blob: 2a0fe19d09572b05a60ebfe3d4b91d8d9cd5bbe1 [file] [log] [blame]
//===--- UnwrappedLineParser.h - Format C++ code ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the declaration of the UnwrappedLineParser,
/// which turns a stream of tokens into UnwrappedLines.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEPARSER_H
#define LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEPARSER_H
#include "Macros.h"
#include <stack>
namespace clang {
namespace format {
struct UnwrappedLineNode;
/// An unwrapped line is a sequence of \c Token, that we would like to
/// put on a single line if there was no column limit.
///
/// This is used as a main interface between the \c UnwrappedLineParser and the
/// \c UnwrappedLineFormatter. The key property is that changing the formatting
/// within an unwrapped line does not affect any other unwrapped lines.
struct UnwrappedLine {
UnwrappedLine() = default;
/// The \c Tokens comprising this \c UnwrappedLine.
std::list<UnwrappedLineNode> Tokens;
/// The indent level of the \c UnwrappedLine.
unsigned Level = 0;
/// The \c PPBranchLevel (adjusted for header guards) if this line is a
/// \c InMacroBody line, and 0 otherwise.
unsigned PPLevel = 0;
/// Whether this \c UnwrappedLine is part of a preprocessor directive.
bool InPPDirective = false;
/// Whether this \c UnwrappedLine is part of a pramga directive.
bool InPragmaDirective = false;
/// Whether it is part of a macro body.
bool InMacroBody = false;
bool MustBeDeclaration = false;
/// Whether the parser has seen \c decltype(auto) in this line.
bool SeenDecltypeAuto = false;
/// \c True if this line should be indented by ContinuationIndent in
/// addition to the normal indention level.
bool IsContinuation = false;
/// If this \c UnwrappedLine closes a block in a sequence of lines,
/// \c MatchingOpeningBlockLineIndex stores the index of the corresponding
/// opening line. Otherwise, \c MatchingOpeningBlockLineIndex must be
/// \c kInvalidIndex.
size_t MatchingOpeningBlockLineIndex = kInvalidIndex;
/// If this \c UnwrappedLine opens a block, stores the index of the
/// line with the corresponding closing brace.
size_t MatchingClosingBlockLineIndex = kInvalidIndex;
static const size_t kInvalidIndex = -1;
unsigned FirstStartColumn = 0;
};
/// Interface for users of the UnwrappedLineParser to receive the parsed lines.
/// Parsing a single snippet of code can lead to multiple runs, where each
/// run is a coherent view of the file.
///
/// For example, different runs are generated:
/// - for different combinations of #if blocks
/// - when macros are involved, for the expanded code and the as-written code
///
/// Some tokens will only be visible in a subset of the runs.
/// For each run, \c UnwrappedLineParser will call \c consumeUnwrappedLine
/// for each parsed unwrapped line, and then \c finishRun to indicate
/// that the set of unwrapped lines before is one coherent view of the
/// code snippet to be formatted.
class UnwrappedLineConsumer {
public:
virtual ~UnwrappedLineConsumer() {}
virtual void consumeUnwrappedLine(const UnwrappedLine &Line) = 0;
virtual void finishRun() = 0;
};
class FormatTokenSource;
class UnwrappedLineParser {
public:
UnwrappedLineParser(SourceManager &SourceMgr, const FormatStyle &Style,
const AdditionalKeywords &Keywords,
unsigned FirstStartColumn, ArrayRef<FormatToken *> Tokens,
UnwrappedLineConsumer &Callback,
llvm::SpecificBumpPtrAllocator<FormatToken> &Allocator,
IdentifierTable &IdentTable);
void parse();
private:
enum class IfStmtKind {
NotIf, // Not an if statement.
IfOnly, // An if statement without the else clause.
IfElse, // An if statement followed by else but not else if.
IfElseIf // An if statement followed by else if.
