJITBuilder(CompilerInstance &CI) {
auto JTMB = createJITTargetMachineBuilder(CI.getTargetOpts().Triple);
if (!JTMB)
return JTMB.takeError();
return IncrementalExecutor::createDefaultJITBuilder(std::move(*JTMB));
}
llvm::Error Interpreter::CreateExecutor() {
if (IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"Execution engine exists",
std::error_code());
llvm::Expected<std::unique_ptr<llvm::orc::LLJITBuilder>> JB =
CreateJITBuilder(*getCompilerInstance());
if (!JB)
return JB.takeError();
llvm::Error Err = llvm::Error::success();
auto Executor = std::make_unique<IncrementalExecutor>(*TSCtx, **JB, Err);
if (!Err)
IncrExecutor = std::move(Executor);
return Err;
}
void Interpreter::ResetExecutor() { IncrExecutor.reset(); }
llvm::Error Interpreter::Execute(PartialTranslationUnit &T) {
assert(T.TheModule);
if (!IncrExecutor) {
auto Err = CreateExecutor();
if (Err)
return Err;
}
// FIXME: Add a callback to retain the llvm::Module once the JIT is done.
if (auto Err = IncrExecutor->addModule(T))
return Err;
if (auto Err = IncrExecutor->runCtors())
return Err;
return llvm::Error::success();
}
llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) {
auto PTU = Parse(Code);
if (!PTU)
return PTU.takeError();
if (PTU->TheModule)
if (llvm::Error Err = Execute(*PTU))
return Err;
if (LastValue.isValid()) {
if (!V) {
LastValue.dump();
LastValue.clear();
} else
*V = std::move(LastValue);
}
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(GlobalDecl GD) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
llvm::StringRef MangledName = IncrParser->GetMangledName(GD);
return getSymbolAddress(MangledName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(llvm::StringRef IRName) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName);
}
llvm::Error Interpreter::Undo(unsigned N) {
std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
if (N > getEffectivePTUSize())
return llvm::make_error<llvm::StringError>("Operation failed. "
"Too many undos",
std::error_code());
for (unsigned I = 0; I < N; I++) {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back()))
return Err;
}
IncrParser->CleanUpPTU(PTUs.back());
PTUs.pop_back();
}
return llvm::Error::success();
}
llvm::Error Interpreter::LoadDynamicLibrary(const char *name) {
auto EE = getExecutionEngine();
if (!EE)
return EE.takeError();
auto &DL = EE->getDataLayout();
if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load(
name, DL.getGlobalPrefix()))
EE->getMainJITDylib().addGenerator(std::move(*DLSG));
else
return DLSG.takeError();
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) {
assert(CXXRD && "Cannot compile a destructor for a nullptr");
if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end())
return Dtor->getSecond();
if (CXXRD->hasIrrelevantDestructor())
return llvm::orc::ExecutorAddr{};
CXXDestructorDecl *DtorRD =
getCompilerInstance()->getSema().LookupDestructor(CXXRD);
llvm::StringRef Name =
IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base));
auto AddrOrErr = getSymbolAddress(Name);
if (!AddrOrErr)
return AddrOrErr.takeError();
Dtors[CXXRD] = *AddrOrErr;
return AddrOrErr;
}
static constexpr llvm::StringRef MagicRuntimeInterface[] = {
"__clang_Interpreter_SetValueNoAlloc",
"__clang_Interpreter_SetValueWithAlloc",
"__clang_Interpreter_SetValueCopyArr", "__ci_newtag"};
static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
Sema &S);
std::unique_ptr<RuntimeInterfaceBuilder> Interpreter::FindRuntimeInterface() {
if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; }))
return nullptr;
Sema &S = getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();
auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) {
LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(),
Sema::LookupOrdinaryName,
RedeclarationKind::ForVisibleRedeclaration);
S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl());
if (R.empty())
return false;
CXXScopeSpec CSS;
Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get();
return true;
};
if (!LookupInterface(ValuePrintingInfo[NoAlloc],
