blob: 3a263955a6a8fef805a83e48ce8b77672fb32b0e [file] [log] [blame]
//===--- UnwrappedLineParser.cpp - Format C++ code ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the implementation of the UnwrappedLineParser,
/// which turns a stream of tokens into UnwrappedLines.
///
//===----------------------------------------------------------------------===//
#include "UnwrappedLineParser.h"
#include "FormatToken.h"
#include "FormatTokenLexer.h"
#include "FormatTokenSource.h"
#include "Macros.h"
#include "TokenAnnotator.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <utility>
#define DEBUG_TYPE "format-parser"
namespace clang {
namespace format {
namespace {
void printLine(llvm::raw_ostream &OS, const UnwrappedLine &Line,
StringRef Prefix = "", bool PrintText = false) {
OS << Prefix << "Line(" << Line.Level << ", FSC=" << Line.FirstStartColumn
<< ")" << (Line.InPPDirective ? " MACRO" : "") << ": ";
bool NewLine = false;
for (std::list<UnwrappedLineNode>::const_iterator I = Line.Tokens.begin(),
E = Line.Tokens.end();
I != E; ++I) {
if (NewLine) {
OS << Prefix;
NewLine = false;
}
OS << I->Tok->Tok.getName() << "[" << "T=" << (unsigned)I->Tok->getType()
<< ", OC=" << I->Tok->OriginalColumn << ", \"" << I->Tok->TokenText
<< "\"] ";
for (SmallVectorImpl<UnwrappedLine>::const_iterator
CI = I->Children.begin(),
CE = I->Children.end();
CI != CE; ++CI) {
OS << "\n";
printLine(OS, *CI, (Prefix + " ").str());
NewLine = true;
}
}
if (!NewLine)
OS << "\n";
}
LLVM_ATTRIBUTE_UNUSED static void printDebugInfo(const UnwrappedLine &Line) {
printLine(llvm::dbgs(), Line);
}
class ScopedDeclarationState {
public:
ScopedDeclarationState(UnwrappedLine &Line, llvm::BitVector &Stack,
bool MustBeDeclaration)
: Line(Line), Stack(Stack) {
Line.MustBeDeclaration = MustBeDeclaration;
Stack.push_back(MustBeDeclaration);
}
~ScopedDeclarationState() {
Stack.pop_back();
if (!Stack.empty())
Line.MustBeDeclaration = Stack.back();
else
Line.MustBeDeclaration = true;
}
private:
UnwrappedLine &Line;
llvm::BitVector &Stack;
};
} // end anonymous namespace
std::ostream &operator<<(std::ostream &Stream, const UnwrappedLine &Line) {
llvm::raw_os_ostream OS(Stream);
printLine(OS, Line);
return Stream;
}
class ScopedLineState {
public:
ScopedLineState(UnwrappedLineParser &Parser,
bool SwitchToPreprocessorLines = false)
: Parser(Parser), OriginalLines(Parser.CurrentLines) {
if (SwitchToPreprocessorLines)
Parser.CurrentLines = &Parser.PreprocessorDirectives;
else if (!Parser.Line->Tokens.empty())
Parser.CurrentLines = &Parser.Line->Tokens.back().Children;
PreBlockLine = std::move(Parser.Line);
Parser.Line = std::make_unique<UnwrappedLine>();
Parser.Line->Level = PreBlockLine->Level;
Parser.Line->PPLevel = PreBlockLine->PPLevel;
Parser.Line->InPPDirective = PreBlockLine->InPPDirective;
Parser.Line->InMacroBody = PreBlockLine->InMacroBody;
}
~ScopedLineState() {
if (!Parser.Line->Tokens.empty())
Parser.addUnwrappedLine();
assert(Parser.Line->Tokens.empty());
Parser.Line = std::move(PreBlockLine);
if (Parser.CurrentLines == &Parser.PreprocessorDirectives)
Parser.MustBreakBeforeNextToken = true;
Parser.CurrentLines = OriginalLines;
}
private:
UnwrappedLineParser &Parser;
std::unique_ptr<UnwrappedLine> PreBlockLine;
SmallVectorImpl<UnwrappedLine> *OriginalLines;
};
class CompoundStatementIndenter {
public:
CompoundStatementIndenter(UnwrappedLineParser *Parser,
const FormatStyle &Style, unsigned &LineLevel)
: CompoundStatementIndenter(Parser, LineLevel,
Style.BraceWrapping.AfterControlStatement,
Style.BraceWrapping.IndentBraces) {}
CompoundStatementIndenter(UnwrappedLineParser *Parser, unsigned &LineLevel,
bool WrapBrace, bool IndentBrace)
: LineLevel(LineLevel), OldLineLevel(LineLevel) {
if (WrapBrace)
Parser->addUnwrappedLine();
if (IndentBrace)
++LineLevel;
}
~CompoundStatementIndenter() { LineLevel = OldLineLevel; }
private:
unsigned &LineLevel;
unsigned OldLineLevel;
};
UnwrappedLineParser::UnwrappedLineParser(
SourceManager &SourceMgr, const FormatStyle &Style,
const AdditionalKeywords &Keywords, unsigned FirstStartColumn,
ArrayRef<FormatToken *> Tokens, UnwrappedLineConsumer &Callback,
llvm::SpecificBumpPtrAllocator<FormatToken> &Allocator,
IdentifierTable &IdentTable)
: Line(new UnwrappedLine), MustBreakBeforeNextToken(false),
CurrentLines(&Lines), Style(Style), IsCpp(Style.isCpp()),
Keywords(Keywords), CommentPragmasRegex(Style.CommentPragmas),
Tokens(nullptr), Callback(Callback), AllTokens(Tokens), PPBranchLevel(-1),
IncludeGuard(Style.IndentPPDirectives == FormatStyle::PPDIS_None
? IG_Rejected
: IG_Inited),
IncludeGuardToken(nullptr), FirstStartColumn(FirstStartColumn),
Macros(Style.Macros, SourceMgr, Style, Allocator, IdentTable) {}
void UnwrappedLineParser::reset() {
PPBranchLevel = -1;
IncludeGuard = Style.IndentPPDirectives == FormatStyle::PPDIS_None
? IG_Rejected
: IG_Inited;
IncludeGuardToken = nullptr;
Line.reset(new UnwrappedLine);
CommentsBeforeNextToken.clear();
FormatTok = nullptr;
MustBreakBeforeNextToken = false;
IsDecltypeAutoFunction = false;
PreprocessorDirectives.clear();
CurrentLines = &Lines;
DeclarationScopeStack.clear();
NestedTooDeep.clear();
NestedLambdas.clear();
PPStack.clear();
Line->FirstStartColumn = FirstStartColumn;
if (!Unexpanded.empty())
for (FormatToken *Token : AllTokens)
Token->MacroCtx.reset();
CurrentExpandedLines.clear();
ExpandedLines.clear();
Unexpanded.clear();
InExpansion = false;
Reconstruct.reset();
}
void UnwrappedLineParser::parse() {
IndexedTokenSource TokenSource(AllTokens);
Line->FirstStartColumn = FirstStartColumn;
do {
LLVM_DEBUG(llvm::dbgs() << "----\n");
reset();
Tokens = &TokenSource;
TokenSource.reset();
readToken();
parseFile();
// If we found an include guard then all preprocessor directives (other than
// the guard) are over-indented by one.
if (IncludeGuard == IG_Found) {
for (auto &Line : Lines)
if (Line.InPPDirective && Line.Level > 0)
--Line.Level;
}
// Create line with eof token.
assert(eof());
pushToken(FormatTok);
addUnwrappedLine();
// In a first run, format everything with the lines containing macro calls
// replaced by the expansion.
if (!ExpandedLines.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Expanded lines:\n");
for (const auto &Line : Lines) {
if (!Line.Tokens.empty()) {
auto it = ExpandedLines.find(Line.Tokens.begin()->Tok);
if (it != ExpandedLines.end()) {
for (const auto &Expanded : it->second) {
LLVM_DEBUG(printDebugInfo(Expanded));
Callback.consumeUnwrappedLine(Expanded);
}
continue;
}
}
LLVM_DEBUG(printDebugInfo(Line));
Callback.consumeUnwrappedLine(Line);
}
Callback.finishRun();
}
LLVM_DEBUG(llvm::dbgs() << "Unwrapped lines:\n");
for (const UnwrappedLine &Line : Lines) {
LLVM_DEBUG(printDebugInfo(Line));
Callback.consumeUnwrappedLine(Line);
}
Callback.finishRun();
Lines.clear();
while (!PPLevelBranchIndex.empty() &&
PPLevelBranchIndex.back() + 1 >= PPLevelBranchCount.back()) {
PPLevelBranchIndex.resize(PPLevelBranchIndex.size() - 1);
PPLevelBranchCount.resize(PPLevelBranchCount.size() - 1);
}
if (!PPLevelBranchIndex.empty()) {
++PPLevelBranchIndex.back();
assert(PPLevelBranchIndex.size() == PPLevelBranchCount.size());
assert(PPLevelBranchIndex.back() <= PPLevelBranchCount.back());
}
} while (!PPLevelBranchIndex.empty());
}
void UnwrappedLineParser::parseFile() {
// The top-level context in a file always has declarations, except for pre-
// processor directives and JavaScript files.
bool MustBeDeclaration = !Line->InPPDirective && !Style.isJavaScript();
ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
MustBeDeclaration);
if (Style.Language == FormatStyle::LK_TextProto)
parseBracedList();
else
parseLevel();
// Make sure to format the remaining tokens.
//
// LK_TextProto is special since its top-level is parsed as the body of a
// braced list, which does not necessarily have natural line separators such
// as a semicolon. Comments after the last entry that have been determined to
// not belong to that line, as in:
// key: value
// // endfile comment
// do not have a chance to be put on a line of their own until this point.
// Here we add this newline before end-of-file comments.
if (Style.Language == FormatStyle::LK_TextProto &&
!CommentsBeforeNextToken.empty()) {
addUnwrappedLine();
}
flushComments(true);
addUnwrappedLine();
}
void UnwrappedLineParser::parseCSharpGenericTypeConstraint() {
do {
switch (FormatTok->Tok.getKind()) {
case tok::l_brace:
return;
default:
if (FormatTok->is(Keywords.kw_where)) {
addUnwrappedLine();
nextToken();
parseCSharpGenericTypeConstraint();
break;
}
nextToken();
break;
}
} while (!eof());
}
void UnwrappedLineParser::parseCSharpAttribute() {
int UnpairedSquareBrackets = 1;
do {
switch (FormatTok->Tok.getKind()) {
case tok::r_square:
nextToken();
--UnpairedSquareBrackets;
if (UnpairedSquareBrackets == 0) {
addUnwrappedLine();
return;
}
break;
case tok::l_square:
++UnpairedSquareBrackets;
nextToken();
break;
default:
nextToken();
break;
}
} while (!eof());
}
bool UnwrappedLineParser::precededByCommentOrPPDirective() const {
if (!Lines.empty() && Lines.back().InPPDirective)
return true;
const FormatToken *Previous = Tokens->getPreviousToken();
return Previous && Previous->is(tok::comment) &&
(Previous->IsMultiline || Previous->NewlinesBefore > 0);
}
/// \brief Parses a level, that is ???.
/// \param OpeningBrace Opening brace (\p nullptr if absent) of that level.
/// \param IfKind The \p if statement kind in the level.
/// \param IfLeftBrace The left brace of the \p if block in the level.
/// \returns true if a simple block of if/else/for/while, or false otherwise.
/// (A simple block has a single statement.)
bool UnwrappedLineParser::parseLevel(const FormatToken *OpeningBrace,
IfStmtKind *IfKind,
FormatToken **IfLeftBrace) {
const bool InRequiresExpression =
OpeningBrace && OpeningBrace->is(TT_RequiresExpressionLBrace);
const bool IsPrecededByCommentOrPPDirective =
!Style.RemoveBracesLLVM || precededByCommentOrPPDirective();
FormatToken *IfLBrace = nullptr;
bool HasDoWhile = false;
bool HasLabel = false;
unsigned StatementCount = 0;
bool SwitchLabelEncountered = false;
do {
if (FormatTok->isAttribute()) {
nextToken();
continue;
}
tok::TokenKind Kind = FormatTok->Tok.getKind();
if (FormatTok->is(TT_MacroBlockBegin))
Kind = tok::l_brace;
else if (FormatTok->is(TT_MacroBlockEnd))
Kind = tok::r_brace;
auto ParseDefault = [this, OpeningBrace, IfKind, &IfLBrace, &HasDoWhile,
&HasLabel, &StatementCount] {
parseStructuralElement(OpeningBrace, IfKind, &IfLBrace,
HasDoWhile ? nullptr : &HasDoWhile,
HasLabel ? nullptr : &HasLabel);
++StatementCount;
assert(StatementCount > 0 && "StatementCount overflow!");
};
switch (Kind) {
case tok::comment:
nextToken();
addUnwrappedLine();
break;
case tok::l_brace:
if (InRequiresExpression) {
FormatTok->setFinalizedType(TT_RequiresExpressionLBrace);
} else if (FormatTok->Previous &&
FormatTok->Previous->ClosesRequiresClause) {
// We need the 'default' case here to correctly parse a function
// l_brace.
ParseDefault();
continue;
}
if (!InRequiresExpression && FormatTok->isNot(TT_MacroBlockBegin)) {
if (tryToParseBracedList())
continue;
FormatTok->setFinalizedType(TT_BlockLBrace);
}
parseBlock();
++StatementCount;
assert(StatementCount > 0 && "StatementCount overflow!");
addUnwrappedLine();
break;
case tok::r_brace:
if (OpeningBrace) {
if (!Style.RemoveBracesLLVM || Line->InPPDirective ||
!OpeningBrace->isOneOf(TT_ControlStatementLBrace, TT_ElseLBrace)) {
return false;
}
if (FormatTok->isNot(tok::r_brace) || StatementCount != 1 || HasLabel ||
HasDoWhile || IsPrecededByCommentOrPPDirective ||
precededByCommentOrPPDirective()) {
return false;
}
const FormatToken *Next = Tokens->peekNextToken();
if (Next->is(tok::comment) && Next->NewlinesBefore == 0)
return false;
if (IfLeftBrace)
*IfLeftBrace = IfLBrace;
return true;
}
nextToken();
addUnwrappedLine();
break;
case tok::kw_default: {
unsigned StoredPosition = Tokens->getPosition();
auto *Next = Tokens->getNextNonComment();
FormatTok = Tokens->setPosition(StoredPosition);
if (Next->isNot(tok::colon)) {
// default not followed by ':' is not a case label; treat it like
// an identifier.
parseStructuralElement();
break;
}
// Else, if it is 'default:', fall through to the case handling.
[[fallthrough]];
}
case tok::kw_case:
if (Style.Language == FormatStyle::LK_Proto || Style.isVerilog() ||
(Style.isJavaScript() && Line->MustBeDeclaration)) {
// Proto: there are no switch/case statements
// Verilog: Case labels don't have this word. We handle case
// labels including default in TokenAnnotator.
// JavaScript: A 'case: string' style field declaration.
ParseDefault();
break;
}
if (!SwitchLabelEncountered &&
(Style.IndentCaseLabels ||
(Line->InPPDirective && Line->Level == 1))) {
++Line->Level;
}
SwitchLabelEncountered = true;
parseStructuralElement();
break;
case tok::l_square:
if (Style.isCSharp()) {
nextToken();
parseCSharpAttribute();
break;
}
if (handleCppAttributes())
break;
[[fallthrough]];
default:
ParseDefault();
break;
}
} while (!eof());
return false;
}
void UnwrappedLineParser::calculateBraceTypes(bool ExpectClassBody) {
// We'll parse forward through the tokens until we hit
// a closing brace or eof - note that getNextToken() will
// parse macros, so this will magically work inside macro
// definitions, too.
unsigned StoredPosition = Tokens->getPosition();
FormatToken *Tok = FormatTok;
const FormatToken *PrevTok = Tok->Previous;
// Keep a stack of positions of lbrace tokens. We will
// update information about whether an lbrace starts a
// braced init list or a different block during the loop.
struct StackEntry {
FormatToken *Tok;
const FormatToken *PrevTok;
};
SmallVector<StackEntry, 8> LBraceStack;
assert(Tok->is(tok::l_brace));
do {
auto *NextTok = Tokens->getNextNonComment();
if (!Line->InMacroBody && !Style.isTableGen()) {
// Skip PPDirective lines and comments.
while (NextTok->is(tok::hash)) {
do {
NextTok = Tokens->getNextToken();
} while (NextTok->NewlinesBefore == 0 && NextTok->isNot(tok::eof));
while (NextTok->is(tok::comment))
NextTok = Tokens->getNextToken();
}
}
switch (Tok->Tok.getKind()) {
case tok::l_brace:
if (Style.isJavaScript() && PrevTok) {
if (PrevTok->isOneOf(tok::colon, tok::less)) {
// A ':' indicates this code is in a type, or a braced list
// following a label in an object literal ({a: {b: 1}}).
// A '<' could be an object used in a comparison, but that is nonsense
// code (can never return true), so more likely it is a generic type
// argument (`X<{a: string; b: number}>`).
// The code below could be confused by semicolons between the
// individual members in a type member list, which would normally
// trigger BK_Block. In both cases, this must be parsed as an inline
// braced init.
Tok->setBlockKind(BK_BracedInit);
} else if (PrevTok->is(tok::r_paren)) {
// `) { }` can only occur in function or method declarations in JS.
