blob: 8312abc3603953e90f5334854cfbde1f5c0e2822 [file] [log] [blame]
//===- CompilerInvocation.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/CompilerInvocation.h"
#include "TestModuleFileExtension.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticDriver.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/Visibility.h"
#include "clang/Basic/XRayInstr.h"
#include "clang/Config/config.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "clang/Frontend/CommandLineSourceLoc.h"
#include "clang/Frontend/DependencyOutputOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/MigratorOptions.h"
#include "clang/Frontend/PreprocessorOutputOptions.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/CodeCompleteOptions.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ModuleFileExtension.h"
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Frontend/Debug/Options.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Linker/Linker.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptSpecifier.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Remarks/HotnessThresholdParser.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/HashBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <ctime>
#include <fstream>
#include <limits>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
using namespace clang;
using namespace driver;
using namespace options;
using namespace llvm::opt;
//===----------------------------------------------------------------------===//
// Helpers.
//===----------------------------------------------------------------------===//
// Parse misexpect tolerance argument value.
// Valid option values are integers in the range [0, 100)
static Expected<std::optional<uint32_t>> parseToleranceOption(StringRef Arg) {
uint32_t Val;
if (Arg.getAsInteger(10, Val))
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Not an integer: %s", Arg.data());
return Val;
}
//===----------------------------------------------------------------------===//
// Initialization.
//===----------------------------------------------------------------------===//
namespace {
template <class T> std::shared_ptr<T> make_shared_copy(const T &X) {
return std::make_shared<T>(X);
}
template <class T>
llvm::IntrusiveRefCntPtr<T> makeIntrusiveRefCntCopy(const T &X) {
return llvm::makeIntrusiveRefCnt<T>(X);
}
} // namespace
CompilerInvocationBase::CompilerInvocationBase()
: LangOpts(std::make_shared<LangOptions>()),
TargetOpts(std::make_shared<TargetOptions>()),
DiagnosticOpts(llvm::makeIntrusiveRefCnt<DiagnosticOptions>()),
HSOpts(std::make_shared<HeaderSearchOptions>()),
PPOpts(std::make_shared<PreprocessorOptions>()),
AnalyzerOpts(llvm::makeIntrusiveRefCnt<AnalyzerOptions>()),
MigratorOpts(std::make_shared<MigratorOptions>()),
APINotesOpts(std::make_shared<APINotesOptions>()),
CodeGenOpts(std::make_shared<CodeGenOptions>()),
FSOpts(std::make_shared<FileSystemOptions>()),
FrontendOpts(std::make_shared<FrontendOptions>()),
DependencyOutputOpts(std::make_shared<DependencyOutputOptions>()),
PreprocessorOutputOpts(std::make_shared<PreprocessorOutputOptions>()) {}
CompilerInvocationBase &
CompilerInvocationBase::deep_copy_assign(const CompilerInvocationBase &X) {
if (this != &X) {
LangOpts = make_shared_copy(X.getLangOpts());
TargetOpts = make_shared_copy(X.getTargetOpts());
DiagnosticOpts = makeIntrusiveRefCntCopy(X.getDiagnosticOpts());
HSOpts = make_shared_copy(X.getHeaderSearchOpts());
PPOpts = make_shared_copy(X.getPreprocessorOpts());
AnalyzerOpts = makeIntrusiveRefCntCopy(X.getAnalyzerOpts());
MigratorOpts = make_shared_copy(X.getMigratorOpts());
APINotesOpts = make_shared_copy(X.getAPINotesOpts());
CodeGenOpts = make_shared_copy(X.getCodeGenOpts());
FSOpts = make_shared_copy(X.getFileSystemOpts());
FrontendOpts = make_shared_copy(X.getFrontendOpts());
DependencyOutputOpts = make_shared_copy(X.getDependencyOutputOpts());
PreprocessorOutputOpts = make_shared_copy(X.getPreprocessorOutputOpts());
}
return *this;
}
CompilerInvocationBase &
CompilerInvocationBase::shallow_copy_assign(const CompilerInvocationBase &X) {
if (this != &X) {
LangOpts = X.LangOpts;
TargetOpts = X.TargetOpts;
DiagnosticOpts = X.DiagnosticOpts;
HSOpts = X.HSOpts;
PPOpts = X.PPOpts;
AnalyzerOpts = X.AnalyzerOpts;
MigratorOpts = X.MigratorOpts;
APINotesOpts = X.APINotesOpts;
CodeGenOpts = X.CodeGenOpts;
FSOpts = X.FSOpts;
FrontendOpts = X.FrontendOpts;
DependencyOutputOpts = X.DependencyOutputOpts;
PreprocessorOutputOpts = X.PreprocessorOutputOpts;
}
return *this;
}
CompilerInvocation::CompilerInvocation(const CowCompilerInvocation &X)
: CompilerInvocationBase(EmptyConstructor{}) {
CompilerInvocationBase::deep_copy_assign(X);
}
CompilerInvocation &
CompilerInvocation::operator=(const CowCompilerInvocation &X) {
CompilerInvocationBase::deep_copy_assign(X);
return *this;
}
namespace {
template <typename T>
T &ensureOwned(std::shared_ptr<T> &Storage) {
if (Storage.use_count() > 1)
Storage = std::make_shared<T>(*Storage);
return *Storage;
}
template <typename T>
T &ensureOwned(llvm::IntrusiveRefCntPtr<T> &Storage) {
if (Storage.useCount() > 1)
Storage = llvm::makeIntrusiveRefCnt<T>(*Storage);
return *Storage;
}
} // namespace
LangOptions &CowCompilerInvocation::getMutLangOpts() {
return ensureOwned(LangOpts);
}
TargetOptions &CowCompilerInvocation::getMutTargetOpts() {
return ensureOwned(TargetOpts);
}
DiagnosticOptions &CowCompilerInvocation::getMutDiagnosticOpts() {
return ensureOwned(DiagnosticOpts);
}
HeaderSearchOptions &CowCompilerInvocation::getMutHeaderSearchOpts() {
return ensureOwned(HSOpts);
}
PreprocessorOptions &CowCompilerInvocation::getMutPreprocessorOpts() {
return ensureOwned(PPOpts);
}
AnalyzerOptions &CowCompilerInvocation::getMutAnalyzerOpts() {
return ensureOwned(AnalyzerOpts);
}
MigratorOptions &CowCompilerInvocation::getMutMigratorOpts() {
return ensureOwned(MigratorOpts);
}
APINotesOptions &CowCompilerInvocation::getMutAPINotesOpts() {
return ensureOwned(APINotesOpts);
}
CodeGenOptions &CowCompilerInvocation::getMutCodeGenOpts() {
return ensureOwned(CodeGenOpts);
}
FileSystemOptions &CowCompilerInvocation::getMutFileSystemOpts() {
return ensureOwned(FSOpts);
}
FrontendOptions &CowCompilerInvocation::getMutFrontendOpts() {
return ensureOwned(FrontendOpts);
}
DependencyOutputOptions &CowCompilerInvocation::getMutDependencyOutputOpts() {
return ensureOwned(DependencyOutputOpts);
}
PreprocessorOutputOptions &
CowCompilerInvocation::getMutPreprocessorOutputOpts() {
return ensureOwned(PreprocessorOutputOpts);
}
//===----------------------------------------------------------------------===//
// Normalizers
//===----------------------------------------------------------------------===//
using ArgumentConsumer = CompilerInvocation::ArgumentConsumer;
#define SIMPLE_ENUM_VALUE_TABLE
#include "clang/Driver/Options.inc"
#undef SIMPLE_ENUM_VALUE_TABLE
static std::optional<bool> normalizeSimpleFlag(OptSpecifier Opt,
unsigned TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
if (Args.hasArg(Opt))
return true;
return std::nullopt;
}
static std::optional<bool> normalizeSimpleNegativeFlag(OptSpecifier Opt,
unsigned,
const ArgList &Args,
DiagnosticsEngine &) {
if (Args.hasArg(Opt))
return false;
return std::nullopt;
}
/// The tblgen-erated code passes in a fifth parameter of an arbitrary type, but
/// denormalizeSimpleFlags never looks at it. Avoid bloating compile-time with
/// unnecessary template instantiations and just ignore it with a variadic
/// argument.
static void denormalizeSimpleFlag(ArgumentConsumer Consumer,
const Twine &Spelling, Option::OptionClass,
unsigned, /*T*/...) {
Consumer(Spelling);
}
template <typename T> static constexpr bool is_uint64_t_convertible() {
return !std::is_same_v<T, uint64_t> && llvm::is_integral_or_enum<T>::value;
}
template <typename T,
std::enable_if_t<!is_uint64_t_convertible<T>(), bool> = false>
static auto makeFlagToValueNormalizer(T Value) {
return [Value](OptSpecifier Opt, unsigned, const ArgList &Args,
DiagnosticsEngine &) -> std::optional<T> {
if (Args.hasArg(Opt))
return Value;
return std::nullopt;
};
}
template <typename T,
std::enable_if_t<is_uint64_t_convertible<T>(), bool> = false>
static auto makeFlagToValueNormalizer(T Value) {
return makeFlagToValueNormalizer(uint64_t(Value));
}
static auto makeBooleanOptionNormalizer(bool Value, bool OtherValue,
OptSpecifier OtherOpt) {
return [Value, OtherValue,
OtherOpt](OptSpecifier Opt, unsigned, const ArgList &Args,
DiagnosticsEngine &) -> std::optional<bool> {
if (const Arg *A = Args.getLastArg(Opt, OtherOpt)) {
return A->getOption().matches(Opt) ? Value : OtherValue;
}
return std::nullopt;
};
}
static auto makeBooleanOptionDenormalizer(bool Value) {
return [Value](ArgumentConsumer Consumer, const Twine &Spelling,
Option::OptionClass, unsigned, bool KeyPath) {
if (KeyPath == Value)
Consumer(Spelling);
};
}
static void denormalizeStringImpl(ArgumentConsumer Consumer,
const Twine &Spelling,
Option::OptionClass OptClass, unsigned,
const Twine &Value) {
switch (OptClass) {
case Option::SeparateClass:
case Option::JoinedOrSeparateClass:
case Option::JoinedAndSeparateClass:
Consumer(Spelling);
Consumer(Value);
break;
case Option::JoinedClass:
case Option::CommaJoinedClass:
Consumer(Spelling + Value);
break;
default:
llvm_unreachable("Cannot denormalize an option with option class "
"incompatible with string denormalization.");
}
}
template <typename T>
static void denormalizeString(ArgumentConsumer Consumer, const Twine &Spelling,
Option::OptionClass OptClass, unsigned TableIndex,
T Value) {
denormalizeStringImpl(Consumer, Spelling, OptClass, TableIndex, Twine(Value));
}
static std::optional<SimpleEnumValue>
findValueTableByName(const SimpleEnumValueTable &Table, StringRef Name) {
for (int I = 0, E = Table.Size; I != E; ++I)
if (Name == Table.Table[I].Name)
return Table.Table[I];
return std::nullopt;
}
static std::optional<SimpleEnumValue>
findValueTableByValue(const SimpleEnumValueTable &Table, unsigned Value) {
for (int I = 0, E = Table.Size; I != E; ++I)
if (Value == Table.Table[I].Value)
return Table.Table[I];
return std::nullopt;
}
static std::optional<unsigned> normalizeSimpleEnum(OptSpecifier Opt,
unsigned TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
assert(TableIndex < SimpleEnumValueTablesSize);
const SimpleEnumValueTable &Table = SimpleEnumValueTables[TableIndex];
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return std::nullopt;
StringRef ArgValue = Arg->getValue();
if (auto MaybeEnumVal = findValueTableByName(Table, ArgValue))
return MaybeEnumVal->Value;
Diags.Report(diag::err_drv_invalid_value)
<< Arg->getAsString(Args) << ArgValue;
return std::nullopt;
}
static void denormalizeSimpleEnumImpl(ArgumentConsumer Consumer,
const Twine &Spelling,
Option::OptionClass OptClass,
unsigned TableIndex, unsigned Value) {
assert(TableIndex < SimpleEnumValueTablesSize);
const SimpleEnumValueTable &Table = SimpleEnumValueTables[TableIndex];
if (auto MaybeEnumVal = findValueTableByValue(Table, Value)) {
denormalizeString(Consumer, Spelling, OptClass, TableIndex,
MaybeEnumVal->Name);
} else {
llvm_unreachable("The simple enum value was not correctly defined in "
"the tablegen option description");
}
}
template <typename T>
static void denormalizeSimpleEnum(ArgumentConsumer Consumer,
const Twine &Spelling,
Option::OptionClass OptClass,
unsigned TableIndex, T Value) {
return denormalizeSimpleEnumImpl(Consumer, Spelling, OptClass, TableIndex,
static_cast<unsigned>(Value));
}
static std::optional<std::string> normalizeString(OptSpecifier Opt,
int TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return std::nullopt;
return std::string(Arg->getValue());
}
template <typename IntTy>
static std::optional<IntTy> normalizeStringIntegral(OptSpecifier Opt, int,
const ArgList &Args,
DiagnosticsEngine &Diags) {
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return std::nullopt;
IntTy Res;
if (StringRef(Arg->getValue()).getAsInteger(0, Res)) {
Diags.Report(diag::err_drv_invalid_int_value)
<< Arg->getAsString(Args) << Arg->getValue();
return std::nullopt;
}
return Res;
}
static std::optional<std::vector<std::string>>
normalizeStringVector(OptSpecifier Opt, int, const ArgList &Args,
DiagnosticsEngine &) {
return Args.getAllArgValues(Opt);
}
static void denormalizeStringVector(ArgumentConsumer Consumer,
const Twine &Spelling,
Option::OptionClass OptClass,
unsigned TableIndex,
const std::vector<std::string> &Values) {
switch (OptClass) {
case Option::CommaJoinedClass: {
std::string CommaJoinedValue;
if (!Values.empty()) {
CommaJoinedValue.append(Values.front());
for (const std::string &Value : llvm::drop_begin(Values, 1)) {
CommaJoinedValue.append(",");
CommaJoinedValue.append(Value);
}
}
denormalizeString(Consumer, Spelling, Option::OptionClass::JoinedClass,
TableIndex, CommaJoinedValue);
break;
}
case Option::JoinedClass:
case Option::SeparateClass:
case Option::JoinedOrSeparateClass:
for (const std::string &Value : Values)
denormalizeString(Consumer, Spelling, OptClass, TableIndex, Value);
break;
default:
llvm_unreachable("Cannot denormalize an option with option class "
"incompatible with string vector denormalization.");
}
}
static std::optional<std::string> normalizeTriple(OptSpecifier Opt,
int TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return std::nullopt;
return llvm::Triple::normalize(Arg->getValue());
}
template <typename T, typename U>
static T mergeForwardValue(T KeyPath, U Value) {
return static_cast<T>(Value);
}
template <typename T, typename U> static T mergeMaskValue(T KeyPath, U Value) {
return KeyPath | Value;
}
template <typename T> static T extractForwardValue(T KeyPath) {
return KeyPath;
}
template <typename T, typename U, U Value>
static T extractMaskValue(T KeyPath) {
return ((KeyPath & Value) == Value) ? static_cast<T>(Value) : T();
}
#define PARSE_OPTION_WITH_MARSHALLING( \
ARGS, DIAGS, PREFIX_TYPE, SPELLING, ID, KIND, GROUP, ALIAS, ALIASARGS, \
FLAGS, VISIBILITY, PARAM, HELPTEXT, HELPTEXTSFORVARIANTS, METAVAR, VALUES, \
SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, IMPLIED_CHECK, \
IMPLIED_VALUE, NORMALIZER, DENORMALIZER, MERGER, EXTRACTOR, TABLE_INDEX) \
if ((VISIBILITY) & options::CC1Option) { \
KEYPATH = MERGER(KEYPATH, DEFAULT_VALUE); \
if (IMPLIED_CHECK) \
KEYPATH = MERGER(KEYPATH, IMPLIED_VALUE); \
if (SHOULD_PARSE) \
if (auto MaybeValue = NORMALIZER(OPT_##ID, TABLE_INDEX, ARGS, DIAGS)) \
KEYPATH = \
MERGER(KEYPATH, static_cast<decltype(KEYPATH)>(*MaybeValue)); \
}
// Capture the extracted value as a lambda argument to avoid potential issues
// with lifetime extension of the reference.
#define GENERATE_OPTION_WITH_MARSHALLING( \
CONSUMER, PREFIX_TYPE, SPELLING, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, \
VISIBILITY, PARAM, HELPTEXT, HELPTEXTSFORVARIANTS, METAVAR, VALUES, \
SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, IMPLIED_CHECK, \
IMPLIED_VALUE, NORMALIZER, DENORMALIZER, MERGER, EXTRACTOR, TABLE_INDEX) \
if ((VISIBILITY) & options::CC1Option) { \
[&](const auto &Extracted) { \
if (ALWAYS_EMIT || \
(Extracted != \
static_cast<decltype(KEYPATH)>((IMPLIED_CHECK) ? (IMPLIED_VALUE) \
: (DEFAULT_VALUE)))) \
DENORMALIZER(CONSUMER, SPELLING, Option::KIND##Class, TABLE_INDEX, \
Extracted); \
}(EXTRACTOR(KEYPATH)); \
}
static StringRef GetInputKindName(InputKind IK);
static bool FixupInvocation(CompilerInvocation &Invocation,
DiagnosticsEngine &Diags, const ArgList &Args,
InputKind IK) {
unsigned NumErrorsBefore = Diags.getNumErrors();
LangOptions &LangOpts = Invocation.getLangOpts();
CodeGenOptions &CodeGenOpts = Invocation.getCodeGenOpts();
TargetOptions &TargetOpts = Invocation.getTargetOpts();
FrontendOptions &FrontendOpts = Invocation.getFrontendOpts();
CodeGenOpts.XRayInstrumentFunctions = LangOpts.XRayInstrument;
CodeGenOpts.XRayAlwaysEmitCustomEvents = LangOpts.XRayAlwaysEmitCustomEvents;
CodeGenOpts.XRayAlwaysEmitTypedEvents = LangOpts.XRayAlwaysEmitTypedEvents;
CodeGenOpts.DisableFree = FrontendOpts.DisableFree;
FrontendOpts.GenerateGlobalModuleIndex = FrontendOpts.UseGlobalModuleIndex;
if (FrontendOpts.ShowStats)
CodeGenOpts.ClearASTBeforeBackend = false;
LangOpts.SanitizeCoverage = CodeGenOpts.hasSanitizeCoverage();
LangOpts.ForceEmitVTables = CodeGenOpts.ForceEmitVTables;
LangOpts.SpeculativeLoadHardening = CodeGenOpts.SpeculativeLoadHardening;
LangOpts.CurrentModule = LangOpts.ModuleName;
llvm::Triple T(TargetOpts.Triple);
llvm::Triple::ArchType Arch = T.getArch();
CodeGenOpts.CodeModel = TargetOpts.CodeModel;
CodeGenOpts.LargeDataThreshold = TargetOpts.LargeDataThreshold;
if (LangOpts.getExceptionHandling() !=
LangOptions::ExceptionHandlingKind::None &&
T.isWindowsMSVCEnvironment())
Diags.Report(diag::err_fe_invalid_exception_model)
<< static_cast<unsigned>(LangOpts.getExceptionHandling()) << T.str();
if (LangOpts.AppleKext && !LangOpts.CPlusPlus)
Diags.Report(diag::warn_c_kext);
if (LangOpts.NewAlignOverride &&
!llvm::isPowerOf2_32(LangOpts.NewAlignOverride)) {
Arg *A = Args.getLastArg(OPT_fnew_alignment_EQ);
Diags.Report(diag::err_fe_invalid_alignment)
<< A->getAsString(Args) << A->getValue();
LangOpts.NewAlignOverride = 0;
}
// Prevent the user from specifying both -fsycl-is-device and -fsycl-is-host.
if (LangOpts.SYCLIsDevice && LangOpts.SYCLIsHost)
Diags.Report(diag::err_drv_argument_not_allowed_with) << "-fsycl-is-device"
<< "-fsycl-is-host";
if (Args.hasArg(OPT_fgnu89_inline) && LangOpts.CPlusPlus)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< "-fgnu89-inline" << GetInputKindName(IK);
if (Args.hasArg(OPT_hlsl_entrypoint) && !LangOpts.HLSL)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< "-hlsl-entry" << GetInputKindName(IK);
if (Args.hasArg(OPT_fgpu_allow_device_init) && !LangOpts.HIP)
Diags.Report(diag::warn_ignored_hip_only_option)
<< Args.getLastArg(OPT_fgpu_allow_device_init)->getAsString(Args);
if (Args.hasArg(OPT_gpu_max_threads_per_block_EQ) && !LangOpts.HIP)
Diags.Report(diag::warn_ignored_hip_only_option)
<< Args.getLastArg(OPT_gpu_max_threads_per_block_EQ)->getAsString(Args);
// When these options are used, the compiler is allowed to apply
// optimizations that may affect the final result. For example
// (x+y)+z is transformed to x+(y+z) but may not give the same
// final result; it's not value safe.
// Another example can be to simplify x/x to 1.0 but x could be 0.0, INF
// or NaN. Final result may then differ. An error is issued when the eval
// method is set with one of these options.
if (Args.hasArg(OPT_ffp_eval_method_EQ)) {
if (LangOpts.ApproxFunc)
Diags.Report(diag::err_incompatible_fp_eval_method_options) << 0;
if (LangOpts.AllowFPReassoc)
Diags.Report(diag::err_incompatible_fp_eval_method_options) << 1;
if (LangOpts.AllowRecip)
Diags.Report(diag::err_incompatible_fp_eval_method_options) << 2;
}
// -cl-strict-aliasing needs to emit diagnostic in the case where CL > 1.0.
// This option should be deprecated for CL > 1.0 because
// this option was added for compatibility with OpenCL 1.0.
if (Args.getLastArg(OPT_cl_strict_aliasing) &&
(LangOpts.getOpenCLCompatibleVersion() > 100))
Diags.Report(diag::warn_option_invalid_ocl_version)
<< LangOpts.getOpenCLVersionString()
<< Args.getLastArg(OPT_cl_strict_aliasing)->getAsString(Args);
if (Arg *A = Args.getLastArg(OPT_fdefault_calling_conv_EQ)) {
auto DefaultCC = LangOpts.getDefaultCallingConv();
bool emitError = (DefaultCC == LangOptions::DCC_FastCall ||
DefaultCC == LangOptions::DCC_StdCall) &&
Arch != llvm::Triple::x86;
emitError |= (DefaultCC == LangOptions::DCC_VectorCall ||
DefaultCC == LangOptions::DCC_RegCall) &&
!T.isX86();
emitError |= DefaultCC == LangOptions::DCC_RtdCall && Arch != llvm::Triple::m68k;
if (emitError)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << T.getTriple();
}
return Diags.getNumErrors() == NumErrorsBefore;
}
//===----------------------------------------------------------------------===//
// Deserialization (from args)
//===----------------------------------------------------------------------===//
static unsigned getOptimizationLevel(ArgList &Args, InputKind IK,
DiagnosticsEngine &Diags) {
unsigned DefaultOpt = 0;
if ((IK.getLanguage() == Language::OpenCL ||
IK.getLanguage() == Language::OpenCLCXX) &&
!Args.hasArg(OPT_cl_opt_disable))
DefaultOpt = 2;
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O0))
return 0;
if (A->getOption().matches(options::OPT_Ofast))
return 3;
assert(A->getOption().matches(options::OPT_O));
StringRef S(A->getValue());
if (S == "s" || S == "z")
return 2;
if (S == "g")
return 1;
return getLastArgIntValue(Args, OPT_O, DefaultOpt, Diags);
}
return DefaultOpt;
}
static unsigned getOptimizationLevelSize(ArgList &Args) {
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O)) {
switch (A->getValue()[0]) {
default:
return 0;
case 's':
return 1;
case 'z':
return 2;
}
}
}
return 0;
}
static void GenerateArg(ArgumentConsumer Consumer,
llvm::opt::OptSpecifier OptSpecifier) {
Option Opt = getDriverOptTable().getOption(OptSpecifier);
denormalizeSimpleFlag(Consumer, Opt.getPrefixedName(),
Option::OptionClass::FlagClass, 0);
}
static void GenerateArg(ArgumentConsumer Consumer,
llvm::opt::OptSpecifier OptSpecifier,
const Twine &Value) {
Option Opt = getDriverOptTable().getOption(OptSpecifier);
denormalizeString(Consumer, Opt.getPrefixedName(), Opt.getKind(), 0, Value);
}
// Parse command line arguments into CompilerInvocation.
using ParseFn =
llvm::function_ref<bool(CompilerInvocation &, ArrayRef<const char *>,
DiagnosticsEngine &, const char *)>;
// Generate command line arguments from CompilerInvocation.
using GenerateFn = llvm::function_ref<void(
CompilerInvocation &, SmallVectorImpl<const char *> &,
CompilerInvocation::StringAllocator)>;
/// May perform round-trip of command line arguments. By default, the round-trip
/// is enabled in assert builds. This can be overwritten at run-time via the
/// "-round-trip-args" and "-no-round-trip-args" command line flags, or via the
/// ForceRoundTrip parameter.
