blob: 4f822807dd987dc8ceeb43e8a550c4c135f50b86 [file] [log] [blame]
//===--- WhitespaceManager.cpp - Format C++ code --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements WhitespaceManager class.
///
//===----------------------------------------------------------------------===//
#include "WhitespaceManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
namespace clang {
namespace format {
bool WhitespaceManager::Change::IsBeforeInFile::operator()(
const Change &C1, const Change &C2) const {
return SourceMgr.isBeforeInTranslationUnit(
C1.OriginalWhitespaceRange.getBegin(),
C2.OriginalWhitespaceRange.getBegin()) ||
(C1.OriginalWhitespaceRange.getBegin() ==
C2.OriginalWhitespaceRange.getBegin() &&
SourceMgr.isBeforeInTranslationUnit(
C1.OriginalWhitespaceRange.getEnd(),
C2.OriginalWhitespaceRange.getEnd()));
}
WhitespaceManager::Change::Change(const FormatToken &Tok,
bool CreateReplacement,
SourceRange OriginalWhitespaceRange,
int Spaces, unsigned StartOfTokenColumn,
unsigned NewlinesBefore,
StringRef PreviousLinePostfix,
StringRef CurrentLinePrefix, bool IsAligned,
bool ContinuesPPDirective, bool IsInsideToken)
: Tok(&Tok), CreateReplacement(CreateReplacement),
OriginalWhitespaceRange(OriginalWhitespaceRange),
StartOfTokenColumn(StartOfTokenColumn), NewlinesBefore(NewlinesBefore),
PreviousLinePostfix(PreviousLinePostfix),
CurrentLinePrefix(CurrentLinePrefix), IsAligned(IsAligned),
ContinuesPPDirective(ContinuesPPDirective), Spaces(Spaces),
IsInsideToken(IsInsideToken), IsTrailingComment(false), TokenLength(0),
PreviousEndOfTokenColumn(0), EscapedNewlineColumn(0),
StartOfBlockComment(nullptr), IndentationOffset(0), ConditionalsLevel(0) {
}
void WhitespaceManager::replaceWhitespace(FormatToken &Tok, unsigned Newlines,
unsigned Spaces,
unsigned StartOfTokenColumn,
bool IsAligned, bool InPPDirective) {
if (Tok.Finalized || (Tok.MacroCtx && Tok.MacroCtx->Role == MR_ExpandedArg))
return;
Tok.setDecision((Newlines > 0) ? FD_Break : FD_Continue);
Changes.push_back(Change(Tok, /*CreateReplacement=*/true, Tok.WhitespaceRange,
Spaces, StartOfTokenColumn, Newlines, "", "",
IsAligned, InPPDirective && !Tok.IsFirst,
/*IsInsideToken=*/false));
}
void WhitespaceManager::addUntouchableToken(const FormatToken &Tok,
bool InPPDirective) {
if (Tok.Finalized || (Tok.MacroCtx && Tok.MacroCtx->Role == MR_ExpandedArg))
return;
Changes.push_back(Change(Tok, /*CreateReplacement=*/false,
Tok.WhitespaceRange, /*Spaces=*/0,
Tok.OriginalColumn, Tok.NewlinesBefore, "", "",
/*IsAligned=*/false, InPPDirective && !Tok.IsFirst,
/*IsInsideToken=*/false));
}
llvm::Error
WhitespaceManager::addReplacement(const tooling::Replacement &Replacement) {
return Replaces.add(Replacement);
}
bool WhitespaceManager::inputUsesCRLF(StringRef Text, bool DefaultToCRLF) {
size_t LF = Text.count('\n');
size_t CR = Text.count('\r') * 2;
return LF == CR ? DefaultToCRLF : CR > LF;
}
void WhitespaceManager::replaceWhitespaceInToken(
const FormatToken &Tok, unsigned Offset, unsigned ReplaceChars,
StringRef PreviousPostfix, StringRef CurrentPrefix, bool InPPDirective,
unsigned Newlines, int Spaces) {
if (Tok.Finalized || (Tok.MacroCtx && Tok.MacroCtx->Role == MR_ExpandedArg))
return;
SourceLocation Start = Tok.getStartOfNonWhitespace().getLocWithOffset(Offset);
Changes.push_back(
Change(Tok, /*CreateReplacement=*/true,
SourceRange(Start, Start.getLocWithOffset(ReplaceChars)), Spaces,
std::max(0, Spaces), Newlines, PreviousPostfix, CurrentPrefix,
/*IsAligned=*/true, InPPDirective && !Tok.IsFirst,
/*IsInsideToken=*/true));
}
const tooling::Replacements &WhitespaceManager::generateReplacements() {
if (Changes.empty())
return Replaces;
llvm::sort(Changes, Change::IsBeforeInFile(SourceMgr));
calculateLineBreakInformation();
alignConsecutiveMacros();
alignConsecutiveShortCaseStatements();
alignConsecutiveDeclarations();
alignConsecutiveBitFields();
alignConsecutiveAssignments();
if (Style.isTableGen()) {
alignConsecutiveTableGenBreakingDAGArgColons();
alignConsecutiveTableGenCondOperatorColons();
alignConsecutiveTableGenDefinitions();
}
alignChainedConditionals();
alignTrailingComments();
alignEscapedNewlines();
alignArrayInitializers();
generateChanges();
return Replaces;
}
void WhitespaceManager::calculateLineBreakInformation() {
Changes[0].PreviousEndOfTokenColumn = 0;
Change *LastOutsideTokenChange = &Changes[0];
for (unsigned i = 1, e = Changes.size(); i != e; ++i) {
SourceLocation OriginalWhitespaceStart =
Changes[i].OriginalWhitespaceRange.getBegin();
SourceLocation PreviousOriginalWhitespaceEnd =
Changes[i - 1].OriginalWhitespaceRange.getEnd();
unsigned OriginalWhitespaceStartOffset =
SourceMgr.getFileOffset(OriginalWhitespaceStart);
unsigned PreviousOriginalWhitespaceEndOffset =
SourceMgr.getFileOffset(PreviousOriginalWhitespaceEnd);
assert(PreviousOriginalWhitespaceEndOffset <=
OriginalWhitespaceStartOffset);
const char *const PreviousOriginalWhitespaceEndData =
SourceMgr.getCharacterData(PreviousOriginalWhitespaceEnd);
StringRef Text(PreviousOriginalWhitespaceEndData,
SourceMgr.getCharacterData(OriginalWhitespaceStart) -
PreviousOriginalWhitespaceEndData);
// Usually consecutive changes would occur in consecutive tokens. This is
// not the case however when analyzing some preprocessor runs of the
// annotated lines. For example, in this code:
//
// #if A // line 1
// int i = 1;
// #else B // line 2
// int i = 2;
// #endif // line 3
//
// one of the runs will produce the sequence of lines marked with line 1, 2
// and 3. So the two consecutive whitespace changes just before '// line 2'
// and before '#endif // line 3' span multiple lines and tokens:
//
// #else B{change X}[// line 2
// int i = 2;
// ]{change Y}#endif // line 3
//
// For this reason, if the text between consecutive changes spans multiple
// newlines, the token length must be adjusted to the end of the original
// line of the token.
auto NewlinePos = Text.find_first_of('\n');
if (NewlinePos == StringRef::npos) {
Changes[i - 1].TokenLength = OriginalWhitespaceStartOffset -
PreviousOriginalWhitespaceEndOffset +
Changes[i].PreviousLinePostfix.size() +
Changes[i - 1].CurrentLinePrefix.size();
} else {
Changes[i - 1].TokenLength =
NewlinePos + Changes[i - 1].CurrentLinePrefix.size();
}
// If there are multiple changes in this token, sum up all the changes until
// the end of the line.
if (Changes[i - 1].IsInsideToken && Changes[i - 1].NewlinesBefore == 0) {
LastOutsideTokenChange->TokenLength +=
Changes[i - 1].TokenLength + Changes[i - 1].Spaces;
} else {
LastOutsideTokenChange = &Changes[i - 1];
}
Changes[i].PreviousEndOfTokenColumn =
Changes[i - 1].StartOfTokenColumn + Changes[i - 1].TokenLength;
Changes[i - 1].IsTrailingComment =
(Changes[i].NewlinesBefore > 0 || Changes[i].Tok->is(tok::eof) ||
(Changes[i].IsInsideToken && Changes[i].Tok->is(tok::comment))) &&
Changes[i - 1].Tok->is(tok::comment) &&
// FIXME: This is a dirty hack. The problem is that
// BreakableLineCommentSection does comment reflow changes and here is
// the aligning of trailing comments. Consider the case where we reflow
// the second line up in this example:
//
// // line 1
// // line 2
//
// That amounts to 2 changes by BreakableLineCommentSection:
// - the first, delimited by (), for the whitespace between the tokens,
// - and second, delimited by [], for the whitespace at the beginning
// of the second token:
//
// // line 1(
// )[// ]line 2
//
// So in the end we have two changes like this:
//
// // line1()[ ]line 2
//
// Note that the OriginalWhitespaceStart of the second change is the
// same as the PreviousOriginalWhitespaceEnd of the first change.