Tok->setBlockKind(BK_Block);
}
} else {
Tok->setBlockKind(BK_Unknown);
}
LBraceStack.push_back({Tok, PrevTok});
break;
case tok::r_brace:
if (LBraceStack.empty())
break;
if (auto *LBrace = LBraceStack.back().Tok; LBrace->is(BK_Unknown)) {
bool ProbablyBracedList = false;
if (Style.Language == FormatStyle::LK_Proto) {
ProbablyBracedList = NextTok->isOneOf(tok::comma, tok::r_square);
} else if (LBrace->isNot(TT_EnumLBrace)) {
// Using OriginalColumn to distinguish between ObjC methods and
// binary operators is a bit hacky.
bool NextIsObjCMethod = NextTok->isOneOf(tok::plus, tok::minus) &&
NextTok->OriginalColumn == 0;
// Try to detect a braced list. Note that regardless how we mark inner
// braces here, we will overwrite the BlockKind later if we parse a
// braced list (where all blocks inside are by default braced lists),
// or when we explicitly detect blocks (for example while parsing
// lambdas).
// If we already marked the opening brace as braced list, the closing
// must also be part of it.
ProbablyBracedList = LBrace->is(TT_BracedListLBrace);
ProbablyBracedList = ProbablyBracedList ||
(Style.isJavaScript() &&
NextTok->isOneOf(Keywords.kw_of, Keywords.kw_in,
Keywords.kw_as));
ProbablyBracedList =
ProbablyBracedList || (IsCpp && NextTok->is(tok::l_paren));
// If there is a comma, semicolon or right paren after the closing
// brace, we assume this is a braced initializer list.
// FIXME: Some of these do not apply to JS, e.g. "} {" can never be a
// braced list in JS.
ProbablyBracedList =
ProbablyBracedList ||
NextTok->isOneOf(tok::comma, tok::period, tok::colon,
tok::r_paren, tok::r_square, tok::ellipsis);
// Distinguish between braced list in a constructor initializer list
// followed by constructor body, or just adjacent blocks.
ProbablyBracedList =
ProbablyBracedList ||
(NextTok->is(tok::l_brace) && LBraceStack.back().PrevTok &&
LBraceStack.back().PrevTok->isOneOf(tok::identifier,
tok::greater));
ProbablyBracedList =
ProbablyBracedList ||
(NextTok->is(tok::identifier) &&
!PrevTok->isOneOf(tok::semi, tok::r_brace, tok::l_brace));
ProbablyBracedList = ProbablyBracedList ||
(NextTok->is(tok::semi) &&
(!ExpectClassBody || LBraceStack.size() != 1));
ProbablyBracedList =
ProbablyBracedList ||
(NextTok->isBinaryOperator() && !NextIsObjCMethod);
if (!Style.isCSharp() && NextTok->is(tok::l_square)) {
// We can have an array subscript after a braced init
// list, but C++11 attributes are expected after blocks.
NextTok = Tokens->getNextToken();
ProbablyBracedList = NextTok->isNot(tok::l_square);
}
// Cpp macro definition body that is a nonempty braced list or block:
if (IsCpp && Line->InMacroBody && PrevTok != FormatTok &&
!FormatTok->Previous && NextTok->is(tok::eof) &&
// A statement can end with only `;` (simple statement), a block
// closing brace (compound statement), or `:` (label statement).
// If PrevTok is a block opening brace, Tok ends an empty block.
!PrevTok->isOneOf(tok::semi, BK_Block, tok::colon)) {
ProbablyBracedList = true;
}
}
const auto BlockKind = ProbablyBracedList ? BK_BracedInit : BK_Block;
Tok->setBlockKind(BlockKind);
LBrace->setBlockKind(BlockKind);
}
LBraceStack.pop_back();
break;
case tok::identifier:
if (Tok->isNot(TT_StatementMacro))
break;
[[fallthrough]];
case tok::at:
case tok::semi:
case tok::kw_if:
case tok::kw_while:
case tok::kw_for:
case tok::kw_switch:
case tok::kw_try:
case tok::kw___try:
if (!LBraceStack.empty() && LBraceStack.back().Tok->is(BK_Unknown))
LBraceStack.back().Tok->setBlockKind(BK_Block);
break;
default:
break;
}
PrevTok = Tok;
Tok = NextTok;
} while (Tok->isNot(tok::eof) && !LBraceStack.empty());
// Assume other blocks for all unclosed opening braces.
for (const auto &Entry : LBraceStack)
if (Entry.Tok->is(BK_Unknown))
Entry.Tok->setBlockKind(BK_Block);
FormatTok = Tokens->setPosition(StoredPosition);
}
// Sets the token type of the directly previous right brace.
void UnwrappedLineParser::setPreviousRBraceType(TokenType Type) {
if (auto Prev = FormatTok->getPreviousNonComment();
Prev && Prev->is(tok::r_brace)) {
Prev->setFinalizedType(Type);
}
}
template <class T>
static inline void hash_combine(std::size_t &seed, const T &v) {
std::hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
size_t UnwrappedLineParser::computePPHash() const {
size_t h = 0;
for (const auto &i : PPStack) {
hash_combine(h, size_t(i.Kind));
hash_combine(h, i.Line);
}
return h;
}
// Checks whether \p ParsedLine might fit on a single line. If \p OpeningBrace
// is not null, subtracts its length (plus the preceding space) when computing
// the length of \p ParsedLine. We must clone the tokens of \p ParsedLine before
// running the token annotator on it so that we can restore them afterward.
bool UnwrappedLineParser::mightFitOnOneLine(
UnwrappedLine &ParsedLine, const FormatToken *OpeningBrace) const {
const auto ColumnLimit = Style.ColumnLimit;
if (ColumnLimit == 0)
return true;
auto &Tokens = ParsedLine.Tokens;
assert(!Tokens.empty());
const auto *LastToken = Tokens.back().Tok;
assert(LastToken);
SmallVector<UnwrappedLineNode> SavedTokens(Tokens.size());
int Index = 0;
for (const auto &Token : Tokens) {
assert(Token.Tok);
auto &SavedToken = SavedTokens[Index++];
SavedToken.Tok = new FormatToken;
SavedToken.Tok->copyFrom(*Token.Tok);
SavedToken.Children = std::move(Token.Children);
}
AnnotatedLine Line(ParsedLine);
assert(Line.Last == LastToken);
TokenAnnotator Annotator(Style, Keywords);
Annotator.annotate(Line);
Annotator.calculateFormattingInformation(Line);
auto Length = LastToken->TotalLength;
if (OpeningBrace) {
assert(OpeningBrace != Tokens.front().Tok);
if (auto Prev = OpeningBrace->Previous;
Prev && Prev->TotalLength + ColumnLimit == OpeningBrace->TotalLength) {
Length -= ColumnLimit;
}
Length -= OpeningBrace->TokenText.size() + 1;
}
if (const auto *FirstToken = Line.First; FirstToken->is(tok::r_brace)) {
assert(!OpeningBrace || OpeningBrace->is(TT_ControlStatementLBrace));
Length -= FirstToken->TokenText.size() + 1;
}
Index = 0;
for (auto &Token : Tokens) {
const auto &SavedToken = SavedTokens[Index++];
Token.Tok->copyFrom(*SavedToken.Tok);
Token.Children = std::move(SavedToken.Children);
delete SavedToken.Tok;
}
// If these change PPLevel needs to be used for get correct indentation.
assert(!Line.InMacroBody);
assert(!Line.InPPDirective);
return Line.Level * Style.IndentWidth + Length <= ColumnLimit;
}
FormatToken *UnwrappedLineParser::parseBlock(bool MustBeDeclaration,
unsigned AddLevels, bool MunchSemi,
bool KeepBraces,
IfStmtKind *IfKind,
bool UnindentWhitesmithsBraces) {
auto HandleVerilogBlockLabel = [this]() {
// ":" name
if (Style.isVerilog() && FormatTok->is(tok::colon)) {
nextToken();
if (Keywords.isVerilogIdentifier(*FormatTok))
nextToken();
}
};
// Whether this is a Verilog-specific block that has a special header like a
// module.
const bool VerilogHierarchy =
Style.isVerilog() && Keywords.isVerilogHierarchy(*FormatTok);
assert((FormatTok->isOneOf(tok::l_brace, TT_MacroBlockBegin) ||
(Style.isVerilog() &&
(Keywords.isVerilogBegin(*FormatTok) || VerilogHierarchy))) &&
"'{' or macro block token expected");
FormatToken *Tok = FormatTok;
const bool FollowedByComment = Tokens->peekNextToken()->is(tok::comment);
auto Index = CurrentLines->size();
const bool MacroBlock = FormatTok->is(TT_MacroBlockBegin);
FormatTok->setBlockKind(BK_Block);
// For Whitesmiths mode, jump to the next level prior to skipping over the
// braces.
if (!VerilogHierarchy && AddLevels > 0 &&
Style.BreakBeforeBraces == FormatStyle::BS_Whitesmiths) {
++Line->Level;
}
size_t PPStartHash = computePPHash();
const unsigned InitialLevel = Line->Level;
if (VerilogHierarchy) {
AddLevels += parseVerilogHierarchyHeader();
} else {
nextToken(/*LevelDifference=*/AddLevels);
HandleVerilogBlockLabel();
}
// Bail out if there are too many levels. Otherwise, the stack might overflow.
if (Line->Level > 300)
return nullptr;
if (MacroBlock && FormatTok->is(tok::l_paren))
parseParens();
size_t NbPreprocessorDirectives =
!parsingPPDirective() ? PreprocessorDirectives.size() : 0;
addUnwrappedLine();
size_t OpeningLineIndex =
CurrentLines->empty()
? (UnwrappedLine::kInvalidIndex)
: (CurrentLines->size() - 1 - NbPreprocessorDirectives);
// Whitesmiths is weird here. The brace needs to be indented for the namespace
// block, but the block itself may not be indented depending on the style
// settings. This allows the format to back up one level in those cases.
if (UnindentWhitesmithsBraces)
--Line->Level;
ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
MustBeDeclaration);
if (AddLevels > 0u && Style.BreakBeforeBraces != FormatStyle::BS_Whitesmiths)
Line->Level += AddLevels;
FormatToken *IfLBrace = nullptr;
const bool SimpleBlock = parseLevel(Tok, IfKind, &IfLBrace);
if (eof())
return IfLBrace;
if (MacroBlock ? FormatTok->isNot(TT_MacroBlockEnd)
: FormatTok->isNot(tok::r_brace)) {
Line->Level = InitialLevel;
FormatTok->setBlockKind(BK_Block);
return IfLBrace;
}
if (FormatTok->is(tok::r_brace)) {
FormatTok->setBlockKind(BK_Block);
if (Tok->is(TT_NamespaceLBrace))
FormatTok->setFinalizedType(TT_NamespaceRBrace);
}
const bool IsFunctionRBrace =
FormatTok->is(tok::r_brace) && Tok->is(TT_FunctionLBrace);
auto RemoveBraces = [=]() mutable {
if (!SimpleBlock)
return false;
assert(Tok->isOneOf(TT_ControlStatementLBrace, TT_ElseLBrace));
assert(FormatTok->is(tok::r_brace));
const bool WrappedOpeningBrace = !Tok->Previous;
if (WrappedOpeningBrace && FollowedByComment)
return false;
const bool HasRequiredIfBraces = IfLBrace && !IfLBrace->Optional;
if (KeepBraces && !HasRequiredIfBraces)
return false;
if (Tok->isNot(TT_ElseLBrace) || !HasRequiredIfBraces) {
const FormatToken *Previous = Tokens->getPreviousToken();
assert(Previous);
if (Previous->is(tok::r_brace) && !Previous->Optional)
return false;
}
assert(!CurrentLines->empty());
auto &LastLine = CurrentLines->back();
if (LastLine.Level == InitialLevel + 1 && !mightFitOnOneLine(LastLine))
return false;
if (Tok->is(TT_ElseLBrace))
return true;
if (WrappedOpeningBrace) {
assert(Index > 0);
--Index; // The line above the wrapped l_brace.
Tok = nullptr;
}
return mightFitOnOneLine((*CurrentLines)[Index], Tok);
};
if (RemoveBraces()) {
Tok->MatchingParen = FormatTok;
FormatTok->MatchingParen = Tok;
}
size_t PPEndHash = computePPHash();
// Munch the closing brace.
nextToken(/*LevelDifference=*/-AddLevels);
// When this is a function block and there is an unnecessary semicolon
// afterwards then mark it as optional (so the RemoveSemi pass can get rid of
// it later).
if (Style.RemoveSemicolon && IsFunctionRBrace) {
while (FormatTok->is(tok::semi)) {
FormatTok->Optional = true;
nextToken();
}
}
HandleVerilogBlockLabel();
if (MacroBlock && FormatTok->is(tok::l_paren))
parseParens();
Line->Level = InitialLevel;
if (FormatTok->is(tok::kw_noexcept)) {
// A noexcept in a requires expression.
nextToken();
}
if (FormatTok->is(tok::arrow)) {
// Following the } or noexcept we can find a trailing return type arrow
// as part of an implicit conversion constraint.
nextToken();
parseStructuralElement();
}
if (MunchSemi && FormatTok->is(tok::semi))
nextToken();
if (PPStartHash == PPEndHash) {
Line->MatchingOpeningBlockLineIndex = OpeningLineIndex;
if (OpeningLineIndex != UnwrappedLine::kInvalidIndex) {
// Update the opening line to add the forward reference as well
(*CurrentLines)[OpeningLineIndex].MatchingClosingBlockLineIndex =
CurrentLines->size() - 1;
}
}
return IfLBrace;
}
static bool isGoogScope(const UnwrappedLine &Line) {
// FIXME: Closure-library specific stuff should not be hard-coded but be
// configurable.
if (Line.Tokens.size() < 4)
return false;
auto I = Line.Tokens.begin();
if (I->Tok->TokenText != "goog")
return false;
++I;
if (I->Tok->isNot(tok::period))
return false;
++I;
if (I->Tok->TokenText != "scope")
return false;
++I;
return I->Tok->is(tok::l_paren);
}
static bool isIIFE(const UnwrappedLine &Line,
const AdditionalKeywords &Keywords) {
// Look for the start of an immediately invoked anonymous function.
// https://en.wikipedia.org/wiki/Immediately-invoked_function_expression
// This is commonly done in JavaScript to create a new, anonymous scope.
// Example: (function() { ... })()
if (Line.Tokens.size() < 3)
return false;
auto I = Line.Tokens.begin();
if (I->Tok->isNot(tok::l_paren))
return false;
++I;
if (I->Tok->isNot(Keywords.kw_function))
return false;
++I;
return I->Tok->is(tok::l_paren);
}
static bool ShouldBreakBeforeBrace(const FormatStyle &Style,
const FormatToken &InitialToken) {
tok::TokenKind Kind = InitialToken.Tok.getKind();
if (InitialToken.is(TT_NamespaceMacro))
Kind = tok::kw_namespace;
switch (Kind) {
case tok::kw_namespace:
return Style.BraceWrapping.AfterNamespace;
case tok::kw_class:
return Style.BraceWrapping.AfterClass;
case tok::kw_union:
return Style.BraceWrapping.AfterUnion;
case tok::kw_struct:
return Style.BraceWrapping.AfterStruct;
case tok::kw_enum:
return Style.BraceWrapping.AfterEnum;
default:
return false;
}
}
void UnwrappedLineParser::parseChildBlock() {
assert(FormatTok->is(tok::l_brace));
FormatTok->setBlockKind(BK_Block);
const FormatToken *OpeningBrace = FormatTok;
nextToken();
{
bool SkipIndent = (Style.isJavaScript() &&
(isGoogScope(*Line) || isIIFE(*Line, Keywords)));
ScopedLineState LineState(*this);
ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
/*MustBeDeclaration=*/false);
Line->Level += SkipIndent ? 0 : 1;
parseLevel(OpeningBrace);
flushComments(isOnNewLine(*FormatTok));
Line->Level -= SkipIndent ? 0 : 1;
}
nextToken();
}
void UnwrappedLineParser::parsePPDirective() {
assert(FormatTok->is(tok::hash) && "'#' expected");
ScopedMacroState MacroState(*Line, Tokens, FormatTok);
nextToken();
if (!FormatTok->Tok.getIdentifierInfo()) {
parsePPUnknown();
return;
}
switch (FormatTok->Tok.getIdentifierInfo()->getPPKeywordID()) {
case tok::pp_define:
parsePPDefine();
return;
case tok::pp_if:
parsePPIf(/*IfDef=*/false);
break;
case tok::pp_ifdef:
case tok::pp_ifndef:
parsePPIf(/*IfDef=*/true);
break;
case tok::pp_else:
case tok::pp_elifdef:
case tok::pp_elifndef:
case tok::pp_elif:
parsePPElse();
break;
case tok::pp_endif:
parsePPEndIf();
break;
case tok::pp_pragma:
parsePPPragma();
break;
default:
parsePPUnknown();
break;
}
}
void UnwrappedLineParser::conditionalCompilationCondition(bool Unreachable) {
size_t Line = CurrentLines->size();
if (CurrentLines == &PreprocessorDirectives)
Line += Lines.size();
if (Unreachable ||
(!PPStack.empty() && PPStack.back().Kind == PP_Unreachable)) {
PPStack.push_back({PP_Unreachable, Line});
} else {
PPStack.push_back({PP_Conditional, Line});
}
}
void UnwrappedLineParser::conditionalCompilationStart(bool Unreachable) {
++PPBranchLevel;
assert(PPBranchLevel >= 0 && PPBranchLevel <= (int)PPLevelBranchIndex.size());
if (PPBranchLevel == (int)PPLevelBranchIndex.size()) {
PPLevelBranchIndex.push_back(0);
PPLevelBranchCount.push_back(0);
}
PPChainBranchIndex.push(Unreachable ? -1 : 0);
bool Skip = PPLevelBranchIndex[PPBranchLevel] > 0;
conditionalCompilationCondition(Unreachable || Skip);
}
void UnwrappedLineParser::conditionalCompilationAlternative() {
if (!PPStack.empty())
PPStack.pop_back();
assert(PPBranchLevel < (int)PPLevelBranchIndex.size());
if (!PPChainBranchIndex.empty())
++PPChainBranchIndex.top();
conditionalCompilationCondition(
PPBranchLevel >= 0 && !PPChainBranchIndex.empty() &&
PPLevelBranchIndex[PPBranchLevel] != PPChainBranchIndex.top());
}
void UnwrappedLineParser::conditionalCompilationEnd() {
assert(PPBranchLevel < (int)PPLevelBranchIndex.size());
if (PPBranchLevel >= 0 && !PPChainBranchIndex.empty()) {
if (PPChainBranchIndex.top() + 1 > PPLevelBranchCount[PPBranchLevel])
PPLevelBranchCount[PPBranchLevel] = PPChainBranchIndex.top() + 1;
}
// Guard against #endif's without #if.