///
/// During round-trip, the command line arguments are parsed into a dummy
/// CompilerInvocation, which is used to generate the command line arguments
/// again. The real CompilerInvocation is then created by parsing the generated
/// arguments, not the original ones. This (in combination with tests covering
/// argument behavior) ensures the generated command line is complete (doesn't
/// drop/mangle any arguments).
///
/// Finally, we check the command line that was used to create the real
/// CompilerInvocation instance. By default, we compare it to the command line
/// the real CompilerInvocation generates. This checks whether the generator is
/// deterministic. If \p CheckAgainstOriginalInvocation is enabled, we instead
/// compare it to the original command line to verify the original command-line
/// was canonical and can round-trip exactly.
static bool RoundTrip(ParseFn Parse, GenerateFn Generate,
CompilerInvocation &RealInvocation,
CompilerInvocation &DummyInvocation,
ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0,
bool CheckAgainstOriginalInvocation = false,
bool ForceRoundTrip = false) {
#ifndef NDEBUG
bool DoRoundTripDefault = true;
#else
bool DoRoundTripDefault = false;
#endif
bool DoRoundTrip = DoRoundTripDefault;
if (ForceRoundTrip) {
DoRoundTrip = true;
} else {
for (const auto *Arg : CommandLineArgs) {
if (Arg == StringRef("-round-trip-args"))
DoRoundTrip = true;
if (Arg == StringRef("-no-round-trip-args"))
DoRoundTrip = false;
}
}
// If round-trip was not requested, simply run the parser with the real
// invocation diagnostics.
if (!DoRoundTrip)
return Parse(RealInvocation, CommandLineArgs, Diags, Argv0);
// Serializes quoted (and potentially escaped) arguments.
auto SerializeArgs = [](ArrayRef<const char *> Args) {
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
for (const char *Arg : Args) {
llvm::sys::printArg(OS, Arg, /*Quote=*/true);
OS << ' ';
}
OS.flush();
return Buffer;
};
// Setup a dummy DiagnosticsEngine.
DiagnosticsEngine DummyDiags(new DiagnosticIDs(), new DiagnosticOptions());
DummyDiags.setClient(new TextDiagnosticBuffer());
// Run the first parse on the original arguments with the dummy invocation and
// diagnostics.
if (!Parse(DummyInvocation, CommandLineArgs, DummyDiags, Argv0) ||
DummyDiags.getNumWarnings() != 0) {
// If the first parse did not succeed, it must be user mistake (invalid
// command line arguments). We won't be able to generate arguments that
// would reproduce the same result. Let's fail again with the real
// invocation and diagnostics, so all side-effects of parsing are visible.
unsigned NumWarningsBefore = Diags.getNumWarnings();
auto Success = Parse(RealInvocation, CommandLineArgs, Diags, Argv0);
if (!Success || Diags.getNumWarnings() != NumWarningsBefore)
return Success;
// Parse with original options and diagnostics succeeded even though it
// shouldn't have. Something is off.
Diags.Report(diag::err_cc1_round_trip_fail_then_ok);
Diags.Report(diag::note_cc1_round_trip_original)
<< SerializeArgs(CommandLineArgs);
return false;
}
// Setup string allocator.
llvm::BumpPtrAllocator Alloc;
llvm::StringSaver StringPool(Alloc);
auto SA = [&StringPool](const Twine &Arg) {
return StringPool.save(Arg).data();
};
// Generate arguments from the dummy invocation. If Generate is the
// inverse of Parse, the newly generated arguments must have the same
// semantics as the original.
SmallVector<const char *> GeneratedArgs;
Generate(DummyInvocation, GeneratedArgs, SA);
// Run the second parse, now on the generated arguments, and with the real
// invocation and diagnostics. The result is what we will end up using for the
// rest of compilation, so if Generate is not inverse of Parse, something down
// the line will break.
bool Success2 = Parse(RealInvocation, GeneratedArgs, Diags, Argv0);
// The first parse on original arguments succeeded, but second parse of
// generated arguments failed. Something must be wrong with the generator.
if (!Success2) {
Diags.Report(diag::err_cc1_round_trip_ok_then_fail);
Diags.Report(diag::note_cc1_round_trip_generated)
<< 1 << SerializeArgs(GeneratedArgs);
return false;
}
SmallVector<const char *> ComparisonArgs;
if (CheckAgainstOriginalInvocation)
// Compare against original arguments.
ComparisonArgs.assign(CommandLineArgs.begin(), CommandLineArgs.end());
else
// Generate arguments again, this time from the options we will end up using
// for the rest of the compilation.
Generate(RealInvocation, ComparisonArgs, SA);
// Compares two lists of arguments.
auto Equal = [](const ArrayRef<const char *> A,
const ArrayRef<const char *> B) {
return std::equal(A.begin(), A.end(), B.begin(), B.end(),
[](const char *AElem, const char *BElem) {
return StringRef(AElem) == StringRef(BElem);
});
};
// If we generated different arguments from what we assume are two
// semantically equivalent CompilerInvocations, the Generate function may
// be non-deterministic.
if (!Equal(GeneratedArgs, ComparisonArgs)) {
Diags.Report(diag::err_cc1_round_trip_mismatch);
Diags.Report(diag::note_cc1_round_trip_generated)
<< 1 << SerializeArgs(GeneratedArgs);
Diags.Report(diag::note_cc1_round_trip_generated)
<< 2 << SerializeArgs(ComparisonArgs);
return false;
}
Diags.Report(diag::remark_cc1_round_trip_generated)
<< 1 << SerializeArgs(GeneratedArgs);
Diags.Report(diag::remark_cc1_round_trip_generated)
<< 2 << SerializeArgs(ComparisonArgs);
return Success2;
}
bool CompilerInvocation::checkCC1RoundTrip(ArrayRef<const char *> Args,
DiagnosticsEngine &Diags,
const char *Argv0) {
CompilerInvocation DummyInvocation1, DummyInvocation2;
return RoundTrip(
[](CompilerInvocation &Invocation, ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0) {
return CreateFromArgsImpl(Invocation, CommandLineArgs, Diags, Argv0);
},
[](CompilerInvocation &Invocation, SmallVectorImpl<const char *> &Args,
StringAllocator SA) {
Args.push_back("-cc1");
Invocation.generateCC1CommandLine(Args, SA);
},
DummyInvocation1, DummyInvocation2, Args, Diags, Argv0,
/*CheckAgainstOriginalInvocation=*/true, /*ForceRoundTrip=*/true);
}
static void addDiagnosticArgs(ArgList &Args, OptSpecifier Group,
OptSpecifier GroupWithValue,
std::vector<std::string> &Diagnostics) {
for (auto *A : Args.filtered(Group)) {
if (A->getOption().getKind() == Option::FlagClass) {
// The argument is a pure flag (such as OPT_Wall or OPT_Wdeprecated). Add
// its name (minus the "W" or "R" at the beginning) to the diagnostics.
Diagnostics.push_back(
std::string(A->getOption().getName().drop_front(1)));
} else if (A->getOption().matches(GroupWithValue)) {
// This is -Wfoo= or -Rfoo=, where foo is the name of the diagnostic
// group. Add only the group name to the diagnostics.
Diagnostics.push_back(
std::string(A->getOption().getName().drop_front(1).rtrim("=-")));
} else {
// Otherwise, add its value (for OPT_W_Joined and similar).
Diagnostics.push_back(A->getValue());
}
}
}
// Parse the Static Analyzer configuration. If \p Diags is set to nullptr,
// it won't verify the input.
static void parseAnalyzerConfigs(AnalyzerOptions &AnOpts,
DiagnosticsEngine *Diags);
static void getAllNoBuiltinFuncValues(ArgList &Args,
std::vector<std::string> &Funcs) {
std::vector<std::string> Values = Args.getAllArgValues(OPT_fno_builtin_);
auto BuiltinEnd = llvm::partition(Values, Builtin::Context::isBuiltinFunc);
Funcs.insert(Funcs.end(), Values.begin(), BuiltinEnd);
}
static void GenerateAnalyzerArgs(const AnalyzerOptions &Opts,
ArgumentConsumer Consumer) {
const AnalyzerOptions *AnalyzerOpts = &Opts;
#define ANALYZER_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef ANALYZER_OPTION_WITH_MARSHALLING
if (Opts.AnalysisConstraintsOpt != RangeConstraintsModel) {
switch (Opts.AnalysisConstraintsOpt) {
#define ANALYSIS_CONSTRAINTS(NAME, CMDFLAG, DESC, CREATFN) \
case NAME##Model: \
GenerateArg(Consumer, OPT_analyzer_constraints, CMDFLAG); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis constraint.");
}
}
if (Opts.AnalysisDiagOpt != PD_HTML) {
switch (Opts.AnalysisDiagOpt) {
#define ANALYSIS_DIAGNOSTICS(NAME, CMDFLAG, DESC, CREATFN) \
case PD_##NAME: \
GenerateArg(Consumer, OPT_analyzer_output, CMDFLAG); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis diagnostic client.");
}
}
if (Opts.AnalysisPurgeOpt != PurgeStmt) {
switch (Opts.AnalysisPurgeOpt) {
#define ANALYSIS_PURGE(NAME, CMDFLAG, DESC) \
case NAME: \
GenerateArg(Consumer, OPT_analyzer_purge, CMDFLAG); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis purge mode.");
}
}
if (Opts.InliningMode != NoRedundancy) {
switch (Opts.InliningMode) {
#define ANALYSIS_INLINING_MODE(NAME, CMDFLAG, DESC) \
case NAME: \
GenerateArg(Consumer, OPT_analyzer_inlining_mode, CMDFLAG); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis inlining mode.");
}
}
for (const auto &CP : Opts.CheckersAndPackages) {
OptSpecifier Opt =
CP.second ? OPT_analyzer_checker : OPT_analyzer_disable_checker;
GenerateArg(Consumer, Opt, CP.first);
}
AnalyzerOptions ConfigOpts;
parseAnalyzerConfigs(ConfigOpts, nullptr);
// Sort options by key to avoid relying on StringMap iteration order.
SmallVector<std::pair<StringRef, StringRef>, 4> SortedConfigOpts;
for (const auto &C : Opts.Config)
SortedConfigOpts.emplace_back(C.getKey(), C.getValue());
llvm::sort(SortedConfigOpts, llvm::less_first());
for (const auto &[Key, Value] : SortedConfigOpts) {
// Don't generate anything that came from parseAnalyzerConfigs. It would be
// redundant and may not be valid on the command line.
auto Entry = ConfigOpts.Config.find(Key);
if (Entry != ConfigOpts.Config.end() && Entry->getValue() == Value)
continue;
GenerateArg(Consumer, OPT_analyzer_config, Key + "=" + Value);
}
// Nothing to generate for FullCompilerInvocation.
}
static bool ParseAnalyzerArgs(AnalyzerOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
AnalyzerOptions *AnalyzerOpts = &Opts;
#define ANALYZER_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef ANALYZER_OPTION_WITH_MARSHALLING
if (Arg *A = Args.getLastArg(OPT_analyzer_constraints)) {
StringRef Name = A->getValue();
AnalysisConstraints Value = llvm::StringSwitch<AnalysisConstraints>(Name)
#define ANALYSIS_CONSTRAINTS(NAME, CMDFLAG, DESC, CREATFN) \
.Case(CMDFLAG, NAME##Model)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NumConstraints);
if (Value == NumConstraints) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
#ifndef LLVM_WITH_Z3
if (Value == AnalysisConstraints::Z3ConstraintsModel) {
Diags.Report(diag::err_analyzer_not_built_with_z3);
}
#endif // LLVM_WITH_Z3
Opts.AnalysisConstraintsOpt = Value;
}
}
if (Arg *A = Args.getLastArg(OPT_analyzer_output)) {
StringRef Name = A->getValue();
AnalysisDiagClients Value = llvm::StringSwitch<AnalysisDiagClients>(Name)
#define ANALYSIS_DIAGNOSTICS(NAME, CMDFLAG, DESC, CREATFN) \
.Case(CMDFLAG, PD_##NAME)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NUM_ANALYSIS_DIAG_CLIENTS);
if (Value == NUM_ANALYSIS_DIAG_CLIENTS) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
Opts.AnalysisDiagOpt = Value;
}
}
if (Arg *A = Args.getLastArg(OPT_analyzer_purge)) {
StringRef Name = A->getValue();
AnalysisPurgeMode Value = llvm::StringSwitch<AnalysisPurgeMode>(Name)
#define ANALYSIS_PURGE(NAME, CMDFLAG, DESC) \
.Case(CMDFLAG, NAME)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NumPurgeModes);
if (Value == NumPurgeModes) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
Opts.AnalysisPurgeOpt = Value;
}
}
if (Arg *A = Args.getLastArg(OPT_analyzer_inlining_mode)) {
StringRef Name = A->getValue();
AnalysisInliningMode Value = llvm::StringSwitch<AnalysisInliningMode>(Name)
#define ANALYSIS_INLINING_MODE(NAME, CMDFLAG, DESC) \
.Case(CMDFLAG, NAME)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NumInliningModes);
if (Value == NumInliningModes) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
Opts.InliningMode = Value;
}
}
Opts.CheckersAndPackages.clear();
for (const Arg *A :
Args.filtered(OPT_analyzer_checker, OPT_analyzer_disable_checker)) {
A->claim();
bool IsEnabled = A->getOption().getID() == OPT_analyzer_checker;
// We can have a list of comma separated checker names, e.g:
// '-analyzer-checker=cocoa,unix'
StringRef CheckerAndPackageList = A->getValue();
SmallVector<StringRef, 16> CheckersAndPackages;
CheckerAndPackageList.split(CheckersAndPackages, ",");
for (const StringRef &CheckerOrPackage : CheckersAndPackages)
Opts.CheckersAndPackages.emplace_back(std::string(CheckerOrPackage),
IsEnabled);
}
// Go through the analyzer configuration options.
for (const auto *A : Args.filtered(OPT_analyzer_config)) {
// We can have a list of comma separated config names, e.g:
// '-analyzer-config key1=val1,key2=val2'
StringRef configList = A->getValue();
SmallVector<StringRef, 4> configVals;
configList.split(configVals, ",");
for (const auto &configVal : configVals) {
StringRef key, val;
std::tie(key, val) = configVal.split("=");
if (val.empty()) {
Diags.Report(SourceLocation(),
diag::err_analyzer_config_no_value) << configVal;
break;
}
if (val.contains('=')) {
Diags.Report(SourceLocation(),
diag::err_analyzer_config_multiple_values)
<< configVal;
break;
}
// TODO: Check checker options too, possibly in CheckerRegistry.
// Leave unknown non-checker configs unclaimed.
if (!key.contains(":") && Opts.isUnknownAnalyzerConfig(key)) {
if (Opts.ShouldEmitErrorsOnInvalidConfigValue)
Diags.Report(diag::err_analyzer_config_unknown) << key;
continue;
}
A->claim();
Opts.Config[key] = std::string(val);
}
}
if (Opts.ShouldEmitErrorsOnInvalidConfigValue)
parseAnalyzerConfigs(Opts, &Diags);
else
parseAnalyzerConfigs(Opts, nullptr);
llvm::raw_string_ostream os(Opts.FullCompilerInvocation);
for (unsigned i = 0; i < Args.getNumInputArgStrings(); ++i) {
if (i != 0)
os << " ";
os << Args.getArgString(i);
}
os.flush();
return Diags.getNumErrors() == NumErrorsBefore;
}
static StringRef getStringOption(AnalyzerOptions::ConfigTable &Config,
StringRef OptionName, StringRef DefaultVal) {
return Config.insert({OptionName, std::string(DefaultVal)}).first->second;
}
static void initOption(AnalyzerOptions::ConfigTable &Config,
DiagnosticsEngine *Diags,
StringRef &OptionField, StringRef Name,
StringRef DefaultVal) {
// String options may be known to invalid (e.g. if the expected string is a
// file name, but the file does not exist), those will have to be checked in
// parseConfigs.
OptionField = getStringOption(Config, Name, DefaultVal);
}
static void initOption(AnalyzerOptions::ConfigTable &Config,
DiagnosticsEngine *Diags,
bool &OptionField, StringRef Name, bool DefaultVal) {
auto PossiblyInvalidVal =
llvm::StringSwitch<std::optional<bool>>(
getStringOption(Config, Name, (DefaultVal ? "true" : "false")))
.Case("true", true)
.Case("false", false)
.Default(std::nullopt);
if (!PossiblyInvalidVal) {
if (Diags)
Diags->Report(diag::err_analyzer_config_invalid_input)
<< Name << "a boolean";
else
OptionField = DefaultVal;
} else
OptionField = *PossiblyInvalidVal;
}
static void initOption(AnalyzerOptions::ConfigTable &Config,
DiagnosticsEngine *Diags,
unsigned &OptionField, StringRef Name,
unsigned DefaultVal) {
OptionField = DefaultVal;
bool HasFailed = getStringOption(Config, Name, std::to_string(DefaultVal))
.getAsInteger(0, OptionField);
if (Diags && HasFailed)
Diags->Report(diag::err_analyzer_config_invalid_input)
<< Name << "an unsigned";
}
static void parseAnalyzerConfigs(AnalyzerOptions &AnOpts,
DiagnosticsEngine *Diags) {
// TODO: There's no need to store the entire configtable, it'd be plenty
// enough to store checker options.
#define ANALYZER_OPTION(TYPE, NAME, CMDFLAG, DESC, DEFAULT_VAL) \
initOption(AnOpts.Config, Diags, AnOpts.NAME, CMDFLAG, DEFAULT_VAL);
#define ANALYZER_OPTION_DEPENDS_ON_USER_MODE(...)
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.def"
assert(AnOpts.UserMode == "shallow" || AnOpts.UserMode == "deep");
const bool InShallowMode = AnOpts.UserMode == "shallow";
#define ANALYZER_OPTION(...)
#define ANALYZER_OPTION_DEPENDS_ON_USER_MODE(TYPE, NAME, CMDFLAG, DESC, \
SHALLOW_VAL, DEEP_VAL) \
initOption(AnOpts.Config, Diags, AnOpts.NAME, CMDFLAG, \
InShallowMode ? SHALLOW_VAL : DEEP_VAL);
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.def"
// At this point, AnalyzerOptions is configured. Let's validate some options.
// FIXME: Here we try to validate the silenced checkers or packages are valid.
// The current approach only validates the registered checkers which does not
// contain the runtime enabled checkers and optimally we would validate both.
if (!AnOpts.RawSilencedCheckersAndPackages.empty()) {
std::vector<StringRef> Checkers =
AnOpts.getRegisteredCheckers(/*IncludeExperimental=*/true);
std::vector<StringRef> Packages =
AnOpts.getRegisteredPackages(/*IncludeExperimental=*/true);
SmallVector<StringRef, 16> CheckersAndPackages;
AnOpts.RawSilencedCheckersAndPackages.split(CheckersAndPackages, ";");
for (const StringRef &CheckerOrPackage : CheckersAndPackages) {
if (Diags) {
bool IsChecker = CheckerOrPackage.contains('.');
bool IsValidName = IsChecker
? llvm::is_contained(Checkers, CheckerOrPackage)
: llvm::is_contained(Packages, CheckerOrPackage);
if (!IsValidName)
Diags->Report(diag::err_unknown_analyzer_checker_or_package)
<< CheckerOrPackage;
}
AnOpts.SilencedCheckersAndPackages.emplace_back(CheckerOrPackage);
}
}
if (!Diags)
return;
if (AnOpts.ShouldTrackConditionsDebug && !AnOpts.ShouldTrackConditions)
Diags->Report(diag::err_analyzer_config_invalid_input)
<< "track-conditions-debug" << "'track-conditions' to also be enabled";
if (!AnOpts.CTUDir.empty() && !llvm::sys::fs::is_directory(AnOpts.CTUDir))
Diags->Report(diag::err_analyzer_config_invalid_input) << "ctu-dir"
<< "a filename";
if (!AnOpts.ModelPath.empty() &&
!llvm::sys::fs::is_directory(AnOpts.ModelPath))
Diags->Report(diag::err_analyzer_config_invalid_input) << "model-path"
<< "a filename";
}
/// Generate a remark argument. This is an inverse of `ParseOptimizationRemark`.
static void
GenerateOptimizationRemark(ArgumentConsumer Consumer, OptSpecifier OptEQ,
StringRef Name,
const CodeGenOptions::OptRemark &Remark) {
if (Remark.hasValidPattern()) {
GenerateArg(Consumer, OptEQ, Remark.Pattern);
} else if (Remark.Kind == CodeGenOptions::RK_Enabled) {
GenerateArg(Consumer, OPT_R_Joined, Name);
} else if (Remark.Kind == CodeGenOptions::RK_Disabled) {
GenerateArg(Consumer, OPT_R_Joined, StringRef("no-") + Name);
}
}
/// Parse a remark command line argument. It may be missing, disabled/enabled by
/// '-R[no-]group' or specified with a regular expression by '-Rgroup=regexp'.