};
void reset();
void parseFile();
bool precededByCommentOrPPDirective() const;
bool parseLevel(const FormatToken *OpeningBrace = nullptr,
IfStmtKind *IfKind = nullptr,
FormatToken **IfLeftBrace = nullptr);
bool mightFitOnOneLine(UnwrappedLine &Line,
const FormatToken *OpeningBrace = nullptr) const;
FormatToken *parseBlock(bool MustBeDeclaration = false,
unsigned AddLevels = 1u, bool MunchSemi = true,
bool KeepBraces = true, IfStmtKind *IfKind = nullptr,
bool UnindentWhitesmithsBraces = false);
void parseChildBlock();
void parsePPDirective();
void parsePPDefine();
void parsePPIf(bool IfDef);
void parsePPElse();
void parsePPEndIf();
void parsePPPragma();
void parsePPUnknown();
void readTokenWithJavaScriptASI();
void parseStructuralElement(const FormatToken *OpeningBrace = nullptr,
IfStmtKind *IfKind = nullptr,
FormatToken **IfLeftBrace = nullptr,
bool *HasDoWhile = nullptr,
bool *HasLabel = nullptr);
bool tryToParseBracedList();
bool parseBracedList(bool IsAngleBracket = false, bool IsEnum = false);
bool parseParens(TokenType AmpAmpTokenType = TT_Unknown);
void parseSquare(bool LambdaIntroducer = false);
void keepAncestorBraces();
void parseUnbracedBody(bool CheckEOF = false);
void handleAttributes();
bool handleCppAttributes();
bool isBlockBegin(const FormatToken &Tok) const;
FormatToken *parseIfThenElse(IfStmtKind *IfKind, bool KeepBraces = false,
bool IsVerilogAssert = false);
void parseTryCatch();
void parseLoopBody(bool KeepBraces, bool WrapRightBrace);
void parseForOrWhileLoop(bool HasParens = true);
void parseDoWhile();
void parseLabel(bool LeftAlignLabel = false);
void parseCaseLabel();
void parseSwitch(bool IsExpr);
void parseNamespace();
bool parseModuleImport();
void parseNew();
void parseAccessSpecifier();
bool parseEnum();
bool parseStructLike();
bool parseRequires();
void parseRequiresClause(FormatToken *RequiresToken);
void parseRequiresExpression(FormatToken *RequiresToken);
void parseConstraintExpression();
void parseJavaEnumBody();
// Parses a record (aka class) as a top level element. If ParseAsExpr is true,
// parses the record as a child block, i.e. if the class declaration is an
// expression.
void parseRecord(bool ParseAsExpr = false);
void parseObjCLightweightGenerics();
void parseObjCMethod();
void parseObjCProtocolList();
void parseObjCUntilAtEnd();
void parseObjCInterfaceOrImplementation();
bool parseObjCProtocol();
void parseJavaScriptEs6ImportExport();
void parseStatementMacro();
void parseCSharpAttribute();
// Parse a C# generic type constraint: `where T : IComparable<T>`.
// See:
// https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/where-generic-type-constraint
void parseCSharpGenericTypeConstraint();
bool tryToParseLambda();
bool tryToParseChildBlock();
bool tryToParseLambdaIntroducer();
bool tryToParsePropertyAccessor();
void tryToParseJSFunction();
bool tryToParseSimpleAttribute();
void parseVerilogHierarchyIdentifier();
void parseVerilogSensitivityList();
// Returns the number of levels of indentation in addition to the normal 1
// level for a block, used for indenting case labels.
unsigned parseVerilogHierarchyHeader();
void parseVerilogTable();
void parseVerilogCaseLabel();
std::optional<llvm::SmallVector<llvm::SmallVector<FormatToken *, 8>, 1>>
parseMacroCall();
// Used by addUnwrappedLine to denote whether to keep or remove a level
// when resetting the line state.
enum class LineLevel { Remove, Keep };
void addUnwrappedLine(LineLevel AdjustLevel = LineLevel::Remove);
bool eof() const;
// LevelDifference is the difference of levels after and before the current
// token. For example:
// - if the token is '{' and opens a block, LevelDifference is 1.