if (PPBranchLevel > -1)
--PPBranchLevel;
if (!PPChainBranchIndex.empty())
PPChainBranchIndex.pop();
if (!PPStack.empty())
PPStack.pop_back();
}
void UnwrappedLineParser::parsePPIf(bool IfDef) {
bool IfNDef = FormatTok->is(tok::pp_ifndef);
nextToken();
bool Unreachable = false;
if (!IfDef && (FormatTok->is(tok::kw_false) || FormatTok->TokenText == "0"))
Unreachable = true;
if (IfDef && !IfNDef && FormatTok->TokenText == "SWIG")
Unreachable = true;
conditionalCompilationStart(Unreachable);
FormatToken *IfCondition = FormatTok;
// If there's a #ifndef on the first line, and the only lines before it are
// comments, it could be an include guard.
bool MaybeIncludeGuard = IfNDef;
if (IncludeGuard == IG_Inited && MaybeIncludeGuard) {
for (auto &Line : Lines) {
if (Line.Tokens.front().Tok->isNot(tok::comment)) {
MaybeIncludeGuard = false;
IncludeGuard = IG_Rejected;
break;
}
}
}
--PPBranchLevel;
parsePPUnknown();
++PPBranchLevel;
if (IncludeGuard == IG_Inited && MaybeIncludeGuard) {
IncludeGuard = IG_IfNdefed;
IncludeGuardToken = IfCondition;
}
}
void UnwrappedLineParser::parsePPElse() {
// If a potential include guard has an #else, it's not an include guard.
if (IncludeGuard == IG_Defined && PPBranchLevel == 0)
IncludeGuard = IG_Rejected;
// Don't crash when there is an #else without an #if.
assert(PPBranchLevel >= -1);
if (PPBranchLevel == -1)
conditionalCompilationStart(/*Unreachable=*/true);
conditionalCompilationAlternative();
--PPBranchLevel;
parsePPUnknown();
++PPBranchLevel;
}
void UnwrappedLineParser::parsePPEndIf() {
conditionalCompilationEnd();
parsePPUnknown();
// If the #endif of a potential include guard is the last thing in the file,
// then we found an include guard.
if (IncludeGuard == IG_Defined && PPBranchLevel == -1 && Tokens->isEOF() &&
Style.IndentPPDirectives != FormatStyle::PPDIS_None) {
IncludeGuard = IG_Found;
}
}
void UnwrappedLineParser::parsePPDefine() {
nextToken();
if (!FormatTok->Tok.getIdentifierInfo()) {
IncludeGuard = IG_Rejected;
IncludeGuardToken = nullptr;
parsePPUnknown();
return;
}
if (IncludeGuard == IG_IfNdefed &&
IncludeGuardToken->TokenText == FormatTok->TokenText) {
IncludeGuard = IG_Defined;
IncludeGuardToken = nullptr;
for (auto &Line : Lines) {
if (!Line.Tokens.front().Tok->isOneOf(tok::comment, tok::hash)) {
IncludeGuard = IG_Rejected;
break;
}
}
}
// In the context of a define, even keywords should be treated as normal
// identifiers. Setting the kind to identifier is not enough, because we need
// to treat additional keywords like __except as well, which are already
// identifiers. Setting the identifier info to null interferes with include
// guard processing above, and changes preprocessing nesting.
FormatTok->Tok.setKind(tok::identifier);
FormatTok->Tok.setIdentifierInfo(Keywords.kw_internal_ident_after_define);
nextToken();
if (FormatTok->Tok.getKind() == tok::l_paren &&
!FormatTok->hasWhitespaceBefore()) {
parseParens();
}
if (Style.IndentPPDirectives != FormatStyle::PPDIS_None)
Line->Level += PPBranchLevel + 1;
addUnwrappedLine();
++Line->Level;
Line->PPLevel = PPBranchLevel + (IncludeGuard == IG_Defined ? 0 : 1);
assert((int)Line->PPLevel >= 0);
Line->InMacroBody = true;
if (Style.SkipMacroDefinitionBody) {
do {
FormatTok->Finalized = true;
nextToken();
} while (!eof());
addUnwrappedLine();
return;
}
if (FormatTok->is(tok::identifier) &&
Tokens->peekNextToken()->is(tok::colon)) {
nextToken();
nextToken();
}
// Errors during a preprocessor directive can only affect the layout of the
// preprocessor directive, and thus we ignore them. An alternative approach
// would be to use the same approach we use on the file level (no
// re-indentation if there was a structural error) within the macro
// definition.
parseFile();
}
void UnwrappedLineParser::parsePPPragma() {
Line->InPragmaDirective = true;
parsePPUnknown();
}
void UnwrappedLineParser::parsePPUnknown() {
do {
nextToken();
} while (!eof());
if (Style.IndentPPDirectives != FormatStyle::PPDIS_None)
Line->Level += PPBranchLevel + 1;
addUnwrappedLine();
}
// Here we exclude certain tokens that are not usually the first token in an
// unwrapped line. This is used in attempt to distinguish macro calls without
// trailing semicolons from other constructs split to several lines.
static bool tokenCanStartNewLine(const FormatToken &Tok) {
// Semicolon can be a null-statement, l_square can be a start of a macro or
// a C++11 attribute, but this doesn't seem to be common.
return !Tok.isOneOf(tok::semi, tok::l_brace,
// Tokens that can only be used as binary operators and a
// part of overloaded operator names.
tok::period, tok::periodstar, tok::arrow, tok::arrowstar,
tok::less, tok::greater, tok::slash, tok::percent,
tok::lessless, tok::greatergreater, tok::equal,
tok::plusequal, tok::minusequal, tok::starequal,
tok::slashequal, tok::percentequal, tok::ampequal,
tok::pipeequal, tok::caretequal, tok::greatergreaterequal,
tok::lesslessequal,
// Colon is used in labels, base class lists, initializer
// lists, range-based for loops, ternary operator, but
// should never be the first token in an unwrapped line.
tok::colon,
// 'noexcept' is a trailing annotation.
tok::kw_noexcept);
}
static bool mustBeJSIdent(const AdditionalKeywords &Keywords,
const FormatToken *FormatTok) {
// FIXME: This returns true for C/C++ keywords like 'struct'.
return FormatTok->is(tok::identifier) &&
(!FormatTok->Tok.getIdentifierInfo() ||
!FormatTok->isOneOf(
Keywords.kw_in, Keywords.kw_of, Keywords.kw_as, Keywords.kw_async,
Keywords.kw_await, Keywords.kw_yield, Keywords.kw_finally,
Keywords.kw_function, Keywords.kw_import, Keywords.kw_is,
Keywords.kw_let, Keywords.kw_var, tok::kw_const,
Keywords.kw_abstract, Keywords.kw_extends, Keywords.kw_implements,
Keywords.kw_instanceof, Keywords.kw_interface,
Keywords.kw_override, Keywords.kw_throws, Keywords.kw_from));
}
static bool mustBeJSIdentOrValue(const AdditionalKeywords &Keywords,
const FormatToken *FormatTok) {
return FormatTok->Tok.isLiteral() ||
FormatTok->isOneOf(tok::kw_true, tok::kw_false) ||
mustBeJSIdent(Keywords, FormatTok);
}
// isJSDeclOrStmt returns true if |FormatTok| starts a declaration or statement
// when encountered after a value (see mustBeJSIdentOrValue).
static bool isJSDeclOrStmt(const AdditionalKeywords &Keywords,
const FormatToken *FormatTok) {
return FormatTok->isOneOf(
tok::kw_return, Keywords.kw_yield,
// conditionals
tok::kw_if, tok::kw_else,
// loops
tok::kw_for, tok::kw_while, tok::kw_do, tok::kw_continue, tok::kw_break,
// switch/case
tok::kw_switch, tok::kw_case,
// exceptions
tok::kw_throw, tok::kw_try, tok::kw_catch, Keywords.kw_finally,
// declaration
tok::kw_const, tok::kw_class, Keywords.kw_var, Keywords.kw_let,
Keywords.kw_async, Keywords.kw_function,
// import/export
Keywords.kw_import, tok::kw_export);
}
// Checks whether a token is a type in K&R C (aka C78).
static bool isC78Type(const FormatToken &Tok) {
return Tok.isOneOf(tok::kw_char, tok::kw_short, tok::kw_int, tok::kw_long,
tok::kw_unsigned, tok::kw_float, tok::kw_double,
tok::identifier);
}
// This function checks whether a token starts the first parameter declaration
// in a K&R C (aka C78) function definition, e.g.:
// int f(a, b)
// short a, b;
// {
// return a + b;
// }
static bool isC78ParameterDecl(const FormatToken *Tok, const FormatToken *Next,
const FormatToken *FuncName) {
assert(Tok);
assert(Next);
assert(FuncName);
if (FuncName->isNot(tok::identifier))
return false;
const FormatToken *Prev = FuncName->Previous;
if (!Prev || (Prev->isNot(tok::star) && !isC78Type(*Prev)))
return false;
if (!isC78Type(*Tok) &&
!Tok->isOneOf(tok::kw_register, tok::kw_struct, tok::kw_union)) {
return false;
}
if (Next->isNot(tok::star) && !Next->Tok.getIdentifierInfo())
return false;
Tok = Tok->Previous;
if (!Tok || Tok->isNot(tok::r_paren))
return false;
Tok = Tok->Previous;
if (!Tok || Tok->isNot(tok::identifier))
return false;
return Tok->Previous && Tok->Previous->isOneOf(tok::l_paren, tok::comma);
}
bool UnwrappedLineParser::parseModuleImport() {
assert(FormatTok->is(Keywords.kw_import) && "'import' expected");
if (auto Token = Tokens->peekNextToken(/*SkipComment=*/true);
!Token->Tok.getIdentifierInfo() &&
!Token->isOneOf(tok::colon, tok::less, tok::string_literal)) {
return false;
}
nextToken();
while (!eof()) {
if (FormatTok->is(tok::colon)) {
FormatTok->setFinalizedType(TT_ModulePartitionColon);
}
// Handle import <foo/bar.h> as we would an include statement.
else if (FormatTok->is(tok::less)) {
nextToken();
while (!FormatTok->isOneOf(tok::semi, tok::greater, tok::eof)) {
// Mark tokens up to the trailing line comments as implicit string
// literals.
if (FormatTok->isNot(tok::comment) &&
!FormatTok->TokenText.starts_with("//")) {
FormatTok->setFinalizedType(TT_ImplicitStringLiteral);
}
nextToken();
}
}
if (FormatTok->is(tok::semi)) {
nextToken();
break;
}
nextToken();
}
addUnwrappedLine();
return true;
}
// readTokenWithJavaScriptASI reads the next token and terminates the current
// line if JavaScript Automatic Semicolon Insertion must
// happen between the current token and the next token.
//
// This method is conservative - it cannot cover all edge cases of JavaScript,
// but only aims to correctly handle certain well known cases. It *must not*
// return true in speculative cases.
void UnwrappedLineParser::readTokenWithJavaScriptASI() {
FormatToken *Previous = FormatTok;
readToken();
FormatToken *Next = FormatTok;
bool IsOnSameLine =
CommentsBeforeNextToken.empty()
? Next->NewlinesBefore == 0
: CommentsBeforeNextToken.front()->NewlinesBefore == 0;
if (IsOnSameLine)
return;
bool PreviousMustBeValue = mustBeJSIdentOrValue(Keywords, Previous);
bool PreviousStartsTemplateExpr =
Previous->is(TT_TemplateString) && Previous->TokenText.ends_with("${");
if (PreviousMustBeValue || Previous->is(tok::r_paren)) {
// If the line contains an '@' sign, the previous token might be an
// annotation, which can precede another identifier/value.
bool HasAt = llvm::any_of(Line->Tokens, [](UnwrappedLineNode &LineNode) {
return LineNode.Tok->is(tok::at);
});
if (HasAt)
return;
}
if (Next->is(tok::exclaim) && PreviousMustBeValue)
return addUnwrappedLine();
bool NextMustBeValue = mustBeJSIdentOrValue(Keywords, Next);
bool NextEndsTemplateExpr =
Next->is(TT_TemplateString) && Next->TokenText.starts_with("}");
if (NextMustBeValue && !NextEndsTemplateExpr && !PreviousStartsTemplateExpr &&
(PreviousMustBeValue ||
Previous->isOneOf(tok::r_square, tok::r_paren, tok::plusplus,
tok::minusminus))) {
return addUnwrappedLine();
}
if ((PreviousMustBeValue || Previous->is(tok::r_paren)) &&
isJSDeclOrStmt(Keywords, Next)) {
return addUnwrappedLine();
}
}
void UnwrappedLineParser::parseStructuralElement(
const FormatToken *OpeningBrace, IfStmtKind *IfKind,
FormatToken **IfLeftBrace, bool *HasDoWhile, bool *HasLabel) {
if (Style.Language == FormatStyle::LK_TableGen &&
FormatTok->is(tok::pp_include)) {
nextToken();
if (FormatTok->is(tok::string_literal))
nextToken();
addUnwrappedLine();
return;
}
if (IsCpp) {
while (FormatTok->is(tok::l_square) && handleCppAttributes()) {
}
} else if (Style.isVerilog()) {
if (Keywords.isVerilogStructuredProcedure(*FormatTok)) {
parseForOrWhileLoop(/*HasParens=*/false);
return;
}
if (FormatTok->isOneOf(Keywords.kw_foreach, Keywords.kw_repeat)) {
parseForOrWhileLoop();
return;
}
if (FormatTok->isOneOf(tok::kw_restrict, Keywords.kw_assert,
Keywords.kw_assume, Keywords.kw_cover)) {
parseIfThenElse(IfKind, /*KeepBraces=*/false, /*IsVerilogAssert=*/true);
return;
}
// Skip things that can exist before keywords like 'if' and 'case'.
while (true) {
if (FormatTok->isOneOf(Keywords.kw_priority, Keywords.kw_unique,
Keywords.kw_unique0)) {
nextToken();
} else if (FormatTok->is(tok::l_paren) &&
Tokens->peekNextToken()->is(tok::star)) {
parseParens();
} else {
break;
}
}
}
// Tokens that only make sense at the beginning of a line.
switch (FormatTok->Tok.getKind()) {
case tok::kw_asm:
nextToken();
if (FormatTok->is(tok::l_brace)) {
FormatTok->setFinalizedType(TT_InlineASMBrace);
nextToken();
while (FormatTok && !eof()) {
if (FormatTok->is(tok::r_brace)) {
FormatTok->setFinalizedType(TT_InlineASMBrace);
nextToken();
addUnwrappedLine();
break;
}
FormatTok->Finalized = true;
nextToken();
}
}
break;
case tok::kw_namespace:
parseNamespace();
return;
case tok::kw_public:
case tok::kw_protected:
case tok::kw_private:
if (Style.Language == FormatStyle::LK_Java || Style.isJavaScript() ||
Style.isCSharp()) {
nextToken();
} else {
parseAccessSpecifier();
}
return;
case tok::kw_if: {
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// field/method declaration.
break;
}
FormatToken *Tok = parseIfThenElse(IfKind);
if (IfLeftBrace)
*IfLeftBrace = Tok;
return;
}
case tok::kw_for:
case tok::kw_while:
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// field/method declaration.
break;
}
parseForOrWhileLoop();
return;
case tok::kw_do:
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// field/method declaration.
break;
}
parseDoWhile();
if (HasDoWhile)
*HasDoWhile = true;
return;
case tok::kw_switch:
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// 'switch: string' field declaration.
break;
}
parseSwitch();
return;
case tok::kw_default:
// In Verilog default along with other labels are handled in the next loop.
if (Style.isVerilog())
break;
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// 'default: string' field declaration.
break;
}
nextToken();
if (FormatTok->is(tok::colon)) {
FormatTok->setFinalizedType(TT_CaseLabelColon);
parseLabel();
return;
}
// e.g. "default void f() {}" in a Java interface.
break;
case tok::kw_case:
// Proto: there are no switch/case statements.
if (Style.Language == FormatStyle::LK_Proto) {
nextToken();
return;
}
if (Style.isVerilog()) {
parseBlock();
addUnwrappedLine();
return;
}
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// 'case: string' field declaration.
nextToken();
break;
}
parseCaseLabel();
return;
case tok::kw_try:
case tok::kw___try:
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// field/method declaration.
break;
}
parseTryCatch();
return;
case tok::kw_extern:
nextToken();
if (Style.isVerilog()) {
// In Verilog and extern module declaration looks like a start of module.