/// On top of that, it can be disabled/enabled globally by '-R[no-]everything'.
static CodeGenOptions::OptRemark
ParseOptimizationRemark(DiagnosticsEngine &Diags, ArgList &Args,
OptSpecifier OptEQ, StringRef Name) {
CodeGenOptions::OptRemark Result;
auto InitializeResultPattern = [&Diags, &Args, &Result](const Arg *A,
StringRef Pattern) {
Result.Pattern = Pattern.str();
std::string RegexError;
Result.Regex = std::make_shared<llvm::Regex>(Result.Pattern);
if (!Result.Regex->isValid(RegexError)) {
Diags.Report(diag::err_drv_optimization_remark_pattern)
<< RegexError << A->getAsString(Args);
return false;
}
return true;
};
for (Arg *A : Args) {
if (A->getOption().matches(OPT_R_Joined)) {
StringRef Value = A->getValue();
if (Value == Name)
Result.Kind = CodeGenOptions::RK_Enabled;
else if (Value == "everything")
Result.Kind = CodeGenOptions::RK_EnabledEverything;
else if (Value.split('-') == std::make_pair(StringRef("no"), Name))
Result.Kind = CodeGenOptions::RK_Disabled;
else if (Value == "no-everything")
Result.Kind = CodeGenOptions::RK_DisabledEverything;
else
continue;
if (Result.Kind == CodeGenOptions::RK_Disabled ||
Result.Kind == CodeGenOptions::RK_DisabledEverything) {
Result.Pattern = "";
Result.Regex = nullptr;
} else {
InitializeResultPattern(A, ".*");
}
} else if (A->getOption().matches(OptEQ)) {
Result.Kind = CodeGenOptions::RK_WithPattern;
if (!InitializeResultPattern(A, A->getValue()))
return CodeGenOptions::OptRemark();
}
}
return Result;
}
static bool parseDiagnosticLevelMask(StringRef FlagName,
const std::vector<std::string> &Levels,
DiagnosticsEngine &Diags,
DiagnosticLevelMask &M) {
bool Success = true;
for (const auto &Level : Levels) {
DiagnosticLevelMask const PM =
llvm::StringSwitch<DiagnosticLevelMask>(Level)
.Case("note", DiagnosticLevelMask::Note)
.Case("remark", DiagnosticLevelMask::Remark)
.Case("warning", DiagnosticLevelMask::Warning)
.Case("error", DiagnosticLevelMask::Error)
.Default(DiagnosticLevelMask::None);
if (PM == DiagnosticLevelMask::None) {
Success = false;
Diags.Report(diag::err_drv_invalid_value) << FlagName << Level;
}
M = M | PM;
}
return Success;
}
static void parseSanitizerKinds(StringRef FlagName,
const std::vector<std::string> &Sanitizers,
DiagnosticsEngine &Diags, SanitizerSet &S) {
for (const auto &Sanitizer : Sanitizers) {
SanitizerMask K = parseSanitizerValue(Sanitizer, /*AllowGroups=*/false);
if (K == SanitizerMask())
Diags.Report(diag::err_drv_invalid_value) << FlagName << Sanitizer;
else
S.set(K, true);
}
}
static SmallVector<StringRef, 4> serializeSanitizerKinds(SanitizerSet S) {
SmallVector<StringRef, 4> Values;
serializeSanitizerSet(S, Values);
return Values;
}
static void parseXRayInstrumentationBundle(StringRef FlagName, StringRef Bundle,
ArgList &Args, DiagnosticsEngine &D,
XRayInstrSet &S) {
llvm::SmallVector<StringRef, 2> BundleParts;
llvm::SplitString(Bundle, BundleParts, ",");
for (const auto &B : BundleParts) {
auto Mask = parseXRayInstrValue(B);
if (Mask == XRayInstrKind::None)
if (B != "none")
D.Report(diag::err_drv_invalid_value) << FlagName << Bundle;
else
S.Mask = Mask;
else if (Mask == XRayInstrKind::All)
S.Mask = Mask;
else
S.set(Mask, true);
}
}
static std::string serializeXRayInstrumentationBundle(const XRayInstrSet &S) {
llvm::SmallVector<StringRef, 2> BundleParts;
serializeXRayInstrValue(S, BundleParts);
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
llvm::interleave(BundleParts, OS, [&OS](StringRef Part) { OS << Part; }, ",");
return Buffer;
}
// Set the profile kind using fprofile-instrument-use-path.
static void setPGOUseInstrumentor(CodeGenOptions &Opts,
const Twine &ProfileName,
llvm::vfs::FileSystem &FS,
DiagnosticsEngine &Diags) {
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(ProfileName, FS);
if (auto E = ReaderOrErr.takeError()) {
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"Error in reading profile %0: %1");
llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
Diags.Report(DiagID) << ProfileName.str() << EI.message();
});
return;
}
std::unique_ptr<llvm::IndexedInstrProfReader> PGOReader =
std::move(ReaderOrErr.get());
// Currently memprof profiles are only added at the IR level. Mark the profile
// type as IR in that case as well and the subsequent matching needs to detect
// which is available (might be one or both).
if (PGOReader->isIRLevelProfile() || PGOReader->hasMemoryProfile()) {
if (PGOReader->hasCSIRLevelProfile())
Opts.setProfileUse(CodeGenOptions::ProfileCSIRInstr);
else
Opts.setProfileUse(CodeGenOptions::ProfileIRInstr);
} else
Opts.setProfileUse(CodeGenOptions::ProfileClangInstr);
}
void CompilerInvocationBase::GenerateCodeGenArgs(const CodeGenOptions &Opts,
ArgumentConsumer Consumer,
const llvm::Triple &T,
const std::string &OutputFile,
const LangOptions *LangOpts) {
const CodeGenOptions &CodeGenOpts = Opts;
if (Opts.OptimizationLevel == 0)
GenerateArg(Consumer, OPT_O0);
else
GenerateArg(Consumer, OPT_O, Twine(Opts.OptimizationLevel));
#define CODEGEN_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef CODEGEN_OPTION_WITH_MARSHALLING
if (Opts.OptimizationLevel > 0) {
if (Opts.Inlining == CodeGenOptions::NormalInlining)
GenerateArg(Consumer, OPT_finline_functions);
else if (Opts.Inlining == CodeGenOptions::OnlyHintInlining)
GenerateArg(Consumer, OPT_finline_hint_functions);
else if (Opts.Inlining == CodeGenOptions::OnlyAlwaysInlining)
GenerateArg(Consumer, OPT_fno_inline);
}
if (Opts.DirectAccessExternalData && LangOpts->PICLevel != 0)
GenerateArg(Consumer, OPT_fdirect_access_external_data);
else if (!Opts.DirectAccessExternalData && LangOpts->PICLevel == 0)
GenerateArg(Consumer, OPT_fno_direct_access_external_data);
std::optional<StringRef> DebugInfoVal;
switch (Opts.DebugInfo) {
case llvm::codegenoptions::DebugLineTablesOnly:
DebugInfoVal = "line-tables-only";
break;
case llvm::codegenoptions::DebugDirectivesOnly:
DebugInfoVal = "line-directives-only";
break;
case llvm::codegenoptions::DebugInfoConstructor:
DebugInfoVal = "constructor";
break;
case llvm::codegenoptions::LimitedDebugInfo:
DebugInfoVal = "limited";
break;
case llvm::codegenoptions::FullDebugInfo:
DebugInfoVal = "standalone";
break;
case llvm::codegenoptions::UnusedTypeInfo:
DebugInfoVal = "unused-types";
break;
case llvm::codegenoptions::NoDebugInfo: // default value
DebugInfoVal = std::nullopt;
break;
case llvm::codegenoptions::LocTrackingOnly: // implied value
DebugInfoVal = std::nullopt;
break;
}
if (DebugInfoVal)
GenerateArg(Consumer, OPT_debug_info_kind_EQ, *DebugInfoVal);
for (const auto &Prefix : Opts.DebugPrefixMap)
GenerateArg(Consumer, OPT_fdebug_prefix_map_EQ,
Prefix.first + "=" + Prefix.second);
for (const auto &Prefix : Opts.CoveragePrefixMap)
GenerateArg(Consumer, OPT_fcoverage_prefix_map_EQ,
Prefix.first + "=" + Prefix.second);
if (Opts.NewStructPathTBAA)
GenerateArg(Consumer, OPT_new_struct_path_tbaa);
if (Opts.OptimizeSize == 1)
GenerateArg(Consumer, OPT_O, "s");
else if (Opts.OptimizeSize == 2)
GenerateArg(Consumer, OPT_O, "z");
// SimplifyLibCalls is set only in the absence of -fno-builtin and
// -ffreestanding. We'll consider that when generating them.
// NoBuiltinFuncs are generated by LangOptions.
if (Opts.UnrollLoops && Opts.OptimizationLevel <= 1)
GenerateArg(Consumer, OPT_funroll_loops);
else if (!Opts.UnrollLoops && Opts.OptimizationLevel > 1)
GenerateArg(Consumer, OPT_fno_unroll_loops);
if (!Opts.BinutilsVersion.empty())
GenerateArg(Consumer, OPT_fbinutils_version_EQ, Opts.BinutilsVersion);
if (Opts.DebugNameTable ==
static_cast<unsigned>(llvm::DICompileUnit::DebugNameTableKind::GNU))
GenerateArg(Consumer, OPT_ggnu_pubnames);
else if (Opts.DebugNameTable ==
static_cast<unsigned>(
llvm::DICompileUnit::DebugNameTableKind::Default))
GenerateArg(Consumer, OPT_gpubnames);
if (Opts.DebugTemplateAlias)
GenerateArg(Consumer, OPT_gtemplate_alias);
auto TNK = Opts.getDebugSimpleTemplateNames();
if (TNK != llvm::codegenoptions::DebugTemplateNamesKind::Full) {
if (TNK == llvm::codegenoptions::DebugTemplateNamesKind::Simple)
GenerateArg(Consumer, OPT_gsimple_template_names_EQ, "simple");
else if (TNK == llvm::codegenoptions::DebugTemplateNamesKind::Mangled)
GenerateArg(Consumer, OPT_gsimple_template_names_EQ, "mangled");
}
// ProfileInstrumentUsePath is marshalled automatically, no need to generate
// it or PGOUseInstrumentor.
if (Opts.TimePasses) {
if (Opts.TimePassesPerRun)
GenerateArg(Consumer, OPT_ftime_report_EQ, "per-pass-run");
else
GenerateArg(Consumer, OPT_ftime_report);
}
if (Opts.PrepareForLTO && !Opts.PrepareForThinLTO)
GenerateArg(Consumer, OPT_flto_EQ, "full");
if (Opts.PrepareForThinLTO)
GenerateArg(Consumer, OPT_flto_EQ, "thin");
if (!Opts.ThinLTOIndexFile.empty())
GenerateArg(Consumer, OPT_fthinlto_index_EQ, Opts.ThinLTOIndexFile);
if (Opts.SaveTempsFilePrefix == OutputFile)
GenerateArg(Consumer, OPT_save_temps_EQ, "obj");
StringRef MemProfileBasename("memprof.profraw");
if (!Opts.MemoryProfileOutput.empty()) {
if (Opts.MemoryProfileOutput == MemProfileBasename) {
GenerateArg(Consumer, OPT_fmemory_profile);
} else {
size_t ArgLength =
Opts.MemoryProfileOutput.size() - MemProfileBasename.size();
GenerateArg(Consumer, OPT_fmemory_profile_EQ,
Opts.MemoryProfileOutput.substr(0, ArgLength));
}
}
if (memcmp(Opts.CoverageVersion, "408*", 4) != 0)
GenerateArg(Consumer, OPT_coverage_version_EQ,
StringRef(Opts.CoverageVersion, 4));
// TODO: Check if we need to generate arguments stored in CmdArgs. (Namely
// '-fembed_bitcode', which does not map to any CompilerInvocation field and
// won't be generated.)
if (Opts.XRayInstrumentationBundle.Mask != XRayInstrKind::All) {
std::string InstrBundle =
serializeXRayInstrumentationBundle(Opts.XRayInstrumentationBundle);
if (!InstrBundle.empty())
GenerateArg(Consumer, OPT_fxray_instrumentation_bundle, InstrBundle);
}
if (Opts.CFProtectionReturn && Opts.CFProtectionBranch)
GenerateArg(Consumer, OPT_fcf_protection_EQ, "full");
else if (Opts.CFProtectionReturn)
GenerateArg(Consumer, OPT_fcf_protection_EQ, "return");
else if (Opts.CFProtectionBranch)
GenerateArg(Consumer, OPT_fcf_protection_EQ, "branch");
if (Opts.FunctionReturnThunks)
GenerateArg(Consumer, OPT_mfunction_return_EQ, "thunk-extern");
for (const auto &F : Opts.LinkBitcodeFiles) {
bool Builtint = F.LinkFlags == llvm::Linker::Flags::LinkOnlyNeeded &&
F.PropagateAttrs && F.Internalize;
GenerateArg(Consumer,
Builtint ? OPT_mlink_builtin_bitcode : OPT_mlink_bitcode_file,
F.Filename);
}
if (Opts.EmulatedTLS)
GenerateArg(Consumer, OPT_femulated_tls);
if (Opts.FPDenormalMode != llvm::DenormalMode::getIEEE())
GenerateArg(Consumer, OPT_fdenormal_fp_math_EQ, Opts.FPDenormalMode.str());
if ((Opts.FPDenormalMode != Opts.FP32DenormalMode) ||
(Opts.FP32DenormalMode != llvm::DenormalMode::getIEEE()))
GenerateArg(Consumer, OPT_fdenormal_fp_math_f32_EQ,
Opts.FP32DenormalMode.str());
if (Opts.StructReturnConvention == CodeGenOptions::SRCK_OnStack) {
OptSpecifier Opt =
T.isPPC32() ? OPT_maix_struct_return : OPT_fpcc_struct_return;
GenerateArg(Consumer, Opt);
} else if (Opts.StructReturnConvention == CodeGenOptions::SRCK_InRegs) {
OptSpecifier Opt =
T.isPPC32() ? OPT_msvr4_struct_return : OPT_freg_struct_return;
GenerateArg(Consumer, Opt);
}
if (Opts.EnableAIXExtendedAltivecABI)
GenerateArg(Consumer, OPT_mabi_EQ_vec_extabi);
if (Opts.XCOFFReadOnlyPointers)
GenerateArg(Consumer, OPT_mxcoff_roptr);
if (!Opts.OptRecordPasses.empty())
GenerateArg(Consumer, OPT_opt_record_passes, Opts.OptRecordPasses);
if (!Opts.OptRecordFormat.empty())
GenerateArg(Consumer, OPT_opt_record_format, Opts.OptRecordFormat);
GenerateOptimizationRemark(Consumer, OPT_Rpass_EQ, "pass",
Opts.OptimizationRemark);
GenerateOptimizationRemark(Consumer, OPT_Rpass_missed_EQ, "pass-missed",
Opts.OptimizationRemarkMissed);
GenerateOptimizationRemark(Consumer, OPT_Rpass_analysis_EQ, "pass-analysis",
Opts.OptimizationRemarkAnalysis);
GenerateArg(Consumer, OPT_fdiagnostics_hotness_threshold_EQ,
Opts.DiagnosticsHotnessThreshold
? Twine(*Opts.DiagnosticsHotnessThreshold)
: "auto");
GenerateArg(Consumer, OPT_fdiagnostics_misexpect_tolerance_EQ,
Twine(*Opts.DiagnosticsMisExpectTolerance));
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.SanitizeRecover))
GenerateArg(Consumer, OPT_fsanitize_recover_EQ, Sanitizer);
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.SanitizeTrap))
GenerateArg(Consumer, OPT_fsanitize_trap_EQ, Sanitizer);
if (!Opts.EmitVersionIdentMetadata)
GenerateArg(Consumer, OPT_Qn);
switch (Opts.FiniteLoops) {
case CodeGenOptions::FiniteLoopsKind::Language:
break;
case CodeGenOptions::FiniteLoopsKind::Always:
GenerateArg(Consumer, OPT_ffinite_loops);
break;
case CodeGenOptions::FiniteLoopsKind::Never:
GenerateArg(Consumer, OPT_fno_finite_loops);
break;
}
}
bool CompilerInvocation::ParseCodeGenArgs(CodeGenOptions &Opts, ArgList &Args,
InputKind IK,
DiagnosticsEngine &Diags,
const llvm::Triple &T,
const std::string &OutputFile,
const LangOptions &LangOptsRef) {
unsigned NumErrorsBefore = Diags.getNumErrors();
unsigned OptimizationLevel = getOptimizationLevel(Args, IK, Diags);
// TODO: This could be done in Driver
unsigned MaxOptLevel = 3;
if (OptimizationLevel > MaxOptLevel) {
// If the optimization level is not supported, fall back on the default
// optimization
Diags.Report(diag::warn_drv_optimization_value)
<< Args.getLastArg(OPT_O)->getAsString(Args) << "-O" << MaxOptLevel;
OptimizationLevel = MaxOptLevel;
}
Opts.OptimizationLevel = OptimizationLevel;
// The key paths of codegen options defined in Options.td start with
// "CodeGenOpts.". Let's provide the expected variable name and type.
CodeGenOptions &CodeGenOpts = Opts;
// Some codegen options depend on language options. Let's provide the expected
// variable name and type.
const LangOptions *LangOpts = &LangOptsRef;
#define CODEGEN_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef CODEGEN_OPTION_WITH_MARSHALLING
// At O0 we want to fully disable inlining outside of cases marked with
// 'alwaysinline' that are required for correctness.
if (Opts.OptimizationLevel == 0) {
Opts.setInlining(CodeGenOptions::OnlyAlwaysInlining);
} else if (const Arg *A = Args.getLastArg(options::OPT_finline_functions,
options::OPT_finline_hint_functions,
options::OPT_fno_inline_functions,
options::OPT_fno_inline)) {
// Explicit inlining flags can disable some or all inlining even at
// optimization levels above zero.
if (A->getOption().matches(options::OPT_finline_functions))
Opts.setInlining(CodeGenOptions::NormalInlining);
else if (A->getOption().matches(options::OPT_finline_hint_functions))
Opts.setInlining(CodeGenOptions::OnlyHintInlining);
else
Opts.setInlining(CodeGenOptions::OnlyAlwaysInlining);
} else {
Opts.setInlining(CodeGenOptions::NormalInlining);
}
// PIC defaults to -fno-direct-access-external-data while non-PIC defaults to
// -fdirect-access-external-data.
Opts.DirectAccessExternalData =
Args.hasArg(OPT_fdirect_access_external_data) ||
(!Args.hasArg(OPT_fno_direct_access_external_data) &&
LangOpts->PICLevel == 0);
if (Arg *A = Args.getLastArg(OPT_debug_info_kind_EQ)) {
unsigned Val =
llvm::StringSwitch<unsigned>(A->getValue())
.Case("line-tables-only", llvm::codegenoptions::DebugLineTablesOnly)
.Case("line-directives-only",
llvm::codegenoptions::DebugDirectivesOnly)
.Case("constructor", llvm::codegenoptions::DebugInfoConstructor)
.Case("limited", llvm::codegenoptions::LimitedDebugInfo)
.Case("standalone", llvm::codegenoptions::FullDebugInfo)
.Case("unused-types", llvm::codegenoptions::UnusedTypeInfo)
.Default(~0U);
if (Val == ~0U)
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< A->getValue();
else
Opts.setDebugInfo(static_cast<llvm::codegenoptions::DebugInfoKind>(Val));
}
// If -fuse-ctor-homing is set and limited debug info is already on, then use
// constructor homing, and vice versa for -fno-use-ctor-homing.
if (const Arg *A =
Args.getLastArg(OPT_fuse_ctor_homing, OPT_fno_use_ctor_homing)) {
if (A->getOption().matches(OPT_fuse_ctor_homing) &&
Opts.getDebugInfo() == llvm::codegenoptions::LimitedDebugInfo)
Opts.setDebugInfo(llvm::codegenoptions::DebugInfoConstructor);
if (A->getOption().matches(OPT_fno_use_ctor_homing) &&
Opts.getDebugInfo() == llvm::codegenoptions::DebugInfoConstructor)
Opts.setDebugInfo(llvm::codegenoptions::LimitedDebugInfo);
}
for (const auto &Arg : Args.getAllArgValues(OPT_fdebug_prefix_map_EQ)) {
auto Split = StringRef(Arg).split('=');
Opts.DebugPrefixMap.emplace_back(Split.first, Split.second);
}
for (const auto &Arg : Args.getAllArgValues(OPT_fcoverage_prefix_map_EQ)) {
auto Split = StringRef(Arg).split('=');
Opts.CoveragePrefixMap.emplace_back(Split.first, Split.second);
}
const llvm::Triple::ArchType DebugEntryValueArchs[] = {
llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::aarch64,
llvm::Triple::arm, llvm::Triple::armeb, llvm::Triple::mips,
llvm::Triple::mipsel, llvm::Triple::mips64, llvm::Triple::mips64el};
if (Opts.OptimizationLevel > 0 && Opts.hasReducedDebugInfo() &&
llvm::is_contained(DebugEntryValueArchs, T.getArch()))
Opts.EmitCallSiteInfo = true;
if (!Opts.EnableDIPreservationVerify && Opts.DIBugsReportFilePath.size()) {
Diags.Report(diag::warn_ignoring_verify_debuginfo_preserve_export)
<< Opts.DIBugsReportFilePath;
Opts.DIBugsReportFilePath = "";
}
Opts.NewStructPathTBAA = !Args.hasArg(OPT_no_struct_path_tbaa) &&
Args.hasArg(OPT_new_struct_path_tbaa);
Opts.OptimizeSize = getOptimizationLevelSize(Args);
Opts.SimplifyLibCalls = !LangOpts->NoBuiltin;
if (Opts.SimplifyLibCalls)
Opts.NoBuiltinFuncs = LangOpts->NoBuiltinFuncs;
Opts.UnrollLoops =
Args.hasFlag(OPT_funroll_loops, OPT_fno_unroll_loops,
(Opts.OptimizationLevel > 1));
Opts.BinutilsVersion =
std::string(Args.getLastArgValue(OPT_fbinutils_version_EQ));
Opts.DebugTemplateAlias = Args.hasArg(OPT_gtemplate_alias);
Opts.DebugNameTable = static_cast<unsigned>(
Args.hasArg(OPT_ggnu_pubnames)
? llvm::DICompileUnit::DebugNameTableKind::GNU
: Args.hasArg(OPT_gpubnames)
? llvm::DICompileUnit::DebugNameTableKind::Default
: llvm::DICompileUnit::DebugNameTableKind::None);
if (const Arg *A = Args.getLastArg(OPT_gsimple_template_names_EQ)) {
StringRef Value = A->getValue();
if (Value != "simple" && Value != "mangled")
Diags.Report(diag::err_drv_unsupported_option_argument)
<< A->getSpelling() << A->getValue();
Opts.setDebugSimpleTemplateNames(
StringRef(A->getValue()) == "simple"
? llvm::codegenoptions::DebugTemplateNamesKind::Simple
: llvm::codegenoptions::DebugTemplateNamesKind::Mangled);
}
if (const Arg *A = Args.getLastArg(OPT_ftime_report, OPT_ftime_report_EQ)) {
Opts.TimePasses = true;
// -ftime-report= is only for new pass manager.
if (A->getOption().getID() == OPT_ftime_report_EQ) {
StringRef Val = A->getValue();
if (Val == "per-pass")
Opts.TimePassesPerRun = false;
else if (Val == "per-pass-run")
Opts.TimePassesPerRun = true;
else
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
}
Opts.PrepareForLTO = false;
Opts.PrepareForThinLTO = false;
if (Arg *A = Args.getLastArg(OPT_flto_EQ)) {
Opts.PrepareForLTO = true;
StringRef S = A->getValue();
if (S == "thin")
Opts.PrepareForThinLTO = true;
else if (S != "full")
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << S;
if (Args.hasArg(OPT_funified_lto))
Opts.PrepareForThinLTO = true;
}
if (Arg *A = Args.getLastArg(OPT_fthinlto_index_EQ)) {
if (IK.getLanguage() != Language::LLVM_IR)
Diags.Report(diag::err_drv_argument_only_allowed_with)
<< A->getAsString(Args) << "-x ir";
Opts.ThinLTOIndexFile =
std::string(Args.getLastArgValue(OPT_fthinlto_index_EQ));
}
if (Arg *A = Args.getLastArg(OPT_save_temps_EQ))
Opts.SaveTempsFilePrefix =
llvm::StringSwitch<std::string>(A->getValue())
.Case("obj", OutputFile)
.Default(llvm::sys::path::filename(OutputFile).str());
// The memory profile runtime appends the pid to make this name more unique.
const char *MemProfileBasename = "memprof.profraw";
if (Args.hasArg(OPT_fmemory_profile_EQ)) {
SmallString<128> Path(
std::string(Args.getLastArgValue(OPT_fmemory_profile_EQ)));
llvm::sys::path::append(Path, MemProfileBasename);
Opts.MemoryProfileOutput = std::string(Path);
} else if (Args.hasArg(OPT_fmemory_profile))
Opts.MemoryProfileOutput = MemProfileBasename;
memcpy(Opts.CoverageVersion, "408*", 4);
if (Opts.CoverageNotesFile.size() || Opts.CoverageDataFile.size()) {
if (Args.hasArg(OPT_coverage_version_EQ)) {
StringRef CoverageVersion = Args.getLastArgValue(OPT_coverage_version_EQ);
if (CoverageVersion.size() != 4) {
Diags.Report(diag::err_drv_invalid_value)
<< Args.getLastArg(OPT_coverage_version_EQ)->getAsString(Args)
<< CoverageVersion;
} else {
memcpy(Opts.CoverageVersion, CoverageVersion.data(), 4);
}
}
}
// FIXME: For backend options that are not yet recorded as function
// attributes in the IR, keep track of them so we can embed them in a
// separate data section and use them when building the bitcode.
for (const auto &A : Args) {
// Do not encode output and input.
if (A->getOption().getID() == options::OPT_o ||
A->getOption().getID() == options::OPT_INPUT ||
A->getOption().getID() == options::OPT_x ||
A->getOption().getID() == options::OPT_fembed_bitcode ||
A->getOption().matches(options::OPT_W_Group))
continue;
ArgStringList ASL;
A->render(Args, ASL);
for (const auto &arg : ASL) {
StringRef ArgStr(arg);
Opts.CmdArgs.insert(Opts.CmdArgs.end(), ArgStr.begin(), ArgStr.end());
// using \00 to separate each commandline options.