// In this case, the below check ensures that the second change doesn't
// get treated as a trailing comment change here, since this might
// trigger additional whitespace to be wrongly inserted before "line 2"
// by the comment aligner here.
//
// For a proper solution we need a mechanism to say to WhitespaceManager
// that a particular change breaks the current sequence of trailing
// comments.
OriginalWhitespaceStart != PreviousOriginalWhitespaceEnd;
}
// FIXME: The last token is currently not always an eof token; in those
// cases, setting TokenLength of the last token to 0 is wrong.
Changes.back().TokenLength = 0;
Changes.back().IsTrailingComment = Changes.back().Tok->is(tok::comment);
const WhitespaceManager::Change *LastBlockComment = nullptr;
for (auto &Change : Changes) {
// Reset the IsTrailingComment flag for changes inside of trailing comments
// so they don't get realigned later. Comment line breaks however still need
// to be aligned.
if (Change.IsInsideToken && Change.NewlinesBefore == 0)
Change.IsTrailingComment = false;
Change.StartOfBlockComment = nullptr;
Change.IndentationOffset = 0;
if (Change.Tok->is(tok::comment)) {
if (Change.Tok->is(TT_LineComment) || !Change.IsInsideToken) {
LastBlockComment = &Change;
} else if ((Change.StartOfBlockComment = LastBlockComment)) {
Change.IndentationOffset =
Change.StartOfTokenColumn -
Change.StartOfBlockComment->StartOfTokenColumn;
}
} else {
LastBlockComment = nullptr;
}
}
// Compute conditional nesting level
// Level is increased for each conditional, unless this conditional continues
// a chain of conditional, i.e. starts immediately after the colon of another
// conditional.
SmallVector<bool, 16> ScopeStack;
int ConditionalsLevel = 0;
for (auto &Change : Changes) {
for (unsigned i = 0, e = Change.Tok->FakeLParens.size(); i != e; ++i) {
bool isNestedConditional =
Change.Tok->FakeLParens[e - 1 - i] == prec::Conditional &&
!(i == 0 && Change.Tok->Previous &&
Change.Tok->Previous->is(TT_ConditionalExpr) &&
Change.Tok->Previous->is(tok::colon));
if (isNestedConditional)
++ConditionalsLevel;
ScopeStack.push_back(isNestedConditional);
}
Change.ConditionalsLevel = ConditionalsLevel;
for (unsigned i = Change.Tok->FakeRParens; i > 0 && ScopeStack.size(); --i)
if (ScopeStack.pop_back_val())
--ConditionalsLevel;
}
}
// Align a single sequence of tokens, see AlignTokens below.
// Column - The token for which Matches returns true is moved to this column.
// RightJustify - Whether it is the token's right end or left end that gets
// moved to that column.
template <typename F>
static void
AlignTokenSequence(const FormatStyle &Style, unsigned Start, unsigned End,
unsigned Column, bool RightJustify, F &&Matches,
SmallVector<WhitespaceManager::Change, 16> &Changes) {
bool FoundMatchOnLine = false;
int Shift = 0;
// ScopeStack keeps track of the current scope depth. It contains indices of
// the first token on each scope.
// We only run the "Matches" function on tokens from the outer-most scope.
// However, we do need to pay special attention to one class of tokens
// that are not in the outer-most scope, and that is function parameters
// which are split across multiple lines, as illustrated by this example:
// double a(int x);
// int b(int y,
// double z);
// In the above example, we need to take special care to ensure that
// 'double z' is indented along with it's owning function 'b'.
// The same holds for calling a function:
// double a = foo(x);
// int b = bar(foo(y),
// foor(z));
// Similar for broken string literals:
// double x = 3.14;
// auto s = "Hello"
// "World";
// Special handling is required for 'nested' ternary operators.
SmallVector<unsigned, 16> ScopeStack;
for (unsigned i = Start; i != End; ++i) {
auto &CurrentChange = Changes[i];
if (ScopeStack.size() != 0 &&
CurrentChange.indentAndNestingLevel() <
Changes[ScopeStack.back()].indentAndNestingLevel()) {
ScopeStack.pop_back();
}
// Compare current token to previous non-comment token to ensure whether
// it is in a deeper scope or not.
unsigned PreviousNonComment = i - 1;
while (PreviousNonComment > Start &&
Changes[PreviousNonComment].Tok->is(tok::comment)) {
--PreviousNonComment;
}
if (i != Start && CurrentChange.indentAndNestingLevel() >
Changes[PreviousNonComment].indentAndNestingLevel()) {
ScopeStack.push_back(i);
}
bool InsideNestedScope = ScopeStack.size() != 0;
bool ContinuedStringLiteral = i > Start &&
CurrentChange.Tok->is(tok::string_literal) &&
Changes[i - 1].Tok->is(tok::string_literal);
bool SkipMatchCheck = InsideNestedScope || ContinuedStringLiteral;
if (CurrentChange.NewlinesBefore > 0 && !SkipMatchCheck) {
Shift = 0;
FoundMatchOnLine = false;
}
// If this is the first matching token to be aligned, remember by how many
// spaces it has to be shifted, so the rest of the changes on the line are
// shifted by the same amount
if (!FoundMatchOnLine && !SkipMatchCheck && Matches(CurrentChange)) {
FoundMatchOnLine = true;
Shift = Column - (RightJustify ? CurrentChange.TokenLength : 0) -
CurrentChange.StartOfTokenColumn;
CurrentChange.Spaces += Shift;
// FIXME: This is a workaround that should be removed when we fix
// http://llvm.org/PR53699. An assertion later below verifies this.
if (CurrentChange.NewlinesBefore == 0) {
CurrentChange.Spaces =
std::max(CurrentChange.Spaces,
static_cast<int>(CurrentChange.Tok->SpacesRequiredBefore));
}
}
if (Shift == 0)
continue;
// This is for function parameters that are split across multiple lines,
// as mentioned in the ScopeStack comment.
if (InsideNestedScope && CurrentChange.NewlinesBefore > 0) {
unsigned ScopeStart = ScopeStack.back();
auto ShouldShiftBeAdded = [&] {
// Function declaration
if (Changes[ScopeStart - 1].Tok->is(TT_FunctionDeclarationName))
return true;
// Lambda.
if (Changes[ScopeStart - 1].Tok->is(TT_LambdaLBrace))
return false;
// Continued function declaration
if (ScopeStart > Start + 1 &&
Changes[ScopeStart - 2].Tok->is(TT_FunctionDeclarationName)) {
return true;
}
// Continued (template) function call.
if (ScopeStart > Start + 1 &&
Changes[ScopeStart - 2].Tok->isOneOf(tok::identifier,
TT_TemplateCloser) &&
Changes[ScopeStart - 1].Tok->is(tok::l_paren) &&
Changes[ScopeStart].Tok->isNot(TT_LambdaLSquare)) {
if (CurrentChange.Tok->MatchingParen &&
CurrentChange.Tok->MatchingParen->is(TT_LambdaLBrace)) {
return false;
}
if (Changes[ScopeStart].NewlinesBefore > 0)
return false;
if (CurrentChange.Tok->is(tok::l_brace) &&
CurrentChange.Tok->is(BK_BracedInit)) {
return true;
}
return Style.BinPackArguments;
}
// Ternary operator
if (CurrentChange.Tok->is(TT_ConditionalExpr))
return true;
// Period Initializer .XXX = 1.
if (CurrentChange.Tok->is(TT_DesignatedInitializerPeriod))
return true;
// Continued ternary operator
if (CurrentChange.Tok->Previous &&
CurrentChange.Tok->Previous->is(TT_ConditionalExpr)) {
return true;
}
// Continued direct-list-initialization using braced list.
if (ScopeStart > Start + 1 &&
Changes[ScopeStart - 2].Tok->is(tok::identifier) &&
Changes[ScopeStart - 1].Tok->is(tok::l_brace) &&
CurrentChange.Tok->is(tok::l_brace) &&
CurrentChange.Tok->is(BK_BracedInit)) {
return true;
}
// Continued braced list.