// But there is no body and endmodule. So we handle it separately.
if (Keywords.isVerilogHierarchy(*FormatTok)) {
parseVerilogHierarchyHeader();
return;
}
} else if (FormatTok->is(tok::string_literal)) {
nextToken();
if (FormatTok->is(tok::l_brace)) {
if (Style.BraceWrapping.AfterExternBlock)
addUnwrappedLine();
// Either we indent or for backwards compatibility we follow the
// AfterExternBlock style.
unsigned AddLevels =
(Style.IndentExternBlock == FormatStyle::IEBS_Indent) ||
(Style.BraceWrapping.AfterExternBlock &&
Style.IndentExternBlock ==
FormatStyle::IEBS_AfterExternBlock)
? 1u
: 0u;
parseBlock(/*MustBeDeclaration=*/true, AddLevels);
addUnwrappedLine();
return;
}
}
break;
case tok::kw_export:
if (Style.isJavaScript()) {
parseJavaScriptEs6ImportExport();
return;
}
if (IsCpp) {
nextToken();
if (FormatTok->is(tok::kw_namespace)) {
parseNamespace();
return;
}
if (FormatTok->is(Keywords.kw_import) && parseModuleImport())
return;
}
break;
case tok::kw_inline:
nextToken();
if (FormatTok->is(tok::kw_namespace)) {
parseNamespace();
return;
}
break;
case tok::identifier:
if (FormatTok->is(TT_ForEachMacro)) {
parseForOrWhileLoop();
return;
}
if (FormatTok->is(TT_MacroBlockBegin)) {
parseBlock(/*MustBeDeclaration=*/false, /*AddLevels=*/1u,
/*MunchSemi=*/false);
return;
}
if (FormatTok->is(Keywords.kw_import)) {
if (Style.isJavaScript()) {
parseJavaScriptEs6ImportExport();
return;
}
if (Style.Language == FormatStyle::LK_Proto) {
nextToken();
if (FormatTok->is(tok::kw_public))
nextToken();
if (FormatTok->isNot(tok::string_literal))
return;
nextToken();
if (FormatTok->is(tok::semi))
nextToken();
addUnwrappedLine();
return;
}
if (IsCpp && parseModuleImport())
return;
}
if (IsCpp && FormatTok->isOneOf(Keywords.kw_signals, Keywords.kw_qsignals,
Keywords.kw_slots, Keywords.kw_qslots)) {
nextToken();
if (FormatTok->is(tok::colon)) {
nextToken();
addUnwrappedLine();
return;
}
}
if (IsCpp && FormatTok->is(TT_StatementMacro)) {
parseStatementMacro();
return;
}
if (IsCpp && FormatTok->is(TT_NamespaceMacro)) {
parseNamespace();
return;
}
// In Verilog labels can be any expression, so we don't do them here.
// JS doesn't have macros, and within classes colons indicate fields, not
// labels.
// TableGen doesn't have labels.
if (!Style.isJavaScript() && !Style.isVerilog() && !Style.isTableGen() &&
Tokens->peekNextToken()->is(tok::colon) && !Line->MustBeDeclaration) {
nextToken();
Line->Tokens.begin()->Tok->MustBreakBefore = true;
FormatTok->setFinalizedType(TT_GotoLabelColon);
parseLabel(!Style.IndentGotoLabels);
if (HasLabel)
*HasLabel = true;
return;
}
// In all other cases, parse the declaration.
break;
default:
break;
}
const bool InRequiresExpression =
OpeningBrace && OpeningBrace->is(TT_RequiresExpressionLBrace);
do {
const FormatToken *Previous = FormatTok->Previous;
switch (FormatTok->Tok.getKind()) {
case tok::at:
nextToken();
if (FormatTok->is(tok::l_brace)) {
nextToken();
parseBracedList();
break;
} else if (Style.Language == FormatStyle::LK_Java &&
FormatTok->is(Keywords.kw_interface)) {
nextToken();
break;
}
switch (FormatTok->Tok.getObjCKeywordID()) {
case tok::objc_public:
case tok::objc_protected:
case tok::objc_package:
case tok::objc_private:
return parseAccessSpecifier();
case tok::objc_interface:
case tok::objc_implementation:
return parseObjCInterfaceOrImplementation();
case tok::objc_protocol:
if (parseObjCProtocol())
return;
break;
case tok::objc_end:
return; // Handled by the caller.
case tok::objc_optional:
case tok::objc_required:
nextToken();
addUnwrappedLine();
return;
case tok::objc_autoreleasepool:
nextToken();
if (FormatTok->is(tok::l_brace)) {
if (Style.BraceWrapping.AfterControlStatement ==
FormatStyle::BWACS_Always) {
addUnwrappedLine();
}
parseBlock();
}
addUnwrappedLine();
return;
case tok::objc_synchronized:
nextToken();
if (FormatTok->is(tok::l_paren)) {
// Skip synchronization object
parseParens();
}
if (FormatTok->is(tok::l_brace)) {
if (Style.BraceWrapping.AfterControlStatement ==
FormatStyle::BWACS_Always) {
addUnwrappedLine();
}
parseBlock();
}
addUnwrappedLine();
return;
case tok::objc_try:
// This branch isn't strictly necessary (the kw_try case below would
// do this too after the tok::at is parsed above). But be explicit.
parseTryCatch();
return;
default:
break;
}
break;
case tok::kw_requires: {
if (IsCpp) {
bool ParsedClause = parseRequires();
if (ParsedClause)
return;
} else {
nextToken();
}
break;
}
case tok::kw_enum:
// Ignore if this is part of "template <enum ..." or "... -> enum".
if (Previous && Previous->isOneOf(tok::less, tok::arrow)) {
nextToken();
break;
}
// parseEnum falls through and does not yet add an unwrapped line as an
// enum definition can start a structural element.
if (!parseEnum())
break;
// This only applies to C++ and Verilog.
if (!IsCpp && !Style.isVerilog()) {
addUnwrappedLine();
return;
}
break;
case tok::kw_typedef:
nextToken();
if (FormatTok->isOneOf(Keywords.kw_NS_ENUM, Keywords.kw_NS_OPTIONS,
Keywords.kw_CF_ENUM, Keywords.kw_CF_OPTIONS,
Keywords.kw_CF_CLOSED_ENUM,
Keywords.kw_NS_CLOSED_ENUM)) {
parseEnum();
}
break;
case tok::kw_class:
if (Style.isVerilog()) {
parseBlock();
addUnwrappedLine();
return;
}
if (Style.isTableGen()) {
// Do nothing special. In this case the l_brace becomes FunctionLBrace.
// This is same as def and so on.
nextToken();
break;
}
[[fallthrough]];
case tok::kw_struct:
case tok::kw_union:
if (parseStructLike())
return;
break;
case tok::kw_decltype:
nextToken();
if (FormatTok->is(tok::l_paren)) {
parseParens();
assert(FormatTok->Previous);
if (FormatTok->Previous->endsSequence(tok::r_paren, tok::kw_auto,
tok::l_paren)) {
Line->SeenDecltypeAuto = true;
}
}
break;
case tok::period:
nextToken();
// In Java, classes have an implicit static member "class".
if (Style.Language == FormatStyle::LK_Java && FormatTok &&
FormatTok->is(tok::kw_class)) {
nextToken();
}
if (Style.isJavaScript() && FormatTok &&
FormatTok->Tok.getIdentifierInfo()) {
// JavaScript only has pseudo keywords, all keywords are allowed to
// appear in "IdentifierName" positions. See http://es5.github.io/#x7.6
nextToken();
}
break;
case tok::semi:
nextToken();
addUnwrappedLine();
return;
case tok::r_brace:
addUnwrappedLine();
return;
case tok::l_paren: {
parseParens();
// Break the unwrapped line if a K&R C function definition has a parameter
// declaration.
if (OpeningBrace || !IsCpp || !Previous || eof())
break;
if (isC78ParameterDecl(FormatTok,
Tokens->peekNextToken(/*SkipComment=*/true),
Previous)) {
addUnwrappedLine();
return;
}
break;
}
case tok::kw_operator:
nextToken();
if (FormatTok->isBinaryOperator())
nextToken();
break;
case tok::caret:
nextToken();
// Block return type.
if (FormatTok->Tok.isAnyIdentifier() || FormatTok->isTypeName(IsCpp)) {
nextToken();
// Return types: pointers are ok too.
while (FormatTok->is(tok::star))
nextToken();
}
// Block argument list.
if (FormatTok->is(tok::l_paren))
parseParens();
// Block body.
if (FormatTok->is(tok::l_brace))
parseChildBlock();
break;
case tok::l_brace:
if (InRequiresExpression)
FormatTok->setFinalizedType(TT_BracedListLBrace);
if (!tryToParsePropertyAccessor() && !tryToParseBracedList()) {
IsDecltypeAutoFunction = Line->SeenDecltypeAuto;
// A block outside of parentheses must be the last part of a
// structural element.
// FIXME: Figure out cases where this is not true, and add projections
// for them (the one we know is missing are lambdas).
if (Style.Language == FormatStyle::LK_Java &&
Line->Tokens.front().Tok->is(Keywords.kw_synchronized)) {
// If necessary, we could set the type to something different than
// TT_FunctionLBrace.
if (Style.BraceWrapping.AfterControlStatement ==
FormatStyle::BWACS_Always) {
addUnwrappedLine();
}
} else if (Style.BraceWrapping.AfterFunction) {
addUnwrappedLine();
}
FormatTok->setFinalizedType(TT_FunctionLBrace);
parseBlock();
IsDecltypeAutoFunction = false;
addUnwrappedLine();
return;
}
// Otherwise this was a braced init list, and the structural
// element continues.
break;
case tok::kw_try:
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// field/method declaration.
nextToken();
break;
}
// We arrive here when parsing function-try blocks.
if (Style.BraceWrapping.AfterFunction)
addUnwrappedLine();
parseTryCatch();
return;
case tok::identifier: {
if (Style.isCSharp() && FormatTok->is(Keywords.kw_where) &&
Line->MustBeDeclaration) {
addUnwrappedLine();
parseCSharpGenericTypeConstraint();
break;
}
if (FormatTok->is(TT_MacroBlockEnd)) {
addUnwrappedLine();
return;
}
// Function declarations (as opposed to function expressions) are parsed
// on their own unwrapped line by continuing this loop. Function
// expressions (functions that are not on their own line) must not create
// a new unwrapped line, so they are special cased below.
size_t TokenCount = Line->Tokens.size();
if (Style.isJavaScript() && FormatTok->is(Keywords.kw_function) &&
(TokenCount > 1 ||
(TokenCount == 1 &&
Line->Tokens.front().Tok->isNot(Keywords.kw_async)))) {
tryToParseJSFunction();
break;
}
if ((Style.isJavaScript() || Style.Language == FormatStyle::LK_Java) &&
FormatTok->is(Keywords.kw_interface)) {
if (Style.isJavaScript()) {
// In JavaScript/TypeScript, "interface" can be used as a standalone
// identifier, e.g. in `var interface = 1;`. If "interface" is
// followed by another identifier, it is very like to be an actual
// interface declaration.
unsigned StoredPosition = Tokens->getPosition();
FormatToken *Next = Tokens->getNextToken();
FormatTok = Tokens->setPosition(StoredPosition);
if (!mustBeJSIdent(Keywords, Next)) {
nextToken();
break;
}
}
parseRecord();
addUnwrappedLine();
return;
}
if (Style.isVerilog()) {
if (FormatTok->is(Keywords.kw_table)) {
parseVerilogTable();
return;
}
if (Keywords.isVerilogBegin(*FormatTok) ||
Keywords.isVerilogHierarchy(*FormatTok)) {
parseBlock();
addUnwrappedLine();
return;
}
}
if (!IsCpp && FormatTok->is(Keywords.kw_interface)) {
if (parseStructLike())
return;
break;
}
if (IsCpp && FormatTok->is(TT_StatementMacro)) {
parseStatementMacro();
return;
}
// See if the following token should start a new unwrapped line.
StringRef Text = FormatTok->TokenText;
FormatToken *PreviousToken = FormatTok;
nextToken();
// JS doesn't have macros, and within classes colons indicate fields, not
// labels.
if (Style.isJavaScript())
break;
auto OneTokenSoFar = [&]() {
auto I = Line->Tokens.begin(), E = Line->Tokens.end();
while (I != E && I->Tok->is(tok::comment))
++I;
if (Style.isVerilog())
while (I != E && I->Tok->is(tok::hash))
++I;
return I != E && (++I == E);
};
if (OneTokenSoFar()) {
// Recognize function-like macro usages without trailing semicolon as
// well as free-standing macros like Q_OBJECT.
bool FunctionLike = FormatTok->is(tok::l_paren);
if (FunctionLike)
parseParens();
bool FollowedByNewline =
CommentsBeforeNextToken.empty()
? FormatTok->NewlinesBefore > 0
: CommentsBeforeNextToken.front()->NewlinesBefore > 0;
if (FollowedByNewline && (Text.size() >= 5 || FunctionLike) &&
tokenCanStartNewLine(*FormatTok) && Text == Text.upper()) {
if (PreviousToken->isNot(TT_UntouchableMacroFunc))
PreviousToken->setFinalizedType(TT_FunctionLikeOrFreestandingMacro);
addUnwrappedLine();
return;
}
}
break;
}
case tok::equal:
if ((Style.isJavaScript() || Style.isCSharp()) &&
FormatTok->is(TT_FatArrow)) {
tryToParseChildBlock();
break;
}
nextToken();
if (FormatTok->is(tok::l_brace)) {
// Block kind should probably be set to BK_BracedInit for any language.
// C# needs this change to ensure that array initialisers and object
// initialisers are indented the same way.
if (Style.isCSharp())
FormatTok->setBlockKind(BK_BracedInit);
// TableGen's defset statement has syntax of the form,
// `defset <type> <name> = { <statement>... }`
if (Style.isTableGen() &&
Line->Tokens.begin()->Tok->is(Keywords.kw_defset)) {
FormatTok->setFinalizedType(TT_FunctionLBrace);
parseBlock(/*MustBeDeclaration=*/false, /*AddLevels=*/1u,
/*MunchSemi=*/false);
addUnwrappedLine();
break;
}
nextToken();
parseBracedList();
} else if (Style.Language == FormatStyle::LK_Proto &&
FormatTok->is(tok::less)) {
nextToken();
parseBracedList(/*IsAngleBracket=*/true);
}
break;
case tok::l_square:
parseSquare();
break;
case tok::kw_new:
parseNew();
break;
case tok::kw_case:
// Proto: there are no switch/case statements.
if (Style.Language == FormatStyle::LK_Proto) {
nextToken();
return;
}
// In Verilog switch is called case.
if (Style.isVerilog()) {
parseBlock();
addUnwrappedLine();
return;
}
if (Style.isJavaScript() && Line->MustBeDeclaration) {
// 'case: string' field declaration.
nextToken();
break;
}
parseCaseLabel();
break;
case tok::kw_default:
nextToken();
if (Style.isVerilog()) {
if (FormatTok->is(tok::colon)) {
// The label will be handled in the next iteration.
break;
}
if (FormatTok->is(Keywords.kw_clocking)) {
// A default clocking block.
parseBlock();
addUnwrappedLine();
return;
}
parseVerilogCaseLabel();
return;
}
break;
case tok::colon:
nextToken();
if (Style.isVerilog()) {
parseVerilogCaseLabel();
return;
}
break;
default:
nextToken();
break;
}
} while (!eof());
}
bool UnwrappedLineParser::tryToParsePropertyAccessor() {
assert(FormatTok->is(tok::l_brace));
if (!Style.isCSharp())
return false;
// See if it's a property accessor.
if (FormatTok->Previous->isNot(tok::identifier))
return false;
// See if we are inside a property accessor.
//
// Record the current tokenPosition so that we can advance and
// reset the current token. `Next` is not set yet so we need
// another way to advance along the token stream.
unsigned int StoredPosition = Tokens->getPosition();
FormatToken *Tok = Tokens->getNextToken();
// A trivial property accessor is of the form:
// { [ACCESS_SPECIFIER] [get]; [ACCESS_SPECIFIER] [set|init] }
// Track these as they do not require line breaks to be introduced.
bool HasSpecialAccessor = false;
bool IsTrivialPropertyAccessor = true;
while (!eof()) {
if (Tok->isOneOf(tok::semi, tok::kw_public, tok::kw_private,
tok::kw_protected, Keywords.kw_internal, Keywords.kw_get,
Keywords.kw_init, Keywords.kw_set)) {
if (Tok->isOneOf(Keywords.kw_get, Keywords.kw_init, Keywords.kw_set))
HasSpecialAccessor = true;
Tok = Tokens->getNextToken();
continue;
}
if (Tok->isNot(tok::r_brace))
IsTrivialPropertyAccessor = false;
break;
}
if (!HasSpecialAccessor) {
Tokens->setPosition(StoredPosition);
return false;
}
// Try to parse the property accessor:
// https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
Tokens->setPosition(StoredPosition);
if (!IsTrivialPropertyAccessor && Style.BraceWrapping.AfterFunction)
addUnwrappedLine();
nextToken();
do {
switch (FormatTok->Tok.getKind()) {
case tok::r_brace:
nextToken();
if (FormatTok->is(tok::equal)) {
while (!eof() && FormatTok->isNot(tok::semi))
nextToken();
nextToken();
}
addUnwrappedLine();
return true;
case tok::l_brace:
++Line->Level;
parseBlock(/*MustBeDeclaration=*/true);
addUnwrappedLine();
--Line->Level;
break;
case tok::equal:
if (FormatTok->is(TT_FatArrow)) {
++Line->Level;
do {
nextToken();
} while (!eof() && FormatTok->isNot(tok::semi));
nextToken();
addUnwrappedLine();
--Line->Level;
break;
}
nextToken();
break;
default:
if (FormatTok->isOneOf(Keywords.kw_get, Keywords.kw_init,
Keywords.kw_set) &&
!IsTrivialPropertyAccessor) {
// Non-trivial get/set needs to be on its own line.
addUnwrappedLine();
}
nextToken();
}
} while (!eof());
// Unreachable for well-formed code (paired '{' and '}').
return true;
}
bool UnwrappedLineParser::tryToParseLambda() {
assert(FormatTok->is(tok::l_square));
if (!IsCpp) {
nextToken();
return false;
}
FormatToken &LSquare = *FormatTok;
if (!tryToParseLambdaIntroducer())
return false;
bool SeenArrow = false;
bool InTemplateParameterList = false;
while (FormatTok->isNot(tok::l_brace)) {
if (FormatTok->isTypeName(IsCpp)) {
nextToken();
continue;
}
switch (FormatTok->Tok.getKind()) {
case tok::l_brace:
break;
case tok::l_paren:
parseParens(/*AmpAmpTokenType=*/TT_PointerOrReference);
break;
case tok::l_square:
parseSquare();
break;
case tok::less:
assert(FormatTok->Previous);
if (FormatTok->Previous->is(tok::r_square))
InTemplateParameterList = true;
nextToken();
break;
case tok::kw_auto:
case tok::kw_class:
case tok::kw_template:
case tok::kw_typename:
case tok::amp:
case tok::star:
case tok::kw_const:
case tok::kw_constexpr:
case tok::kw_consteval:
case tok::comma:
case tok::greater:
case tok::identifier:
case tok::numeric_constant:
case tok::coloncolon:
case tok::kw_mutable:
case tok::kw_noexcept:
case tok::kw_static:
nextToken();
break;
// Specialization of a template with an integer parameter can contain
// arithmetic, logical, comparison and ternary operators.