MagicRuntimeInterface[NoAlloc]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[WithAlloc],
MagicRuntimeInterface[WithAlloc]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[CopyArray],
MagicRuntimeInterface[CopyArray]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[NewTag],
MagicRuntimeInterface[NewTag]))
return nullptr;
return createInProcessRuntimeInterfaceBuilder(*this, Ctx, S);
}
namespace {
class InterfaceKindVisitor
: public TypeVisitor<InterfaceKindVisitor, Interpreter::InterfaceKind> {
friend class InProcessRuntimeInterfaceBuilder;
ASTContext &Ctx;
Sema &S;
Expr *E;
llvm::SmallVector<Expr *, 3> Args;
public:
InterfaceKindVisitor(ASTContext &Ctx, Sema &S, Expr *E)
: Ctx(Ctx), S(S), E(E) {}
Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) {
return Interpreter::InterfaceKind::WithAlloc;
}
Interpreter::InterfaceKind
VisitMemberPointerType(const MemberPointerType *Ty) {
return Interpreter::InterfaceKind::WithAlloc;
}
Interpreter::InterfaceKind
VisitConstantArrayType(const ConstantArrayType *Ty) {
return Interpreter::InterfaceKind::CopyArray;
}
Interpreter::InterfaceKind
VisitFunctionProtoType(const FunctionProtoType *Ty) {
HandlePtrType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) {
HandlePtrType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) {
ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E);
assert(!AddrOfE.isInvalid() && "Can not create unary expression");
Args.push_back(AddrOfE.get());
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) {
if (Ty->isNullPtrType())
Args.push_back(E);
else if (Ty->isFloatingType())
Args.push_back(E);
else if (Ty->isIntegralOrEnumerationType())
HandleIntegralOrEnumType(Ty);
else if (Ty->isVoidType()) {
// Do we need to still run `E`?
}
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) {
HandleIntegralOrEnumType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
private:
// Force cast these types to uint64 to reduce the number of overloads of
// `__clang_Interpreter_SetValueNoAlloc`.
void HandleIntegralOrEnumType(const Type *Ty) {
TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.UnsignedLongLongTy);
ExprResult CastedExpr =
S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr");
Args.push_back(CastedExpr.get());
}
void HandlePtrType(const Type *Ty) {
TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy);
ExprResult CastedExpr =
S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression");
Args.push_back(CastedExpr.get());
}
};
class InProcessRuntimeInterfaceBuilder : public RuntimeInterfaceBuilder {
Interpreter &Interp;
ASTContext &Ctx;
Sema &S;
public:
InProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &C, Sema &S)
: Interp(Interp), Ctx(C), S(S) {}
TransformExprFunction *getPrintValueTransformer() override {
return &transformForValuePrinting;
}
private:
static ExprResult transformForValuePrinting(RuntimeInterfaceBuilder *Builder,
Expr *E,
ArrayRef<Expr *> FixedArgs) {
auto *B = static_cast<InProcessRuntimeInterfaceBuilder *>(Builder);
// Get rid of ExprWithCleanups.
if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E))
E = EWC->getSubExpr();
InterfaceKindVisitor Visitor(B->Ctx, B->S, E);
// The Interpreter* parameter and the out parameter `OutVal`.
for (Expr *E : FixedArgs)
Visitor.Args.push_back(E);
QualType Ty = E->getType();
QualType DesugaredTy = Ty.getDesugaredType(B->Ctx);
// For lvalue struct, we treat it as a reference.
if (DesugaredTy->isRecordType() && E->isLValue()) {
DesugaredTy = B->Ctx.getLValueReferenceType(DesugaredTy);
Ty = B->Ctx.getLValueReferenceType(Ty);
}
Expr *TypeArg = CStyleCastPtrExpr(B->S, B->Ctx.VoidPtrTy,
(uintptr_t)Ty.getAsOpaquePtr());
// The QualType parameter `OpaqueType`, represented as `void*`.
Visitor.Args.push_back(TypeArg);
// We push the last parameter based on the type of the Expr. Note we need
// special care for rvalue struct.
Interpreter::InterfaceKind Kind = Visitor.Visit(&*DesugaredTy);
switch (Kind) {
case Interpreter::InterfaceKind::WithAlloc:
case Interpreter::InterfaceKind::CopyArray: {
// __clang_Interpreter_SetValueWithAlloc.