// - if the token is '}' and closes a block, LevelDifference is -1.
void nextToken(int LevelDifference = 0);
void readToken(int LevelDifference = 0);
// Decides which comment tokens should be added to the current line and which
// should be added as comments before the next token.
//
// Comments specifies the sequence of comment tokens to analyze. They get
// either pushed to the current line or added to the comments before the next
// token.
//
// NextTok specifies the next token. A null pointer NextTok is supported, and
// signifies either the absence of a next token, or that the next token
// shouldn't be taken into account for the analysis.
void distributeComments(const SmallVectorImpl<FormatToken *> &Comments,
const FormatToken *NextTok);
// Adds the comment preceding the next token to unwrapped lines.
void flushComments(bool NewlineBeforeNext);
void pushToken(FormatToken *Tok);
void calculateBraceTypes(bool ExpectClassBody = false);
void setPreviousRBraceType(TokenType Type);
// Marks a conditional compilation edge (for example, an '#if', '#ifdef',
// '#else' or merge conflict marker). If 'Unreachable' is true, assumes
// this branch either cannot be taken (for example '#if false'), or should
// not be taken in this round.
void conditionalCompilationCondition(bool Unreachable);
void conditionalCompilationStart(bool Unreachable);
void conditionalCompilationAlternative();
void conditionalCompilationEnd();
bool isOnNewLine(const FormatToken &FormatTok);
// Returns whether there is a macro expansion in the line, i.e. a token that
// was expanded from a macro call.
bool containsExpansion(const UnwrappedLine &Line) const;
// Compute hash of the current preprocessor branch.
// This is used to identify the different branches, and thus track if block
// open and close in the same branch.
size_t computePPHash() const;
bool parsingPPDirective() const { return CurrentLines != &Lines; }
// FIXME: We are constantly running into bugs where Line.Level is incorrectly
// subtracted from beyond 0. Introduce a method to subtract from Line.Level
// and use that everywhere in the Parser.
std::unique_ptr<UnwrappedLine> Line;
// Lines that are created by macro expansion.
// When formatting code containing macro calls, we first format the expanded
// lines to set the token types correctly. Afterwards, we format the
// reconstructed macro calls, re-using the token types determined in the first
// step.
// ExpandedLines will be reset every time we create a new LineAndExpansion
// instance once a line containing macro calls has been parsed.
SmallVector<UnwrappedLine, 8> CurrentExpandedLines;
// Maps from the first token of a top-level UnwrappedLine that contains
// a macro call to the replacement UnwrappedLines expanded from the macro
// call.
llvm::DenseMap<FormatToken *, SmallVector<UnwrappedLine, 8>> ExpandedLines;
// Map from the macro identifier to a line containing the full unexpanded
// macro call.
llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>> Unexpanded;
// For recursive macro expansions, trigger reconstruction only on the
// outermost expansion.
bool InExpansion = false;
// Set while we reconstruct a macro call.
// For reconstruction, we feed the expanded lines into the reconstructor
// until it is finished.
std::optional<MacroCallReconstructor> Reconstruct;
// Comments are sorted into unwrapped lines by whether they are in the same
// line as the previous token, or not. If not, they belong to the next token.
// Since the next token might already be in a new unwrapped line, we need to
// store the comments belonging to that token.
SmallVector<FormatToken *, 1> CommentsBeforeNextToken;
FormatToken *FormatTok = nullptr;
bool MustBreakBeforeNextToken;
// The parsed lines. Only added to through \c CurrentLines.
SmallVector<UnwrappedLine, 8> Lines;
// Preprocessor directives are parsed out-of-order from other unwrapped lines.
// Thus, we need to keep a list of preprocessor directives to be reported
// after an unwrapped line that has been started was finished.
SmallVector<UnwrappedLine, 4> PreprocessorDirectives;
// New unwrapped lines are added via CurrentLines.