//
// FIXME: This also accepts sequences of operators that are not in the scope
// of a template argument list.
//
// In a C++ lambda a template type can only occur after an arrow. We use
// this as an heuristic to distinguish between Objective-C expressions
// followed by an `a->b` expression, such as:
// ([obj func:arg] + a->b)
// Otherwise the code below would parse as a lambda.
case tok::plus:
case tok::minus:
case tok::exclaim:
case tok::tilde:
case tok::slash:
case tok::percent:
case tok::lessless:
case tok::pipe:
case tok::pipepipe:
case tok::ampamp:
case tok::caret:
case tok::equalequal:
case tok::exclaimequal:
case tok::greaterequal:
case tok::lessequal:
case tok::question:
case tok::colon:
case tok::ellipsis:
case tok::kw_true:
case tok::kw_false:
if (SeenArrow || InTemplateParameterList) {
nextToken();
break;
}
return true;
case tok::arrow:
// This might or might not actually be a lambda arrow (this could be an
// ObjC method invocation followed by a dereferencing arrow). We might
// reset this back to TT_Unknown in TokenAnnotator.
FormatTok->setFinalizedType(TT_TrailingReturnArrow);
SeenArrow = true;
nextToken();
break;
case tok::kw_requires: {
auto *RequiresToken = FormatTok;
nextToken();
parseRequiresClause(RequiresToken);
break;
}
case tok::equal:
if (!InTemplateParameterList)
return true;
nextToken();
break;
default:
return true;
}
}
FormatTok->setFinalizedType(TT_LambdaLBrace);
LSquare.setFinalizedType(TT_LambdaLSquare);
NestedLambdas.push_back(Line->SeenDecltypeAuto);
parseChildBlock();
assert(!NestedLambdas.empty());
NestedLambdas.pop_back();
return true;
}
bool UnwrappedLineParser::tryToParseLambdaIntroducer() {
const FormatToken *Previous = FormatTok->Previous;
const FormatToken *LeftSquare = FormatTok;
nextToken();
if ((Previous && ((Previous->Tok.getIdentifierInfo() &&
!Previous->isOneOf(tok::kw_return, tok::kw_co_await,
tok::kw_co_yield, tok::kw_co_return)) ||
Previous->closesScope())) ||
LeftSquare->isCppStructuredBinding(IsCpp)) {
return false;
}
if (FormatTok->is(tok::l_square) || tok::isLiteral(FormatTok->Tok.getKind()))
return false;
if (FormatTok->is(tok::r_square)) {
const FormatToken *Next = Tokens->peekNextToken(/*SkipComment=*/true);
if (Next->is(tok::greater))
return false;
}
parseSquare(/*LambdaIntroducer=*/true);
return true;
}
void UnwrappedLineParser::tryToParseJSFunction() {
assert(FormatTok->is(Keywords.kw_function));
if (FormatTok->is(Keywords.kw_async))
nextToken();
// Consume "function".
nextToken();
// Consume * (generator function). Treat it like C++'s overloaded operators.
if (FormatTok->is(tok::star)) {
FormatTok->setFinalizedType(TT_OverloadedOperator);
nextToken();
}
// Consume function name.
if (FormatTok->is(tok::identifier))
nextToken();
if (FormatTok->isNot(tok::l_paren))
return;
// Parse formal parameter list.
parseParens();
if (FormatTok->is(tok::colon)) {
// Parse a type definition.
nextToken();
// Eat the type declaration. For braced inline object types, balance braces,
// otherwise just parse until finding an l_brace for the function body.
if (FormatTok->is(tok::l_brace))
tryToParseBracedList();
else
while (!FormatTok->isOneOf(tok::l_brace, tok::semi) && !eof())
nextToken();
}
if (FormatTok->is(tok::semi))
return;
parseChildBlock();
}
bool UnwrappedLineParser::tryToParseBracedList() {
if (FormatTok->is(BK_Unknown))
calculateBraceTypes();
assert(FormatTok->isNot(BK_Unknown));
if (FormatTok->is(BK_Block))
return false;
nextToken();
parseBracedList();
return true;
}
bool UnwrappedLineParser::tryToParseChildBlock() {
assert(Style.isJavaScript() || Style.isCSharp());
assert(FormatTok->is(TT_FatArrow));
// Fat arrows (=>) have tok::TokenKind tok::equal but TokenType TT_FatArrow.
// They always start an expression or a child block if followed by a curly
// brace.
nextToken();
if (FormatTok->isNot(tok::l_brace))
return false;
parseChildBlock();
return true;
}
bool UnwrappedLineParser::parseBracedList(bool IsAngleBracket, bool IsEnum) {
assert(!IsAngleBracket || !IsEnum);
bool HasError = false;
// FIXME: Once we have an expression parser in the UnwrappedLineParser,
// replace this by using parseAssignmentExpression() inside.
do {
if (Style.isCSharp() && FormatTok->is(TT_FatArrow) &&
tryToParseChildBlock()) {
continue;
}
if (Style.isJavaScript()) {
if (FormatTok->is(Keywords.kw_function)) {
tryToParseJSFunction();
continue;
}
if (FormatTok->is(tok::l_brace)) {
// Could be a method inside of a braced list `{a() { return 1; }}`.
if (tryToParseBracedList())
continue;
parseChildBlock();
}
}
if (FormatTok->is(IsAngleBracket ? tok::greater : tok::r_brace)) {
if (IsEnum) {
FormatTok->setBlockKind(BK_Block);
if (!Style.AllowShortEnumsOnASingleLine)
addUnwrappedLine();
}
nextToken();
return !HasError;
}
switch (FormatTok->Tok.getKind()) {
case tok::l_square:
if (Style.isCSharp())
parseSquare();
else
tryToParseLambda();
break;
case tok::l_paren:
parseParens();
// JavaScript can just have free standing methods and getters/setters in
// object literals. Detect them by a "{" following ")".
if (Style.isJavaScript()) {
if (FormatTok->is(tok::l_brace))
parseChildBlock();
break;
}
break;
case tok::l_brace:
// Assume there are no blocks inside a braced init list apart
// from the ones we explicitly parse out (like lambdas).
FormatTok->setBlockKind(BK_BracedInit);
nextToken();
parseBracedList();
break;
case tok::less:
nextToken();
if (IsAngleBracket)
parseBracedList(/*IsAngleBracket=*/true);
break;
case tok::semi:
// JavaScript (or more precisely TypeScript) can have semicolons in braced
// lists (in so-called TypeMemberLists). Thus, the semicolon cannot be
// used for error recovery if we have otherwise determined that this is
// a braced list.
if (Style.isJavaScript()) {
nextToken();
break;
}
HasError = true;
if (!IsEnum)
return false;
nextToken();
break;
case tok::comma:
nextToken();
if (IsEnum && !Style.AllowShortEnumsOnASingleLine)
addUnwrappedLine();
break;
default:
nextToken();
break;
}
} while (!eof());
return false;
}
/// \brief Parses a pair of parentheses (and everything between them).
/// \param AmpAmpTokenType If different than TT_Unknown sets this type for all
/// double ampersands. This applies for all nested scopes as well.
///
/// Returns whether there is a `=` token between the parentheses.
bool UnwrappedLineParser::parseParens(TokenType AmpAmpTokenType) {
assert(FormatTok->is(tok::l_paren) && "'(' expected.");
auto *LeftParen = FormatTok;
bool SeenEqual = false;
const bool MightBeStmtExpr = Tokens->peekNextToken()->is(tok::l_brace);
nextToken();
do {
switch (FormatTok->Tok.getKind()) {
case tok::l_paren:
if (parseParens(AmpAmpTokenType))
SeenEqual = true;
if (Style.Language == FormatStyle::LK_Java && FormatTok->is(tok::l_brace))
parseChildBlock();
break;
case tok::r_paren:
if (!MightBeStmtExpr && !Line->InMacroBody &&
Style.RemoveParentheses > FormatStyle::RPS_Leave) {
const auto *Prev = LeftParen->Previous;
const auto *Next = Tokens->peekNextToken();
const bool DoubleParens =
Prev && Prev->is(tok::l_paren) && Next && Next->is(tok::r_paren);
const auto *PrevPrev = Prev ? Prev->getPreviousNonComment() : nullptr;
const bool Blacklisted =
PrevPrev &&
(PrevPrev->isOneOf(tok::kw___attribute, tok::kw_decltype) ||
(SeenEqual &&
(PrevPrev->isOneOf(tok::kw_if, tok::kw_while) ||
PrevPrev->endsSequence(tok::kw_constexpr, tok::kw_if))));
const bool ReturnParens =
Style.RemoveParentheses == FormatStyle::RPS_ReturnStatement &&
((NestedLambdas.empty() && !IsDecltypeAutoFunction) ||
(!NestedLambdas.empty() && !NestedLambdas.back())) &&
Prev && Prev->isOneOf(tok::kw_return, tok::kw_co_return) && Next &&
Next->is(tok::semi);
if ((DoubleParens && !Blacklisted) || ReturnParens) {
LeftParen->Optional = true;
FormatTok->Optional = true;
}
}
nextToken();
return SeenEqual;
case tok::r_brace:
// A "}" inside parenthesis is an error if there wasn't a matching "{".
return SeenEqual;
case tok::l_square:
tryToParseLambda();
break;
case tok::l_brace:
if (!tryToParseBracedList())
parseChildBlock();
break;
case tok::at:
nextToken();
if (FormatTok->is(tok::l_brace)) {
nextToken();
parseBracedList();
}
break;
case tok::equal:
SeenEqual = true;
if (Style.isCSharp() && FormatTok->is(TT_FatArrow))
tryToParseChildBlock();
else
nextToken();
break;
case tok::kw_class:
if (Style.isJavaScript())
parseRecord(/*ParseAsExpr=*/true);
else
nextToken();
break;
case tok::identifier:
if (Style.isJavaScript() && (FormatTok->is(Keywords.kw_function)))
tryToParseJSFunction();
else
nextToken();
break;
case tok::kw_requires: {
auto RequiresToken = FormatTok;
nextToken();
parseRequiresExpression(RequiresToken);
break;
}
case tok::ampamp:
if (AmpAmpTokenType != TT_Unknown)
FormatTok->setFinalizedType(AmpAmpTokenType);
[[fallthrough]];
default:
nextToken();
break;
}
} while (!eof());
return SeenEqual;
}
void UnwrappedLineParser::parseSquare(bool LambdaIntroducer) {
if (!LambdaIntroducer) {
assert(FormatTok->is(tok::l_square) && "'[' expected.");
if (tryToParseLambda())
return;
}
do {
switch (FormatTok->Tok.getKind()) {
case tok::l_paren:
parseParens();
break;
case tok::r_square:
nextToken();
return;
case tok::r_brace:
// A "}" inside parenthesis is an error if there wasn't a matching "{".
return;
case tok::l_square:
parseSquare();
break;
case tok::l_brace: {
if (!tryToParseBracedList())
parseChildBlock();
break;
}
case tok::at:
nextToken();
if (FormatTok->is(tok::l_brace)) {
nextToken();
parseBracedList();
}
break;
default:
nextToken();
break;
}
} while (!eof());
}
void UnwrappedLineParser::keepAncestorBraces() {
if (!Style.RemoveBracesLLVM)
return;
const int MaxNestingLevels = 2;
const int Size = NestedTooDeep.size();
if (Size >= MaxNestingLevels)
NestedTooDeep[Size - MaxNestingLevels] = true;
NestedTooDeep.push_back(false);
}
static FormatToken *getLastNonComment(const UnwrappedLine &Line) {
for (const auto &Token : llvm::reverse(Line.Tokens))
if (Token.Tok->isNot(tok::comment))
return Token.Tok;
return nullptr;
}
void UnwrappedLineParser::parseUnbracedBody(bool CheckEOF) {
FormatToken *Tok = nullptr;
if (Style.InsertBraces && !Line->InPPDirective && !Line->Tokens.empty() &&
PreprocessorDirectives.empty() && FormatTok->isNot(tok::semi)) {
Tok = Style.BraceWrapping.AfterControlStatement == FormatStyle::BWACS_Never
? getLastNonComment(*Line)
: Line->Tokens.back().Tok;
assert(Tok);
if (Tok->BraceCount < 0) {
assert(Tok->BraceCount == -1);
Tok = nullptr;
} else {
Tok->BraceCount = -1;
}
}
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
if (Tok) {
assert(!Line->InPPDirective);
Tok = nullptr;
for (const auto &L : llvm::reverse(*CurrentLines)) {
if (!L.InPPDirective && getLastNonComment(L)) {
Tok = L.Tokens.back().Tok;
break;
}
}
assert(Tok);
++Tok->BraceCount;
}
if (CheckEOF && eof())
addUnwrappedLine();
--Line->Level;
}
static void markOptionalBraces(FormatToken *LeftBrace) {
if (!LeftBrace)
return;
assert(LeftBrace->is(tok::l_brace));
FormatToken *RightBrace = LeftBrace->MatchingParen;
if (!RightBrace) {
assert(!LeftBrace->Optional);
return;
}
assert(RightBrace->is(tok::r_brace));
assert(RightBrace->MatchingParen == LeftBrace);
assert(LeftBrace->Optional == RightBrace->Optional);
LeftBrace->Optional = true;
RightBrace->Optional = true;
}
void UnwrappedLineParser::handleAttributes() {
// Handle AttributeMacro, e.g. `if (x) UNLIKELY`.
if (FormatTok->isAttribute())
nextToken();
else if (FormatTok->is(tok::l_square))
handleCppAttributes();
}
bool UnwrappedLineParser::handleCppAttributes() {
// Handle [[likely]] / [[unlikely]] attributes.
assert(FormatTok->is(tok::l_square));
if (!tryToParseSimpleAttribute())
return false;
parseSquare();
return true;
}
/// Returns whether \c Tok begins a block.
bool UnwrappedLineParser::isBlockBegin(const FormatToken &Tok) const {
// FIXME: rename the function or make
// Tok.isOneOf(tok::l_brace, TT_MacroBlockBegin) work.
return Style.isVerilog() ? Keywords.isVerilogBegin(Tok)
: Tok.is(tok::l_brace);
}
FormatToken *UnwrappedLineParser::parseIfThenElse(IfStmtKind *IfKind,
bool KeepBraces,
bool IsVerilogAssert) {
assert((FormatTok->is(tok::kw_if) ||
(Style.isVerilog() &&
FormatTok->isOneOf(tok::kw_restrict, Keywords.kw_assert,
Keywords.kw_assume, Keywords.kw_cover))) &&
"'if' expected");
nextToken();
if (IsVerilogAssert) {
// Handle `assert #0` and `assert final`.
if (FormatTok->is(Keywords.kw_verilogHash)) {
nextToken();
if (FormatTok->is(tok::numeric_constant))
nextToken();
} else if (FormatTok->isOneOf(Keywords.kw_final, Keywords.kw_property,
Keywords.kw_sequence)) {
nextToken();
}
}
// TableGen's if statement has the form of `if <cond> then { ... }`.
if (Style.isTableGen()) {
while (!eof() && FormatTok->isNot(Keywords.kw_then)) {
// Simply skip until then. This range only contains a value.
nextToken();
}
}
// Handle `if !consteval`.
if (FormatTok->is(tok::exclaim))
nextToken();
bool KeepIfBraces = true;
if (FormatTok->is(tok::kw_consteval)) {
nextToken();
} else {
KeepIfBraces = !Style.RemoveBracesLLVM || KeepBraces;
if (FormatTok->isOneOf(tok::kw_constexpr, tok::identifier))
nextToken();
if (FormatTok->is(tok::l_paren)) {
FormatTok->setFinalizedType(TT_ConditionLParen);
parseParens();
}
}
handleAttributes();
// The then action is optional in Verilog assert statements.