if (ScopeStart > Start + 1 &&
Changes[ScopeStart - 2].Tok->isNot(tok::identifier) &&
Changes[ScopeStart - 1].Tok->is(tok::l_brace) &&
CurrentChange.Tok->isNot(tok::r_brace)) {
for (unsigned OuterScopeStart : llvm::reverse(ScopeStack)) {
// Lambda.
if (OuterScopeStart > Start &&
Changes[OuterScopeStart - 1].Tok->is(TT_LambdaLBrace)) {
return false;
}
}
if (Changes[ScopeStart].NewlinesBefore > 0)
return false;
return true;
}
// Continued template parameter.
if (Changes[ScopeStart - 1].Tok->is(TT_TemplateOpener))
return true;
return false;
};
if (ShouldShiftBeAdded())
CurrentChange.Spaces += Shift;
}
if (ContinuedStringLiteral)
CurrentChange.Spaces += Shift;
// We should not remove required spaces unless we break the line before.
assert(Shift > 0 || Changes[i].NewlinesBefore > 0 ||
CurrentChange.Spaces >=
static_cast<int>(Changes[i].Tok->SpacesRequiredBefore) ||
CurrentChange.Tok->is(tok::eof));
CurrentChange.StartOfTokenColumn += Shift;
if (i + 1 != Changes.size())
Changes[i + 1].PreviousEndOfTokenColumn += Shift;
// If PointerAlignment is PAS_Right, keep *s or &s next to the token,
// except if the token is equal, then a space is needed.
if ((Style.PointerAlignment == FormatStyle::PAS_Right ||
Style.ReferenceAlignment == FormatStyle::RAS_Right) &&
CurrentChange.Spaces != 0 && CurrentChange.Tok->isNot(tok::equal)) {
const bool ReferenceNotRightAligned =
Style.ReferenceAlignment != FormatStyle::RAS_Right &&
Style.ReferenceAlignment != FormatStyle::RAS_Pointer;
for (int Previous = i - 1;
Previous >= 0 && Changes[Previous].Tok->is(TT_PointerOrReference);
--Previous) {
assert(Changes[Previous].Tok->isPointerOrReference());
if (Changes[Previous].Tok->isNot(tok::star)) {
if (ReferenceNotRightAligned)
continue;
} else if (Style.PointerAlignment != FormatStyle::PAS_Right) {
continue;
}
Changes[Previous + 1].Spaces -= Shift;
Changes[Previous].Spaces += Shift;
Changes[Previous].StartOfTokenColumn += Shift;
}
}
}
}
// Walk through a subset of the changes, starting at StartAt, and find
// sequences of matching tokens to align. To do so, keep track of the lines and
// whether or not a matching token was found on a line. If a matching token is
// found, extend the current sequence. If the current line cannot be part of a
// sequence, e.g. because there is an empty line before it or it contains only
// non-matching tokens, finalize the previous sequence.
// The value returned is the token on which we stopped, either because we
// exhausted all items inside Changes, or because we hit a scope level higher
// than our initial scope.
// This function is recursive. Each invocation processes only the scope level
// equal to the initial level, which is the level of Changes[StartAt].
// If we encounter a scope level greater than the initial level, then we call
// ourselves recursively, thereby avoiding the pollution of the current state
// with the alignment requirements of the nested sub-level. This recursive
// behavior is necessary for aligning function prototypes that have one or more
// arguments.
// If this function encounters a scope level less than the initial level,
// it returns the current position.
// There is a non-obvious subtlety in the recursive behavior: Even though we
// defer processing of nested levels to recursive invocations of this
// function, when it comes time to align a sequence of tokens, we run the
// alignment on the entire sequence, including the nested levels.
// When doing so, most of the nested tokens are skipped, because their
// alignment was already handled by the recursive invocations of this function.
// However, the special exception is that we do NOT skip function parameters
// that are split across multiple lines. See the test case in FormatTest.cpp
// that mentions "split function parameter alignment" for an example of this.
// When the parameter RightJustify is true, the operator will be
// right-justified. It is used to align compound assignments like `+=` and `=`.
// When RightJustify and ACS.PadOperators are true, operators in each block to
// be aligned will be padded on the left to the same length before aligning.
template <typename F>
static unsigned AlignTokens(const FormatStyle &Style, F &&Matches,
SmallVector<WhitespaceManager::Change, 16> &Changes,
unsigned StartAt,
const FormatStyle::AlignConsecutiveStyle &ACS = {},
bool RightJustify = false) {
// We arrange each line in 3 parts. The operator to be aligned (the anchor),
// and text to its left and right. In the aligned text the width of each part
// will be the maximum of that over the block that has been aligned. Maximum
// widths of each part so far. When RightJustify is true and ACS.PadOperators
// is false, the part from start of line to the right end of the anchor.
// Otherwise, only the part to the left of the anchor. Including the space
// that exists on its left from the start. Not including the padding added on
// the left to right-justify the anchor.
unsigned WidthLeft = 0;
// The operator to be aligned when RightJustify is true and ACS.PadOperators
// is false. 0 otherwise.
unsigned WidthAnchor = 0;
// Width to the right of the anchor. Plus width of the anchor when
// RightJustify is false.
unsigned WidthRight = 0;
// Line number of the start and the end of the current token sequence.
unsigned StartOfSequence = 0;
unsigned EndOfSequence = 0;
// Measure the scope level (i.e. depth of (), [], {}) of the first token, and
// abort when we hit any token in a higher scope than the starting one.
auto IndentAndNestingLevel = StartAt < Changes.size()
? Changes[StartAt].indentAndNestingLevel()
: std::tuple<unsigned, unsigned, unsigned>();
// Keep track of the number of commas before the matching tokens, we will only
// align a sequence of matching tokens if they are preceded by the same number
// of commas.
unsigned CommasBeforeLastMatch = 0;
unsigned CommasBeforeMatch = 0;
// Whether a matching token has been found on the current line.
bool FoundMatchOnLine = false;
// Whether the current line consists purely of comments.
bool LineIsComment = true;
// Aligns a sequence of matching tokens, on the MinColumn column.
//
// Sequences start from the first matching token to align, and end at the
// first token of the first line that doesn't need to be aligned.
//
// We need to adjust the StartOfTokenColumn of each Change that is on a line
// containing any matching token to be aligned and located after such token.
auto AlignCurrentSequence = [&] {
if (StartOfSequence > 0 && StartOfSequence < EndOfSequence) {
AlignTokenSequence(Style, StartOfSequence, EndOfSequence,
WidthLeft + WidthAnchor, RightJustify, Matches,
Changes);
}
WidthLeft = 0;
WidthAnchor = 0;
WidthRight = 0;
StartOfSequence = 0;
EndOfSequence = 0;
};
unsigned i = StartAt;
for (unsigned e = Changes.size(); i != e; ++i) {
auto &CurrentChange = Changes[i];
if (CurrentChange.indentAndNestingLevel() < IndentAndNestingLevel)
break;
if (CurrentChange.NewlinesBefore != 0) {
CommasBeforeMatch = 0;
EndOfSequence = i;
// Whether to break the alignment sequence because of an empty line.
bool EmptyLineBreak =
(CurrentChange.NewlinesBefore > 1) && !ACS.AcrossEmptyLines;
// Whether to break the alignment sequence because of a line without a
// match.
bool NoMatchBreak =
!FoundMatchOnLine && !(LineIsComment && ACS.AcrossComments);
if (EmptyLineBreak || NoMatchBreak)
AlignCurrentSequence();
// A new line starts, re-initialize line status tracking bools.