ExprResult AllocCall = B->S.ActOnCallExpr(
/*Scope=*/nullptr,
B->Interp
.getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc],
E->getBeginLoc(), Visitor.Args, E->getEndLoc());
assert(!AllocCall.isInvalid() && "Can't create runtime interface call!");
TypeSourceInfo *TSI =
B->Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation());
// Force CodeGen to emit destructor.
if (auto *RD = Ty->getAsCXXRecordDecl()) {
auto *Dtor = B->S.LookupDestructor(RD);
Dtor->addAttr(UsedAttr::CreateImplicit(B->Ctx));
B->Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl(
DeclGroupRef(Dtor));
}
// __clang_Interpreter_SetValueCopyArr.
if (Kind == Interpreter::InterfaceKind::CopyArray) {
const auto *ConstantArrTy =
cast<ConstantArrayType>(DesugaredTy.getTypePtr());
size_t ArrSize = B->Ctx.getConstantArrayElementCount(ConstantArrTy);
Expr *ArrSizeExpr = IntegerLiteralExpr(B->Ctx, ArrSize);
Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr};
return B->S.ActOnCallExpr(
/*Scope *=*/nullptr,
B->Interp
.getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray],
SourceLocation(), Args, SourceLocation());
}
Expr *Args[] = {
AllocCall.get(),
B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NewTag]};
ExprResult CXXNewCall = B->S.BuildCXXNew(
E->getSourceRange(),
/*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args,
/*PlacementRParen=*/SourceLocation(),
/*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt,
E->getSourceRange(), E);
assert(!CXXNewCall.isInvalid() &&
"Can't create runtime placement new call!");
return B->S.ActOnFinishFullExpr(CXXNewCall.get(),
/*DiscardedValue=*/false);
}
// __clang_Interpreter_SetValueNoAlloc.
case Interpreter::InterfaceKind::NoAlloc: {
return B->S.ActOnCallExpr(
/*Scope=*/nullptr,
B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc],
E->getBeginLoc(), Visitor.Args, E->getEndLoc());
}
default:
llvm_unreachable("Unhandled Interpreter::InterfaceKind");
}
}
};
} // namespace
static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
Sema &S) {
return std::make_unique<InProcessRuntimeInterfaceBuilder>(Interp, Ctx, S);
}
// This synthesizes a call expression to a speciall
// function that is responsible for generating the Value.
// In general, we transform:
// clang-repl> x
// To:
// // 1. If x is a built-in type like int, float.
// __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x);
// // 2. If x is a struct, and a lvalue.
// __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType,
// &x);
// // 3. If x is a struct, but a rvalue.
// new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue,
// xQualType)) (x);
Expr *Interpreter::SynthesizeExpr(Expr *E) {
Sema &S = getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();
if (!RuntimeIB) {
RuntimeIB = FindRuntimeInterface();
AddPrintValueCall = RuntimeIB->getPrintValueTransformer();
}
assert(AddPrintValueCall &&
"We don't have a runtime interface for pretty print!");
// Create parameter `ThisInterp`.
auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this);
// Create parameter `OutVal`.
auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue);
// Build `__clang_Interpreter_SetValue*` call.
ExprResult Result =
AddPrintValueCall(RuntimeIB.get(), E, {ThisInterp, OutValue});
// It could fail, like printing an array type in C. (not supported)
if (Result.isInvalid())
return E;
return Result.get();
}
// Temporary rvalue struct that need special care.
REPL_EXTERNAL_VISIBILITY void *
__clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal,
void *OpaqueType) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
return VRef.getPtr();
}
// Pointers, lvalue struct that can take as a reference.
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
void *Val) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
VRef.setPtr(Val);
}
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal,
void *OpaqueType) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
}
static void SetValueDataBasedOnQualType(Value &V, unsigned long long Data) {
QualType QT = V.getType();
if (const auto *ET = QT->getAs<EnumType>())
QT = ET->getDecl()->getIntegerType();
switch (QT->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("unknown type kind!");
#define X(type, name) \
case BuiltinType::name: \
V.set##name(Data); \
break;
REPL_BUILTIN_TYPES
#undef X
}
}
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
unsigned long long Val) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
SetValueDataBasedOnQualType(VRef, Val);
}
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
float Val) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
VRef.setFloat(Val);
}
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
double Val) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
VRef.setDouble(Val);
}
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
long double Val) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
VRef.setLongDouble(Val);
}
// A trampoline to work around the fact that operator placement new cannot
// really be forward declared due to libc++ and libstdc++ declaration mismatch.
// FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same
// definition in the interpreter runtime. We should move it in a runtime header
// which gets included by the interpreter and here.
struct __clang_Interpreter_NewTag {};
REPL_EXTERNAL_VISIBILITY void *
operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept {
// Just forward to the standard operator placement new.
return operator new(__sz, __p);
}