Opts.CmdArgs.push_back('\0');
}
}
auto XRayInstrBundles =
Args.getAllArgValues(OPT_fxray_instrumentation_bundle);
if (XRayInstrBundles.empty())
Opts.XRayInstrumentationBundle.Mask = XRayInstrKind::All;
else
for (const auto &A : XRayInstrBundles)
parseXRayInstrumentationBundle("-fxray-instrumentation-bundle=", A, Args,
Diags, Opts.XRayInstrumentationBundle);
if (const Arg *A = Args.getLastArg(OPT_fcf_protection_EQ)) {
StringRef Name = A->getValue();
if (Name == "full") {
Opts.CFProtectionReturn = 1;
Opts.CFProtectionBranch = 1;
} else if (Name == "return")
Opts.CFProtectionReturn = 1;
else if (Name == "branch")
Opts.CFProtectionBranch = 1;
else if (Name != "none")
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name;
}
if (const Arg *A = Args.getLastArg(OPT_mfunction_return_EQ)) {
auto Val = llvm::StringSwitch<llvm::FunctionReturnThunksKind>(A->getValue())
.Case("keep", llvm::FunctionReturnThunksKind::Keep)
.Case("thunk-extern", llvm::FunctionReturnThunksKind::Extern)
.Default(llvm::FunctionReturnThunksKind::Invalid);
// SystemZ might want to add support for "expolines."
if (!T.isX86())
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << T.getTriple();
else if (Val == llvm::FunctionReturnThunksKind::Invalid)
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else if (Val == llvm::FunctionReturnThunksKind::Extern &&
Args.getLastArgValue(OPT_mcmodel_EQ).equals("large"))
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args)
<< Args.getLastArg(OPT_mcmodel_EQ)->getAsString(Args);
else
Opts.FunctionReturnThunks = static_cast<unsigned>(Val);
}
for (auto *A :
Args.filtered(OPT_mlink_bitcode_file, OPT_mlink_builtin_bitcode)) {
CodeGenOptions::BitcodeFileToLink F;
F.Filename = A->getValue();
if (A->getOption().matches(OPT_mlink_builtin_bitcode)) {
F.LinkFlags = llvm::Linker::Flags::LinkOnlyNeeded;
// When linking CUDA bitcode, propagate function attributes so that
// e.g. libdevice gets fast-math attrs if we're building with fast-math.
F.PropagateAttrs = true;
F.Internalize = true;
}
Opts.LinkBitcodeFiles.push_back(F);
}
if (Arg *A = Args.getLastArg(OPT_fdenormal_fp_math_EQ)) {
StringRef Val = A->getValue();
Opts.FPDenormalMode = llvm::parseDenormalFPAttribute(Val);
Opts.FP32DenormalMode = Opts.FPDenormalMode;
if (!Opts.FPDenormalMode.isValid())
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
}
if (Arg *A = Args.getLastArg(OPT_fdenormal_fp_math_f32_EQ)) {
StringRef Val = A->getValue();
Opts.FP32DenormalMode = llvm::parseDenormalFPAttribute(Val);
if (!Opts.FP32DenormalMode.isValid())
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
}
// X86_32 has -fppc-struct-return and -freg-struct-return.
// PPC32 has -maix-struct-return and -msvr4-struct-return.
if (Arg *A =
Args.getLastArg(OPT_fpcc_struct_return, OPT_freg_struct_return,
OPT_maix_struct_return, OPT_msvr4_struct_return)) {
// TODO: We might want to consider enabling these options on AIX in the
// future.
if (T.isOSAIX())
Diags.Report(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << T.str();
const Option &O = A->getOption();
if (O.matches(OPT_fpcc_struct_return) ||
O.matches(OPT_maix_struct_return)) {
Opts.setStructReturnConvention(CodeGenOptions::SRCK_OnStack);
} else {
assert(O.matches(OPT_freg_struct_return) ||
O.matches(OPT_msvr4_struct_return));
Opts.setStructReturnConvention(CodeGenOptions::SRCK_InRegs);
}
}
if (Arg *A = Args.getLastArg(OPT_mxcoff_roptr)) {
if (!T.isOSAIX())
Diags.Report(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << T.str();
// Since the storage mapping class is specified per csect,
// without using data sections, it is less effective to use read-only
// pointers. Using read-only pointers may cause other RO variables in the
// same csect to become RW when the linker acts upon `-bforceimprw`;
// therefore, we require that separate data sections
// are used when `-mxcoff-roptr` is in effect. We respect the setting of
// data-sections since we have not found reasons to do otherwise that
// overcome the user surprise of not respecting the setting.
if (!Args.hasFlag(OPT_fdata_sections, OPT_fno_data_sections, false))
Diags.Report(diag::err_roptr_requires_data_sections);
Opts.XCOFFReadOnlyPointers = true;
}
if (Arg *A = Args.getLastArg(OPT_mabi_EQ_quadword_atomics)) {
if (!T.isOSAIX() || T.isPPC32())
Diags.Report(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << T.str();
}
bool NeedLocTracking = false;
if (!Opts.OptRecordFile.empty())
NeedLocTracking = true;
if (Arg *A = Args.getLastArg(OPT_opt_record_passes)) {
Opts.OptRecordPasses = A->getValue();
NeedLocTracking = true;
}
if (Arg *A = Args.getLastArg(OPT_opt_record_format)) {
Opts.OptRecordFormat = A->getValue();
NeedLocTracking = true;
}
Opts.OptimizationRemark =
ParseOptimizationRemark(Diags, Args, OPT_Rpass_EQ, "pass");
Opts.OptimizationRemarkMissed =
ParseOptimizationRemark(Diags, Args, OPT_Rpass_missed_EQ, "pass-missed");
Opts.OptimizationRemarkAnalysis = ParseOptimizationRemark(
Diags, Args, OPT_Rpass_analysis_EQ, "pass-analysis");
NeedLocTracking |= Opts.OptimizationRemark.hasValidPattern() ||
Opts.OptimizationRemarkMissed.hasValidPattern() ||
Opts.OptimizationRemarkAnalysis.hasValidPattern();
bool UsingSampleProfile = !Opts.SampleProfileFile.empty();
bool UsingProfile =
UsingSampleProfile || !Opts.ProfileInstrumentUsePath.empty();
if (Opts.DiagnosticsWithHotness && !UsingProfile &&
// An IR file will contain PGO as metadata
IK.getLanguage() != Language::LLVM_IR)
Diags.Report(diag::warn_drv_diagnostics_hotness_requires_pgo)
<< "-fdiagnostics-show-hotness";
// Parse remarks hotness threshold. Valid value is either integer or 'auto'.
if (auto *arg =
Args.getLastArg(options::OPT_fdiagnostics_hotness_threshold_EQ)) {
auto ResultOrErr =
llvm::remarks::parseHotnessThresholdOption(arg->getValue());
if (!ResultOrErr) {
Diags.Report(diag::err_drv_invalid_diagnotics_hotness_threshold)
<< "-fdiagnostics-hotness-threshold=";
} else {
Opts.DiagnosticsHotnessThreshold = *ResultOrErr;
if ((!Opts.DiagnosticsHotnessThreshold ||
*Opts.DiagnosticsHotnessThreshold > 0) &&
!UsingProfile)
Diags.Report(diag::warn_drv_diagnostics_hotness_requires_pgo)
<< "-fdiagnostics-hotness-threshold=";
}
}
if (auto *arg =
Args.getLastArg(options::OPT_fdiagnostics_misexpect_tolerance_EQ)) {
auto ResultOrErr = parseToleranceOption(arg->getValue());
if (!ResultOrErr) {
Diags.Report(diag::err_drv_invalid_diagnotics_misexpect_tolerance)
<< "-fdiagnostics-misexpect-tolerance=";
} else {
Opts.DiagnosticsMisExpectTolerance = *ResultOrErr;
if ((!Opts.DiagnosticsMisExpectTolerance ||
*Opts.DiagnosticsMisExpectTolerance > 0) &&
!UsingProfile)
Diags.Report(diag::warn_drv_diagnostics_misexpect_requires_pgo)
<< "-fdiagnostics-misexpect-tolerance=";
}
}
// If the user requested to use a sample profile for PGO, then the
// backend will need to track source location information so the profile
// can be incorporated into the IR.
if (UsingSampleProfile)
NeedLocTracking = true;
if (!Opts.StackUsageOutput.empty())
NeedLocTracking = true;
// If the user requested a flag that requires source locations available in
// the backend, make sure that the backend tracks source location information.
if (NeedLocTracking &&
Opts.getDebugInfo() == llvm::codegenoptions::NoDebugInfo)
Opts.setDebugInfo(llvm::codegenoptions::LocTrackingOnly);
// Parse -fsanitize-recover= arguments.
// FIXME: Report unrecoverable sanitizers incorrectly specified here.
parseSanitizerKinds("-fsanitize-recover=",
Args.getAllArgValues(OPT_fsanitize_recover_EQ), Diags,
Opts.SanitizeRecover);
parseSanitizerKinds("-fsanitize-trap=",
Args.getAllArgValues(OPT_fsanitize_trap_EQ), Diags,
Opts.SanitizeTrap);
Opts.EmitVersionIdentMetadata = Args.hasFlag(OPT_Qy, OPT_Qn, true);
if (Args.hasArg(options::OPT_ffinite_loops))
Opts.FiniteLoops = CodeGenOptions::FiniteLoopsKind::Always;
else if (Args.hasArg(options::OPT_fno_finite_loops))
Opts.FiniteLoops = CodeGenOptions::FiniteLoopsKind::Never;
Opts.EmitIEEENaNCompliantInsts = Args.hasFlag(
options::OPT_mamdgpu_ieee, options::OPT_mno_amdgpu_ieee, true);
if (!Opts.EmitIEEENaNCompliantInsts && !LangOptsRef.NoHonorNaNs)
Diags.Report(diag::err_drv_amdgpu_ieee_without_no_honor_nans);
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GenerateDependencyOutputArgs(const DependencyOutputOptions &Opts,
ArgumentConsumer Consumer) {
const DependencyOutputOptions &DependencyOutputOpts = Opts;
#define DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING
if (Opts.ShowIncludesDest != ShowIncludesDestination::None)
GenerateArg(Consumer, OPT_show_includes);
for (const auto &Dep : Opts.ExtraDeps) {
switch (Dep.second) {
case EDK_SanitizeIgnorelist:
// Sanitizer ignorelist arguments are generated from LanguageOptions.
continue;
case EDK_ModuleFile:
// Module file arguments are generated from FrontendOptions and
// HeaderSearchOptions.
continue;
case EDK_ProfileList:
// Profile list arguments are generated from LanguageOptions via the
// marshalling infrastructure.
continue;
case EDK_DepFileEntry:
GenerateArg(Consumer, OPT_fdepfile_entry, Dep.first);
break;
}
}
}
static bool ParseDependencyOutputArgs(DependencyOutputOptions &Opts,
ArgList &Args, DiagnosticsEngine &Diags,
frontend::ActionKind Action,
bool ShowLineMarkers) {
unsigned NumErrorsBefore = Diags.getNumErrors();
DependencyOutputOptions &DependencyOutputOpts = Opts;
#define DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING
if (Args.hasArg(OPT_show_includes)) {
// Writing both /showIncludes and preprocessor output to stdout
// would produce interleaved output, so use stderr for /showIncludes.
// This behaves the same as cl.exe, when /E, /EP or /P are passed.
if (Action == frontend::PrintPreprocessedInput || !ShowLineMarkers)
Opts.ShowIncludesDest = ShowIncludesDestination::Stderr;
else
Opts.ShowIncludesDest = ShowIncludesDestination::Stdout;
} else {
Opts.ShowIncludesDest = ShowIncludesDestination::None;
}
// Add sanitizer ignorelists as extra dependencies.
// They won't be discovered by the regular preprocessor, so
// we let make / ninja to know about this implicit dependency.
if (!Args.hasArg(OPT_fno_sanitize_ignorelist)) {
for (const auto *A : Args.filtered(OPT_fsanitize_ignorelist_EQ)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ExtraDeps.emplace_back(std::string(Val), EDK_SanitizeIgnorelist);
}
if (Opts.IncludeSystemHeaders) {
for (const auto *A : Args.filtered(OPT_fsanitize_system_ignorelist_EQ)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ExtraDeps.emplace_back(std::string(Val), EDK_SanitizeIgnorelist);
}
}
}
// -fprofile-list= dependencies.
for (const auto &Filename : Args.getAllArgValues(OPT_fprofile_list_EQ))
Opts.ExtraDeps.emplace_back(Filename, EDK_ProfileList);
// Propagate the extra dependencies.
for (const auto *A : Args.filtered(OPT_fdepfile_entry))
Opts.ExtraDeps.emplace_back(A->getValue(), EDK_DepFileEntry);
// Only the -fmodule-file=<file> form.
for (const auto *A : Args.filtered(OPT_fmodule_file)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ExtraDeps.emplace_back(std::string(Val), EDK_ModuleFile);
}
// Check for invalid combinations of header-include-format
// and header-include-filtering.
if ((Opts.HeaderIncludeFormat == HIFMT_Textual &&
Opts.HeaderIncludeFiltering != HIFIL_None) ||
(Opts.HeaderIncludeFormat == HIFMT_JSON &&
Opts.HeaderIncludeFiltering != HIFIL_Only_Direct_System))
Diags.Report(diag::err_drv_print_header_env_var_combination_cc1)
<< Args.getLastArg(OPT_header_include_format_EQ)->getValue()
<< Args.getLastArg(OPT_header_include_filtering_EQ)->getValue();
return Diags.getNumErrors() == NumErrorsBefore;
}
static bool parseShowColorsArgs(const ArgList &Args, bool DefaultColor) {
// Color diagnostics default to auto ("on" if terminal supports) in the driver
// but default to off in cc1, needing an explicit OPT_fdiagnostics_color.
// Support both clang's -f[no-]color-diagnostics and gcc's
// -f[no-]diagnostics-colors[=never|always|auto].
enum {
Colors_On,
Colors_Off,
Colors_Auto
} ShowColors = DefaultColor ? Colors_Auto : Colors_Off;
for (auto *A : Args) {
const Option &O = A->getOption();
if (O.matches(options::OPT_fcolor_diagnostics)) {
ShowColors = Colors_On;
} else if (O.matches(options::OPT_fno_color_diagnostics)) {
ShowColors = Colors_Off;
} else if (O.matches(options::OPT_fdiagnostics_color_EQ)) {
StringRef Value(A->getValue());
if (Value == "always")
ShowColors = Colors_On;
else if (Value == "never")
ShowColors = Colors_Off;
else if (Value == "auto")
ShowColors = Colors_Auto;
}
}
return ShowColors == Colors_On ||
(ShowColors == Colors_Auto &&
llvm::sys::Process::StandardErrHasColors());
}
static bool checkVerifyPrefixes(const std::vector<std::string> &VerifyPrefixes,
DiagnosticsEngine &Diags) {
bool Success = true;
for (const auto &Prefix : VerifyPrefixes) {
// Every prefix must start with a letter and contain only alphanumeric
// characters, hyphens, and underscores.
auto BadChar = llvm::find_if(Prefix, [](char C) {
return !isAlphanumeric(C) && C != '-' && C != '_';
});
if (BadChar != Prefix.end() || !isLetter(Prefix[0])) {
Success = false;
Diags.Report(diag::err_drv_invalid_value) << "-verify=" << Prefix;
Diags.Report(diag::note_drv_verify_prefix_spelling);
}
}
return Success;
}
static void GenerateFileSystemArgs(const FileSystemOptions &Opts,
ArgumentConsumer Consumer) {
const FileSystemOptions &FileSystemOpts = Opts;
#define FILE_SYSTEM_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef FILE_SYSTEM_OPTION_WITH_MARSHALLING
}
static bool ParseFileSystemArgs(FileSystemOptions &Opts, const ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
FileSystemOptions &FileSystemOpts = Opts;
#define FILE_SYSTEM_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef FILE_SYSTEM_OPTION_WITH_MARSHALLING
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GenerateMigratorArgs(const MigratorOptions &Opts,
ArgumentConsumer Consumer) {
const MigratorOptions &MigratorOpts = Opts;
#define MIGRATOR_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef MIGRATOR_OPTION_WITH_MARSHALLING
}
static bool ParseMigratorArgs(MigratorOptions &Opts, const ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
MigratorOptions &MigratorOpts = Opts;
#define MIGRATOR_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef MIGRATOR_OPTION_WITH_MARSHALLING
return Diags.getNumErrors() == NumErrorsBefore;
}
void CompilerInvocationBase::GenerateDiagnosticArgs(
const DiagnosticOptions &Opts, ArgumentConsumer Consumer,
bool DefaultDiagColor) {
const DiagnosticOptions *DiagnosticOpts = &Opts;
#define DIAG_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef DIAG_OPTION_WITH_MARSHALLING
if (!Opts.DiagnosticSerializationFile.empty())
GenerateArg(Consumer, OPT_diagnostic_serialized_file,
Opts.DiagnosticSerializationFile);
if (Opts.ShowColors)
GenerateArg(Consumer, OPT_fcolor_diagnostics);
if (Opts.VerifyDiagnostics &&
llvm::is_contained(Opts.VerifyPrefixes, "expected"))
GenerateArg(Consumer, OPT_verify);
for (const auto &Prefix : Opts.VerifyPrefixes)
if (Prefix != "expected")
GenerateArg(Consumer, OPT_verify_EQ, Prefix);
DiagnosticLevelMask VIU = Opts.getVerifyIgnoreUnexpected();
if (VIU == DiagnosticLevelMask::None) {
// This is the default, don't generate anything.
} else if (VIU == DiagnosticLevelMask::All) {
GenerateArg(Consumer, OPT_verify_ignore_unexpected);
} else {
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Note) != 0)
GenerateArg(Consumer, OPT_verify_ignore_unexpected_EQ, "note");
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Remark) != 0)
GenerateArg(Consumer, OPT_verify_ignore_unexpected_EQ, "remark");
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Warning) != 0)
GenerateArg(Consumer, OPT_verify_ignore_unexpected_EQ, "warning");
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Error) != 0)
GenerateArg(Consumer, OPT_verify_ignore_unexpected_EQ, "error");
}
for (const auto &Warning : Opts.Warnings) {
// This option is automatically generated from UndefPrefixes.
if (Warning == "undef-prefix")
continue;
Consumer(StringRef("-W") + Warning);
}
for (const auto &Remark : Opts.Remarks) {
// These arguments are generated from OptimizationRemark fields of
// CodeGenOptions.
StringRef IgnoredRemarks[] = {"pass", "no-pass",
"pass-analysis", "no-pass-analysis",
"pass-missed", "no-pass-missed"};
if (llvm::is_contained(IgnoredRemarks, Remark))
continue;
Consumer(StringRef("-R") + Remark);
}
}
std::unique_ptr<DiagnosticOptions>
clang::CreateAndPopulateDiagOpts(ArrayRef<const char *> Argv) {
auto DiagOpts = std::make_unique<DiagnosticOptions>();
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args = getDriverOptTable().ParseArgs(
Argv.slice(1), MissingArgIndex, MissingArgCount);
bool ShowColors = true;
if (std::optional<std::string> NoColor =
llvm::sys::Process::GetEnv("NO_COLOR");
NoColor && !NoColor->empty()) {
// If the user set the NO_COLOR environment variable, we'll honor that
// unless the command line overrides it.
ShowColors = false;
}
// We ignore MissingArgCount and the return value of ParseDiagnosticArgs.
// Any errors that would be diagnosed here will also be diagnosed later,
// when the DiagnosticsEngine actually exists.
(void)ParseDiagnosticArgs(*DiagOpts, Args, /*Diags=*/nullptr, ShowColors);
return DiagOpts;
}
bool clang::ParseDiagnosticArgs(DiagnosticOptions &Opts, ArgList &Args,
DiagnosticsEngine *Diags,
bool DefaultDiagColor) {
std::optional<DiagnosticsEngine> IgnoringDiags;
if (!Diags) {
IgnoringDiags.emplace(new DiagnosticIDs(), new DiagnosticOptions(),
new IgnoringDiagConsumer());
Diags = &*IgnoringDiags;
}
unsigned NumErrorsBefore = Diags->getNumErrors();
// The key paths of diagnostic options defined in Options.td start with
// "DiagnosticOpts->". Let's provide the expected variable name and type.
DiagnosticOptions *DiagnosticOpts = &Opts;
#define DIAG_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, *Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef DIAG_OPTION_WITH_MARSHALLING
llvm::sys::Process::UseANSIEscapeCodes(Opts.UseANSIEscapeCodes);
if (Arg *A =
Args.getLastArg(OPT_diagnostic_serialized_file, OPT__serialize_diags))
Opts.DiagnosticSerializationFile = A->getValue();
Opts.ShowColors = parseShowColorsArgs(Args, DefaultDiagColor);
Opts.VerifyDiagnostics = Args.hasArg(OPT_verify) || Args.hasArg(OPT_verify_EQ);
Opts.VerifyPrefixes = Args.getAllArgValues(OPT_verify_EQ);
if (Args.hasArg(OPT_verify))
Opts.VerifyPrefixes.push_back("expected");
// Keep VerifyPrefixes in its original order for the sake of diagnostics, and
// then sort it to prepare for fast lookup using std::binary_search.
if (!checkVerifyPrefixes(Opts.VerifyPrefixes, *Diags))
Opts.VerifyDiagnostics = false;
else
llvm::sort(Opts.VerifyPrefixes);
DiagnosticLevelMask DiagMask = DiagnosticLevelMask::None;
parseDiagnosticLevelMask(
"-verify-ignore-unexpected=",
Args.getAllArgValues(OPT_verify_ignore_unexpected_EQ), *Diags, DiagMask);
if (Args.hasArg(OPT_verify_ignore_unexpected))
DiagMask = DiagnosticLevelMask::All;
Opts.setVerifyIgnoreUnexpected(DiagMask);
if (Opts.TabStop == 0 || Opts.TabStop > DiagnosticOptions::MaxTabStop) {
Diags->Report(diag::warn_ignoring_ftabstop_value)
<< Opts.TabStop << DiagnosticOptions::DefaultTabStop;
Opts.TabStop = DiagnosticOptions::DefaultTabStop;
}
addDiagnosticArgs(Args, OPT_W_Group, OPT_W_value_Group, Opts.Warnings);
addDiagnosticArgs(Args, OPT_R_Group, OPT_R_value_Group, Opts.Remarks);
return Diags->getNumErrors() == NumErrorsBefore;
}
/// Parse the argument to the -ftest-module-file-extension
/// command-line argument.