// Keep the match state if a string literal is continued on this line.
if (i == 0 || CurrentChange.Tok->isNot(tok::string_literal) ||
Changes[i - 1].Tok->isNot(tok::string_literal)) {
FoundMatchOnLine = false;
}
LineIsComment = true;
}
if (CurrentChange.Tok->isNot(tok::comment))
LineIsComment = false;
if (CurrentChange.Tok->is(tok::comma)) {
++CommasBeforeMatch;
} else if (CurrentChange.indentAndNestingLevel() > IndentAndNestingLevel) {
// Call AlignTokens recursively, skipping over this scope block.
unsigned StoppedAt =
AlignTokens(Style, Matches, Changes, i, ACS, RightJustify);
i = StoppedAt - 1;
continue;
}
if (!Matches(CurrentChange))
continue;
// If there is more than one matching token per line, or if the number of
// preceding commas, do not match anymore, end the sequence.
if (FoundMatchOnLine || CommasBeforeMatch != CommasBeforeLastMatch)
AlignCurrentSequence();
CommasBeforeLastMatch = CommasBeforeMatch;
FoundMatchOnLine = true;
if (StartOfSequence == 0)
StartOfSequence = i;
unsigned ChangeWidthLeft = CurrentChange.StartOfTokenColumn;
unsigned ChangeWidthAnchor = 0;
unsigned ChangeWidthRight = 0;
if (RightJustify)
if (ACS.PadOperators)
ChangeWidthAnchor = CurrentChange.TokenLength;
else
ChangeWidthLeft += CurrentChange.TokenLength;
else
ChangeWidthRight = CurrentChange.TokenLength;
for (unsigned j = i + 1; j != e && Changes[j].NewlinesBefore == 0; ++j) {
ChangeWidthRight += Changes[j].Spaces;
// Changes are generally 1:1 with the tokens, but a change could also be
// inside of a token, in which case it's counted more than once: once for
// the whitespace surrounding the token (!IsInsideToken) and once for
// each whitespace change within it (IsInsideToken).
// Therefore, changes inside of a token should only count the space.
if (!Changes[j].IsInsideToken)
ChangeWidthRight += Changes[j].TokenLength;
}
// If we are restricted by the maximum column width, end the sequence.
unsigned NewLeft = std::max(ChangeWidthLeft, WidthLeft);
unsigned NewAnchor = std::max(ChangeWidthAnchor, WidthAnchor);
unsigned NewRight = std::max(ChangeWidthRight, WidthRight);
// `ColumnLimit == 0` means there is no column limit.
if (Style.ColumnLimit != 0 &&
Style.ColumnLimit < NewLeft + NewAnchor + NewRight) {
AlignCurrentSequence();
StartOfSequence = i;
WidthLeft = ChangeWidthLeft;
WidthAnchor = ChangeWidthAnchor;
WidthRight = ChangeWidthRight;
} else {
WidthLeft = NewLeft;
WidthAnchor = NewAnchor;
WidthRight = NewRight;
}
}
EndOfSequence = i;
AlignCurrentSequence();
return i;
}
// Aligns a sequence of matching tokens, on the MinColumn column.
//
// Sequences start from the first matching token to align, and end at the
// first token of the first line that doesn't need to be aligned.
//
// We need to adjust the StartOfTokenColumn of each Change that is on a line
// containing any matching token to be aligned and located after such token.
static void AlignMatchingTokenSequence(
unsigned &StartOfSequence, unsigned &EndOfSequence, unsigned &MinColumn,
std::function<bool(const WhitespaceManager::Change &C)> Matches,
SmallVector<WhitespaceManager::Change, 16> &Changes) {
if (StartOfSequence > 0 && StartOfSequence < EndOfSequence) {
bool FoundMatchOnLine = false;
int Shift = 0;
for (unsigned I = StartOfSequence; I != EndOfSequence; ++I) {
if (Changes[I].NewlinesBefore > 0) {
Shift = 0;
FoundMatchOnLine = false;
}
// If this is the first matching token to be aligned, remember by how many
// spaces it has to be shifted, so the rest of the changes on the line are
// shifted by the same amount.
if (!FoundMatchOnLine && Matches(Changes[I])) {
FoundMatchOnLine = true;
Shift = MinColumn - Changes[I].StartOfTokenColumn;
Changes[I].Spaces += Shift;
}
assert(Shift >= 0);
Changes[I].StartOfTokenColumn += Shift;
if (I + 1 != Changes.size())
Changes[I + 1].PreviousEndOfTokenColumn += Shift;
}
}
MinColumn = 0;
StartOfSequence = 0;
EndOfSequence = 0;
}
void WhitespaceManager::alignConsecutiveMacros() {
if (!Style.AlignConsecutiveMacros.Enabled)
return;
auto AlignMacrosMatches = [](const Change &C) {
const FormatToken *Current = C.Tok;
unsigned SpacesRequiredBefore = 1;
if (Current->SpacesRequiredBefore == 0 || !Current->Previous)
return false;
Current = Current->Previous;
// If token is a ")", skip over the parameter list, to the
// token that precedes the "("
if (Current->is(tok::r_paren) && Current->MatchingParen) {
Current = Current->MatchingParen->Previous;
SpacesRequiredBefore = 0;
}
if (!Current || Current->isNot(tok::identifier))
return false;
if (!Current->Previous || Current->Previous->isNot(tok::pp_define))
return false;
// For a macro function, 0 spaces are required between the
// identifier and the lparen that opens the parameter list.
// For a simple macro, 1 space is required between the
// identifier and the first token of the defined value.
return Current->Next->SpacesRequiredBefore == SpacesRequiredBefore;
};
unsigned MinColumn = 0;
// Start and end of the token sequence we're processing.
unsigned StartOfSequence = 0;
unsigned EndOfSequence = 0;
// Whether a matching token has been found on the current line.
bool FoundMatchOnLine = false;
// Whether the current line consists only of comments
bool LineIsComment = true;
unsigned I = 0;
for (unsigned E = Changes.size(); I != E; ++I) {
if (Changes[I].NewlinesBefore != 0) {
EndOfSequence = I;
// Whether to break the alignment sequence because of an empty line.
bool EmptyLineBreak = (Changes[I].NewlinesBefore > 1) &&
!Style.AlignConsecutiveMacros.AcrossEmptyLines;
// Whether to break the alignment sequence because of a line without a
// match.
bool NoMatchBreak =
!FoundMatchOnLine &&
!(LineIsComment && Style.AlignConsecutiveMacros.AcrossComments);
if (EmptyLineBreak || NoMatchBreak) {
AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn,
AlignMacrosMatches, Changes);
}
// A new line starts, re-initialize line status tracking bools.
FoundMatchOnLine = false;
LineIsComment = true;
}
if (Changes[I].Tok->isNot(tok::comment))
LineIsComment = false;
if (!AlignMacrosMatches(Changes[I]))
continue;
FoundMatchOnLine = true;
if (StartOfSequence == 0)
StartOfSequence = I;
unsigned ChangeMinColumn = Changes[I].StartOfTokenColumn;
MinColumn = std::max(MinColumn, ChangeMinColumn);
}
EndOfSequence = I;
AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn,
AlignMacrosMatches, Changes);
}
void WhitespaceManager::alignConsecutiveAssignments() {
if (!Style.AlignConsecutiveAssignments.Enabled)
return;
AlignTokens(
Style,
[&](const Change &C) {
// Do not align on equal signs that are first on a line.
if (C.NewlinesBefore > 0)
return false;
// Do not align on equal signs that are last on a line.
if (&C != &Changes.back() && (&C + 1)->NewlinesBefore > 0)
return false;
// Do not align operator= overloads.
FormatToken *Previous = C.Tok->getPreviousNonComment();
if (Previous && Previous->is(tok::kw_operator))
return false;
return Style.AlignConsecutiveAssignments.AlignCompound
? C.Tok->getPrecedence() == prec::Assignment
: (C.Tok->is(tok::equal) ||
// In Verilog the '<=' is not a compound assignment, thus
// it is aligned even when the AlignCompound option is not
// set.
(Style.isVerilog() && C.Tok->is(tok::lessequal) &&
C.Tok->getPrecedence() == prec::Assignment));
},
Changes, /*StartAt=*/0, Style.AlignConsecutiveAssignments,
/*RightJustify=*/true);
}
void WhitespaceManager::alignConsecutiveBitFields() {
alignConsecutiveColons(Style.AlignConsecutiveBitFields, TT_BitFieldColon);
}
void WhitespaceManager::alignConsecutiveColons(
const FormatStyle::AlignConsecutiveStyle &AlignStyle, TokenType Type) {
if (!AlignStyle.Enabled)
return;
AlignTokens(
Style,
[&](Change const &C) {
// Do not align on ':' that is first on a line.
if (C.NewlinesBefore > 0)
return false;
// Do not align on ':' that is last on a line.
if (&C != &Changes.back() && (&C + 1)->NewlinesBefore > 0)
return false;
return C.Tok->is(Type);
},
Changes, /*StartAt=*/0, AlignStyle);
}
void WhitespaceManager::alignConsecutiveShortCaseStatements() {
if (!Style.AlignConsecutiveShortCaseStatements.Enabled ||
!Style.AllowShortCaseLabelsOnASingleLine) {
return;
}
auto Matches = [&](const Change &C) {
if (Style.AlignConsecutiveShortCaseStatements.AlignCaseColons)
return C.Tok->is(TT_CaseLabelColon);
// Ignore 'IsInsideToken' to allow matching trailing comments which
// need to be reflowed as that causes the token to appear in two
// different changes, which will cause incorrect alignment as we'll
// reflow early due to detecting multiple aligning tokens per line.