if (IsVerilogAssert && FormatTok->is(tok::semi)) {
nextToken();
addUnwrappedLine();
return nullptr;
}
bool NeedsUnwrappedLine = false;
keepAncestorBraces();
FormatToken *IfLeftBrace = nullptr;
IfStmtKind IfBlockKind = IfStmtKind::NotIf;
if (isBlockBegin(*FormatTok)) {
FormatTok->setFinalizedType(TT_ControlStatementLBrace);
IfLeftBrace = FormatTok;
CompoundStatementIndenter Indenter(this, Style, Line->Level);
parseBlock(/*MustBeDeclaration=*/false, /*AddLevels=*/1u,
/*MunchSemi=*/true, KeepIfBraces, &IfBlockKind);
setPreviousRBraceType(TT_ControlStatementRBrace);
if (Style.BraceWrapping.BeforeElse)
addUnwrappedLine();
else
NeedsUnwrappedLine = true;
} else if (IsVerilogAssert && FormatTok->is(tok::kw_else)) {
addUnwrappedLine();
} else {
parseUnbracedBody();
}
if (Style.RemoveBracesLLVM) {
assert(!NestedTooDeep.empty());
KeepIfBraces = KeepIfBraces ||
(IfLeftBrace && !IfLeftBrace->MatchingParen) ||
NestedTooDeep.back() || IfBlockKind == IfStmtKind::IfOnly ||
IfBlockKind == IfStmtKind::IfElseIf;
}
bool KeepElseBraces = KeepIfBraces;
FormatToken *ElseLeftBrace = nullptr;
IfStmtKind Kind = IfStmtKind::IfOnly;
if (FormatTok->is(tok::kw_else)) {
if (Style.RemoveBracesLLVM) {
NestedTooDeep.back() = false;
Kind = IfStmtKind::IfElse;
}
nextToken();
handleAttributes();
if (isBlockBegin(*FormatTok)) {
const bool FollowedByIf = Tokens->peekNextToken()->is(tok::kw_if);
FormatTok->setFinalizedType(TT_ElseLBrace);
ElseLeftBrace = FormatTok;
CompoundStatementIndenter Indenter(this, Style, Line->Level);
IfStmtKind ElseBlockKind = IfStmtKind::NotIf;
FormatToken *IfLBrace =
parseBlock(/*MustBeDeclaration=*/false, /*AddLevels=*/1u,
/*MunchSemi=*/true, KeepElseBraces, &ElseBlockKind);
setPreviousRBraceType(TT_ElseRBrace);
if (FormatTok->is(tok::kw_else)) {
KeepElseBraces = KeepElseBraces ||
ElseBlockKind == IfStmtKind::IfOnly ||
ElseBlockKind == IfStmtKind::IfElseIf;
} else if (FollowedByIf && IfLBrace && !IfLBrace->Optional) {
KeepElseBraces = true;
assert(ElseLeftBrace->MatchingParen);
markOptionalBraces(ElseLeftBrace);
}
addUnwrappedLine();
} else if (!IsVerilogAssert && FormatTok->is(tok::kw_if)) {
const FormatToken *Previous = Tokens->getPreviousToken();
assert(Previous);
const bool IsPrecededByComment = Previous->is(tok::comment);
if (IsPrecededByComment) {
addUnwrappedLine();
++Line->Level;
}
bool TooDeep = true;
if (Style.RemoveBracesLLVM) {
Kind = IfStmtKind::IfElseIf;
TooDeep = NestedTooDeep.pop_back_val();
}
ElseLeftBrace = parseIfThenElse(/*IfKind=*/nullptr, KeepIfBraces);
if (Style.RemoveBracesLLVM)
NestedTooDeep.push_back(TooDeep);
if (IsPrecededByComment)
--Line->Level;
} else {
parseUnbracedBody(/*CheckEOF=*/true);
}
} else {
KeepIfBraces = KeepIfBraces || IfBlockKind == IfStmtKind::IfElse;
if (NeedsUnwrappedLine)
addUnwrappedLine();
}
if (!Style.RemoveBracesLLVM)
return nullptr;
assert(!NestedTooDeep.empty());
KeepElseBraces = KeepElseBraces ||
(ElseLeftBrace && !ElseLeftBrace->MatchingParen) ||
NestedTooDeep.back();
NestedTooDeep.pop_back();
if (!KeepIfBraces && !KeepElseBraces) {
markOptionalBraces(IfLeftBrace);
markOptionalBraces(ElseLeftBrace);
} else if (IfLeftBrace) {
FormatToken *IfRightBrace = IfLeftBrace->MatchingParen;
if (IfRightBrace) {
assert(IfRightBrace->MatchingParen == IfLeftBrace);
assert(!IfLeftBrace->Optional);
assert(!IfRightBrace->Optional);
IfLeftBrace->MatchingParen = nullptr;
IfRightBrace->MatchingParen = nullptr;
}
}
if (IfKind)
*IfKind = Kind;
return IfLeftBrace;
}
void UnwrappedLineParser::parseTryCatch() {
assert(FormatTok->isOneOf(tok::kw_try, tok::kw___try) && "'try' expected");
nextToken();
bool NeedsUnwrappedLine = false;
if (FormatTok->is(tok::colon)) {
// We are in a function try block, what comes is an initializer list.
nextToken();
// In case identifiers were removed by clang-tidy, what might follow is
// multiple commas in sequence - before the first identifier.
while (FormatTok->is(tok::comma))
nextToken();
while (FormatTok->is(tok::identifier)) {
nextToken();
if (FormatTok->is(tok::l_paren))
parseParens();
if (FormatTok->Previous && FormatTok->Previous->is(tok::identifier) &&
FormatTok->is(tok::l_brace)) {
do {
nextToken();
} while (FormatTok->isNot(tok::r_brace));
nextToken();
}
// In case identifiers were removed by clang-tidy, what might follow is
// multiple commas in sequence - after the first identifier.
while (FormatTok->is(tok::comma))
nextToken();
}
}
// Parse try with resource.
if (Style.Language == FormatStyle::LK_Java && FormatTok->is(tok::l_paren))
parseParens();
keepAncestorBraces();
if (FormatTok->is(tok::l_brace)) {
CompoundStatementIndenter Indenter(this, Style, Line->Level);
parseBlock();
if (Style.BraceWrapping.BeforeCatch)
addUnwrappedLine();
else
NeedsUnwrappedLine = true;
} else if (FormatTok->isNot(tok::kw_catch)) {
// The C++ standard requires a compound-statement after a try.
// If there's none, we try to assume there's a structuralElement
// and try to continue.
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
--Line->Level;
}
while (true) {
if (FormatTok->is(tok::at))
nextToken();
if (!(FormatTok->isOneOf(tok::kw_catch, Keywords.kw___except,
tok::kw___finally) ||
((Style.Language == FormatStyle::LK_Java || Style.isJavaScript()) &&
FormatTok->is(Keywords.kw_finally)) ||
(FormatTok->isObjCAtKeyword(tok::objc_catch) ||
FormatTok->isObjCAtKeyword(tok::objc_finally)))) {
break;
}
nextToken();
while (FormatTok->isNot(tok::l_brace)) {
if (FormatTok->is(tok::l_paren)) {
parseParens();
continue;
}
if (FormatTok->isOneOf(tok::semi, tok::r_brace, tok::eof)) {
if (Style.RemoveBracesLLVM)
NestedTooDeep.pop_back();
return;
}
nextToken();
}
NeedsUnwrappedLine = false;
Line->MustBeDeclaration = false;
CompoundStatementIndenter Indenter(this, Style, Line->Level);
parseBlock();
if (Style.BraceWrapping.BeforeCatch)
addUnwrappedLine();
else
NeedsUnwrappedLine = true;
}
if (Style.RemoveBracesLLVM)
NestedTooDeep.pop_back();
if (NeedsUnwrappedLine)
addUnwrappedLine();
}
void UnwrappedLineParser::parseNamespace() {
assert(FormatTok->isOneOf(tok::kw_namespace, TT_NamespaceMacro) &&
"'namespace' expected");
const FormatToken &InitialToken = *FormatTok;
nextToken();
if (InitialToken.is(TT_NamespaceMacro)) {
parseParens();
} else {
while (FormatTok->isOneOf(tok::identifier, tok::coloncolon, tok::kw_inline,
tok::l_square, tok::period, tok::l_paren) ||
(Style.isCSharp() && FormatTok->is(tok::kw_union))) {
if (FormatTok->is(tok::l_square))
parseSquare();
else if (FormatTok->is(tok::l_paren))
parseParens();
else
nextToken();
}
}
if (FormatTok->is(tok::l_brace)) {
FormatTok->setFinalizedType(TT_NamespaceLBrace);
if (ShouldBreakBeforeBrace(Style, InitialToken))
addUnwrappedLine();
unsigned AddLevels =
Style.NamespaceIndentation == FormatStyle::NI_All ||
(Style.NamespaceIndentation == FormatStyle::NI_Inner &&
DeclarationScopeStack.size() > 1)
? 1u
: 0u;
bool ManageWhitesmithsBraces =
AddLevels == 0u &&
Style.BreakBeforeBraces == FormatStyle::BS_Whitesmiths;
// If we're in Whitesmiths mode, indent the brace if we're not indenting
// the whole block.
if (ManageWhitesmithsBraces)
++Line->Level;
// Munch the semicolon after a namespace. This is more common than one would
// think. Putting the semicolon into its own line is very ugly.
parseBlock(/*MustBeDeclaration=*/true, AddLevels, /*MunchSemi=*/true,
/*KeepBraces=*/true, /*IfKind=*/nullptr,
ManageWhitesmithsBraces);
addUnwrappedLine(AddLevels > 0 ? LineLevel::Remove : LineLevel::Keep);
if (ManageWhitesmithsBraces)
--Line->Level;
}
// FIXME: Add error handling.
}
void UnwrappedLineParser::parseNew() {
assert(FormatTok->is(tok::kw_new) && "'new' expected");
nextToken();
if (Style.isCSharp()) {
do {
// Handle constructor invocation, e.g. `new(field: value)`.
if (FormatTok->is(tok::l_paren))
parseParens();
// Handle array initialization syntax, e.g. `new[] {10, 20, 30}`.
if (FormatTok->is(tok::l_brace))
parseBracedList();
if (FormatTok->isOneOf(tok::semi, tok::comma))
return;
nextToken();
} while (!eof());
}
if (Style.Language != FormatStyle::LK_Java)
return;
// In Java, we can parse everything up to the parens, which aren't optional.
do {
// There should not be a ;, { or } before the new's open paren.
if (FormatTok->isOneOf(tok::semi, tok::l_brace, tok::r_brace))
return;
// Consume the parens.
if (FormatTok->is(tok::l_paren)) {
parseParens();
// If there is a class body of an anonymous class, consume that as child.
if (FormatTok->is(tok::l_brace))
parseChildBlock();
return;
}
nextToken();
} while (!eof());
}
void UnwrappedLineParser::parseLoopBody(bool KeepBraces, bool WrapRightBrace) {
keepAncestorBraces();
if (isBlockBegin(*FormatTok)) {
FormatTok->setFinalizedType(TT_ControlStatementLBrace);
FormatToken *LeftBrace = FormatTok;
CompoundStatementIndenter Indenter(this, Style, Line->Level);
parseBlock(/*MustBeDeclaration=*/false, /*AddLevels=*/1u,
/*MunchSemi=*/true, KeepBraces);
setPreviousRBraceType(TT_ControlStatementRBrace);
if (!KeepBraces) {
assert(!NestedTooDeep.empty());
if (!NestedTooDeep.back())
markOptionalBraces(LeftBrace);
}
if (WrapRightBrace)
addUnwrappedLine();
} else {
parseUnbracedBody();
}
if (!KeepBraces)
NestedTooDeep.pop_back();
}
void UnwrappedLineParser::parseForOrWhileLoop(bool HasParens) {
assert((FormatTok->isOneOf(tok::kw_for, tok::kw_while, TT_ForEachMacro) ||
(Style.isVerilog() &&
FormatTok->isOneOf(Keywords.kw_always, Keywords.kw_always_comb,
Keywords.kw_always_ff, Keywords.kw_always_latch,
Keywords.kw_final, Keywords.kw_initial,
Keywords.kw_foreach, Keywords.kw_forever,
Keywords.kw_repeat))) &&
"'for', 'while' or foreach macro expected");
const bool KeepBraces = !Style.RemoveBracesLLVM ||
!FormatTok->isOneOf(tok::kw_for, tok::kw_while);
nextToken();
// JS' for await ( ...
if (Style.isJavaScript() && FormatTok->is(Keywords.kw_await))
nextToken();
if (IsCpp && FormatTok->is(tok::kw_co_await))
nextToken();
if (HasParens && FormatTok->is(tok::l_paren)) {
// The type is only set for Verilog basically because we were afraid to
// change the existing behavior for loops. See the discussion on D121756 for
// details.
if (Style.isVerilog())
FormatTok->setFinalizedType(TT_ConditionLParen);
parseParens();
}
if (Style.isVerilog()) {
// Event control.
parseVerilogSensitivityList();
} else if (Style.AllowShortLoopsOnASingleLine && FormatTok->is(tok::semi) &&
Tokens->getPreviousToken()->is(tok::r_paren)) {
nextToken();
addUnwrappedLine();
return;
}
handleAttributes();
parseLoopBody(KeepBraces, /*WrapRightBrace=*/true);
}
void UnwrappedLineParser::parseDoWhile() {
assert(FormatTok->is(tok::kw_do) && "'do' expected");
nextToken();
parseLoopBody(/*KeepBraces=*/true, Style.BraceWrapping.BeforeWhile);
// FIXME: Add error handling.
if (FormatTok->isNot(tok::kw_while)) {
addUnwrappedLine();
return;
}
FormatTok->setFinalizedType(TT_DoWhile);
// If in Whitesmiths mode, the line with the while() needs to be indented
// to the same level as the block.
if (Style.BreakBeforeBraces == FormatStyle::BS_Whitesmiths)
++Line->Level;
nextToken();
parseStructuralElement();
}
void UnwrappedLineParser::parseLabel(bool LeftAlignLabel) {
nextToken();
unsigned OldLineLevel = Line->Level;
if (Line->Level > 1 || (!Line->InPPDirective && Line->Level > 0))
--Line->Level;
if (LeftAlignLabel)
Line->Level = 0;
if (!Style.IndentCaseBlocks && CommentsBeforeNextToken.empty() &&
FormatTok->is(tok::l_brace)) {
CompoundStatementIndenter Indenter(this, Line->Level,
Style.BraceWrapping.AfterCaseLabel,
Style.BraceWrapping.IndentBraces);
parseBlock();
if (FormatTok->is(tok::kw_break)) {
if (Style.BraceWrapping.AfterControlStatement ==
FormatStyle::BWACS_Always) {
addUnwrappedLine();
if (!Style.IndentCaseBlocks &&
Style.BreakBeforeBraces == FormatStyle::BS_Whitesmiths) {
++Line->Level;
}
}
parseStructuralElement();
}
addUnwrappedLine();
} else {
if (FormatTok->is(tok::semi))
nextToken();
addUnwrappedLine();
}
Line->Level = OldLineLevel;
if (FormatTok->isNot(tok::l_brace)) {
parseStructuralElement();
addUnwrappedLine();
}
}
void UnwrappedLineParser::parseCaseLabel() {
assert(FormatTok->is(tok::kw_case) && "'case' expected");
// FIXME: fix handling of complex expressions here.
do {
nextToken();
if (FormatTok->is(tok::colon)) {
FormatTok->setFinalizedType(TT_CaseLabelColon);
break;
}
} while (!eof());
parseLabel();
}
void UnwrappedLineParser::parseSwitch() {
assert(FormatTok->is(tok::kw_switch) && "'switch' expected");
nextToken();
if (FormatTok->is(tok::l_paren))
parseParens();
keepAncestorBraces();
if (FormatTok->is(tok::l_brace)) {
CompoundStatementIndenter Indenter(this, Style, Line->Level);
FormatTok->setFinalizedType(TT_ControlStatementLBrace);
parseBlock();
setPreviousRBraceType(TT_ControlStatementRBrace);
addUnwrappedLine();
} else {
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
--Line->Level;
}
if (Style.RemoveBracesLLVM)
NestedTooDeep.pop_back();
}
// Operators that can follow a C variable.
static bool isCOperatorFollowingVar(tok::TokenKind Kind) {
switch (Kind) {
case tok::ampamp:
case tok::ampequal:
case tok::arrow:
case tok::caret:
case tok::caretequal:
case tok::comma:
case tok::ellipsis:
case tok::equal:
case tok::equalequal:
case tok::exclaim:
case tok::exclaimequal:
case tok::greater:
case tok::greaterequal:
case tok::greatergreater:
case tok::greatergreaterequal:
case tok::l_paren:
case tok::l_square:
case tok::less:
case tok::lessequal:
case tok::lessless:
case tok::lesslessequal:
case tok::minus:
case tok::minusequal:
case tok::minusminus:
case tok::percent:
case tok::percentequal:
case tok::period:
case tok::pipe:
case tok::pipeequal:
case tok::pipepipe:
case tok::plus:
case tok::plusequal:
case tok::plusplus:
case tok::question:
case tok::r_brace:
case tok::r_paren:
case tok::r_square:
case tok::semi:
case tok::slash:
case tok::slashequal:
case tok::star:
case tok::starequal:
return true;
default:
return false;
}
}
void UnwrappedLineParser::parseAccessSpecifier() {
FormatToken *AccessSpecifierCandidate = FormatTok;
nextToken();
// Understand Qt's slots.
if (FormatTok->isOneOf(Keywords.kw_slots, Keywords.kw_qslots))
nextToken();
// Otherwise, we don't know what it is, and we'd better keep the next token.
if (FormatTok->is(tok::colon)) {
nextToken();
addUnwrappedLine();
} else if (FormatTok->isNot(tok::coloncolon) &&
!isCOperatorFollowingVar(FormatTok->Tok.getKind())) {
// Not a variable name nor namespace name.
addUnwrappedLine();
} else if (AccessSpecifierCandidate) {
// Consider the access specifier to be a C identifier.
AccessSpecifierCandidate->Tok.setKind(tok::identifier);
}
}
/// \brief Parses a requires, decides if it is a clause or an expression.
/// \pre The current token has to be the requires keyword.
/// \returns true if it parsed a clause.
bool clang::format::UnwrappedLineParser::parseRequires() {
assert(FormatTok->is(tok::kw_requires) && "'requires' expected");
auto RequiresToken = FormatTok;
// We try to guess if it is a requires clause, or a requires expression. For
// that we first consume the keyword and check the next token.
nextToken();
switch (FormatTok->Tok.getKind()) {
case tok::l_brace:
// This can only be an expression, never a clause.
parseRequiresExpression(RequiresToken);
return false;
case tok::l_paren:
// Clauses and expression can start with a paren, it's unclear what we have.
break;
default:
// All other tokens can only be a clause.
parseRequiresClause(RequiresToken);
return true;
}
// Looking forward we would have to decide if there are function declaration
// like arguments to the requires expression:
// requires (T t) {
// Or there is a constraint expression for the requires clause:
// requires (C<T> && ...