///
/// \returns true on error, false on success.
static bool parseTestModuleFileExtensionArg(StringRef Arg,
std::string &BlockName,
unsigned &MajorVersion,
unsigned &MinorVersion,
bool &Hashed,
std::string &UserInfo) {
SmallVector<StringRef, 5> Args;
Arg.split(Args, ':', 5);
if (Args.size() < 5)
return true;
BlockName = std::string(Args[0]);
if (Args[1].getAsInteger(10, MajorVersion)) return true;
if (Args[2].getAsInteger(10, MinorVersion)) return true;
if (Args[3].getAsInteger(2, Hashed)) return true;
if (Args.size() > 4)
UserInfo = std::string(Args[4]);
return false;
}
/// Return a table that associates command line option specifiers with the
/// frontend action. Note: The pair {frontend::PluginAction, OPT_plugin} is
/// intentionally missing, as this case is handled separately from other
/// frontend options.
static const auto &getFrontendActionTable() {
static const std::pair<frontend::ActionKind, unsigned> Table[] = {
{frontend::ASTDeclList, OPT_ast_list},
{frontend::ASTDump, OPT_ast_dump_all_EQ},
{frontend::ASTDump, OPT_ast_dump_all},
{frontend::ASTDump, OPT_ast_dump_EQ},
{frontend::ASTDump, OPT_ast_dump},
{frontend::ASTDump, OPT_ast_dump_lookups},
{frontend::ASTDump, OPT_ast_dump_decl_types},
{frontend::ASTPrint, OPT_ast_print},
{frontend::ASTView, OPT_ast_view},
{frontend::DumpCompilerOptions, OPT_compiler_options_dump},
{frontend::DumpRawTokens, OPT_dump_raw_tokens},
{frontend::DumpTokens, OPT_dump_tokens},
{frontend::EmitAssembly, OPT_S},
{frontend::EmitBC, OPT_emit_llvm_bc},
{frontend::EmitCIR, OPT_emit_cir},
{frontend::EmitHTML, OPT_emit_html},
{frontend::EmitLLVM, OPT_emit_llvm},
{frontend::EmitLLVMOnly, OPT_emit_llvm_only},
{frontend::EmitCodeGenOnly, OPT_emit_codegen_only},
{frontend::EmitObj, OPT_emit_obj},
{frontend::ExtractAPI, OPT_extract_api},
{frontend::FixIt, OPT_fixit_EQ},
{frontend::FixIt, OPT_fixit},
{frontend::GenerateModule, OPT_emit_module},
{frontend::GenerateModuleInterface, OPT_emit_module_interface},
{frontend::GenerateReducedModuleInterface,
OPT_emit_reduced_module_interface},
{frontend::GenerateHeaderUnit, OPT_emit_header_unit},
{frontend::GeneratePCH, OPT_emit_pch},
{frontend::GenerateInterfaceStubs, OPT_emit_interface_stubs},
{frontend::InitOnly, OPT_init_only},
{frontend::ParseSyntaxOnly, OPT_fsyntax_only},
{frontend::ModuleFileInfo, OPT_module_file_info},
{frontend::VerifyPCH, OPT_verify_pch},
{frontend::PrintPreamble, OPT_print_preamble},
{frontend::PrintPreprocessedInput, OPT_E},
{frontend::TemplightDump, OPT_templight_dump},
{frontend::RewriteMacros, OPT_rewrite_macros},
{frontend::RewriteObjC, OPT_rewrite_objc},
{frontend::RewriteTest, OPT_rewrite_test},
{frontend::RunAnalysis, OPT_analyze},
{frontend::MigrateSource, OPT_migrate},
{frontend::RunPreprocessorOnly, OPT_Eonly},
{frontend::PrintDependencyDirectivesSourceMinimizerOutput,
OPT_print_dependency_directives_minimized_source},
};
return Table;
}
/// Maps command line option to frontend action.
static std::optional<frontend::ActionKind>
getFrontendAction(OptSpecifier &Opt) {
for (const auto &ActionOpt : getFrontendActionTable())
if (ActionOpt.second == Opt.getID())
return ActionOpt.first;
return std::nullopt;
}
/// Maps frontend action to command line option.
static std::optional<OptSpecifier>
getProgramActionOpt(frontend::ActionKind ProgramAction) {
for (const auto &ActionOpt : getFrontendActionTable())
if (ActionOpt.first == ProgramAction)
return OptSpecifier(ActionOpt.second);
return std::nullopt;
}
static void GenerateFrontendArgs(const FrontendOptions &Opts,
ArgumentConsumer Consumer, bool IsHeader) {
const FrontendOptions &FrontendOpts = Opts;
#define FRONTEND_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef FRONTEND_OPTION_WITH_MARSHALLING
std::optional<OptSpecifier> ProgramActionOpt =
getProgramActionOpt(Opts.ProgramAction);
// Generating a simple flag covers most frontend actions.
std::function<void()> GenerateProgramAction = [&]() {
GenerateArg(Consumer, *ProgramActionOpt);
};
if (!ProgramActionOpt) {
// PluginAction is the only program action handled separately.
assert(Opts.ProgramAction == frontend::PluginAction &&
"Frontend action without option.");
GenerateProgramAction = [&]() {
GenerateArg(Consumer, OPT_plugin, Opts.ActionName);
};
}
// FIXME: Simplify the complex 'AST dump' command line.
if (Opts.ProgramAction == frontend::ASTDump) {
GenerateProgramAction = [&]() {
// ASTDumpLookups, ASTDumpDeclTypes and ASTDumpFilter are generated via
// marshalling infrastructure.
if (Opts.ASTDumpFormat != ADOF_Default) {
StringRef Format;
switch (Opts.ASTDumpFormat) {
case ADOF_Default:
llvm_unreachable("Default AST dump format.");
case ADOF_JSON:
Format = "json";
break;
}
if (Opts.ASTDumpAll)
GenerateArg(Consumer, OPT_ast_dump_all_EQ, Format);
if (Opts.ASTDumpDecls)
GenerateArg(Consumer, OPT_ast_dump_EQ, Format);
} else {
if (Opts.ASTDumpAll)
GenerateArg(Consumer, OPT_ast_dump_all);
if (Opts.ASTDumpDecls)
GenerateArg(Consumer, OPT_ast_dump);
}
};
}
if (Opts.ProgramAction == frontend::FixIt && !Opts.FixItSuffix.empty()) {
GenerateProgramAction = [&]() {
GenerateArg(Consumer, OPT_fixit_EQ, Opts.FixItSuffix);
};
}
GenerateProgramAction();
for (const auto &PluginArgs : Opts.PluginArgs) {
Option Opt = getDriverOptTable().getOption(OPT_plugin_arg);
for (const auto &PluginArg : PluginArgs.second)
denormalizeString(Consumer,
Opt.getPrefix() + Opt.getName() + PluginArgs.first,
Opt.getKind(), 0, PluginArg);
}
for (const auto &Ext : Opts.ModuleFileExtensions)
if (auto *TestExt = dyn_cast_or_null<TestModuleFileExtension>(Ext.get()))
GenerateArg(Consumer, OPT_ftest_module_file_extension_EQ, TestExt->str());
if (!Opts.CodeCompletionAt.FileName.empty())
GenerateArg(Consumer, OPT_code_completion_at,
Opts.CodeCompletionAt.ToString());
for (const auto &Plugin : Opts.Plugins)
GenerateArg(Consumer, OPT_load, Plugin);
// ASTDumpDecls and ASTDumpAll already handled with ProgramAction.
for (const auto &ModuleFile : Opts.ModuleFiles)
GenerateArg(Consumer, OPT_fmodule_file, ModuleFile);
if (Opts.AuxTargetCPU)
GenerateArg(Consumer, OPT_aux_target_cpu, *Opts.AuxTargetCPU);
if (Opts.AuxTargetFeatures)
for (const auto &Feature : *Opts.AuxTargetFeatures)
GenerateArg(Consumer, OPT_aux_target_feature, Feature);
{
StringRef Preprocessed = Opts.DashX.isPreprocessed() ? "-cpp-output" : "";
StringRef ModuleMap =
Opts.DashX.getFormat() == InputKind::ModuleMap ? "-module-map" : "";
StringRef HeaderUnit = "";
switch (Opts.DashX.getHeaderUnitKind()) {
case InputKind::HeaderUnit_None:
break;
case InputKind::HeaderUnit_User:
HeaderUnit = "-user";
break;
case InputKind::HeaderUnit_System:
HeaderUnit = "-system";
break;
case InputKind::HeaderUnit_Abs:
HeaderUnit = "-header-unit";
break;
}
StringRef Header = IsHeader ? "-header" : "";
StringRef Lang;
switch (Opts.DashX.getLanguage()) {
case Language::C:
Lang = "c";
break;
case Language::OpenCL:
Lang = "cl";
break;
case Language::OpenCLCXX:
Lang = "clcpp";
break;
case Language::CUDA:
Lang = "cuda";
break;
case Language::HIP:
Lang = "hip";
break;
case Language::CXX:
Lang = "c++";
break;
case Language::ObjC:
Lang = "objective-c";
break;
case Language::ObjCXX:
Lang = "objective-c++";
break;
case Language::RenderScript:
Lang = "renderscript";
break;
case Language::Asm:
Lang = "assembler-with-cpp";
break;
case Language::Unknown:
assert(Opts.DashX.getFormat() == InputKind::Precompiled &&
"Generating -x argument for unknown language (not precompiled).");
Lang = "ast";
break;
case Language::LLVM_IR:
Lang = "ir";
break;
case Language::HLSL:
Lang = "hlsl";
break;
case Language::CIR:
Lang = "cir";
break;
}
GenerateArg(Consumer, OPT_x,
Lang + HeaderUnit + Header + ModuleMap + Preprocessed);
}
// OPT_INPUT has a unique class, generate it directly.
for (const auto &Input : Opts.Inputs)
Consumer(Input.getFile());
}
static bool ParseFrontendArgs(FrontendOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags, bool &IsHeaderFile) {
unsigned NumErrorsBefore = Diags.getNumErrors();
FrontendOptions &FrontendOpts = Opts;
#define FRONTEND_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef FRONTEND_OPTION_WITH_MARSHALLING
Opts.ProgramAction = frontend::ParseSyntaxOnly;
if (const Arg *A = Args.getLastArg(OPT_Action_Group)) {
OptSpecifier Opt = OptSpecifier(A->getOption().getID());
std::optional<frontend::ActionKind> ProgramAction = getFrontendAction(Opt);
assert(ProgramAction && "Option specifier not in Action_Group.");
if (ProgramAction == frontend::ASTDump &&
(Opt == OPT_ast_dump_all_EQ || Opt == OPT_ast_dump_EQ)) {
unsigned Val = llvm::StringSwitch<unsigned>(A->getValue())
.CaseLower("default", ADOF_Default)
.CaseLower("json", ADOF_JSON)
.Default(std::numeric_limits<unsigned>::max());
if (Val != std::numeric_limits<unsigned>::max())
Opts.ASTDumpFormat = static_cast<ASTDumpOutputFormat>(Val);
else {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
Opts.ASTDumpFormat = ADOF_Default;
}
}
if (ProgramAction == frontend::FixIt && Opt == OPT_fixit_EQ)
Opts.FixItSuffix = A->getValue();
if (ProgramAction == frontend::GenerateInterfaceStubs) {
StringRef ArgStr =
Args.hasArg(OPT_interface_stub_version_EQ)
? Args.getLastArgValue(OPT_interface_stub_version_EQ)
: "ifs-v1";
if (ArgStr == "experimental-yaml-elf-v1" ||
ArgStr == "experimental-ifs-v1" || ArgStr == "experimental-ifs-v2" ||
ArgStr == "experimental-tapi-elf-v1") {
std::string ErrorMessage =
"Invalid interface stub format: " + ArgStr.str() +
" is deprecated.";
Diags.Report(diag::err_drv_invalid_value)
<< "Must specify a valid interface stub format type, ie: "
"-interface-stub-version=ifs-v1"
<< ErrorMessage;
ProgramAction = frontend::ParseSyntaxOnly;
} else if (!ArgStr.starts_with("ifs-")) {
std::string ErrorMessage =
"Invalid interface stub format: " + ArgStr.str() + ".";
Diags.Report(diag::err_drv_invalid_value)
<< "Must specify a valid interface stub format type, ie: "
"-interface-stub-version=ifs-v1"
<< ErrorMessage;
ProgramAction = frontend::ParseSyntaxOnly;
}
}
Opts.ProgramAction = *ProgramAction;
}
if (const Arg* A = Args.getLastArg(OPT_plugin)) {
Opts.Plugins.emplace_back(A->getValue(0));
Opts.ProgramAction = frontend::PluginAction;
Opts.ActionName = A->getValue();
}
for (const auto *AA : Args.filtered(OPT_plugin_arg))
Opts.PluginArgs[AA->getValue(0)].emplace_back(AA->getValue(1));
for (const std::string &Arg :
Args.getAllArgValues(OPT_ftest_module_file_extension_EQ)) {
std::string BlockName;
unsigned MajorVersion;
unsigned MinorVersion;
bool Hashed;
std::string UserInfo;
if (parseTestModuleFileExtensionArg(Arg, BlockName, MajorVersion,
MinorVersion, Hashed, UserInfo)) {
Diags.Report(diag::err_test_module_file_extension_format) << Arg;
continue;
}
// Add the testing module file extension.
Opts.ModuleFileExtensions.push_back(
std::make_shared<TestModuleFileExtension>(
BlockName, MajorVersion, MinorVersion, Hashed, UserInfo));
}
if (const Arg *A = Args.getLastArg(OPT_code_completion_at)) {
Opts.CodeCompletionAt =
ParsedSourceLocation::FromString(A->getValue());
if (Opts.CodeCompletionAt.FileName.empty())
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
Opts.Plugins = Args.getAllArgValues(OPT_load);
Opts.ASTDumpDecls = Args.hasArg(OPT_ast_dump, OPT_ast_dump_EQ);
Opts.ASTDumpAll = Args.hasArg(OPT_ast_dump_all, OPT_ast_dump_all_EQ);
// Only the -fmodule-file=<file> form.
for (const auto *A : Args.filtered(OPT_fmodule_file)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ModuleFiles.push_back(std::string(Val));
}
if (Opts.ProgramAction != frontend::GenerateModule && Opts.IsSystemModule)
Diags.Report(diag::err_drv_argument_only_allowed_with) << "-fsystem-module"
<< "-emit-module";
if (Args.hasArg(OPT_fclangir) || Args.hasArg(OPT_emit_cir))
Opts.UseClangIRPipeline = true;
if (Args.hasArg(OPT_aux_target_cpu))
Opts.AuxTargetCPU = std::string(Args.getLastArgValue(OPT_aux_target_cpu));
if (Args.hasArg(OPT_aux_target_feature))
Opts.AuxTargetFeatures = Args.getAllArgValues(OPT_aux_target_feature);
if (Opts.ARCMTAction != FrontendOptions::ARCMT_None &&
Opts.ObjCMTAction != FrontendOptions::ObjCMT_None) {
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< "ARC migration" << "ObjC migration";
}
InputKind DashX(Language::Unknown);
if (const Arg *A = Args.getLastArg(OPT_x)) {
StringRef XValue = A->getValue();
// Parse suffixes:
// '<lang>(-[{header-unit,user,system}-]header|[-module-map][-cpp-output])'.
// FIXME: Supporting '<lang>-header-cpp-output' would be useful.
bool Preprocessed = XValue.consume_back("-cpp-output");
bool ModuleMap = XValue.consume_back("-module-map");
// Detect and consume the header indicator.
bool IsHeader =
XValue != "precompiled-header" && XValue.consume_back("-header");
// If we have c++-{user,system}-header, that indicates a header unit input
// likewise, if the user put -fmodule-header together with a header with an
// absolute path (header-unit-header).
InputKind::HeaderUnitKind HUK = InputKind::HeaderUnit_None;
if (IsHeader || Preprocessed) {
if (XValue.consume_back("-header-unit"))
HUK = InputKind::HeaderUnit_Abs;
else if (XValue.consume_back("-system"))
HUK = InputKind::HeaderUnit_System;
else if (XValue.consume_back("-user"))
HUK = InputKind::HeaderUnit_User;
}
// The value set by this processing is an un-preprocessed source which is
// not intended to be a module map or header unit.
IsHeaderFile = IsHeader && !Preprocessed && !ModuleMap &&
HUK == InputKind::HeaderUnit_None;
// Principal languages.
DashX = llvm::StringSwitch<InputKind>(XValue)
.Case("c", Language::C)
.Case("cl", Language::OpenCL)
.Case("clcpp", Language::OpenCLCXX)
.Case("cuda", Language::CUDA)
.Case("hip", Language::HIP)
.Case("c++", Language::CXX)
.Case("objective-c", Language::ObjC)
.Case("objective-c++", Language::ObjCXX)
.Case("renderscript", Language::RenderScript)
.Case("hlsl", Language::HLSL)
.Default(Language::Unknown);
// "objc[++]-cpp-output" is an acceptable synonym for
// "objective-c[++]-cpp-output".
if (DashX.isUnknown() && Preprocessed && !IsHeaderFile && !ModuleMap &&
HUK == InputKind::HeaderUnit_None)
DashX = llvm::StringSwitch<InputKind>(XValue)
.Case("objc", Language::ObjC)
.Case("objc++", Language::ObjCXX)
.Default(Language::Unknown);
// Some special cases cannot be combined with suffixes.
if (DashX.isUnknown() && !Preprocessed && !IsHeaderFile && !ModuleMap &&
HUK == InputKind::HeaderUnit_None)
DashX = llvm::StringSwitch<InputKind>(XValue)
.Case("cpp-output", InputKind(Language::C).getPreprocessed())
.Case("assembler-with-cpp", Language::Asm)
.Cases("ast", "pcm", "precompiled-header",
InputKind(Language::Unknown, InputKind::Precompiled))
.Case("ir", Language::LLVM_IR)
.Case("cir", Language::CIR)
.Default(Language::Unknown);
if (DashX.isUnknown())
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
if (Preprocessed)
DashX = DashX.getPreprocessed();
// A regular header is considered mutually exclusive with a header unit.
if (HUK != InputKind::HeaderUnit_None) {
DashX = DashX.withHeaderUnit(HUK);
IsHeaderFile = true;
} else if (IsHeaderFile)
DashX = DashX.getHeader();
if (ModuleMap)
DashX = DashX.withFormat(InputKind::ModuleMap);
}
// '-' is the default input if none is given.
std::vector<std::string> Inputs = Args.getAllArgValues(OPT_INPUT);
Opts.Inputs.clear();
if (Inputs.empty())
Inputs.push_back("-");
if (DashX.getHeaderUnitKind() != InputKind::HeaderUnit_None &&
Inputs.size() > 1)
Diags.Report(diag::err_drv_header_unit_extra_inputs) << Inputs[1];
for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
InputKind IK = DashX;
if (IK.isUnknown()) {
IK = FrontendOptions::getInputKindForExtension(
StringRef(Inputs[i]).rsplit('.').second);
// FIXME: Warn on this?
if (IK.isUnknown())
IK = Language::C;
// FIXME: Remove this hack.
if (i == 0)
DashX = IK;
}
bool IsSystem = false;
// The -emit-module action implicitly takes a module map.
if (Opts.ProgramAction == frontend::GenerateModule &&
IK.getFormat() == InputKind::Source) {
IK = IK.withFormat(InputKind::ModuleMap);
IsSystem = Opts.IsSystemModule;
}
Opts.Inputs.emplace_back(std::move(Inputs[i]), IK, IsSystem);
}
Opts.DashX = DashX;
return Diags.getNumErrors() == NumErrorsBefore;
}
std::string CompilerInvocation::GetResourcesPath(const char *Argv0,
void *MainAddr) {
std::string ClangExecutable =
llvm::sys::fs::getMainExecutable(Argv0, MainAddr);
return Driver::GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
}
static void GenerateHeaderSearchArgs(const HeaderSearchOptions &Opts,
ArgumentConsumer Consumer) {
const HeaderSearchOptions *HeaderSearchOpts = &Opts;
#define HEADER_SEARCH_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef HEADER_SEARCH_OPTION_WITH_MARSHALLING
if (Opts.UseLibcxx)
GenerateArg(Consumer, OPT_stdlib_EQ, "libc++");
if (!Opts.ModuleCachePath.empty())
GenerateArg(Consumer, OPT_fmodules_cache_path, Opts.ModuleCachePath);
for (const auto &File : Opts.PrebuiltModuleFiles)
GenerateArg(Consumer, OPT_fmodule_file, File.first + "=" + File.second);
for (const auto &Path : Opts.PrebuiltModulePaths)
GenerateArg(Consumer, OPT_fprebuilt_module_path, Path);
for (const auto &Macro : Opts.ModulesIgnoreMacros)
GenerateArg(Consumer, OPT_fmodules_ignore_macro, Macro.val());
auto Matches = [](const HeaderSearchOptions::Entry &Entry,
llvm::ArrayRef<frontend::IncludeDirGroup> Groups,
std::optional<bool> IsFramework,
std::optional<bool> IgnoreSysRoot) {
return llvm::is_contained(Groups, Entry.Group) &&
(!IsFramework || (Entry.IsFramework == *IsFramework)) &&
(!IgnoreSysRoot || (Entry.IgnoreSysRoot == *IgnoreSysRoot));
};
auto It = Opts.UserEntries.begin();
auto End = Opts.UserEntries.end();
// Add -I..., -F..., and -index-header-map options in order.
for (; It < End && Matches(*It, {frontend::IndexHeaderMap, frontend::Angled},
std::nullopt, true);
++It) {
OptSpecifier Opt = [It, Matches]() {
if (Matches(*It, frontend::IndexHeaderMap, true, true))
return OPT_F;
if (Matches(*It, frontend::IndexHeaderMap, false, true))
return OPT_I;
if (Matches(*It, frontend::Angled, true, true))
return OPT_F;
if (Matches(*It, frontend::Angled, false, true))
return OPT_I;
llvm_unreachable("Unexpected HeaderSearchOptions::Entry.");
}();
if (It->Group == frontend::IndexHeaderMap)
GenerateArg(Consumer, OPT_index_header_map);
GenerateArg(Consumer, Opt, It->Path);
};
// Note: some paths that came from "[-iprefix=xx] -iwithprefixbefore=yy" may
// have already been generated as "-I[xx]yy". If that's the case, their
// position on command line was such that this has no semantic impact on
// include paths.
for (; It < End &&
Matches(*It, {frontend::After, frontend::Angled}, false, true);
++It) {
OptSpecifier Opt =
It->Group == frontend::After ? OPT_iwithprefix : OPT_iwithprefixbefore;
GenerateArg(Consumer, Opt, It->Path);
}
// Note: Some paths that came from "-idirafter=xxyy" may have already been
// generated as "-iwithprefix=xxyy". If that's the case, their position on
// command line was such that this has no semantic impact on include paths.
for (; It < End && Matches(*It, {frontend::After}, false, true); ++It)
GenerateArg(Consumer, OPT_idirafter, It->Path);
for (; It < End && Matches(*It, {frontend::Quoted}, false, true); ++It)
GenerateArg(Consumer, OPT_iquote, It->Path);
for (; It < End && Matches(*It, {frontend::System}, false, std::nullopt);
++It)
GenerateArg(Consumer, It->IgnoreSysRoot ? OPT_isystem : OPT_iwithsysroot,
It->Path);
for (; It < End && Matches(*It, {frontend::System}, true, true); ++It)
GenerateArg(Consumer, OPT_iframework, It->Path);
for (; It < End && Matches(*It, {frontend::System}, true, false); ++It)
GenerateArg(Consumer, OPT_iframeworkwithsysroot, It->Path);
// Add the paths for the various language specific isystem flags.
for (; It < End && Matches(*It, {frontend::CSystem}, false, true); ++It)
GenerateArg(Consumer, OPT_c_isystem, It->Path);
for (; It < End && Matches(*It, {frontend::CXXSystem}, false, true); ++It)
GenerateArg(Consumer, OPT_cxx_isystem, It->Path);
for (; It < End && Matches(*It, {frontend::ObjCSystem}, false, true); ++It)
GenerateArg(Consumer, OPT_objc_isystem, It->Path);
for (; It < End && Matches(*It, {frontend::ObjCXXSystem}, false, true); ++It)
GenerateArg(Consumer, OPT_objcxx_isystem, It->Path);
// Add the internal paths from a driver that detects standard include paths.
// Note: Some paths that came from "-internal-isystem" arguments may have
// already been generated as "-isystem". If that's the case, their position on
// command line was such that this has no semantic impact on include paths.
for (; It < End &&
Matches(*It, {frontend::System, frontend::ExternCSystem}, false, true);
++It) {
OptSpecifier Opt = It->Group == frontend::System
? OPT_internal_isystem
: OPT_internal_externc_isystem;
GenerateArg(Consumer, Opt, It->Path);
}
assert(It == End && "Unhandled HeaderSearchOption::Entry.");
// Add the path prefixes which are implicitly treated as being system headers.
for (const auto &P : Opts.SystemHeaderPrefixes) {
OptSpecifier Opt = P.IsSystemHeader ? OPT_system_header_prefix
: OPT_no_system_header_prefix;
GenerateArg(Consumer, Opt, P.Prefix);
}
for (const std::string &F : Opts.VFSOverlayFiles)
GenerateArg(Consumer, OPT_ivfsoverlay, F);
}
static bool ParseHeaderSearchArgs(HeaderSearchOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags,
const std::string &WorkingDir) {
unsigned NumErrorsBefore = Diags.getNumErrors();
HeaderSearchOptions *HeaderSearchOpts = &Opts;
#define HEADER_SEARCH_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef HEADER_SEARCH_OPTION_WITH_MARSHALLING
if (const Arg *A = Args.getLastArg(OPT_stdlib_EQ))
Opts.UseLibcxx = (strcmp(A->getValue(), "libc++") == 0);
// Canonicalize -fmodules-cache-path before storing it.
SmallString<128> P(Args.getLastArgValue(OPT_fmodules_cache_path));
if (!(P.empty() || llvm::sys::path::is_absolute(P))) {
if (WorkingDir.empty())
llvm::sys::fs::make_absolute(P);
else
llvm::sys::fs::make_absolute(WorkingDir, P);
}
llvm::sys::path::remove_dots(P);
Opts.ModuleCachePath = std::string(P);
// Only the -fmodule-file=<name>=<file> form.
for (const auto *A : Args.filtered(OPT_fmodule_file)) {
StringRef Val = A->getValue();
if (Val.contains('=')) {
auto Split = Val.split('=');
Opts.PrebuiltModuleFiles.insert_or_assign(
std::string(Split.first), std::string(Split.second));
}
}
for (const auto *A : Args.filtered(OPT_fprebuilt_module_path))
Opts.AddPrebuiltModulePath(A->getValue());
for (const auto *A : Args.filtered(OPT_fmodules_ignore_macro)) {
StringRef MacroDef = A->getValue();
Opts.ModulesIgnoreMacros.insert(
llvm::CachedHashString(MacroDef.split('=').first));
}
// Add -I..., -F..., and -index-header-map options in order.
bool IsIndexHeaderMap = false;
bool IsSysrootSpecified =
Args.hasArg(OPT__sysroot_EQ) || Args.hasArg(OPT_isysroot);
// Expand a leading `=` to the sysroot if one was passed (and it's not a
// framework flag).
auto PrefixHeaderPath = [IsSysrootSpecified,
&Opts](const llvm::opt::Arg *A,
bool IsFramework = false) -> std::string {
assert(A->getNumValues() && "Unexpected empty search path flag!");
if (IsSysrootSpecified && !IsFramework && A->getValue()[0] == '=') {
SmallString<32> Buffer;
llvm::sys::path::append(Buffer, Opts.Sysroot,
llvm::StringRef(A->getValue()).substr(1));
return std::string(Buffer);
}
return A->getValue();
};
for (const auto *A : Args.filtered(OPT_I, OPT_F, OPT_index_header_map)) {
if (A->getOption().matches(OPT_index_header_map)) {
// -index-header-map applies to the next -I or -F.