return !C.IsInsideToken && C.Tok->Previous &&
C.Tok->Previous->is(TT_CaseLabelColon);
};
unsigned MinColumn = 0;
// Empty case statements don't break the alignment, but don't necessarily
// match our predicate, so we need to track their column so they can push out
// our alignment.
unsigned MinEmptyCaseColumn = 0;
// Start and end of the token sequence we're processing.
unsigned StartOfSequence = 0;
unsigned EndOfSequence = 0;
// Whether a matching token has been found on the current line.
bool FoundMatchOnLine = false;
bool LineIsComment = true;
bool LineIsEmptyCase = false;
unsigned I = 0;
for (unsigned E = Changes.size(); I != E; ++I) {
if (Changes[I].NewlinesBefore != 0) {
// Whether to break the alignment sequence because of an empty line.
bool EmptyLineBreak =
(Changes[I].NewlinesBefore > 1) &&
!Style.AlignConsecutiveShortCaseStatements.AcrossEmptyLines;
// Whether to break the alignment sequence because of a line without a
// match.
bool NoMatchBreak =
!FoundMatchOnLine &&
!(LineIsComment &&
Style.AlignConsecutiveShortCaseStatements.AcrossComments) &&
!LineIsEmptyCase;
if (EmptyLineBreak || NoMatchBreak) {
AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn,
Matches, Changes);
MinEmptyCaseColumn = 0;
}
// A new line starts, re-initialize line status tracking bools.
FoundMatchOnLine = false;
LineIsComment = true;
LineIsEmptyCase = false;
}
if (Changes[I].Tok->isNot(tok::comment))
LineIsComment = false;
if (Changes[I].Tok->is(TT_CaseLabelColon)) {
LineIsEmptyCase =
!Changes[I].Tok->Next || Changes[I].Tok->Next->isTrailingComment();
if (LineIsEmptyCase) {
if (Style.AlignConsecutiveShortCaseStatements.AlignCaseColons) {
MinEmptyCaseColumn =
std::max(MinEmptyCaseColumn, Changes[I].StartOfTokenColumn);
} else {
MinEmptyCaseColumn =
std::max(MinEmptyCaseColumn, Changes[I].StartOfTokenColumn + 2);
}
}
}
if (!Matches(Changes[I]))
continue;
if (LineIsEmptyCase)
continue;
FoundMatchOnLine = true;
if (StartOfSequence == 0)
StartOfSequence = I;
EndOfSequence = I + 1;
MinColumn = std::max(MinColumn, Changes[I].StartOfTokenColumn);
// Allow empty case statements to push out our alignment.
MinColumn = std::max(MinColumn, MinEmptyCaseColumn);
}
AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn, Matches,
Changes);
}
void WhitespaceManager::alignConsecutiveTableGenBreakingDAGArgColons() {
alignConsecutiveColons(Style.AlignConsecutiveTableGenBreakingDAGArgColons,
TT_TableGenDAGArgListColonToAlign);
}
void WhitespaceManager::alignConsecutiveTableGenCondOperatorColons() {
alignConsecutiveColons(Style.AlignConsecutiveTableGenCondOperatorColons,
TT_TableGenCondOperatorColon);
}
void WhitespaceManager::alignConsecutiveTableGenDefinitions() {
alignConsecutiveColons(Style.AlignConsecutiveTableGenDefinitionColons,
TT_InheritanceColon);
}
void WhitespaceManager::alignConsecutiveDeclarations() {
if (!Style.AlignConsecutiveDeclarations.Enabled)
return;
AlignTokens(
Style,
[&](Change const &C) {
if (Style.AlignConsecutiveDeclarations.AlignFunctionPointers) {
for (const auto *Prev = C.Tok->Previous; Prev; Prev = Prev->Previous)
if (Prev->is(tok::equal))
return false;
if (C.Tok->is(TT_FunctionTypeLParen))
return true;
}
if (C.Tok->is(TT_FunctionDeclarationName))
return true;
if (C.Tok->isNot(TT_StartOfName))
return false;
if (C.Tok->Previous &&
C.Tok->Previous->is(TT_StatementAttributeLikeMacro))
return false;
// Check if there is a subsequent name that starts the same declaration.
for (FormatToken *Next = C.Tok->Next; Next; Next = Next->Next) {
if (Next->is(tok::comment))
continue;
if (Next->is(TT_PointerOrReference))
return false;
if (!Next->Tok.getIdentifierInfo())
break;
if (Next->isOneOf(TT_StartOfName, TT_FunctionDeclarationName,
tok::kw_operator)) {
return false;
}
}
return true;
},
Changes, /*StartAt=*/0, Style.AlignConsecutiveDeclarations);
}
void WhitespaceManager::alignChainedConditionals() {
if (Style.BreakBeforeTernaryOperators) {
AlignTokens(
Style,
[](Change const &C) {
// Align question operators and last colon
return C.Tok->is(TT_ConditionalExpr) &&
((C.Tok->is(tok::question) && !C.NewlinesBefore) ||
(C.Tok->is(tok::colon) && C.Tok->Next &&
(C.Tok->Next->FakeLParens.size() == 0 ||
C.Tok->Next->FakeLParens.back() != prec::Conditional)));
},
Changes, /*StartAt=*/0);
} else {
static auto AlignWrappedOperand = [](Change const &C) {
FormatToken *Previous = C.Tok->getPreviousNonComment();
return C.NewlinesBefore && Previous && Previous->is(TT_ConditionalExpr) &&
(Previous->is(tok::colon) &&
(C.Tok->FakeLParens.size() == 0 ||
C.Tok->FakeLParens.back() != prec::Conditional));
};
// Ensure we keep alignment of wrapped operands with non-wrapped operands
// Since we actually align the operators, the wrapped operands need the
// extra offset to be properly aligned.
for (Change &C : Changes)
if (AlignWrappedOperand(C))
C.StartOfTokenColumn -= 2;
AlignTokens(
Style,
[this](Change const &C) {
// Align question operators if next operand is not wrapped, as
// well as wrapped operands after question operator or last
// colon in conditional sequence
return (C.Tok->is(TT_ConditionalExpr) && C.Tok->is(tok::question) &&
&C != &Changes.back() && (&C + 1)->NewlinesBefore == 0 &&
!(&C + 1)->IsTrailingComment) ||
AlignWrappedOperand(C);
},
Changes, /*StartAt=*/0);
}
}
void WhitespaceManager::alignTrailingComments() {
if (Style.AlignTrailingComments.Kind == FormatStyle::TCAS_Never)
return;
const int Size = Changes.size();
int MinColumn = 0;
int StartOfSequence = 0;
bool BreakBeforeNext = false;
int NewLineThreshold = 1;
if (Style.AlignTrailingComments.Kind == FormatStyle::TCAS_Always)
NewLineThreshold = Style.AlignTrailingComments.OverEmptyLines + 1;
for (int I = 0, MaxColumn = INT_MAX, Newlines = 0; I < Size; ++I) {
auto &C = Changes[I];
if (C.StartOfBlockComment)
continue;
Newlines += C.NewlinesBefore;
if (!C.IsTrailingComment)
continue;
if (Style.AlignTrailingComments.Kind == FormatStyle::TCAS_Leave) {
const int OriginalSpaces =
C.OriginalWhitespaceRange.getEnd().getRawEncoding() -
C.OriginalWhitespaceRange.getBegin().getRawEncoding() -
C.Tok->LastNewlineOffset;
assert(OriginalSpaces >= 0);
const auto RestoredLineLength =
C.StartOfTokenColumn + C.TokenLength + OriginalSpaces;
// If leaving comments makes the line exceed the column limit, give up to
// leave the comments.
if (RestoredLineLength >= Style.ColumnLimit && Style.ColumnLimit > 0)
break;
C.Spaces = OriginalSpaces;
continue;
}
const int ChangeMinColumn = C.StartOfTokenColumn;
int ChangeMaxColumn;
// If we don't create a replacement for this change, we have to consider
// it to be immovable.
if (!C.CreateReplacement)
ChangeMaxColumn = ChangeMinColumn;
else if (Style.ColumnLimit == 0)
ChangeMaxColumn = INT_MAX;
else if (Style.ColumnLimit >= C.TokenLength)
ChangeMaxColumn = Style.ColumnLimit - C.TokenLength;
else
ChangeMaxColumn = ChangeMinColumn;
if (I + 1 < Size && Changes[I + 1].ContinuesPPDirective &&
ChangeMaxColumn >= 2) {
ChangeMaxColumn -= 2;
}
bool WasAlignedWithStartOfNextLine = false;
if (C.NewlinesBefore >= 1) { // A comment on its own line.
const auto CommentColumn =
SourceMgr.getSpellingColumnNumber(C.OriginalWhitespaceRange.getEnd());
for (int J = I + 1; J < Size; ++J) {
if (Changes[J].Tok->is(tok::comment))
continue;
const auto NextColumn = SourceMgr.getSpellingColumnNumber(
Changes[J].OriginalWhitespaceRange.getEnd());
// The start of the next token was previously aligned with the
// start of this comment.