// But first let's look behind.
auto *PreviousNonComment = RequiresToken->getPreviousNonComment();
if (!PreviousNonComment ||
PreviousNonComment->is(TT_RequiresExpressionLBrace)) {
// If there is no token, or an expression left brace, we are a requires
// clause within a requires expression.
parseRequiresClause(RequiresToken);
return true;
}
switch (PreviousNonComment->Tok.getKind()) {
case tok::greater:
case tok::r_paren:
case tok::kw_noexcept:
case tok::kw_const:
// This is a requires clause.
parseRequiresClause(RequiresToken);
return true;
case tok::amp:
case tok::ampamp: {
// This can be either:
// if (... && requires (T t) ...)
// Or
// void member(...) && requires (C<T> ...
// We check the one token before that for a const:
// void member(...) const && requires (C<T> ...
auto PrevPrev = PreviousNonComment->getPreviousNonComment();
if (PrevPrev && PrevPrev->is(tok::kw_const)) {
parseRequiresClause(RequiresToken);
return true;
}
break;
}
default:
if (PreviousNonComment->isTypeOrIdentifier(IsCpp)) {
// This is a requires clause.
parseRequiresClause(RequiresToken);
return true;
}
// It's an expression.
parseRequiresExpression(RequiresToken);
return false;
}
// Now we look forward and try to check if the paren content is a parameter
// list. The parameters can be cv-qualified and contain references or
// pointers.
// So we want basically to check for TYPE NAME, but TYPE can contain all kinds
// of stuff: typename, const, *, &, &&, ::, identifiers.
unsigned StoredPosition = Tokens->getPosition();
FormatToken *NextToken = Tokens->getNextToken();
int Lookahead = 0;
auto PeekNext = [&Lookahead, &NextToken, this] {
++Lookahead;
NextToken = Tokens->getNextToken();
};
bool FoundType = false;
bool LastWasColonColon = false;
int OpenAngles = 0;
for (; Lookahead < 50; PeekNext()) {
switch (NextToken->Tok.getKind()) {
case tok::kw_volatile:
case tok::kw_const:
case tok::comma:
if (OpenAngles == 0) {
FormatTok = Tokens->setPosition(StoredPosition);
parseRequiresExpression(RequiresToken);
return false;
}
break;
case tok::eof:
// Break out of the loop.
Lookahead = 50;
break;
case tok::coloncolon:
LastWasColonColon = true;
break;
case tok::kw_decltype:
case tok::identifier:
if (FoundType && !LastWasColonColon && OpenAngles == 0) {
FormatTok = Tokens->setPosition(StoredPosition);
parseRequiresExpression(RequiresToken);
return false;
}
FoundType = true;
LastWasColonColon = false;
break;
case tok::less:
++OpenAngles;
break;
case tok::greater:
--OpenAngles;
break;
default:
if (NextToken->isTypeName(IsCpp)) {
FormatTok = Tokens->setPosition(StoredPosition);
parseRequiresExpression(RequiresToken);
return false;
}
break;
}
}
// This seems to be a complicated expression, just assume it's a clause.
FormatTok = Tokens->setPosition(StoredPosition);
parseRequiresClause(RequiresToken);
return true;
}
/// \brief Parses a requires clause.
/// \param RequiresToken The requires keyword token, which starts this clause.
/// \pre We need to be on the next token after the requires keyword.
/// \sa parseRequiresExpression
///
/// Returns if it either has finished parsing the clause, or it detects, that
/// the clause is incorrect.
void UnwrappedLineParser::parseRequiresClause(FormatToken *RequiresToken) {
assert(FormatTok->getPreviousNonComment() == RequiresToken);
assert(RequiresToken->is(tok::kw_requires) && "'requires' expected");
// If there is no previous token, we are within a requires expression,
// otherwise we will always have the template or function declaration in front
// of it.
bool InRequiresExpression =
!RequiresToken->Previous ||
RequiresToken->Previous->is(TT_RequiresExpressionLBrace);
RequiresToken->setFinalizedType(InRequiresExpression
? TT_RequiresClauseInARequiresExpression
: TT_RequiresClause);
// NOTE: parseConstraintExpression is only ever called from this function.
// It could be inlined into here.
parseConstraintExpression();
if (!InRequiresExpression)
FormatTok->Previous->ClosesRequiresClause = true;
}
/// \brief Parses a requires expression.
/// \param RequiresToken The requires keyword token, which starts this clause.
/// \pre We need to be on the next token after the requires keyword.
/// \sa parseRequiresClause
///
/// Returns if it either has finished parsing the expression, or it detects,
/// that the expression is incorrect.
void UnwrappedLineParser::parseRequiresExpression(FormatToken *RequiresToken) {
assert(FormatTok->getPreviousNonComment() == RequiresToken);
assert(RequiresToken->is(tok::kw_requires) && "'requires' expected");
RequiresToken->setFinalizedType(TT_RequiresExpression);
if (FormatTok->is(tok::l_paren)) {
FormatTok->setFinalizedType(TT_RequiresExpressionLParen);
parseParens();
}
if (FormatTok->is(tok::l_brace)) {
FormatTok->setFinalizedType(TT_RequiresExpressionLBrace);
parseChildBlock();
}
}
/// \brief Parses a constraint expression.
///
/// This is the body of a requires clause. It returns, when the parsing is
/// complete, or the expression is incorrect.
void UnwrappedLineParser::parseConstraintExpression() {
// The special handling for lambdas is needed since tryToParseLambda() eats a
// token and if a requires expression is the last part of a requires clause
// and followed by an attribute like [[nodiscard]] the ClosesRequiresClause is
// not set on the correct token. Thus we need to be aware if we even expect a
// lambda to be possible.
// template <typename T> requires requires { ... } [[nodiscard]] ...;
bool LambdaNextTimeAllowed = true;
// Within lambda declarations, it is permitted to put a requires clause after
// its template parameter list, which would place the requires clause right
// before the parentheses of the parameters of the lambda declaration. Thus,
// we track if we expect to see grouping parentheses at all.
// Without this check, `requires foo<T> (T t)` in the below example would be
// seen as the whole requires clause, accidentally eating the parameters of
// the lambda.
// [&]<typename T> requires foo<T> (T t) { ... };
bool TopLevelParensAllowed = true;
do {
bool LambdaThisTimeAllowed = std::exchange(LambdaNextTimeAllowed, false);
switch (FormatTok->Tok.getKind()) {
case tok::kw_requires: {
auto RequiresToken = FormatTok;
nextToken();
parseRequiresExpression(RequiresToken);
break;
}
case tok::l_paren:
if (!TopLevelParensAllowed)
return;
parseParens(/*AmpAmpTokenType=*/TT_BinaryOperator);
TopLevelParensAllowed = false;
break;
case tok::l_square:
if (!LambdaThisTimeAllowed || !tryToParseLambda())
return;
break;
case tok::kw_const:
case tok::semi:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
return;
case tok::l_brace:
// Potential function body.
return;
case tok::ampamp:
case tok::pipepipe:
FormatTok->setFinalizedType(TT_BinaryOperator);
nextToken();
LambdaNextTimeAllowed = true;
TopLevelParensAllowed = true;
break;
case tok::comma:
case tok::comment:
LambdaNextTimeAllowed = LambdaThisTimeAllowed;
nextToken();
break;
case tok::kw_sizeof:
case tok::greater:
case tok::greaterequal:
case tok::greatergreater:
case tok::less:
case tok::lessequal:
case tok::lessless:
case tok::equalequal:
case tok::exclaim:
case tok::exclaimequal:
case tok::plus:
case tok::minus:
case tok::star:
case tok::slash:
LambdaNextTimeAllowed = true;
TopLevelParensAllowed = true;
// Just eat them.
nextToken();
break;
case tok::numeric_constant:
case tok::coloncolon:
case tok::kw_true:
case tok::kw_false:
TopLevelParensAllowed = false;
// Just eat them.
nextToken();
break;
case tok::kw_static_cast:
case tok::kw_const_cast:
case tok::kw_reinterpret_cast:
case tok::kw_dynamic_cast:
nextToken();
if (FormatTok->isNot(tok::less))
return;
nextToken();
parseBracedList(/*IsAngleBracket=*/true);
break;
default:
if (!FormatTok->Tok.getIdentifierInfo()) {
// Identifiers are part of the default case, we check for more then
// tok::identifier to handle builtin type traits.
return;
}
// We need to differentiate identifiers for a template deduction guide,
// variables, or function return types (the constraint expression has
// ended before that), and basically all other cases. But it's easier to
// check the other way around.
assert(FormatTok->Previous);
switch (FormatTok->Previous->Tok.getKind()) {
case tok::coloncolon: // Nested identifier.
case tok::ampamp: // Start of a function or variable for the
case tok::pipepipe: // constraint expression. (binary)
case tok::exclaim: // The same as above, but unary.
case tok::kw_requires: // Initial identifier of a requires clause.
case tok::equal: // Initial identifier of a concept declaration.
break;
default:
return;
}
// Read identifier with optional template declaration.
nextToken();
if (FormatTok->is(tok::less)) {
nextToken();
parseBracedList(/*IsAngleBracket=*/true);
}
TopLevelParensAllowed = false;
break;
}
} while (!eof());
}
bool UnwrappedLineParser::parseEnum() {
const FormatToken &InitialToken = *FormatTok;
// Won't be 'enum' for NS_ENUMs.
if (FormatTok->is(tok::kw_enum))
nextToken();
// In TypeScript, "enum" can also be used as property name, e.g. in interface
// declarations. An "enum" keyword followed by a colon would be a syntax
// error and thus assume it is just an identifier.
if (Style.isJavaScript() && FormatTok->isOneOf(tok::colon, tok::question))
return false;
// In protobuf, "enum" can be used as a field name.
if (Style.Language == FormatStyle::LK_Proto && FormatTok->is(tok::equal))
return false;
if (IsCpp) {
// Eat up enum class ...
if (FormatTok->isOneOf(tok::kw_class, tok::kw_struct))
nextToken();
while (FormatTok->is(tok::l_square))
if (!handleCppAttributes())
return false;
}
while (FormatTok->Tok.getIdentifierInfo() ||
FormatTok->isOneOf(tok::colon, tok::coloncolon, tok::less,
tok::greater, tok::comma, tok::question,
tok::l_square)) {
if (Style.isVerilog()) {
FormatTok->setFinalizedType(TT_VerilogDimensionedTypeName);
nextToken();
// In Verilog the base type can have dimensions.
while (FormatTok->is(tok::l_square))
parseSquare();
} else {
nextToken();
}
// We can have macros or attributes in between 'enum' and the enum name.
if (FormatTok->is(tok::l_paren))
parseParens();
if (FormatTok->is(tok::identifier)) {
nextToken();
// If there are two identifiers in a row, this is likely an elaborate
// return type. In Java, this can be "implements", etc.
if (IsCpp && FormatTok->is(tok::identifier))
return false;
}
}
// Just a declaration or something is wrong.
if (FormatTok->isNot(tok::l_brace))
return true;
FormatTok->setFinalizedType(TT_EnumLBrace);
FormatTok->setBlockKind(BK_Block);
if (Style.Language == FormatStyle::LK_Java) {
// Java enums are different.
parseJavaEnumBody();
return true;
}
if (Style.Language == FormatStyle::LK_Proto) {
parseBlock(/*MustBeDeclaration=*/true);
return true;
}
if (!Style.AllowShortEnumsOnASingleLine &&
ShouldBreakBeforeBrace(Style, InitialToken)) {
addUnwrappedLine();
}
// Parse enum body.
nextToken();
if (!Style.AllowShortEnumsOnASingleLine) {
addUnwrappedLine();
Line->Level += 1;
}
bool HasError = !parseBracedList(/*IsAngleBracket=*/false, /*IsEnum=*/true);
if (!Style.AllowShortEnumsOnASingleLine)
Line->Level -= 1;
if (HasError) {
if (FormatTok->is(tok::semi))
nextToken();
addUnwrappedLine();
}
setPreviousRBraceType(TT_EnumRBrace);
return true;
// There is no addUnwrappedLine() here so that we fall through to parsing a
// structural element afterwards. Thus, in "enum A {} n, m;",
// "} n, m;" will end up in one unwrapped line.
}
bool UnwrappedLineParser::parseStructLike() {
// parseRecord falls through and does not yet add an unwrapped line as a
// record declaration or definition can start a structural element.
parseRecord();
// This does not apply to Java, JavaScript and C#.
if (Style.Language == FormatStyle::LK_Java || Style.isJavaScript() ||
Style.isCSharp()) {
if (FormatTok->is(tok::semi))
nextToken();
addUnwrappedLine();
return true;
}
return false;
}
namespace {
// A class used to set and restore the Token position when peeking
// ahead in the token source.
class ScopedTokenPosition {
unsigned StoredPosition;
FormatTokenSource *Tokens;
public:
ScopedTokenPosition(FormatTokenSource *Tokens) : Tokens(Tokens) {
assert(Tokens && "Tokens expected to not be null");
StoredPosition = Tokens->getPosition();
}
~ScopedTokenPosition() { Tokens->setPosition(StoredPosition); }
};
} // namespace
// Look to see if we have [[ by looking ahead, if
// its not then rewind to the original position.
bool UnwrappedLineParser::tryToParseSimpleAttribute() {
ScopedTokenPosition AutoPosition(Tokens);
FormatToken *Tok = Tokens->getNextToken();
// We already read the first [ check for the second.
if (Tok->isNot(tok::l_square))
return false;
// Double check that the attribute is just something
// fairly simple.
while (Tok->isNot(tok::eof)) {
if (Tok->is(tok::r_square))
break;
Tok = Tokens->getNextToken();
}
if (Tok->is(tok::eof))
return false;
Tok = Tokens->getNextToken();
if (Tok->isNot(tok::r_square))
return false;
Tok = Tokens->getNextToken();
if (Tok->is(tok::semi))
return false;
return true;
}
void UnwrappedLineParser::parseJavaEnumBody() {
assert(FormatTok->is(tok::l_brace));
const FormatToken *OpeningBrace = FormatTok;
// Determine whether the enum is simple, i.e. does not have a semicolon or
// constants with class bodies. Simple enums can be formatted like braced
// lists, contracted to a single line, etc.
unsigned StoredPosition = Tokens->getPosition();
bool IsSimple = true;
FormatToken *Tok = Tokens->getNextToken();
while (Tok->isNot(tok::eof)) {
if (Tok->is(tok::r_brace))
break;
if (Tok->isOneOf(tok::l_brace, tok::semi)) {
IsSimple = false;
break;
}
// FIXME: This will also mark enums with braces in the arguments to enum
// constants as "not simple". This is probably fine in practice, though.
Tok = Tokens->getNextToken();
}
FormatTok = Tokens->setPosition(StoredPosition);
if (IsSimple) {
nextToken();
parseBracedList();
addUnwrappedLine();
return;
}
// Parse the body of a more complex enum.
// First add a line for everything up to the "{".
nextToken();
addUnwrappedLine();
++Line->Level;
// Parse the enum constants.
while (!eof()) {
if (FormatTok->is(tok::l_brace)) {
// Parse the constant's class body.
parseBlock(/*MustBeDeclaration=*/true, /*AddLevels=*/1u,
/*MunchSemi=*/false);
} else if (FormatTok->is(tok::l_paren)) {
parseParens();
} else if (FormatTok->is(tok::comma)) {
nextToken();
addUnwrappedLine();
} else if (FormatTok->is(tok::semi)) {
nextToken();
addUnwrappedLine();
break;
} else if (FormatTok->is(tok::r_brace)) {
addUnwrappedLine();
break;
} else {
nextToken();
}
}
// Parse the class body after the enum's ";" if any.
parseLevel(OpeningBrace);
nextToken();
--Line->Level;
addUnwrappedLine();
}
void UnwrappedLineParser::parseRecord(bool ParseAsExpr) {
const FormatToken &InitialToken = *FormatTok;
nextToken();
const FormatToken *ClassName = nullptr;
bool IsDerived = false;
auto IsNonMacroIdentifier = [](const FormatToken *Tok) {
return Tok->is(tok::identifier) && Tok->TokenText != Tok->TokenText.upper();
};
// The actual identifier can be a nested name specifier, and in macros
// it is often token-pasted.