IsIndexHeaderMap = true;
continue;
}
frontend::IncludeDirGroup Group =
IsIndexHeaderMap ? frontend::IndexHeaderMap : frontend::Angled;
bool IsFramework = A->getOption().matches(OPT_F);
Opts.AddPath(PrefixHeaderPath(A, IsFramework), Group, IsFramework,
/*IgnoreSysroot*/ true);
IsIndexHeaderMap = false;
}
// Add -iprefix/-iwithprefix/-iwithprefixbefore options.
StringRef Prefix = ""; // FIXME: This isn't the correct default prefix.
for (const auto *A :
Args.filtered(OPT_iprefix, OPT_iwithprefix, OPT_iwithprefixbefore)) {
if (A->getOption().matches(OPT_iprefix))
Prefix = A->getValue();
else if (A->getOption().matches(OPT_iwithprefix))
Opts.AddPath(Prefix.str() + A->getValue(), frontend::After, false, true);
else
Opts.AddPath(Prefix.str() + A->getValue(), frontend::Angled, false, true);
}
for (const auto *A : Args.filtered(OPT_idirafter))
Opts.AddPath(PrefixHeaderPath(A), frontend::After, false, true);
for (const auto *A : Args.filtered(OPT_iquote))
Opts.AddPath(PrefixHeaderPath(A), frontend::Quoted, false, true);
for (const auto *A : Args.filtered(OPT_isystem, OPT_iwithsysroot)) {
if (A->getOption().matches(OPT_iwithsysroot)) {
Opts.AddPath(A->getValue(), frontend::System, false,
/*IgnoreSysRoot=*/false);
continue;
}
Opts.AddPath(PrefixHeaderPath(A), frontend::System, false, true);
}
for (const auto *A : Args.filtered(OPT_iframework))
Opts.AddPath(A->getValue(), frontend::System, true, true);
for (const auto *A : Args.filtered(OPT_iframeworkwithsysroot))
Opts.AddPath(A->getValue(), frontend::System, /*IsFramework=*/true,
/*IgnoreSysRoot=*/false);
// Add the paths for the various language specific isystem flags.
for (const auto *A : Args.filtered(OPT_c_isystem))
Opts.AddPath(A->getValue(), frontend::CSystem, false, true);
for (const auto *A : Args.filtered(OPT_cxx_isystem))
Opts.AddPath(A->getValue(), frontend::CXXSystem, false, true);
for (const auto *A : Args.filtered(OPT_objc_isystem))
Opts.AddPath(A->getValue(), frontend::ObjCSystem, false,true);
for (const auto *A : Args.filtered(OPT_objcxx_isystem))
Opts.AddPath(A->getValue(), frontend::ObjCXXSystem, false, true);
// Add the internal paths from a driver that detects standard include paths.
for (const auto *A :
Args.filtered(OPT_internal_isystem, OPT_internal_externc_isystem)) {
frontend::IncludeDirGroup Group = frontend::System;
if (A->getOption().matches(OPT_internal_externc_isystem))
Group = frontend::ExternCSystem;
Opts.AddPath(A->getValue(), Group, false, true);
}
// Add the path prefixes which are implicitly treated as being system headers.
for (const auto *A :
Args.filtered(OPT_system_header_prefix, OPT_no_system_header_prefix))
Opts.AddSystemHeaderPrefix(
A->getValue(), A->getOption().matches(OPT_system_header_prefix));
for (const auto *A : Args.filtered(OPT_ivfsoverlay, OPT_vfsoverlay))
Opts.AddVFSOverlayFile(A->getValue());
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GenerateAPINotesArgs(const APINotesOptions &Opts,
ArgumentConsumer Consumer) {
if (!Opts.SwiftVersion.empty())
GenerateArg(Consumer, OPT_fapinotes_swift_version,
Opts.SwiftVersion.getAsString());
for (const auto &Path : Opts.ModuleSearchPaths)
GenerateArg(Consumer, OPT_iapinotes_modules, Path);
}
static void ParseAPINotesArgs(APINotesOptions &Opts, ArgList &Args,
DiagnosticsEngine &diags) {
if (const Arg *A = Args.getLastArg(OPT_fapinotes_swift_version)) {
if (Opts.SwiftVersion.tryParse(A->getValue()))
diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
for (const Arg *A : Args.filtered(OPT_iapinotes_modules))
Opts.ModuleSearchPaths.push_back(A->getValue());
}
static void GeneratePointerAuthArgs(const LangOptions &Opts,
ArgumentConsumer Consumer) {
if (Opts.PointerAuthIntrinsics)
GenerateArg(Consumer, OPT_fptrauth_intrinsics);
}
static void ParsePointerAuthArgs(LangOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags) {
Opts.PointerAuthIntrinsics = Args.hasArg(OPT_fptrauth_intrinsics);
}
/// Check if input file kind and language standard are compatible.
static bool IsInputCompatibleWithStandard(InputKind IK,
const LangStandard &S) {
switch (IK.getLanguage()) {
case Language::Unknown:
case Language::LLVM_IR:
case Language::CIR:
llvm_unreachable("should not parse language flags for this input");
case Language::C:
case Language::ObjC:
case Language::RenderScript:
return S.getLanguage() == Language::C;
case Language::OpenCL:
return S.getLanguage() == Language::OpenCL ||
S.getLanguage() == Language::OpenCLCXX;
case Language::OpenCLCXX:
return S.getLanguage() == Language::OpenCLCXX;
case Language::CXX:
case Language::ObjCXX:
return S.getLanguage() == Language::CXX;
case Language::CUDA:
// FIXME: What -std= values should be permitted for CUDA compilations?
return S.getLanguage() == Language::CUDA ||
S.getLanguage() == Language::CXX;
case Language::HIP:
return S.getLanguage() == Language::CXX || S.getLanguage() == Language::HIP;
case Language::Asm:
// Accept (and ignore) all -std= values.
// FIXME: The -std= value is not ignored; it affects the tokenization
// and preprocessing rules if we're preprocessing this asm input.
return true;
case Language::HLSL:
return S.getLanguage() == Language::HLSL;
}
llvm_unreachable("unexpected input language");
}
/// Get language name for given input kind.
static StringRef GetInputKindName(InputKind IK) {
switch (IK.getLanguage()) {
case Language::C:
return "C";
case Language::ObjC:
return "Objective-C";
case Language::CXX:
return "C++";
case Language::ObjCXX:
return "Objective-C++";
case Language::OpenCL:
return "OpenCL";
case Language::OpenCLCXX:
return "C++ for OpenCL";
case Language::CUDA:
return "CUDA";
case Language::RenderScript:
return "RenderScript";
case Language::HIP:
return "HIP";
case Language::Asm:
return "Asm";
case Language::LLVM_IR:
return "LLVM IR";
case Language::CIR:
return "Clang IR";
case Language::HLSL:
return "HLSL";
case Language::Unknown:
break;
}
llvm_unreachable("unknown input language");
}
void CompilerInvocationBase::GenerateLangArgs(const LangOptions &Opts,
ArgumentConsumer Consumer,
const llvm::Triple &T,
InputKind IK) {
if (IK.getFormat() == InputKind::Precompiled ||
IK.getLanguage() == Language::LLVM_IR ||
IK.getLanguage() == Language::CIR) {
if (Opts.ObjCAutoRefCount)
GenerateArg(Consumer, OPT_fobjc_arc);
if (Opts.PICLevel != 0)
GenerateArg(Consumer, OPT_pic_level, Twine(Opts.PICLevel));
if (Opts.PIE)
GenerateArg(Consumer, OPT_pic_is_pie);
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.Sanitize))
GenerateArg(Consumer, OPT_fsanitize_EQ, Sanitizer);
return;
}
OptSpecifier StdOpt;
switch (Opts.LangStd) {
case LangStandard::lang_opencl10:
case LangStandard::lang_opencl11:
case LangStandard::lang_opencl12:
case LangStandard::lang_opencl20:
case LangStandard::lang_opencl30:
case LangStandard::lang_openclcpp10:
case LangStandard::lang_openclcpp2021:
StdOpt = OPT_cl_std_EQ;
break;
default:
StdOpt = OPT_std_EQ;
break;
}
auto LangStandard = LangStandard::getLangStandardForKind(Opts.LangStd);
GenerateArg(Consumer, StdOpt, LangStandard.getName());
if (Opts.IncludeDefaultHeader)
GenerateArg(Consumer, OPT_finclude_default_header);
if (Opts.DeclareOpenCLBuiltins)
GenerateArg(Consumer, OPT_fdeclare_opencl_builtins);
const LangOptions *LangOpts = &Opts;
#define LANG_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef LANG_OPTION_WITH_MARSHALLING
// The '-fcf-protection=' option is generated by CodeGenOpts generator.
if (Opts.ObjC) {
GenerateArg(Consumer, OPT_fobjc_runtime_EQ, Opts.ObjCRuntime.getAsString());
if (Opts.GC == LangOptions::GCOnly)
GenerateArg(Consumer, OPT_fobjc_gc_only);
else if (Opts.GC == LangOptions::HybridGC)
GenerateArg(Consumer, OPT_fobjc_gc);
else if (Opts.ObjCAutoRefCount == 1)
GenerateArg(Consumer, OPT_fobjc_arc);
if (Opts.ObjCWeakRuntime)
GenerateArg(Consumer, OPT_fobjc_runtime_has_weak);
if (Opts.ObjCWeak)
GenerateArg(Consumer, OPT_fobjc_weak);
if (Opts.ObjCSubscriptingLegacyRuntime)
GenerateArg(Consumer, OPT_fobjc_subscripting_legacy_runtime);
}
if (Opts.GNUCVersion != 0) {
unsigned Major = Opts.GNUCVersion / 100 / 100;
unsigned Minor = (Opts.GNUCVersion / 100) % 100;
unsigned Patch = Opts.GNUCVersion % 100;
GenerateArg(Consumer, OPT_fgnuc_version_EQ,
Twine(Major) + "." + Twine(Minor) + "." + Twine(Patch));
}
if (Opts.IgnoreXCOFFVisibility)
GenerateArg(Consumer, OPT_mignore_xcoff_visibility);
if (Opts.SignedOverflowBehavior == LangOptions::SOB_Trapping) {
GenerateArg(Consumer, OPT_ftrapv);
GenerateArg(Consumer, OPT_ftrapv_handler, Opts.OverflowHandler);
} else if (Opts.SignedOverflowBehavior == LangOptions::SOB_Defined) {
GenerateArg(Consumer, OPT_fwrapv);
}
if (Opts.MSCompatibilityVersion != 0) {
unsigned Major = Opts.MSCompatibilityVersion / 10000000;
unsigned Minor = (Opts.MSCompatibilityVersion / 100000) % 100;
unsigned Subminor = Opts.MSCompatibilityVersion % 100000;
GenerateArg(Consumer, OPT_fms_compatibility_version,
Twine(Major) + "." + Twine(Minor) + "." + Twine(Subminor));
}
if ((!Opts.GNUMode && !Opts.MSVCCompat && !Opts.CPlusPlus17 && !Opts.C23) ||
T.isOSzOS()) {
if (!Opts.Trigraphs)
GenerateArg(Consumer, OPT_fno_trigraphs);
} else {
if (Opts.Trigraphs)
GenerateArg(Consumer, OPT_ftrigraphs);
}
if (Opts.Blocks && !(Opts.OpenCL && Opts.OpenCLVersion == 200))
GenerateArg(Consumer, OPT_fblocks);
if (Opts.ConvergentFunctions &&
!(Opts.OpenCL || (Opts.CUDA && Opts.CUDAIsDevice) || Opts.SYCLIsDevice ||
Opts.HLSL))
GenerateArg(Consumer, OPT_fconvergent_functions);
if (Opts.NoBuiltin && !Opts.Freestanding)
GenerateArg(Consumer, OPT_fno_builtin);
if (!Opts.NoBuiltin)
for (const auto &Func : Opts.NoBuiltinFuncs)
GenerateArg(Consumer, OPT_fno_builtin_, Func);
if (Opts.LongDoubleSize == 128)
GenerateArg(Consumer, OPT_mlong_double_128);
else if (Opts.LongDoubleSize == 64)
GenerateArg(Consumer, OPT_mlong_double_64);
else if (Opts.LongDoubleSize == 80)
GenerateArg(Consumer, OPT_mlong_double_80);
// Not generating '-mrtd', it's just an alias for '-fdefault-calling-conv='.
// OpenMP was requested via '-fopenmp', not implied by '-fopenmp-simd' or
// '-fopenmp-targets='.
if (Opts.OpenMP && !Opts.OpenMPSimd) {
GenerateArg(Consumer, OPT_fopenmp);
if (Opts.OpenMP != 51)
GenerateArg(Consumer, OPT_fopenmp_version_EQ, Twine(Opts.OpenMP));
if (!Opts.OpenMPUseTLS)
GenerateArg(Consumer, OPT_fnoopenmp_use_tls);
if (Opts.OpenMPIsTargetDevice)
GenerateArg(Consumer, OPT_fopenmp_is_target_device);
if (Opts.OpenMPIRBuilder)
GenerateArg(Consumer, OPT_fopenmp_enable_irbuilder);
}
if (Opts.OpenMPSimd) {
GenerateArg(Consumer, OPT_fopenmp_simd);
if (Opts.OpenMP != 51)
GenerateArg(Consumer, OPT_fopenmp_version_EQ, Twine(Opts.OpenMP));
}
if (Opts.OpenMPThreadSubscription)
GenerateArg(Consumer, OPT_fopenmp_assume_threads_oversubscription);
if (Opts.OpenMPTeamSubscription)
GenerateArg(Consumer, OPT_fopenmp_assume_teams_oversubscription);
if (Opts.OpenMPTargetDebug != 0)
GenerateArg(Consumer, OPT_fopenmp_target_debug_EQ,
Twine(Opts.OpenMPTargetDebug));
if (Opts.OpenMPCUDANumSMs != 0)
GenerateArg(Consumer, OPT_fopenmp_cuda_number_of_sm_EQ,
Twine(Opts.OpenMPCUDANumSMs));
if (Opts.OpenMPCUDABlocksPerSM != 0)
GenerateArg(Consumer, OPT_fopenmp_cuda_blocks_per_sm_EQ,
Twine(Opts.OpenMPCUDABlocksPerSM));
if (Opts.OpenMPCUDAReductionBufNum != 1024)
GenerateArg(Consumer, OPT_fopenmp_cuda_teams_reduction_recs_num_EQ,
Twine(Opts.OpenMPCUDAReductionBufNum));
if (!Opts.OMPTargetTriples.empty()) {
std::string Targets;
llvm::raw_string_ostream OS(Targets);
llvm::interleave(
Opts.OMPTargetTriples, OS,
[&OS](const llvm::Triple &T) { OS << T.str(); }, ",");
GenerateArg(Consumer, OPT_fopenmp_targets_EQ, OS.str());
}
if (!Opts.OMPHostIRFile.empty())
GenerateArg(Consumer, OPT_fopenmp_host_ir_file_path, Opts.OMPHostIRFile);
if (Opts.OpenMPCUDAMode)
GenerateArg(Consumer, OPT_fopenmp_cuda_mode);
if (Opts.OpenACC) {
GenerateArg(Consumer, OPT_fopenacc);
if (!Opts.OpenACCMacroOverride.empty())
GenerateArg(Consumer, OPT_openacc_macro_override,
Opts.OpenACCMacroOverride);
}
// The arguments used to set Optimize, OptimizeSize and NoInlineDefine are
// generated from CodeGenOptions.
if (Opts.DefaultFPContractMode == LangOptions::FPM_Fast)
GenerateArg(Consumer, OPT_ffp_contract, "fast");
else if (Opts.DefaultFPContractMode == LangOptions::FPM_On)
GenerateArg(Consumer, OPT_ffp_contract, "on");
else if (Opts.DefaultFPContractMode == LangOptions::FPM_Off)
GenerateArg(Consumer, OPT_ffp_contract, "off");
else if (Opts.DefaultFPContractMode == LangOptions::FPM_FastHonorPragmas)
GenerateArg(Consumer, OPT_ffp_contract, "fast-honor-pragmas");
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.Sanitize))
GenerateArg(Consumer, OPT_fsanitize_EQ, Sanitizer);
// Conflating '-fsanitize-system-ignorelist' and '-fsanitize-ignorelist'.
for (const std::string &F : Opts.NoSanitizeFiles)
GenerateArg(Consumer, OPT_fsanitize_ignorelist_EQ, F);
switch (Opts.getClangABICompat()) {
case LangOptions::ClangABI::Ver3_8:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "3.8");
break;
case LangOptions::ClangABI::Ver4:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "4.0");
break;
case LangOptions::ClangABI::Ver6:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "6.0");
break;
case LangOptions::ClangABI::Ver7:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "7.0");
break;
case LangOptions::ClangABI::Ver9:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "9.0");
break;
case LangOptions::ClangABI::Ver11:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "11.0");
break;
case LangOptions::ClangABI::Ver12:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "12.0");
break;
case LangOptions::ClangABI::Ver14:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "14.0");
break;
case LangOptions::ClangABI::Ver15:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "15.0");
break;
case LangOptions::ClangABI::Ver17:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "17.0");
break;
case LangOptions::ClangABI::Ver18:
GenerateArg(Consumer, OPT_fclang_abi_compat_EQ, "18.0");
break;
case LangOptions::ClangABI::Latest:
break;
}
if (Opts.getSignReturnAddressScope() ==
LangOptions::SignReturnAddressScopeKind::All)
GenerateArg(Consumer, OPT_msign_return_address_EQ, "all");
else if (Opts.getSignReturnAddressScope() ==
LangOptions::SignReturnAddressScopeKind::NonLeaf)
GenerateArg(Consumer, OPT_msign_return_address_EQ, "non-leaf");
if (Opts.getSignReturnAddressKey() ==
LangOptions::SignReturnAddressKeyKind::BKey)
GenerateArg(Consumer, OPT_msign_return_address_key_EQ, "b_key");
if (Opts.CXXABI)
GenerateArg(Consumer, OPT_fcxx_abi_EQ,
TargetCXXABI::getSpelling(*Opts.CXXABI));
if (Opts.RelativeCXXABIVTables)
GenerateArg(Consumer, OPT_fexperimental_relative_cxx_abi_vtables);
else
GenerateArg(Consumer, OPT_fno_experimental_relative_cxx_abi_vtables);
if (Opts.UseTargetPathSeparator)
GenerateArg(Consumer, OPT_ffile_reproducible);
else
GenerateArg(Consumer, OPT_fno_file_reproducible);
for (const auto &MP : Opts.MacroPrefixMap)
GenerateArg(Consumer, OPT_fmacro_prefix_map_EQ, MP.first + "=" + MP.second);
if (!Opts.RandstructSeed.empty())
GenerateArg(Consumer, OPT_frandomize_layout_seed_EQ, Opts.RandstructSeed);
}
bool CompilerInvocation::ParseLangArgs(LangOptions &Opts, ArgList &Args,
InputKind IK, const llvm::Triple &T,
std::vector<std::string> &Includes,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
if (IK.getFormat() == InputKind::Precompiled ||
IK.getLanguage() == Language::LLVM_IR ||
IK.getLanguage() == Language::CIR) {
// ObjCAAutoRefCount and Sanitize LangOpts are used to setup the
// PassManager in BackendUtil.cpp. They need to be initialized no matter
// what the input type is.
if (Args.hasArg(OPT_fobjc_arc))
Opts.ObjCAutoRefCount = 1;
// PICLevel and PIELevel are needed during code generation and this should
// be set regardless of the input type.
Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
Opts.PIE = Args.hasArg(OPT_pic_is_pie);
parseSanitizerKinds("-fsanitize=", Args.getAllArgValues(OPT_fsanitize_EQ),
Diags, Opts.Sanitize);
return Diags.getNumErrors() == NumErrorsBefore;
}
// Other LangOpts are only initialized when the input is not AST or LLVM IR.
// FIXME: Should we really be parsing this for an Language::Asm input?
// FIXME: Cleanup per-file based stuff.
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (const Arg *A = Args.getLastArg(OPT_std_EQ)) {
LangStd = LangStandard::getLangKind(A->getValue());
if (LangStd == LangStandard::lang_unspecified) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
// Report supported standards with short description.
for (unsigned KindValue = 0;
KindValue != LangStandard::lang_unspecified;
++KindValue) {
const LangStandard &Std = LangStandard::getLangStandardForKind(
static_cast<LangStandard::Kind>(KindValue));
if (IsInputCompatibleWithStandard(IK, Std)) {
auto Diag = Diags.Report(diag::note_drv_use_standard);
Diag << Std.getName() << Std.getDescription();
unsigned NumAliases = 0;
#define LANGSTANDARD(id, name, lang, desc, features)
#define LANGSTANDARD_ALIAS(id, alias) \
if (KindValue == LangStandard::lang_##id) ++NumAliases;
#define LANGSTANDARD_ALIAS_DEPR(id, alias)
#include "clang/Basic/LangStandards.def"
Diag << NumAliases;
#define LANGSTANDARD(id, name, lang, desc, features)
#define LANGSTANDARD_ALIAS(id, alias) \
if (KindValue == LangStandard::lang_##id) Diag << alias;
#define LANGSTANDARD_ALIAS_DEPR(id, alias)
#include "clang/Basic/LangStandards.def"
}
}
} else {
// Valid standard, check to make sure language and standard are
// compatible.
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
if (!IsInputCompatibleWithStandard(IK, Std)) {
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << GetInputKindName(IK);
}
}
}
// -cl-std only applies for OpenCL language standards.
// Override the -std option in this case.
if (const Arg *A = Args.getLastArg(OPT_cl_std_EQ)) {
LangStandard::Kind OpenCLLangStd
= llvm::StringSwitch<LangStandard::Kind>(A->getValue())
.Cases("cl", "CL", LangStandard::lang_opencl10)
.Cases("cl1.0", "CL1.0", LangStandard::lang_opencl10)
.Cases("cl1.1", "CL1.1", LangStandard::lang_opencl11)
.Cases("cl1.2", "CL1.2", LangStandard::lang_opencl12)
.Cases("cl2.0", "CL2.0", LangStandard::lang_opencl20)
.Cases("cl3.0", "CL3.0", LangStandard::lang_opencl30)
.Cases("clc++", "CLC++", LangStandard::lang_openclcpp10)
.Cases("clc++1.0", "CLC++1.0", LangStandard::lang_openclcpp10)
.Cases("clc++2021", "CLC++2021", LangStandard::lang_openclcpp2021)
.Default(LangStandard::lang_unspecified);
if (OpenCLLangStd == LangStandard::lang_unspecified) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
else
LangStd = OpenCLLangStd;
}
// These need to be parsed now. They are used to set OpenCL defaults.
Opts.IncludeDefaultHeader = Args.hasArg(OPT_finclude_default_header);
Opts.DeclareOpenCLBuiltins = Args.hasArg(OPT_fdeclare_opencl_builtins);
LangOptions::setLangDefaults(Opts, IK.getLanguage(), T, Includes, LangStd);
// The key paths of codegen options defined in Options.td start with
// "LangOpts->". Let's provide the expected variable name and type.
LangOptions *LangOpts = &Opts;
#define LANG_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef LANG_OPTION_WITH_MARSHALLING
if (const Arg *A = Args.getLastArg(OPT_fcf_protection_EQ)) {
StringRef Name = A->getValue();
if (Name == "full" || Name == "branch") {
Opts.CFProtectionBranch = 1;
}
}
if ((Args.hasArg(OPT_fsycl_is_device) || Args.hasArg(OPT_fsycl_is_host)) &&
!Args.hasArg(OPT_sycl_std_EQ)) {
// If the user supplied -fsycl-is-device or -fsycl-is-host, but failed to
// provide -sycl-std=, we want to default it to whatever the default SYCL
// version is. I could not find a way to express this with the options
// tablegen because we still want this value to be SYCL_None when the user
// is not in device or host mode.