WasAlignedWithStartOfNextLine =
CommentColumn == NextColumn ||
CommentColumn == NextColumn + Style.IndentWidth;
break;
}
}
// We don't want to align comments which end a scope, which are here
// identified by most closing braces.
auto DontAlignThisComment = [](const auto *Tok) {
if (Tok->is(tok::semi)) {
Tok = Tok->getPreviousNonComment();
if (!Tok)
return false;
}
if (Tok->is(tok::r_paren)) {
// Back up past the parentheses and a `TT_DoWhile` that may precede.
Tok = Tok->MatchingParen;
if (!Tok)
return false;
Tok = Tok->getPreviousNonComment();
if (!Tok)
return false;
if (Tok->is(TT_DoWhile)) {
const auto *Prev = Tok->getPreviousNonComment();
if (!Prev) {
// A do-while-loop without braces.
return true;
}
Tok = Prev;
}
}
if (Tok->isNot(tok::r_brace))
return false;
while (Tok->Previous && Tok->Previous->is(tok::r_brace))
Tok = Tok->Previous;
return Tok->NewlinesBefore > 0;
};
if (I > 0 && C.NewlinesBefore == 0 &&
DontAlignThisComment(Changes[I - 1].Tok)) {
alignTrailingComments(StartOfSequence, I, MinColumn);
// Reset to initial values, but skip this change for the next alignment
// pass.
MinColumn = 0;
MaxColumn = INT_MAX;
StartOfSequence = I + 1;
} else if (BreakBeforeNext || Newlines > NewLineThreshold ||
(ChangeMinColumn > MaxColumn || ChangeMaxColumn < MinColumn) ||
// Break the comment sequence if the previous line did not end
// in a trailing comment.
(C.NewlinesBefore == 1 && I > 0 &&
!Changes[I - 1].IsTrailingComment) ||
WasAlignedWithStartOfNextLine) {
alignTrailingComments(StartOfSequence, I, MinColumn);
MinColumn = ChangeMinColumn;
MaxColumn = ChangeMaxColumn;
StartOfSequence = I;
} else {
MinColumn = std::max(MinColumn, ChangeMinColumn);
MaxColumn = std::min(MaxColumn, ChangeMaxColumn);
}
BreakBeforeNext = (I == 0) || (C.NewlinesBefore > 1) ||
// Never start a sequence with a comment at the beginning
// of the line.
(C.NewlinesBefore == 1 && StartOfSequence == I);
Newlines = 0;
}
alignTrailingComments(StartOfSequence, Size, MinColumn);
}
void WhitespaceManager::alignTrailingComments(unsigned Start, unsigned End,
unsigned Column) {
for (unsigned i = Start; i != End; ++i) {
int Shift = 0;
if (Changes[i].IsTrailingComment)
Shift = Column - Changes[i].StartOfTokenColumn;
if (Changes[i].StartOfBlockComment) {
Shift = Changes[i].IndentationOffset +
Changes[i].StartOfBlockComment->StartOfTokenColumn -
Changes[i].StartOfTokenColumn;
}
if (Shift <= 0)
continue;
Changes[i].Spaces += Shift;
if (i + 1 != Changes.size())
Changes[i + 1].PreviousEndOfTokenColumn += Shift;
Changes[i].StartOfTokenColumn += Shift;
}
}
void WhitespaceManager::alignEscapedNewlines() {
if (Style.AlignEscapedNewlines == FormatStyle::ENAS_DontAlign)
return;
bool AlignLeft = Style.AlignEscapedNewlines == FormatStyle::ENAS_Left;
unsigned MaxEndOfLine = AlignLeft ? 0 : Style.ColumnLimit;
unsigned StartOfMacro = 0;
for (unsigned i = 1, e = Changes.size(); i < e; ++i) {
Change &C = Changes[i];
if (C.NewlinesBefore > 0) {
if (C.ContinuesPPDirective) {
MaxEndOfLine = std::max(C.PreviousEndOfTokenColumn + 2, MaxEndOfLine);
} else {
alignEscapedNewlines(StartOfMacro + 1, i, MaxEndOfLine);
MaxEndOfLine = AlignLeft ? 0 : Style.ColumnLimit;
StartOfMacro = i;
}
}
}
alignEscapedNewlines(StartOfMacro + 1, Changes.size(), MaxEndOfLine);
}
void WhitespaceManager::alignEscapedNewlines(unsigned Start, unsigned End,
unsigned Column) {
for (unsigned i = Start; i < End; ++i) {
Change &C = Changes[i];
if (C.NewlinesBefore > 0) {
assert(C.ContinuesPPDirective);
if (C.PreviousEndOfTokenColumn + 1 > Column)
C.EscapedNewlineColumn = 0;
else
C.EscapedNewlineColumn = Column;
}
}
}
void WhitespaceManager::alignArrayInitializers() {
if (Style.AlignArrayOfStructures == FormatStyle::AIAS_None)
return;
for (unsigned ChangeIndex = 1U, ChangeEnd = Changes.size();
ChangeIndex < ChangeEnd; ++ChangeIndex) {
auto &C = Changes[ChangeIndex];
if (C.Tok->IsArrayInitializer) {
bool FoundComplete = false;
for (unsigned InsideIndex = ChangeIndex + 1; InsideIndex < ChangeEnd;
++InsideIndex) {
if (Changes[InsideIndex].Tok == C.Tok->MatchingParen) {
alignArrayInitializers(ChangeIndex, InsideIndex + 1);
ChangeIndex = InsideIndex + 1;
FoundComplete = true;
break;
}
}
if (!FoundComplete)
ChangeIndex = ChangeEnd;
}
}
}
void WhitespaceManager::alignArrayInitializers(unsigned Start, unsigned End) {
if (Style.AlignArrayOfStructures == FormatStyle::AIAS_Right)
alignArrayInitializersRightJustified(getCells(Start, End));
else if (Style.AlignArrayOfStructures == FormatStyle::AIAS_Left)
alignArrayInitializersLeftJustified(getCells(Start, End));
}
void WhitespaceManager::alignArrayInitializersRightJustified(
CellDescriptions &&CellDescs) {
if (!CellDescs.isRectangular())
return;
const int BracePadding = Style.Cpp11BracedListStyle ? 0 : 1;
auto &Cells = CellDescs.Cells;
// Now go through and fixup the spaces.
auto *CellIter = Cells.begin();
for (auto i = 0U; i < CellDescs.CellCounts[0]; ++i, ++CellIter) {
unsigned NetWidth = 0U;
if (isSplitCell(*CellIter))
NetWidth = getNetWidth(Cells.begin(), CellIter, CellDescs.InitialSpaces);
auto CellWidth = getMaximumCellWidth(CellIter, NetWidth);
if (Changes[CellIter->Index].Tok->is(tok::r_brace)) {
// So in here we want to see if there is a brace that falls
// on a line that was split. If so on that line we make sure that
// the spaces in front of the brace are enough.