// Usually points to \c &Lines. While parsing a preprocessor directive when
// there is an unfinished previous unwrapped line, will point to
// \c &PreprocessorDirectives.
SmallVectorImpl<UnwrappedLine> *CurrentLines;
// We store for each line whether it must be a declaration depending on
// whether we are in a compound statement or not.
llvm::BitVector DeclarationScopeStack;
const FormatStyle &Style;
bool IsCpp;
const AdditionalKeywords &Keywords;
llvm::Regex CommentPragmasRegex;
FormatTokenSource *Tokens;
UnwrappedLineConsumer &Callback;
ArrayRef<FormatToken *> AllTokens;
// Keeps a stack of the states of nested control statements (true if the
// statement contains more than some predefined number of nested statements).
SmallVector<bool, 8> NestedTooDeep;
// Keeps a stack of the states of nested lambdas (true if the return type of
// the lambda is `decltype(auto)`).
SmallVector<bool, 4> NestedLambdas;
// Whether the parser is parsing the body of a function whose return type is
// `decltype(auto)`.
bool IsDecltypeAutoFunction = false;
// Represents preprocessor branch type, so we can find matching
// #if/#else/#endif directives.
enum PPBranchKind {
PP_Conditional, // Any #if, #ifdef, #ifndef, #elif, block outside #if 0
PP_Unreachable // #if 0 or a conditional preprocessor block inside #if 0
};
struct PPBranch {
PPBranch(PPBranchKind Kind, size_t Line) : Kind(Kind), Line(Line) {}
PPBranchKind Kind;
size_t Line;
};
// Keeps a stack of currently active preprocessor branching directives.
SmallVector<PPBranch, 16> PPStack;
// The \c UnwrappedLineParser re-parses the code for each combination
// of preprocessor branches that can be taken.
// To that end, we take the same branch (#if, #else, or one of the #elif
// branches) for each nesting level of preprocessor branches.
// \c PPBranchLevel stores the current nesting level of preprocessor
// branches during one pass over the code.
int PPBranchLevel;
// Contains the current branch (#if, #else or one of the #elif branches)
// for each nesting level.
SmallVector<int, 8> PPLevelBranchIndex;
// Contains the maximum number of branches at each nesting level.
SmallVector<int, 8> PPLevelBranchCount;
// Contains the number of branches per nesting level we are currently
// in while parsing a preprocessor branch sequence.
// This is used to update PPLevelBranchCount at the end of a branch
// sequence.
std::stack<int> PPChainBranchIndex;
// Include guard search state. Used to fixup preprocessor indent levels
// so that include guards do not participate in indentation.
enum IncludeGuardState {
IG_Inited, // Search started, looking for #ifndef.
IG_IfNdefed, // #ifndef found, IncludeGuardToken points to condition.
IG_Defined, // Matching #define found, checking other requirements.
IG_Found, // All requirements met, need to fix indents.
IG_Rejected, // Search failed or never started.
};
// Current state of include guard search.
IncludeGuardState IncludeGuard;
// Points to the #ifndef condition for a potential include guard. Null unless
// IncludeGuardState == IG_IfNdefed.
FormatToken *IncludeGuardToken;
// Contains the first start column where the source begins. This is zero for
// normal source code and may be nonzero when formatting a code fragment that
// does not start at the beginning of the file.
unsigned FirstStartColumn;
MacroExpander Macros;
friend class ScopedLineState;
friend class CompoundStatementIndenter;
};
struct UnwrappedLineNode {
UnwrappedLineNode() : Tok(nullptr) {}
UnwrappedLineNode(FormatToken *Tok,
llvm::ArrayRef<UnwrappedLine> Children = {})
: Tok(Tok), Children(Children.begin(), Children.end()) {}
FormatToken *Tok;
SmallVector<UnwrappedLine, 0> Children;
};
std::ostream &operator<<(std::ostream &Stream, const UnwrappedLine &Line);
} // end namespace format
} // end namespace clang
#endif