Opts.setSYCLVersion(LangOptions::SYCL_Default);
}
if (Opts.ObjC) {
if (Arg *arg = Args.getLastArg(OPT_fobjc_runtime_EQ)) {
StringRef value = arg->getValue();
if (Opts.ObjCRuntime.tryParse(value))
Diags.Report(diag::err_drv_unknown_objc_runtime) << value;
}
if (Args.hasArg(OPT_fobjc_gc_only))
Opts.setGC(LangOptions::GCOnly);
else if (Args.hasArg(OPT_fobjc_gc))
Opts.setGC(LangOptions::HybridGC);
else if (Args.hasArg(OPT_fobjc_arc)) {
Opts.ObjCAutoRefCount = 1;
if (!Opts.ObjCRuntime.allowsARC())
Diags.Report(diag::err_arc_unsupported_on_runtime);
}
// ObjCWeakRuntime tracks whether the runtime supports __weak, not
// whether the feature is actually enabled. This is predominantly
// determined by -fobjc-runtime, but we allow it to be overridden
// from the command line for testing purposes.
if (Args.hasArg(OPT_fobjc_runtime_has_weak))
Opts.ObjCWeakRuntime = 1;
else
Opts.ObjCWeakRuntime = Opts.ObjCRuntime.allowsWeak();
// ObjCWeak determines whether __weak is actually enabled.
// Note that we allow -fno-objc-weak to disable this even in ARC mode.
if (auto weakArg = Args.getLastArg(OPT_fobjc_weak, OPT_fno_objc_weak)) {
if (!weakArg->getOption().matches(OPT_fobjc_weak)) {
assert(!Opts.ObjCWeak);
} else if (Opts.getGC() != LangOptions::NonGC) {
Diags.Report(diag::err_objc_weak_with_gc);
} else if (!Opts.ObjCWeakRuntime) {
Diags.Report(diag::err_objc_weak_unsupported);
} else {
Opts.ObjCWeak = 1;
}
} else if (Opts.ObjCAutoRefCount) {
Opts.ObjCWeak = Opts.ObjCWeakRuntime;
}
if (Args.hasArg(OPT_fobjc_subscripting_legacy_runtime))
Opts.ObjCSubscriptingLegacyRuntime =
(Opts.ObjCRuntime.getKind() == ObjCRuntime::FragileMacOSX);
}
if (Arg *A = Args.getLastArg(options::OPT_fgnuc_version_EQ)) {
// Check that the version has 1 to 3 components and the minor and patch
// versions fit in two decimal digits.
VersionTuple GNUCVer;
bool Invalid = GNUCVer.tryParse(A->getValue());
unsigned Major = GNUCVer.getMajor();
unsigned Minor = GNUCVer.getMinor().value_or(0);
unsigned Patch = GNUCVer.getSubminor().value_or(0);
if (Invalid || GNUCVer.getBuild() || Minor >= 100 || Patch >= 100) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
Opts.GNUCVersion = Major * 100 * 100 + Minor * 100 + Patch;
}
if (T.isOSAIX() && (Args.hasArg(OPT_mignore_xcoff_visibility)))
Opts.IgnoreXCOFFVisibility = 1;
if (Args.hasArg(OPT_ftrapv)) {
Opts.setSignedOverflowBehavior(LangOptions::SOB_Trapping);
// Set the handler, if one is specified.
Opts.OverflowHandler =
std::string(Args.getLastArgValue(OPT_ftrapv_handler));
}
else if (Args.hasArg(OPT_fwrapv))
Opts.setSignedOverflowBehavior(LangOptions::SOB_Defined);
Opts.MSCompatibilityVersion = 0;
if (const Arg *A = Args.getLastArg(OPT_fms_compatibility_version)) {
VersionTuple VT;
if (VT.tryParse(A->getValue()))
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< A->getValue();
Opts.MSCompatibilityVersion = VT.getMajor() * 10000000 +
VT.getMinor().value_or(0) * 100000 +
VT.getSubminor().value_or(0);
}
// Mimicking gcc's behavior, trigraphs are only enabled if -trigraphs
// is specified, or -std is set to a conforming mode.
// Trigraphs are disabled by default in C++17 and C23 onwards.
// For z/OS, trigraphs are enabled by default (without regard to the above).
Opts.Trigraphs =
(!Opts.GNUMode && !Opts.MSVCCompat && !Opts.CPlusPlus17 && !Opts.C23) ||
T.isOSzOS();
Opts.Trigraphs =
Args.hasFlag(OPT_ftrigraphs, OPT_fno_trigraphs, Opts.Trigraphs);
Opts.Blocks = Args.hasArg(OPT_fblocks) || (Opts.OpenCL
&& Opts.OpenCLVersion == 200);
Opts.ConvergentFunctions = Args.hasArg(OPT_fconvergent_functions) ||
Opts.OpenCL || (Opts.CUDA && Opts.CUDAIsDevice) ||
Opts.SYCLIsDevice || Opts.HLSL;
Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
if (!Opts.NoBuiltin)
getAllNoBuiltinFuncValues(Args, Opts.NoBuiltinFuncs);
if (Arg *A = Args.getLastArg(options::OPT_LongDouble_Group)) {
if (A->getOption().matches(options::OPT_mlong_double_64))
Opts.LongDoubleSize = 64;
else if (A->getOption().matches(options::OPT_mlong_double_80))
Opts.LongDoubleSize = 80;
else if (A->getOption().matches(options::OPT_mlong_double_128))
Opts.LongDoubleSize = 128;
else
Opts.LongDoubleSize = 0;
}
if (Opts.FastRelaxedMath || Opts.CLUnsafeMath)
Opts.setDefaultFPContractMode(LangOptions::FPM_Fast);
llvm::sort(Opts.ModuleFeatures);
// -mrtd option
if (Arg *A = Args.getLastArg(OPT_mrtd)) {
if (Opts.getDefaultCallingConv() != LangOptions::DCC_None)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << "-fdefault-calling-conv";
else {
switch (T.getArch()) {
case llvm::Triple::x86:
Opts.setDefaultCallingConv(LangOptions::DCC_StdCall);
break;
case llvm::Triple::m68k:
Opts.setDefaultCallingConv(LangOptions::DCC_RtdCall);
break;
default:
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << T.getTriple();
}
}
}
// Check if -fopenmp is specified and set default version to 5.0.
Opts.OpenMP = Args.hasArg(OPT_fopenmp) ? 51 : 0;
// Check if -fopenmp-simd is specified.
bool IsSimdSpecified =
Args.hasFlag(options::OPT_fopenmp_simd, options::OPT_fno_openmp_simd,
/*Default=*/false);
Opts.OpenMPSimd = !Opts.OpenMP && IsSimdSpecified;
Opts.OpenMPUseTLS =
Opts.OpenMP && !Args.hasArg(options::OPT_fnoopenmp_use_tls);
Opts.OpenMPIsTargetDevice =
Opts.OpenMP && Args.hasArg(options::OPT_fopenmp_is_target_device);
Opts.OpenMPIRBuilder =
Opts.OpenMP && Args.hasArg(options::OPT_fopenmp_enable_irbuilder);
bool IsTargetSpecified =
Opts.OpenMPIsTargetDevice || Args.hasArg(options::OPT_fopenmp_targets_EQ);
Opts.ConvergentFunctions =
Opts.ConvergentFunctions || Opts.OpenMPIsTargetDevice;
if (Opts.OpenMP || Opts.OpenMPSimd) {
if (int Version = getLastArgIntValue(
Args, OPT_fopenmp_version_EQ,
(IsSimdSpecified || IsTargetSpecified) ? 51 : Opts.OpenMP, Diags))
Opts.OpenMP = Version;
// Provide diagnostic when a given target is not expected to be an OpenMP
// device or host.
if (!Opts.OpenMPIsTargetDevice) {
switch (T.getArch()) {
default:
break;
// Add unsupported host targets here:
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
Diags.Report(diag::err_drv_omp_host_target_not_supported) << T.str();
break;
}
}
}
// Set the flag to prevent the implementation from emitting device exception
// handling code for those requiring so.
if ((Opts.OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN())) ||
Opts.OpenCLCPlusPlus) {
Opts.Exceptions = 0;
Opts.CXXExceptions = 0;
}
if (Opts.OpenMPIsTargetDevice && T.isNVPTX()) {
Opts.OpenMPCUDANumSMs =
getLastArgIntValue(Args, options::OPT_fopenmp_cuda_number_of_sm_EQ,
Opts.OpenMPCUDANumSMs, Diags);
Opts.OpenMPCUDABlocksPerSM =
getLastArgIntValue(Args, options::OPT_fopenmp_cuda_blocks_per_sm_EQ,
Opts.OpenMPCUDABlocksPerSM, Diags);
Opts.OpenMPCUDAReductionBufNum = getLastArgIntValue(
Args, options::OPT_fopenmp_cuda_teams_reduction_recs_num_EQ,
Opts.OpenMPCUDAReductionBufNum, Diags);
}
// Set the value of the debugging flag used in the new offloading device RTL.
// Set either by a specific value or to a default if not specified.
if (Opts.OpenMPIsTargetDevice && (Args.hasArg(OPT_fopenmp_target_debug) ||
Args.hasArg(OPT_fopenmp_target_debug_EQ))) {
Opts.OpenMPTargetDebug = getLastArgIntValue(
Args, OPT_fopenmp_target_debug_EQ, Opts.OpenMPTargetDebug, Diags);
if (!Opts.OpenMPTargetDebug && Args.hasArg(OPT_fopenmp_target_debug))
Opts.OpenMPTargetDebug = 1;
}
if (Opts.OpenMPIsTargetDevice) {
if (Args.hasArg(OPT_fopenmp_assume_teams_oversubscription))
Opts.OpenMPTeamSubscription = true;
if (Args.hasArg(OPT_fopenmp_assume_threads_oversubscription))
Opts.OpenMPThreadSubscription = true;
}
// Get the OpenMP target triples if any.
if (Arg *A = Args.getLastArg(options::OPT_fopenmp_targets_EQ)) {
enum ArchPtrSize { Arch16Bit, Arch32Bit, Arch64Bit };
auto getArchPtrSize = [](const llvm::Triple &T) {
if (T.isArch16Bit())
return Arch16Bit;
if (T.isArch32Bit())
return Arch32Bit;
assert(T.isArch64Bit() && "Expected 64-bit architecture");
return Arch64Bit;
};
for (unsigned i = 0; i < A->getNumValues(); ++i) {
llvm::Triple TT(A->getValue(i));
if (TT.getArch() == llvm::Triple::UnknownArch ||
!(TT.getArch() == llvm::Triple::aarch64 || TT.isPPC() ||
TT.getArch() == llvm::Triple::systemz ||
TT.getArch() == llvm::Triple::nvptx ||
TT.getArch() == llvm::Triple::nvptx64 ||
TT.getArch() == llvm::Triple::amdgcn ||
TT.getArch() == llvm::Triple::x86 ||
TT.getArch() == llvm::Triple::x86_64))
Diags.Report(diag::err_drv_invalid_omp_target) << A->getValue(i);
else if (getArchPtrSize(T) != getArchPtrSize(TT))
Diags.Report(diag::err_drv_incompatible_omp_arch)
<< A->getValue(i) << T.str();
else
Opts.OMPTargetTriples.push_back(TT);
}
}
// Get OpenMP host file path if any and report if a non existent file is
// found
if (Arg *A = Args.getLastArg(options::OPT_fopenmp_host_ir_file_path)) {
Opts.OMPHostIRFile = A->getValue();
if (!llvm::sys::fs::exists(Opts.OMPHostIRFile))
Diags.Report(diag::err_drv_omp_host_ir_file_not_found)
<< Opts.OMPHostIRFile;
}
// Set CUDA mode for OpenMP target NVPTX/AMDGCN if specified in options
Opts.OpenMPCUDAMode = Opts.OpenMPIsTargetDevice &&
(T.isNVPTX() || T.isAMDGCN()) &&
Args.hasArg(options::OPT_fopenmp_cuda_mode);
// OpenACC Configuration.
if (Args.hasArg(options::OPT_fopenacc)) {
Opts.OpenACC = true;
if (Arg *A = Args.getLastArg(options::OPT_openacc_macro_override))
Opts.OpenACCMacroOverride = A->getValue();
}
// FIXME: Eliminate this dependency.
unsigned Opt = getOptimizationLevel(Args, IK, Diags),
OptSize = getOptimizationLevelSize(Args);
Opts.Optimize = Opt != 0;
Opts.OptimizeSize = OptSize != 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
Opts.NoInlineDefine = !Opts.Optimize;
if (Arg *InlineArg = Args.getLastArg(
options::OPT_finline_functions, options::OPT_finline_hint_functions,
options::OPT_fno_inline_functions, options::OPT_fno_inline))
if (InlineArg->getOption().matches(options::OPT_fno_inline))
Opts.NoInlineDefine = true;
if (Arg *A = Args.getLastArg(OPT_ffp_contract)) {
StringRef Val = A->getValue();
if (Val == "fast")
Opts.setDefaultFPContractMode(LangOptions::FPM_Fast);
else if (Val == "on")
Opts.setDefaultFPContractMode(LangOptions::FPM_On);
else if (Val == "off")
Opts.setDefaultFPContractMode(LangOptions::FPM_Off);
else if (Val == "fast-honor-pragmas")
Opts.setDefaultFPContractMode(LangOptions::FPM_FastHonorPragmas);
else
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
}
// Parse -fsanitize= arguments.
parseSanitizerKinds("-fsanitize=", Args.getAllArgValues(OPT_fsanitize_EQ),
Diags, Opts.Sanitize);
Opts.NoSanitizeFiles = Args.getAllArgValues(OPT_fsanitize_ignorelist_EQ);
std::vector<std::string> systemIgnorelists =
Args.getAllArgValues(OPT_fsanitize_system_ignorelist_EQ);
Opts.NoSanitizeFiles.insert(Opts.NoSanitizeFiles.end(),
systemIgnorelists.begin(),
systemIgnorelists.end());
if (Arg *A = Args.getLastArg(OPT_fclang_abi_compat_EQ)) {
Opts.setClangABICompat(LangOptions::ClangABI::Latest);
StringRef Ver = A->getValue();
std::pair<StringRef, StringRef> VerParts = Ver.split('.');
unsigned Major, Minor = 0;
// Check the version number is valid: either 3.x (0 <= x <= 9) or
// y or y.0 (4 <= y <= current version).
if (!VerParts.first.starts_with("0") &&
!VerParts.first.getAsInteger(10, Major) && 3 <= Major &&
Major <= CLANG_VERSION_MAJOR &&
(Major == 3
? VerParts.second.size() == 1 &&
!VerParts.second.getAsInteger(10, Minor)
: VerParts.first.size() == Ver.size() || VerParts.second == "0")) {
// Got a valid version number.
if (Major == 3 && Minor <= 8)
Opts.setClangABICompat(LangOptions::ClangABI::Ver3_8);
else if (Major <= 4)
Opts.setClangABICompat(LangOptions::ClangABI::Ver4);
else if (Major <= 6)
Opts.setClangABICompat(LangOptions::ClangABI::Ver6);
else if (Major <= 7)
Opts.setClangABICompat(LangOptions::ClangABI::Ver7);
else if (Major <= 9)
Opts.setClangABICompat(LangOptions::ClangABI::Ver9);
else if (Major <= 11)
Opts.setClangABICompat(LangOptions::ClangABI::Ver11);
else if (Major <= 12)
Opts.setClangABICompat(LangOptions::ClangABI::Ver12);
else if (Major <= 14)
Opts.setClangABICompat(LangOptions::ClangABI::Ver14);
else if (Major <= 15)
Opts.setClangABICompat(LangOptions::ClangABI::Ver15);
else if (Major <= 17)
Opts.setClangABICompat(LangOptions::ClangABI::Ver17);
else if (Major <= 18)
Opts.setClangABICompat(LangOptions::ClangABI::Ver18);
} else if (Ver != "latest") {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
}
if (Arg *A = Args.getLastArg(OPT_msign_return_address_EQ)) {
StringRef SignScope = A->getValue();
if (SignScope.equals_insensitive("none"))
Opts.setSignReturnAddressScope(
LangOptions::SignReturnAddressScopeKind::None);
else if (SignScope.equals_insensitive("all"))
Opts.setSignReturnAddressScope(
LangOptions::SignReturnAddressScopeKind::All);
else if (SignScope.equals_insensitive("non-leaf"))
Opts.setSignReturnAddressScope(
LangOptions::SignReturnAddressScopeKind::NonLeaf);
else
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << SignScope;
if (Arg *A = Args.getLastArg(OPT_msign_return_address_key_EQ)) {
StringRef SignKey = A->getValue();
if (!SignScope.empty() && !SignKey.empty()) {
if (SignKey == "a_key")
Opts.setSignReturnAddressKey(
LangOptions::SignReturnAddressKeyKind::AKey);
else if (SignKey == "b_key")
Opts.setSignReturnAddressKey(
LangOptions::SignReturnAddressKeyKind::BKey);
else
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << SignKey;
}
}
}
// The value can be empty, which indicates the system default should be used.
StringRef CXXABI = Args.getLastArgValue(OPT_fcxx_abi_EQ);
if (!CXXABI.empty()) {
if (!TargetCXXABI::isABI(CXXABI)) {
Diags.Report(diag::err_invalid_cxx_abi) << CXXABI;
} else {
auto Kind = TargetCXXABI::getKind(CXXABI);
if (!TargetCXXABI::isSupportedCXXABI(T, Kind))
Diags.Report(diag::err_unsupported_cxx_abi) << CXXABI << T.str();
else
Opts.CXXABI = Kind;
}
}
Opts.RelativeCXXABIVTables =
Args.hasFlag(options::OPT_fexperimental_relative_cxx_abi_vtables,
options::OPT_fno_experimental_relative_cxx_abi_vtables,
TargetCXXABI::usesRelativeVTables(T));
// RTTI is on by default.
bool HasRTTI = !Args.hasArg(options::OPT_fno_rtti);
Opts.OmitVTableRTTI =
Args.hasFlag(options::OPT_fexperimental_omit_vtable_rtti,
options::OPT_fno_experimental_omit_vtable_rtti, false);
if (Opts.OmitVTableRTTI && HasRTTI)
Diags.Report(diag::err_drv_using_omit_rtti_component_without_no_rtti);
for (const auto &A : Args.getAllArgValues(OPT_fmacro_prefix_map_EQ)) {
auto Split = StringRef(A).split('=');
Opts.MacroPrefixMap.insert(
{std::string(Split.first), std::string(Split.second)});
}
Opts.UseTargetPathSeparator =
!Args.getLastArg(OPT_fno_file_reproducible) &&
(Args.getLastArg(OPT_ffile_compilation_dir_EQ) ||
Args.getLastArg(OPT_fmacro_prefix_map_EQ) ||
Args.getLastArg(OPT_ffile_reproducible));
// Error if -mvscale-min is unbounded.
if (Arg *A = Args.getLastArg(options::OPT_mvscale_min_EQ)) {
unsigned VScaleMin;
if (StringRef(A->getValue()).getAsInteger(10, VScaleMin) || VScaleMin == 0)
Diags.Report(diag::err_cc1_unbounded_vscale_min);
}
if (const Arg *A = Args.getLastArg(OPT_frandomize_layout_seed_file_EQ)) {
std::ifstream SeedFile(A->getValue(0));
if (!SeedFile.is_open())
Diags.Report(diag::err_drv_cannot_open_randomize_layout_seed_file)
<< A->getValue(0);
std::getline(SeedFile, Opts.RandstructSeed);
}
if (const Arg *A = Args.getLastArg(OPT_frandomize_layout_seed_EQ))
Opts.RandstructSeed = A->getValue(0);
// Validate options for HLSL
if (Opts.HLSL) {
// TODO: Revisit restricting SPIR-V to logical once we've figured out how to
// handle PhysicalStorageBuffer64 memory model
if (T.isDXIL() || T.isSPIRVLogical()) {
enum { ShaderModel, VulkanEnv, ShaderStage };
enum { OS, Environment };
int ExpectedOS = T.isSPIRVLogical() ? VulkanEnv : ShaderModel;
if (T.getOSName().empty()) {
Diags.Report(diag::err_drv_hlsl_bad_shader_required_in_target)
<< ExpectedOS << OS << T.str();
} else if (T.getEnvironmentName().empty()) {
Diags.Report(diag::err_drv_hlsl_bad_shader_required_in_target)
<< ShaderStage << Environment << T.str();
} else if (!T.isShaderStageEnvironment()) {
Diags.Report(diag::err_drv_hlsl_bad_shader_unsupported)
<< ShaderStage << T.getEnvironmentName() << T.str();
}
if (T.isDXIL()) {
if (!T.isShaderModelOS() || T.getOSVersion() == VersionTuple(0)) {
Diags.Report(diag::err_drv_hlsl_bad_shader_unsupported)
<< ShaderModel << T.getOSName() << T.str();
}
// Validate that if fnative-half-type is given, that
// the language standard is at least hlsl2018, and that
// the target shader model is at least 6.2.
if (Args.getLastArg(OPT_fnative_half_type)) {
const LangStandard &Std =
LangStandard::getLangStandardForKind(Opts.LangStd);
if (!(Opts.LangStd >= LangStandard::lang_hlsl2018 &&
T.getOSVersion() >= VersionTuple(6, 2)))
Diags.Report(diag::err_drv_hlsl_16bit_types_unsupported)
<< "-enable-16bit-types" << true << Std.getName()
<< T.getOSVersion().getAsString();
}
} else if (T.isSPIRVLogical()) {
if (!T.isVulkanOS() || T.getVulkanVersion() == VersionTuple(0)) {
Diags.Report(diag::err_drv_hlsl_bad_shader_unsupported)
<< VulkanEnv << T.getOSName() << T.str();
}
if (Args.getLastArg(OPT_fnative_half_type)) {
const LangStandard &Std =
LangStandard::getLangStandardForKind(Opts.LangStd);
if (!(Opts.LangStd >= LangStandard::lang_hlsl2018))
Diags.Report(diag::err_drv_hlsl_16bit_types_unsupported)
<< "-fnative-half-type" << false << Std.getName();
}
} else {
llvm_unreachable("expected DXIL or SPIR-V target");
}
} else
Diags.Report(diag::err_drv_hlsl_unsupported_target) << T.str();
}
return Diags.getNumErrors() == NumErrorsBefore;
}
static bool isStrictlyPreprocessorAction(frontend::ActionKind Action) {
switch (Action) {
case frontend::ASTDeclList:
case frontend::ASTDump:
case frontend::ASTPrint:
case frontend::ASTView:
case frontend::EmitAssembly:
case frontend::EmitBC:
case frontend::EmitCIR:
case frontend::EmitHTML:
case frontend::EmitLLVM:
case frontend::EmitLLVMOnly:
case frontend::EmitCodeGenOnly:
case frontend::EmitObj:
case frontend::ExtractAPI:
case frontend::FixIt:
case frontend::GenerateModule:
case frontend::GenerateModuleInterface:
case frontend::GenerateReducedModuleInterface:
case frontend::GenerateHeaderUnit:
case frontend::GeneratePCH:
case frontend::GenerateInterfaceStubs:
case frontend::ParseSyntaxOnly:
case frontend::ModuleFileInfo:
case frontend::VerifyPCH:
case frontend::PluginAction:
case frontend::RewriteObjC:
case frontend::RewriteTest:
case frontend::RunAnalysis:
case frontend::TemplightDump:
case frontend::MigrateSource:
return false;
case frontend::DumpCompilerOptions:
case frontend::DumpRawTokens:
case frontend::DumpTokens:
case frontend::InitOnly:
case frontend::PrintPreamble:
case frontend::PrintPreprocessedInput:
case frontend::RewriteMacros:
case frontend::RunPreprocessorOnly:
case frontend::PrintDependencyDirectivesSourceMinimizerOutput:
return true;
}
llvm_unreachable("invalid frontend action");
}
static void GeneratePreprocessorArgs(const PreprocessorOptions &Opts,
ArgumentConsumer Consumer,
const LangOptions &LangOpts,
const FrontendOptions &FrontendOpts,
const CodeGenOptions &CodeGenOpts) {
const PreprocessorOptions *PreprocessorOpts = &Opts;
#define PREPROCESSOR_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OPTION_WITH_MARSHALLING
if (Opts.PCHWithHdrStop && !Opts.PCHWithHdrStopCreate)
GenerateArg(Consumer, OPT_pch_through_hdrstop_use);
for (const auto &D : Opts.DeserializedPCHDeclsToErrorOn)
GenerateArg(Consumer, OPT_error_on_deserialized_pch_decl, D);
if (Opts.PrecompiledPreambleBytes != std::make_pair(0u, false))
GenerateArg(Consumer, OPT_preamble_bytes_EQ,
Twine(Opts.PrecompiledPreambleBytes.first) + "," +
(Opts.PrecompiledPreambleBytes.second ? "1" : "0"));
for (const auto &M : Opts.Macros) {
// Don't generate __CET__ macro definitions. They are implied by the
// -fcf-protection option that is generated elsewhere.
if (M.first == "__CET__=1" && !M.second &&
!CodeGenOpts.CFProtectionReturn && CodeGenOpts.CFProtectionBranch)
continue;
if (M.first == "__CET__=2" && !M.second && CodeGenOpts.CFProtectionReturn &&
!CodeGenOpts.CFProtectionBranch)
continue;
if (M.first == "__CET__=3" && !M.second && CodeGenOpts.CFProtectionReturn &&
CodeGenOpts.CFProtectionBranch)
continue;
GenerateArg(Consumer, M.second ? OPT_U : OPT_D, M.first);
}
for (const auto &I : Opts.Includes) {
// Don't generate OpenCL includes. They are implied by other flags that are
// generated elsewhere.
if (LangOpts.OpenCL && LangOpts.IncludeDefaultHeader &&
((LangOpts.DeclareOpenCLBuiltins && I == "opencl-c-base.h") ||
I == "opencl-c.h"))
continue;
// Don't generate HLSL includes. They are implied by other flags that are
// generated elsewhere.
if (LangOpts.HLSL && I == "hlsl.h")
continue;
GenerateArg(Consumer, OPT_include, I);
}
for (const auto &CI : Opts.ChainedIncludes)
GenerateArg(Consumer, OPT_chain_include, CI);
for (const auto &RF : Opts.RemappedFiles)
GenerateArg(Consumer, OPT_remap_file, RF.first + ";" + RF.second);
if (Opts.SourceDateEpoch)
GenerateArg(Consumer, OPT_source_date_epoch, Twine(*Opts.SourceDateEpoch));
if (Opts.DefineTargetOSMacros)
GenerateArg(Consumer, OPT_fdefine_target_os_macros);
// Don't handle LexEditorPlaceholders. It is implied by the action that is
// generated elsewhere.