const auto *Next = CellIter;
do {
const FormatToken *Previous = Changes[Next->Index].Tok->Previous;
if (Previous && Previous->isNot(TT_LineComment)) {
Changes[Next->Index].Spaces = BracePadding;
Changes[Next->Index].NewlinesBefore = 0;
}
Next = Next->NextColumnElement;
} while (Next);
// Unless the array is empty, we need the position of all the
// immediately adjacent cells
if (CellIter != Cells.begin()) {
auto ThisNetWidth =
getNetWidth(Cells.begin(), CellIter, CellDescs.InitialSpaces);
auto MaxNetWidth = getMaximumNetWidth(
Cells.begin(), CellIter, CellDescs.InitialSpaces,
CellDescs.CellCounts[0], CellDescs.CellCounts.size());
if (ThisNetWidth < MaxNetWidth)
Changes[CellIter->Index].Spaces = (MaxNetWidth - ThisNetWidth);
auto RowCount = 1U;
auto Offset = std::distance(Cells.begin(), CellIter);
for (const auto *Next = CellIter->NextColumnElement; Next;
Next = Next->NextColumnElement) {
if (RowCount >= CellDescs.CellCounts.size())
break;
auto *Start = (Cells.begin() + RowCount * CellDescs.CellCounts[0]);
auto *End = Start + Offset;
ThisNetWidth = getNetWidth(Start, End, CellDescs.InitialSpaces);
if (ThisNetWidth < MaxNetWidth)
Changes[Next->Index].Spaces = (MaxNetWidth - ThisNetWidth);
++RowCount;
}
}
} else {
auto ThisWidth =
calculateCellWidth(CellIter->Index, CellIter->EndIndex, true) +
NetWidth;
if (Changes[CellIter->Index].NewlinesBefore == 0) {
Changes[CellIter->Index].Spaces = (CellWidth - (ThisWidth + NetWidth));
Changes[CellIter->Index].Spaces += (i > 0) ? 1 : BracePadding;
}
alignToStartOfCell(CellIter->Index, CellIter->EndIndex);
for (const auto *Next = CellIter->NextColumnElement; Next;
Next = Next->NextColumnElement) {
ThisWidth =
calculateCellWidth(Next->Index, Next->EndIndex, true) + NetWidth;
if (Changes[Next->Index].NewlinesBefore == 0) {
Changes[Next->Index].Spaces = (CellWidth - ThisWidth);
Changes[Next->Index].Spaces += (i > 0) ? 1 : BracePadding;
}
alignToStartOfCell(Next->Index, Next->EndIndex);
}
}
}
}
void WhitespaceManager::alignArrayInitializersLeftJustified(
CellDescriptions &&CellDescs) {
if (!CellDescs.isRectangular())
return;
const int BracePadding = Style.Cpp11BracedListStyle ? 0 : 1;
auto &Cells = CellDescs.Cells;
// Now go through and fixup the spaces.
auto *CellIter = Cells.begin();
// The first cell of every row needs to be against the left brace.
for (const auto *Next = CellIter; Next; Next = Next->NextColumnElement) {
auto &Change = Changes[Next->Index];
Change.Spaces =
Change.NewlinesBefore == 0 ? BracePadding : CellDescs.InitialSpaces;
}
++CellIter;
for (auto i = 1U; i < CellDescs.CellCounts[0]; i++, ++CellIter) {
auto MaxNetWidth = getMaximumNetWidth(
Cells.begin(), CellIter, CellDescs.InitialSpaces,
CellDescs.CellCounts[0], CellDescs.CellCounts.size());
auto ThisNetWidth =
getNetWidth(Cells.begin(), CellIter, CellDescs.InitialSpaces);
if (Changes[CellIter->Index].NewlinesBefore == 0) {
Changes[CellIter->Index].Spaces =
MaxNetWidth - ThisNetWidth +
(Changes[CellIter->Index].Tok->isNot(tok::r_brace) ? 1
: BracePadding);
}
auto RowCount = 1U;
auto Offset = std::distance(Cells.begin(), CellIter);
for (const auto *Next = CellIter->NextColumnElement; Next;
Next = Next->NextColumnElement) {
if (RowCount >= CellDescs.CellCounts.size())
break;
auto *Start = (Cells.begin() + RowCount * CellDescs.CellCounts[0]);
auto *End = Start + Offset;
auto ThisNetWidth = getNetWidth(Start, End, CellDescs.InitialSpaces);
if (Changes[Next->Index].NewlinesBefore == 0) {
Changes[Next->Index].Spaces =
MaxNetWidth - ThisNetWidth +
(Changes[Next->Index].Tok->isNot(tok::r_brace) ? 1 : BracePadding);
}
++RowCount;
}
}
}
bool WhitespaceManager::isSplitCell(const CellDescription &Cell) {
if (Cell.HasSplit)
return true;
for (const auto *Next = Cell.NextColumnElement; Next;
Next = Next->NextColumnElement) {
if (Next->HasSplit)
return true;
}
return false;
}
WhitespaceManager::CellDescriptions WhitespaceManager::getCells(unsigned Start,
unsigned End) {
unsigned Depth = 0;
unsigned Cell = 0;
SmallVector<unsigned> CellCounts;
unsigned InitialSpaces = 0;
unsigned InitialTokenLength = 0;
unsigned EndSpaces = 0;
SmallVector<CellDescription> Cells;
const FormatToken *MatchingParen = nullptr;
for (unsigned i = Start; i < End; ++i) {
auto &C = Changes[i];
if (C.Tok->is(tok::l_brace))
++Depth;
else if (C.Tok->is(tok::r_brace))
--Depth;
if (Depth == 2) {
if (C.Tok->is(tok::l_brace)) {
Cell = 0;
MatchingParen = C.Tok->MatchingParen;
if (InitialSpaces == 0) {
InitialSpaces = C.Spaces + C.TokenLength;
InitialTokenLength = C.TokenLength;
auto j = i - 1;
for (; Changes[j].NewlinesBefore == 0 && j > Start; --j) {
InitialSpaces += Changes[j].Spaces + Changes[j].TokenLength;
InitialTokenLength += Changes[j].TokenLength;
}
if (C.NewlinesBefore == 0) {
InitialSpaces += Changes[j].Spaces + Changes[j].TokenLength;
InitialTokenLength += Changes[j].TokenLength;
}
}
} else if (C.Tok->is(tok::comma)) {
if (!Cells.empty())
Cells.back().EndIndex = i;
if (const auto *Next = C.Tok->getNextNonComment();
Next && Next->isNot(tok::r_brace)) { // dangling comma
++Cell;
}
}
} else if (Depth == 1) {
if (C.Tok == MatchingParen) {
if (!Cells.empty())
Cells.back().EndIndex = i;
Cells.push_back(CellDescription{i, ++Cell, i + 1, false, nullptr});
CellCounts.push_back(C.Tok->Previous->isNot(tok::comma) ? Cell + 1
: Cell);
// Go to the next non-comment and ensure there is a break in front
const auto *NextNonComment = C.Tok->getNextNonComment();
while (NextNonComment && NextNonComment->is(tok::comma))
NextNonComment = NextNonComment->getNextNonComment();
auto j = i;
while (j < End && Changes[j].Tok != NextNonComment)
++j;
if (j < End && Changes[j].NewlinesBefore == 0 &&
Changes[j].Tok->isNot(tok::r_brace)) {
Changes[j].NewlinesBefore = 1;
// Account for the added token lengths
Changes[j].Spaces = InitialSpaces - InitialTokenLength;
}
} else if (C.Tok->is(tok::comment) && C.Tok->NewlinesBefore == 0) {
// Trailing comments stay at a space past the last token
C.Spaces = Changes[i - 1].Tok->is(tok::comma) ? 1 : 2;
} else if (C.Tok->is(tok::l_brace)) {
// We need to make sure that the ending braces is aligned to the
// start of our initializer
auto j = i - 1;
for (; j > 0 && !Changes[j].Tok->ArrayInitializerLineStart; --j)
; // Nothing the loop does the work
EndSpaces = Changes[j].Spaces;
}
} else if (Depth == 0 && C.Tok->is(tok::r_brace)) {
C.NewlinesBefore = 1;
C.Spaces = EndSpaces;
}
if (C.Tok->StartsColumn) {
// This gets us past tokens that have been split over multiple
// lines
bool HasSplit = false;
if (Changes[i].NewlinesBefore > 0) {
// So if we split a line previously and the tail line + this token is
// less then the column limit we remove the split here and just put
// the column start at a space past the comma
//
// FIXME This if branch covers the cases where the column is not
// the first column. This leads to weird pathologies like the formatting
// auto foo = Items{
// Section{
// 0, bar(),
// }
// };
// Well if it doesn't lead to that it's indicative that the line
// breaking should be revisited. Unfortunately alot of other options
// interact with this
auto j = i - 1;
if ((j - 1) > Start && Changes[j].Tok->is(tok::comma) &&
Changes[j - 1].NewlinesBefore > 0) {
--j;
auto LineLimit = Changes[j].Spaces + Changes[j].TokenLength;
if (LineLimit < Style.ColumnLimit) {
Changes[i].NewlinesBefore = 0;
Changes[i].Spaces = 1;
}
}
}
while (Changes[i].NewlinesBefore > 0 && Changes[i].Tok == C.Tok) {
Changes[i].Spaces = InitialSpaces;
++i;
HasSplit = true;
}
if (Changes[i].Tok != C.Tok)
--i;
Cells.push_back(CellDescription{i, Cell, i, HasSplit, nullptr});
}
}
return linkCells({Cells, CellCounts, InitialSpaces});
}
unsigned WhitespaceManager::calculateCellWidth(unsigned Start, unsigned End,
bool WithSpaces) const {
unsigned CellWidth = 0;
for (auto i = Start; i < End; i++) {
if (Changes[i].NewlinesBefore > 0)
CellWidth = 0;
CellWidth += Changes[i].TokenLength;
CellWidth += (WithSpaces ? Changes[i].Spaces : 0);
}
return CellWidth;
}
void WhitespaceManager::alignToStartOfCell(unsigned Start, unsigned End) {
if ((End - Start) <= 1)
return;
// If the line is broken anywhere in there make sure everything
// is aligned to the parent
for (auto i = Start + 1; i < End; i++)
if (Changes[i].NewlinesBefore > 0)
Changes[i].Spaces = Changes[Start].Spaces;
}
WhitespaceManager::CellDescriptions
WhitespaceManager::linkCells(CellDescriptions &&CellDesc) {
auto &Cells = CellDesc.Cells;
for (auto *CellIter = Cells.begin(); CellIter != Cells.end(); ++CellIter) {
if (!CellIter->NextColumnElement && (CellIter + 1) != Cells.end()) {
for (auto *NextIter = CellIter + 1; NextIter != Cells.end(); ++NextIter) {
if (NextIter->Cell == CellIter->Cell) {
CellIter->NextColumnElement = &(*NextIter);
break;
}
}
}
}
return std::move(CellDesc);
}
void WhitespaceManager::generateChanges() {
for (unsigned i = 0, e = Changes.size(); i != e; ++i) {
const Change &C = Changes[i];
if (i > 0) {
auto Last = Changes[i - 1].OriginalWhitespaceRange;
auto New = Changes[i].OriginalWhitespaceRange;
// Do not generate two replacements for the same location. As a special
// case, it is allowed if there is a replacement for the empty range
// between 2 tokens and another non-empty range at the start of the second
// token. We didn't implement logic to combine replacements for 2
// consecutive source ranges into a single replacement, because the
// program works fine without it.