}
static bool ParsePreprocessorArgs(PreprocessorOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags,
frontend::ActionKind Action,
const FrontendOptions &FrontendOpts) {
unsigned NumErrorsBefore = Diags.getNumErrors();
PreprocessorOptions *PreprocessorOpts = &Opts;
#define PREPROCESSOR_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OPTION_WITH_MARSHALLING
Opts.PCHWithHdrStop = Args.hasArg(OPT_pch_through_hdrstop_create) ||
Args.hasArg(OPT_pch_through_hdrstop_use);
for (const auto *A : Args.filtered(OPT_error_on_deserialized_pch_decl))
Opts.DeserializedPCHDeclsToErrorOn.insert(A->getValue());
if (const Arg *A = Args.getLastArg(OPT_preamble_bytes_EQ)) {
StringRef Value(A->getValue());
size_t Comma = Value.find(',');
unsigned Bytes = 0;
unsigned EndOfLine = 0;
if (Comma == StringRef::npos ||
Value.substr(0, Comma).getAsInteger(10, Bytes) ||
Value.substr(Comma + 1).getAsInteger(10, EndOfLine))
Diags.Report(diag::err_drv_preamble_format);
else {
Opts.PrecompiledPreambleBytes.first = Bytes;
Opts.PrecompiledPreambleBytes.second = (EndOfLine != 0);
}
}
// Add the __CET__ macro if a CFProtection option is set.
if (const Arg *A = Args.getLastArg(OPT_fcf_protection_EQ)) {
StringRef Name = A->getValue();
if (Name == "branch")
Opts.addMacroDef("__CET__=1");
else if (Name == "return")
Opts.addMacroDef("__CET__=2");
else if (Name == "full")
Opts.addMacroDef("__CET__=3");
}
// Add macros from the command line.
for (const auto *A : Args.filtered(OPT_D, OPT_U)) {
if (A->getOption().matches(OPT_D))
Opts.addMacroDef(A->getValue());
else
Opts.addMacroUndef(A->getValue());
}
// Add the ordered list of -includes.
for (const auto *A : Args.filtered(OPT_include))
Opts.Includes.emplace_back(A->getValue());
for (const auto *A : Args.filtered(OPT_chain_include))
Opts.ChainedIncludes.emplace_back(A->getValue());
for (const auto *A : Args.filtered(OPT_remap_file)) {
std::pair<StringRef, StringRef> Split = StringRef(A->getValue()).split(';');
if (Split.second.empty()) {
Diags.Report(diag::err_drv_invalid_remap_file) << A->getAsString(Args);
continue;
}
Opts.addRemappedFile(Split.first, Split.second);
}
if (const Arg *A = Args.getLastArg(OPT_source_date_epoch)) {
StringRef Epoch = A->getValue();
// SOURCE_DATE_EPOCH, if specified, must be a non-negative decimal integer.
// On time64 systems, pick 253402300799 (the UNIX timestamp of
// 9999-12-31T23:59:59Z) as the upper bound.
const uint64_t MaxTimestamp =
std::min<uint64_t>(std::numeric_limits<time_t>::max(), 253402300799);
uint64_t V;
if (Epoch.getAsInteger(10, V) || V > MaxTimestamp) {
Diags.Report(diag::err_fe_invalid_source_date_epoch)
<< Epoch << MaxTimestamp;
} else {
Opts.SourceDateEpoch = V;
}
}
// Always avoid lexing editor placeholders when we're just running the
// preprocessor as we never want to emit the
// "editor placeholder in source file" error in PP only mode.
if (isStrictlyPreprocessorAction(Action))
Opts.LexEditorPlaceholders = false;
Opts.DefineTargetOSMacros =
Args.hasFlag(OPT_fdefine_target_os_macros,
OPT_fno_define_target_os_macros, Opts.DefineTargetOSMacros);
return Diags.getNumErrors() == NumErrorsBefore;
}
static void
GeneratePreprocessorOutputArgs(const PreprocessorOutputOptions &Opts,
ArgumentConsumer Consumer,
frontend::ActionKind Action) {
const PreprocessorOutputOptions &PreprocessorOutputOpts = Opts;
#define PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING
bool Generate_dM = isStrictlyPreprocessorAction(Action) && !Opts.ShowCPP;
if (Generate_dM)
GenerateArg(Consumer, OPT_dM);
if (!Generate_dM && Opts.ShowMacros)
GenerateArg(Consumer, OPT_dD);
if (Opts.DirectivesOnly)
GenerateArg(Consumer, OPT_fdirectives_only);
}
static bool ParsePreprocessorOutputArgs(PreprocessorOutputOptions &Opts,
ArgList &Args, DiagnosticsEngine &Diags,
frontend::ActionKind Action) {
unsigned NumErrorsBefore = Diags.getNumErrors();
PreprocessorOutputOptions &PreprocessorOutputOpts = Opts;
#define PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING
Opts.ShowCPP = isStrictlyPreprocessorAction(Action) && !Args.hasArg(OPT_dM);
Opts.ShowMacros = Args.hasArg(OPT_dM) || Args.hasArg(OPT_dD);
Opts.DirectivesOnly = Args.hasArg(OPT_fdirectives_only);
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GenerateTargetArgs(const TargetOptions &Opts,
ArgumentConsumer Consumer) {
const TargetOptions *TargetOpts = &Opts;
#define TARGET_OPTION_WITH_MARSHALLING(...) \
GENERATE_OPTION_WITH_MARSHALLING(Consumer, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef TARGET_OPTION_WITH_MARSHALLING
if (!Opts.SDKVersion.empty())
GenerateArg(Consumer, OPT_target_sdk_version_EQ,
Opts.SDKVersion.getAsString());
if (!Opts.DarwinTargetVariantSDKVersion.empty())
GenerateArg(Consumer, OPT_darwin_target_variant_sdk_version_EQ,
Opts.DarwinTargetVariantSDKVersion.getAsString());
}
static bool ParseTargetArgs(TargetOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
TargetOptions *TargetOpts = &Opts;
#define TARGET_OPTION_WITH_MARSHALLING(...) \
PARSE_OPTION_WITH_MARSHALLING(Args, Diags, __VA_ARGS__)
#include "clang/Driver/Options.inc"
#undef TARGET_OPTION_WITH_MARSHALLING
if (Arg *A = Args.getLastArg(options::OPT_target_sdk_version_EQ)) {
llvm::VersionTuple Version;
if (Version.tryParse(A->getValue()))
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else
Opts.SDKVersion = Version;
}
if (Arg *A =
Args.getLastArg(options::OPT_darwin_target_variant_sdk_version_EQ)) {
llvm::VersionTuple Version;
if (Version.tryParse(A->getValue()))
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else
Opts.DarwinTargetVariantSDKVersion = Version;
}
return Diags.getNumErrors() == NumErrorsBefore;
}
bool CompilerInvocation::CreateFromArgsImpl(
CompilerInvocation &Res, ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0) {
unsigned NumErrorsBefore = Diags.getNumErrors();
// Parse the arguments.
const OptTable &Opts = getDriverOptTable();
llvm::opt::Visibility VisibilityMask(options::CC1Option);
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args = Opts.ParseArgs(CommandLineArgs, MissingArgIndex,
MissingArgCount, VisibilityMask);
LangOptions &LangOpts = Res.getLangOpts();
// Check for missing argument error.
if (MissingArgCount)
Diags.Report(diag::err_drv_missing_argument)
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
// Issue errors on unknown arguments.
for (const auto *A : Args.filtered(OPT_UNKNOWN)) {
auto ArgString = A->getAsString(Args);
std::string Nearest;
if (Opts.findNearest(ArgString, Nearest, VisibilityMask) > 1)
Diags.Report(diag::err_drv_unknown_argument) << ArgString;
else
Diags.Report(diag::err_drv_unknown_argument_with_suggestion)
<< ArgString << Nearest;
}
ParseFileSystemArgs(Res.getFileSystemOpts(), Args, Diags);
ParseMigratorArgs(Res.getMigratorOpts(), Args, Diags);
ParseAnalyzerArgs(Res.getAnalyzerOpts(), Args, Diags);
ParseDiagnosticArgs(Res.getDiagnosticOpts(), Args, &Diags,
/*DefaultDiagColor=*/false);
ParseFrontendArgs(Res.getFrontendOpts(), Args, Diags, LangOpts.IsHeaderFile);
// FIXME: We shouldn't have to pass the DashX option around here
InputKind DashX = Res.getFrontendOpts().DashX;
ParseTargetArgs(Res.getTargetOpts(), Args, Diags);
llvm::Triple T(Res.getTargetOpts().Triple);
ParseHeaderSearchArgs(Res.getHeaderSearchOpts(), Args, Diags,
Res.getFileSystemOpts().WorkingDir);
ParseAPINotesArgs(Res.getAPINotesOpts(), Args, Diags);
ParsePointerAuthArgs(LangOpts, Args, Diags);
ParseLangArgs(LangOpts, Args, DashX, T, Res.getPreprocessorOpts().Includes,
Diags);
if (Res.getFrontendOpts().ProgramAction == frontend::RewriteObjC)
LangOpts.ObjCExceptions = 1;
for (auto Warning : Res.getDiagnosticOpts().Warnings) {
if (Warning == "misexpect" &&
!Diags.isIgnored(diag::warn_profile_data_misexpect, SourceLocation())) {
Res.getCodeGenOpts().MisExpect = true;
}
}
if (LangOpts.CUDA) {
// During CUDA device-side compilation, the aux triple is the
// triple used for host compilation.
if (LangOpts.CUDAIsDevice)
Res.getTargetOpts().HostTriple = Res.getFrontendOpts().AuxTriple;
}
// Set the triple of the host for OpenMP device compile.
if (LangOpts.OpenMPIsTargetDevice)
Res.getTargetOpts().HostTriple = Res.getFrontendOpts().AuxTriple;
ParseCodeGenArgs(Res.getCodeGenOpts(), Args, DashX, Diags, T,
Res.getFrontendOpts().OutputFile, LangOpts);
// FIXME: Override value name discarding when asan or msan is used because the
// backend passes depend on the name of the alloca in order to print out
// names.
Res.getCodeGenOpts().DiscardValueNames &=
!LangOpts.Sanitize.has(SanitizerKind::Address) &&
!LangOpts.Sanitize.has(SanitizerKind::KernelAddress) &&
!LangOpts.Sanitize.has(SanitizerKind::Memory) &&
!LangOpts.Sanitize.has(SanitizerKind::KernelMemory);
ParsePreprocessorArgs(Res.getPreprocessorOpts(), Args, Diags,
Res.getFrontendOpts().ProgramAction,
Res.getFrontendOpts());
ParsePreprocessorOutputArgs(Res.getPreprocessorOutputOpts(), Args, Diags,
Res.getFrontendOpts().ProgramAction);
ParseDependencyOutputArgs(Res.getDependencyOutputOpts(), Args, Diags,
Res.getFrontendOpts().ProgramAction,
Res.getPreprocessorOutputOpts().ShowLineMarkers);
if (!Res.getDependencyOutputOpts().OutputFile.empty() &&
Res.getDependencyOutputOpts().Targets.empty())
Diags.Report(diag::err_fe_dependency_file_requires_MT);
// If sanitizer is enabled, disable OPT_ffine_grained_bitfield_accesses.
if (Res.getCodeGenOpts().FineGrainedBitfieldAccesses &&
!Res.getLangOpts().Sanitize.empty()) {
Res.getCodeGenOpts().FineGrainedBitfieldAccesses = false;
Diags.Report(diag::warn_drv_fine_grained_bitfield_accesses_ignored);
}
// Store the command-line for using in the CodeView backend.
if (Res.getCodeGenOpts().CodeViewCommandLine) {
Res.getCodeGenOpts().Argv0 = Argv0;
append_range(Res.getCodeGenOpts().CommandLineArgs, CommandLineArgs);
}
// Set PGOOptions. Need to create a temporary VFS to read the profile
// to determine the PGO type.
if (!Res.getCodeGenOpts().ProfileInstrumentUsePath.empty()) {
auto FS =
createVFSFromOverlayFiles(Res.getHeaderSearchOpts().VFSOverlayFiles,
Diags, llvm::vfs::getRealFileSystem());
setPGOUseInstrumentor(Res.getCodeGenOpts(),
Res.getCodeGenOpts().ProfileInstrumentUsePath, *FS,
Diags);
}
FixupInvocation(Res, Diags, Args, DashX);
return Diags.getNumErrors() == NumErrorsBefore;
}
bool CompilerInvocation::CreateFromArgs(CompilerInvocation &Invocation,
ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags,
const char *Argv0) {
CompilerInvocation DummyInvocation;
return RoundTrip(
[](CompilerInvocation &Invocation, ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0) {
return CreateFromArgsImpl(Invocation, CommandLineArgs, Diags, Argv0);
},
[](CompilerInvocation &Invocation, SmallVectorImpl<const char *> &Args,
StringAllocator SA) {
Args.push_back("-cc1");
Invocation.generateCC1CommandLine(Args, SA);
},
Invocation, DummyInvocation, CommandLineArgs, Diags, Argv0);
}
std::string CompilerInvocation::getModuleHash() const {
// FIXME: Consider using SHA1 instead of MD5.
llvm::HashBuilder<llvm::MD5, llvm::endianness::native> HBuilder;
// Note: For QoI reasons, the things we use as a hash here should all be
// dumped via the -module-info flag.
// Start the signature with the compiler version.
HBuilder.add(getClangFullRepositoryVersion());
// Also include the serialization version, in case LLVM_APPEND_VC_REV is off
// and getClangFullRepositoryVersion() doesn't include git revision.
HBuilder.add(serialization::VERSION_MAJOR, serialization::VERSION_MINOR);
// Extend the signature with the language options
#define LANGOPT(Name, Bits, Default, Description) HBuilder.add(LangOpts->Name);
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
HBuilder.add(static_cast<unsigned>(LangOpts->get##Name()));
#define BENIGN_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
#include "clang/Basic/LangOptions.def"
HBuilder.addRange(getLangOpts().ModuleFeatures);
HBuilder.add(getLangOpts().ObjCRuntime);
HBuilder.addRange(getLangOpts().CommentOpts.BlockCommandNames);
// Extend the signature with the target options.
HBuilder.add(getTargetOpts().Triple, getTargetOpts().CPU,
getTargetOpts().TuneCPU, getTargetOpts().ABI);
HBuilder.addRange(getTargetOpts().FeaturesAsWritten);
// Extend the signature with preprocessor options.
const PreprocessorOptions &ppOpts = getPreprocessorOpts();
HBuilder.add(ppOpts.UsePredefines, ppOpts.DetailedRecord);
const HeaderSearchOptions &hsOpts = getHeaderSearchOpts();
for (const auto &Macro : getPreprocessorOpts().Macros) {
// If we're supposed to ignore this macro for the purposes of modules,
// don't put it into the hash.
if (!hsOpts.ModulesIgnoreMacros.empty()) {
// Check whether we're ignoring this macro.
StringRef MacroDef = Macro.first;
if (hsOpts.ModulesIgnoreMacros.count(
llvm::CachedHashString(MacroDef.split('=').first)))
continue;
}
HBuilder.add(Macro);
}
// Extend the signature with the sysroot and other header search options.
HBuilder.add(hsOpts.Sysroot, hsOpts.ModuleFormat, hsOpts.UseDebugInfo,
hsOpts.UseBuiltinIncludes, hsOpts.UseStandardSystemIncludes,
hsOpts.UseStandardCXXIncludes, hsOpts.UseLibcxx,
hsOpts.ModulesValidateDiagnosticOptions);
HBuilder.add(hsOpts.ResourceDir);
if (hsOpts.ModulesStrictContextHash) {
HBuilder.addRange(hsOpts.SystemHeaderPrefixes);
HBuilder.addRange(hsOpts.UserEntries);
HBuilder.addRange(hsOpts.VFSOverlayFiles);
const DiagnosticOptions &diagOpts = getDiagnosticOpts();
#define DIAGOPT(Name, Bits, Default) HBuilder.add(diagOpts.Name);
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
HBuilder.add(diagOpts.get##Name());
#include "clang/Basic/DiagnosticOptions.def"
#undef DIAGOPT
#undef ENUM_DIAGOPT
}
// Extend the signature with the user build path.
HBuilder.add(hsOpts.ModuleUserBuildPath);
// Extend the signature with the module file extensions.
for (const auto &ext : getFrontendOpts().ModuleFileExtensions)
ext->hashExtension(HBuilder);
// Extend the signature with the Swift version for API notes.
const APINotesOptions &APINotesOpts = getAPINotesOpts();
if (!APINotesOpts.SwiftVersion.empty()) {
HBuilder.add(APINotesOpts.SwiftVersion.getMajor());
if (auto Minor = APINotesOpts.SwiftVersion.getMinor())
HBuilder.add(*Minor);
if (auto Subminor = APINotesOpts.SwiftVersion.getSubminor())
HBuilder.add(*Subminor);
if (auto Build = APINotesOpts.SwiftVersion.getBuild())
HBuilder.add(*Build);
}
// When compiling with -gmodules, also hash -fdebug-prefix-map as it
// affects the debug info in the PCM.
if (getCodeGenOpts().DebugTypeExtRefs)
HBuilder.addRange(getCodeGenOpts().DebugPrefixMap);
// Extend the signature with the affecting debug options.
if (getHeaderSearchOpts().ModuleFormat == "obj") {
#define DEBUGOPT(Name, Bits, Default) HBuilder.add(CodeGenOpts->Name);
#define VALUE_DEBUGOPT(Name, Bits, Default) HBuilder.add(CodeGenOpts->Name);
#define ENUM_DEBUGOPT(Name, Type, Bits, Default) \
HBuilder.add(static_cast<unsigned>(CodeGenOpts->get##Name()));
#define BENIGN_DEBUGOPT(Name, Bits, Default)
#define BENIGN_VALUE_DEBUGOPT(Name, Bits, Default)
#define BENIGN_ENUM_DEBUGOPT(Name, Type, Bits, Default)
#include "clang/Basic/DebugOptions.def"
}
// Extend the signature with the enabled sanitizers, if at least one is
// enabled. Sanitizers which cannot affect AST generation aren't hashed.
SanitizerSet SanHash = getLangOpts().Sanitize;
SanHash.clear(getPPTransparentSanitizers());
if (!SanHash.empty())
HBuilder.add(SanHash.Mask);
llvm::MD5::MD5Result Result;
HBuilder.getHasher().final(Result);
uint64_t Hash = Result.high() ^ Result.low();
return toString(llvm::APInt(64, Hash), 36, /*Signed=*/false);
}
void CompilerInvocationBase::generateCC1CommandLine(
ArgumentConsumer Consumer) const {
llvm::Triple T(getTargetOpts().Triple);
GenerateFileSystemArgs(getFileSystemOpts(), Consumer);
GenerateMigratorArgs(getMigratorOpts(), Consumer);
GenerateAnalyzerArgs(getAnalyzerOpts(), Consumer);
GenerateDiagnosticArgs(getDiagnosticOpts(), Consumer,
/*DefaultDiagColor=*/false);
GenerateFrontendArgs(getFrontendOpts(), Consumer, getLangOpts().IsHeaderFile);
GenerateTargetArgs(getTargetOpts(), Consumer);
GenerateHeaderSearchArgs(getHeaderSearchOpts(), Consumer);
GenerateAPINotesArgs(getAPINotesOpts(), Consumer);
GeneratePointerAuthArgs(getLangOpts(), Consumer);
GenerateLangArgs(getLangOpts(), Consumer, T, getFrontendOpts().DashX);
GenerateCodeGenArgs(getCodeGenOpts(), Consumer, T,
getFrontendOpts().OutputFile, &getLangOpts());
GeneratePreprocessorArgs(getPreprocessorOpts(), Consumer, getLangOpts(),
getFrontendOpts(), getCodeGenOpts());
GeneratePreprocessorOutputArgs(getPreprocessorOutputOpts(), Consumer,
getFrontendOpts().ProgramAction);
GenerateDependencyOutputArgs(getDependencyOutputOpts(), Consumer);
}
std::vector<std::string> CompilerInvocationBase::getCC1CommandLine() const {
std::vector<std::string> Args{"-cc1"};
generateCC1CommandLine(
[&Args](const Twine &Arg) { Args.push_back(Arg.str()); });
return Args;
}
void CompilerInvocation::resetNonModularOptions() {
getLangOpts().resetNonModularOptions();
getPreprocessorOpts().resetNonModularOptions();
getCodeGenOpts().resetNonModularOptions(getHeaderSearchOpts().ModuleFormat);
}
void CompilerInvocation::clearImplicitModuleBuildOptions() {
getLangOpts().ImplicitModules = false;
getHeaderSearchOpts().ImplicitModuleMaps = false;
getHeaderSearchOpts().ModuleCachePath.clear();
getHeaderSearchOpts().ModulesValidateOncePerBuildSession = false;
getHeaderSearchOpts().BuildSessionTimestamp = 0;
// The specific values we canonicalize to for pruning don't affect behaviour,
/// so use the default values so they may be dropped from the command-line.
getHeaderSearchOpts().ModuleCachePruneInterval = 7 * 24 * 60 * 60;
getHeaderSearchOpts().ModuleCachePruneAfter = 31 * 24 * 60 * 60;
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem>
clang::createVFSFromCompilerInvocation(const CompilerInvocation &CI,
DiagnosticsEngine &Diags) {
return createVFSFromCompilerInvocation(CI, Diags,
llvm::vfs::getRealFileSystem());
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem>
clang::createVFSFromCompilerInvocation(
const CompilerInvocation &CI, DiagnosticsEngine &Diags,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> BaseFS) {
return createVFSFromOverlayFiles(CI.getHeaderSearchOpts().VFSOverlayFiles,
Diags, std::move(BaseFS));
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem> clang::createVFSFromOverlayFiles(
ArrayRef<std::string> VFSOverlayFiles, DiagnosticsEngine &Diags,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> BaseFS) {
if (VFSOverlayFiles.empty())
return BaseFS;
IntrusiveRefCntPtr<llvm::vfs::FileSystem> Result = BaseFS;
// earlier vfs files are on the bottom
for (const auto &File : VFSOverlayFiles) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
Result->getBufferForFile(File);
if (!Buffer) {
Diags.Report(diag::err_missing_vfs_overlay_file) << File;
continue;
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS = llvm::vfs::getVFSFromYAML(
std::move(Buffer.get()), /*DiagHandler*/ nullptr, File,
/*DiagContext*/ nullptr, Result);
if (!FS) {
Diags.Report(diag::err_invalid_vfs_overlay) << File;
continue;
}
Result = FS;
}
return Result;
}