//
// We can't eliminate empty original whitespace ranges. They appear when
// 2 tokens have no whitespace in between in the input. It does not
// matter whether whitespace is to be added. If no whitespace is to be
// added, the replacement will be empty, and it gets eliminated after this
// step in storeReplacement. For example, if the input is `foo();`,
// there will be a replacement for the range between every consecutive
// pair of tokens.
//
// A replacement at the start of a token can be added by
// BreakableStringLiteralUsingOperators::insertBreak when it adds braces
// around the string literal. Say Verilog code is being formatted and the
// first line is to become the next 2 lines.
// x("long string");
// x({"long ",
// "string"});
// There will be a replacement for the empty range between the parenthesis
// and the string and another replacement for the quote character. The
// replacement for the empty range between the parenthesis and the quote
// comes from ContinuationIndenter::addTokenOnCurrentLine when it changes
// the original empty range between the parenthesis and the string to
// another empty one. The replacement for the quote character comes from
// BreakableStringLiteralUsingOperators::insertBreak when it adds the
// brace. In the example, the replacement for the empty range is the same
// as the original text. However, eliminating replacements that are same
// as the original does not help in general. For example, a newline can
// be inserted, causing the first line to become the next 3 lines.
// xxxxxxxxxxx("long string");
// xxxxxxxxxxx(
// {"long ",
// "string"});
// In that case, the empty range between the parenthesis and the string
// will be replaced by a newline and 4 spaces. So we will still have to
// deal with a replacement for an empty source range followed by a
// replacement for a non-empty source range.
if (Last.getBegin() == New.getBegin() &&
(Last.getEnd() != Last.getBegin() ||
New.getEnd() == New.getBegin())) {
continue;
}
}
if (C.CreateReplacement) {
std::string ReplacementText = C.PreviousLinePostfix;
if (C.ContinuesPPDirective) {
appendEscapedNewlineText(ReplacementText, C.NewlinesBefore,
C.PreviousEndOfTokenColumn,
C.EscapedNewlineColumn);
} else {
appendNewlineText(ReplacementText, C.NewlinesBefore);
}
// FIXME: This assert should hold if we computed the column correctly.
// assert((int)C.StartOfTokenColumn >= C.Spaces);
appendIndentText(
ReplacementText, C.Tok->IndentLevel, std::max(0, C.Spaces),
std::max((int)C.StartOfTokenColumn, C.Spaces) - std::max(0, C.Spaces),
C.IsAligned);
ReplacementText.append(C.CurrentLinePrefix);
storeReplacement(C.OriginalWhitespaceRange, ReplacementText);
}
}
}
void WhitespaceManager::storeReplacement(SourceRange Range, StringRef Text) {
unsigned WhitespaceLength = SourceMgr.getFileOffset(Range.getEnd()) -
SourceMgr.getFileOffset(Range.getBegin());
// Don't create a replacement, if it does not change anything.
if (StringRef(SourceMgr.getCharacterData(Range.getBegin()),
WhitespaceLength) == Text) {
return;
}
auto Err = Replaces.add(tooling::Replacement(
SourceMgr, CharSourceRange::getCharRange(Range), Text));
// FIXME: better error handling. For now, just print an error message in the
// release version.
if (Err) {
llvm::errs() << llvm::toString(std::move(Err)) << "\n";
assert(false);
}
}
void WhitespaceManager::appendNewlineText(std::string &Text,
unsigned Newlines) {
if (UseCRLF) {
Text.reserve(Text.size() + 2 * Newlines);
for (unsigned i = 0; i < Newlines; ++i)
Text.append("\r\n");
} else {
Text.append(Newlines, '\n');
}
}
void WhitespaceManager::appendEscapedNewlineText(
std::string &Text, unsigned Newlines, unsigned PreviousEndOfTokenColumn,
unsigned EscapedNewlineColumn) {
if (Newlines > 0) {
unsigned Spaces =
std::max<int>(1, EscapedNewlineColumn - PreviousEndOfTokenColumn - 1);
for (unsigned i = 0; i < Newlines; ++i) {
Text.append(Spaces, ' ');
Text.append(UseCRLF ? "\\\r\n" : "\\\n");
Spaces = std::max<int>(0, EscapedNewlineColumn - 1);
}
}
}
void WhitespaceManager::appendIndentText(std::string &Text,
unsigned IndentLevel, unsigned Spaces,
unsigned WhitespaceStartColumn,
bool IsAligned) {
switch (Style.UseTab) {
case FormatStyle::UT_Never:
Text.append(Spaces, ' ');
break;
case FormatStyle::UT_Always: {
if (Style.TabWidth) {
unsigned FirstTabWidth =
Style.TabWidth - WhitespaceStartColumn % Style.TabWidth;
// Insert only spaces when we want to end up before the next tab.
if (Spaces < FirstTabWidth || Spaces == 1) {
Text.append(Spaces, ' ');
break;
}
// Align to the next tab.
Spaces -= FirstTabWidth;
Text.append("\t");
Text.append(Spaces / Style.TabWidth, '\t');
Text.append(Spaces % Style.TabWidth, ' ');
} else if (Spaces == 1) {
Text.append(Spaces, ' ');
}
break;
}
case FormatStyle::UT_ForIndentation:
if (WhitespaceStartColumn == 0) {
unsigned Indentation = IndentLevel * Style.IndentWidth;
Spaces = appendTabIndent(Text, Spaces, Indentation);
}
Text.append(Spaces, ' ');
break;
case FormatStyle::UT_ForContinuationAndIndentation:
if (WhitespaceStartColumn == 0)
Spaces = appendTabIndent(Text, Spaces, Spaces);
Text.append(Spaces, ' ');
break;
case FormatStyle::UT_AlignWithSpaces:
if (WhitespaceStartColumn == 0) {
unsigned Indentation =
IsAligned ? IndentLevel * Style.IndentWidth : Spaces;
Spaces = appendTabIndent(Text, Spaces, Indentation);
}
Text.append(Spaces, ' ');
break;
}
}
unsigned WhitespaceManager::appendTabIndent(std::string &Text, unsigned Spaces,
unsigned Indentation) {
// This happens, e.g. when a line in a block comment is indented less than the
// first one.
if (Indentation > Spaces)
Indentation = Spaces;
if (Style.TabWidth) {
unsigned Tabs = Indentation / Style.TabWidth;
Text.append(Tabs, '\t');
Spaces -= Tabs * Style.TabWidth;
}
return Spaces;
}
} // namespace format
} // namespace clang