// An [[attribute]] can be before the identifier.
while (FormatTok->isOneOf(tok::identifier, tok::coloncolon, tok::hashhash,
tok::kw_alignas, tok::l_square) ||
FormatTok->isAttribute() ||
((Style.Language == FormatStyle::LK_Java || Style.isJavaScript()) &&
FormatTok->isOneOf(tok::period, tok::comma))) {
if (Style.isJavaScript() &&
FormatTok->isOneOf(Keywords.kw_extends, Keywords.kw_implements)) {
// JavaScript/TypeScript supports inline object types in
// extends/implements positions:
// class Foo implements {bar: number} { }
nextToken();
if (FormatTok->is(tok::l_brace)) {
tryToParseBracedList();
continue;
}
}
if (FormatTok->is(tok::l_square) && handleCppAttributes())
continue;
const auto *Previous = FormatTok;
nextToken();
switch (FormatTok->Tok.getKind()) {
case tok::l_paren:
// We can have macros in between 'class' and the class name.
if (!IsNonMacroIdentifier(Previous))
parseParens();
break;
case tok::coloncolon:
break;
default:
if (!ClassName && Previous->is(tok::identifier))
ClassName = Previous;
}
}
auto IsListInitialization = [&] {
if (!ClassName || IsDerived)
return false;
assert(FormatTok->is(tok::l_brace));
const auto *Prev = FormatTok->getPreviousNonComment();
assert(Prev);
return Prev != ClassName && Prev->is(tok::identifier) &&
Prev->isNot(Keywords.kw_final) && tryToParseBracedList();
};
if (FormatTok->isOneOf(tok::colon, tok::less)) {
if (FormatTok->is(tok::colon))
IsDerived = true;
int AngleNestingLevel = 0;
do {
if (FormatTok->is(tok::less))
++AngleNestingLevel;
else if (FormatTok->is(tok::greater))
--AngleNestingLevel;
if (AngleNestingLevel == 0 && FormatTok->is(tok::l_paren) &&
IsNonMacroIdentifier(FormatTok->Previous)) {
break;
}
if (FormatTok->is(tok::l_brace)) {
if (AngleNestingLevel == 0 && IsListInitialization())
return;
calculateBraceTypes(/*ExpectClassBody=*/true);
if (!tryToParseBracedList())
break;
}
if (FormatTok->is(tok::l_square)) {
FormatToken *Previous = FormatTok->Previous;
if (!Previous || (Previous->isNot(tok::r_paren) &&
!Previous->isTypeOrIdentifier(IsCpp))) {
// Don't try parsing a lambda if we had a closing parenthesis before,
// it was probably a pointer to an array: int (*)[].
if (!tryToParseLambda())
continue;
} else {
parseSquare();
continue;
}
}
if (FormatTok->is(tok::semi))
return;
if (Style.isCSharp() && FormatTok->is(Keywords.kw_where)) {
addUnwrappedLine();
nextToken();
parseCSharpGenericTypeConstraint();
break;
}
nextToken();
} while (!eof());
}
auto GetBraceTypes =
[](const FormatToken &RecordTok) -> std::pair<TokenType, TokenType> {
switch (RecordTok.Tok.getKind()) {
case tok::kw_class:
return {TT_ClassLBrace, TT_ClassRBrace};
case tok::kw_struct:
return {TT_StructLBrace, TT_StructRBrace};
case tok::kw_union:
return {TT_UnionLBrace, TT_UnionRBrace};
default:
// Useful for e.g. interface.
return {TT_RecordLBrace, TT_RecordRBrace};
}
};
if (FormatTok->is(tok::l_brace)) {
if (IsListInitialization())
return;
auto [OpenBraceType, ClosingBraceType] = GetBraceTypes(InitialToken);
FormatTok->setFinalizedType(OpenBraceType);
if (ParseAsExpr) {
parseChildBlock();
} else {
if (ShouldBreakBeforeBrace(Style, InitialToken))
addUnwrappedLine();
unsigned AddLevels = Style.IndentAccessModifiers ? 2u : 1u;
parseBlock(/*MustBeDeclaration=*/true, AddLevels, /*MunchSemi=*/false);
}
setPreviousRBraceType(ClosingBraceType);
}
// There is no addUnwrappedLine() here so that we fall through to parsing a
// structural element afterwards. Thus, in "class A {} n, m;",
// "} n, m;" will end up in one unwrapped line.
}
void UnwrappedLineParser::parseObjCMethod() {
assert(FormatTok->isOneOf(tok::l_paren, tok::identifier) &&
"'(' or identifier expected.");
do {
if (FormatTok->is(tok::semi)) {
nextToken();
addUnwrappedLine();
return;
} else if (FormatTok->is(tok::l_brace)) {
if (Style.BraceWrapping.AfterFunction)
addUnwrappedLine();
parseBlock();
addUnwrappedLine();
return;
} else {
nextToken();
}
} while (!eof());
}
void UnwrappedLineParser::parseObjCProtocolList() {
assert(FormatTok->is(tok::less) && "'<' expected.");
do {
nextToken();
// Early exit in case someone forgot a close angle.
if (FormatTok->isOneOf(tok::semi, tok::l_brace) ||
FormatTok->isObjCAtKeyword(tok::objc_end)) {
return;
}
} while (!eof() && FormatTok->isNot(tok::greater));
nextToken(); // Skip '>'.
}
void UnwrappedLineParser::parseObjCUntilAtEnd() {
do {
if (FormatTok->isObjCAtKeyword(tok::objc_end)) {
nextToken();
addUnwrappedLine();
break;
}
if (FormatTok->is(tok::l_brace)) {
parseBlock();
// In ObjC interfaces, nothing should be following the "}".
addUnwrappedLine();
} else if (FormatTok->is(tok::r_brace)) {
// Ignore stray "}". parseStructuralElement doesn't consume them.
nextToken();
addUnwrappedLine();
} else if (FormatTok->isOneOf(tok::minus, tok::plus)) {
nextToken();
parseObjCMethod();
} else {
parseStructuralElement();
}
} while (!eof());
}
void UnwrappedLineParser::parseObjCInterfaceOrImplementation() {
assert(FormatTok->Tok.getObjCKeywordID() == tok::objc_interface ||
FormatTok->Tok.getObjCKeywordID() == tok::objc_implementation);
nextToken();
nextToken(); // interface name
// @interface can be followed by a lightweight generic
// specialization list, then either a base class or a category.
if (FormatTok->is(tok::less))
parseObjCLightweightGenerics();
if (FormatTok->is(tok::colon)) {
nextToken();
nextToken(); // base class name
// The base class can also have lightweight generics applied to it.
if (FormatTok->is(tok::less))
parseObjCLightweightGenerics();
} else if (FormatTok->is(tok::l_paren)) {
// Skip category, if present.
parseParens();
}
if (FormatTok->is(tok::less))
parseObjCProtocolList();
if (FormatTok->is(tok::l_brace)) {
if (Style.BraceWrapping.AfterObjCDeclaration)
addUnwrappedLine();
parseBlock(/*MustBeDeclaration=*/true);
}
// With instance variables, this puts '}' on its own line. Without instance
// variables, this ends the @interface line.
addUnwrappedLine();
parseObjCUntilAtEnd();
}
void UnwrappedLineParser::parseObjCLightweightGenerics() {
assert(FormatTok->is(tok::less));
// Unlike protocol lists, generic parameterizations support
// nested angles:
//
// @interface Foo<ValueType : id <NSCopying, NSSecureCoding>> :
// NSObject <NSCopying, NSSecureCoding>
//
// so we need to count how many open angles we have left.
unsigned NumOpenAngles = 1;
do {
nextToken();
// Early exit in case someone forgot a close angle.
if (FormatTok->isOneOf(tok::semi, tok::l_brace) ||
FormatTok->isObjCAtKeyword(tok::objc_end)) {
break;
}
if (FormatTok->is(tok::less)) {
++NumOpenAngles;
} else if (FormatTok->is(tok::greater)) {
assert(NumOpenAngles > 0 && "'>' makes NumOpenAngles negative");
--NumOpenAngles;
}
} while (!eof() && NumOpenAngles != 0);
nextToken(); // Skip '>'.
}
// Returns true for the declaration/definition form of @protocol,
// false for the expression form.
bool UnwrappedLineParser::parseObjCProtocol() {
assert(FormatTok->Tok.getObjCKeywordID() == tok::objc_protocol);
nextToken();
if (FormatTok->is(tok::l_paren)) {
// The expression form of @protocol, e.g. "Protocol* p = @protocol(foo);".
return false;
}
// The definition/declaration form,
// @protocol Foo
// - (int)someMethod;
// @end
nextToken(); // protocol name
if (FormatTok->is(tok::less))
parseObjCProtocolList();
// Check for protocol declaration.
if (FormatTok->is(tok::semi)) {
nextToken();
addUnwrappedLine();
return true;
}
addUnwrappedLine();
parseObjCUntilAtEnd();
return true;
}
void UnwrappedLineParser::parseJavaScriptEs6ImportExport() {
bool IsImport = FormatTok->is(Keywords.kw_import);
assert(IsImport || FormatTok->is(tok::kw_export));
nextToken();
// Consume the "default" in "export default class/function".
if (FormatTok->is(tok::kw_default))
nextToken();
// Consume "async function", "function" and "default function", so that these
// get parsed as free-standing JS functions, i.e. do not require a trailing
// semicolon.
if (FormatTok->is(Keywords.kw_async))
nextToken();
if (FormatTok->is(Keywords.kw_function)) {
nextToken();
return;
}
// For imports, `export *`, `export {...}`, consume the rest of the line up
// to the terminating `;`. For everything else, just return and continue
// parsing the structural element, i.e. the declaration or expression for
// `export default`.
if (!IsImport && !FormatTok->isOneOf(tok::l_brace, tok::star) &&
!FormatTok->isStringLiteral() &&
!(FormatTok->is(Keywords.kw_type) &&
Tokens->peekNextToken()->isOneOf(tok::l_brace, tok::star))) {
return;
}
while (!eof()) {
if (FormatTok->is(tok::semi))
return;
if (Line->Tokens.empty()) {
// Common issue: Automatic Semicolon Insertion wrapped the line, so the
// import statement should terminate.
return;
}
if (FormatTok->is(tok::l_brace)) {
FormatTok->setBlockKind(BK_Block);
nextToken();
parseBracedList();
} else {
nextToken();
}
}
}
void UnwrappedLineParser::parseStatementMacro() {
nextToken();
if (FormatTok->is(tok::l_paren))
parseParens();
if (FormatTok->is(tok::semi))
nextToken();
addUnwrappedLine();
}
void UnwrappedLineParser::parseVerilogHierarchyIdentifier() {
// consume things like a::`b.c[d:e] or a::*
while (true) {
if (FormatTok->isOneOf(tok::star, tok::period, tok::periodstar,
tok::coloncolon, tok::hash) ||
Keywords.isVerilogIdentifier(*FormatTok)) {
nextToken();
} else if (FormatTok->is(tok::l_square)) {
parseSquare();
} else {
break;
}
}
}
void UnwrappedLineParser::parseVerilogSensitivityList() {
if (FormatTok->isNot(tok::at))
return;
nextToken();
// A block event expression has 2 at signs.
if (FormatTok->is(tok::at))
nextToken();
switch (FormatTok->Tok.getKind()) {
case tok::star:
nextToken();
break;
case tok::l_paren:
parseParens();
break;
default:
parseVerilogHierarchyIdentifier();
break;
}
}
unsigned UnwrappedLineParser::parseVerilogHierarchyHeader() {
unsigned AddLevels = 0;
if (FormatTok->is(Keywords.kw_clocking)) {
nextToken();
if (Keywords.isVerilogIdentifier(*FormatTok))
nextToken();
parseVerilogSensitivityList();
if (FormatTok->is(tok::semi))
nextToken();
} else if (FormatTok->isOneOf(tok::kw_case, Keywords.kw_casex,
Keywords.kw_casez, Keywords.kw_randcase,
Keywords.kw_randsequence)) {
if (Style.IndentCaseLabels)
AddLevels++;
nextToken();
if (FormatTok->is(tok::l_paren)) {
FormatTok->setFinalizedType(TT_ConditionLParen);
parseParens();
}
if (FormatTok->isOneOf(Keywords.kw_inside, Keywords.kw_matches))
nextToken();
// The case header has no semicolon.
} else {
// "module" etc.
nextToken();
// all the words like the name of the module and specifiers like
// "automatic" and the width of function return type
while (true) {
if (FormatTok->is(tok::l_square)) {
auto Prev = FormatTok->getPreviousNonComment();
if (Prev && Keywords.isVerilogIdentifier(*Prev))
Prev->setFinalizedType(TT_VerilogDimensionedTypeName);
parseSquare();
} else if (Keywords.isVerilogIdentifier(*FormatTok) ||
FormatTok->isOneOf(Keywords.kw_automatic, tok::kw_static)) {
nextToken();
} else {
break;
}
}
auto NewLine = [this]() {
addUnwrappedLine();
Line->IsContinuation = true;
};
// package imports
while (FormatTok->is(Keywords.kw_import)) {
NewLine();
nextToken();
parseVerilogHierarchyIdentifier();
if (FormatTok->is(tok::semi))
nextToken();
}
// parameters and ports
if (FormatTok->is(Keywords.kw_verilogHash)) {
NewLine();
nextToken();
if (FormatTok->is(tok::l_paren)) {
FormatTok->setFinalizedType(TT_VerilogMultiLineListLParen);
parseParens();
}
}
if (FormatTok->is(tok::l_paren)) {
NewLine();
FormatTok->setFinalizedType(TT_VerilogMultiLineListLParen);
parseParens();
}
// extends and implements
if (FormatTok->is(Keywords.kw_extends)) {
NewLine();
nextToken();
parseVerilogHierarchyIdentifier();
if (FormatTok->is(tok::l_paren))
parseParens();
}
if (FormatTok->is(Keywords.kw_implements)) {
NewLine();
do {
nextToken();
parseVerilogHierarchyIdentifier();
} while (FormatTok->is(tok::comma));
}
// Coverage event for cover groups.
if (FormatTok->is(tok::at)) {
NewLine();
parseVerilogSensitivityList();
}
if (FormatTok->is(tok::semi))
nextToken(/*LevelDifference=*/1);
addUnwrappedLine();
}
return AddLevels;
}
void UnwrappedLineParser::parseVerilogTable() {
assert(FormatTok->is(Keywords.kw_table));
nextToken(/*LevelDifference=*/1);
addUnwrappedLine();
auto InitialLevel = Line->Level++;
while (!eof() && !Keywords.isVerilogEnd(*FormatTok)) {
FormatToken *Tok = FormatTok;
nextToken();
if (Tok->is(tok::semi))
addUnwrappedLine();
else if (Tok->isOneOf(tok::star, tok::colon, tok::question, tok::minus))
Tok->setFinalizedType(TT_VerilogTableItem);
}
Line->Level = InitialLevel;
nextToken(/*LevelDifference=*/-1);
addUnwrappedLine();
}
void UnwrappedLineParser::parseVerilogCaseLabel() {
// The label will get unindented in AnnotatingParser. If there are no leading
// spaces, indent the rest here so that things inside the block will be
// indented relative to things outside. We don't use parseLabel because we
// don't know whether this colon is a label or a ternary expression at this
// point.
auto OrigLevel = Line->Level;
auto FirstLine = CurrentLines->size();
if (Line->Level == 0 || (Line->InPPDirective && Line->Level <= 1))
++Line->Level;
else if (!Style.IndentCaseBlocks && Keywords.isVerilogBegin(*FormatTok))
--Line->Level;
parseStructuralElement();
// Restore the indentation in both the new line and the line that has the
// label.
if (CurrentLines->size() > FirstLine)
(*CurrentLines)[FirstLine].Level = OrigLevel;
Line->Level = OrigLevel;
}
bool UnwrappedLineParser::containsExpansion(const UnwrappedLine &Line) const {
for (const auto &N : Line.Tokens) {
if (N.Tok->MacroCtx)
return true;
for (const UnwrappedLine &Child : N.Children)
if (containsExpansion(Child))
return true;
}
return false;
}
void UnwrappedLineParser::addUnwrappedLine(LineLevel AdjustLevel) {
if (Line->Tokens.empty())
return;
LLVM_DEBUG({
if (!parsingPPDirective()) {
llvm::dbgs() << "Adding unwrapped line:\n";
printDebugInfo(*Line);
}
});
// If this line closes a block when in Whitesmiths mode, remember that
// information so that the level can be decreased after the line is added.
// This has to happen after the addition of the line since the line itself
// needs to be indented.
bool ClosesWhitesmithsBlock =
Line->MatchingOpeningBlockLineIndex != UnwrappedLine::kInvalidIndex &&
Style.BreakBeforeBraces == FormatStyle::BS_Whitesmiths;
// If the current line was expanded from a macro call, we use it to
// reconstruct an unwrapped line from the structure of the expanded unwrapped
// line and the unexpanded token stream.
if (!parsingPPDirective() && !InExpansion && containsExpansion(*Line)) {
if (!Reconstruct)
Reconstruct.emplace(Line->Level, Unexpanded);
Reconstruct->addLine(*Line);
// While the reconstructed unexpanded lines are stored in the normal
// flow of lines, the expanded lines are stored on the side to be analyzed
// in an extra step.
CurrentExpandedLines.push_back(std::move(*Line));
if (Reconstruct->finished()) {
UnwrappedLine Reconstructed = std::move(*Reconstruct).takeResult();
assert(!Reconstructed.Tokens.empty() &&
"Reconstructed must at least contain the macro identifier.");
assert(!parsingPPDirective());
LLVM_DEBUG({
llvm::dbgs() << "Adding unexpanded line:\n";
printDebugInfo(Reconstructed);
});
ExpandedLines[Reconstructed.Tokens.begin()->Tok] = CurrentExpandedLines;
Lines.push_back(std::move(Reconstructed));
CurrentExpandedLines.clear();
Reconstruct.reset();
}
} else {
// At the top level we only get here when no unexpansion is going on, or
// when conditional formatting led to unfinished macro reconstructions.
assert(!Reconstruct || (CurrentLines != &Lines) || PPStack.size() > 0);
CurrentLines->push_back(std::move(*Line));
}
Line->Tokens.clear();
Line->MatchingOpeningBlockLineIndex = UnwrappedLine::kInvalidIndex;
Line->FirstStartColumn = 0;
Line->IsContinuation = false;
Line->SeenDecltypeAuto = false;
if (ClosesWhitesmithsBlock && AdjustLevel == LineLevel::Remove)
--Line->Level;
if (!parsingPPDirective() && !PreprocessorDirectives.empty()) {
CurrentLines->append(
std::make_move_iterator(PreprocessorDirectives.begin()),
std::make_move_iterator(PreprocessorDirectives.end()));
PreprocessorDirectives.clear();
}
// Disconnect the current token from the last token on the previous line.
FormatTok->Previous = nullptr;
}
bool UnwrappedLineParser::eof() const { return FormatTok->is(tok::eof); }
bool UnwrappedLineParser::isOnNewLine(const FormatToken &FormatTok) {
return (Line->InPPDirective || FormatTok.HasUnescapedNewline) &&
FormatTok.NewlinesBefore > 0;
}
// Checks if \p FormatTok is a line comment that continues the line comment
// section on \p Line.
static bool
continuesLineCommentSection(const FormatToken &FormatTok,
const UnwrappedLine &Line,
const llvm::Regex &CommentPragmasRegex) {
if (Line.Tokens.empty())
return false;
StringRef IndentContent = FormatTok.TokenText;
if (FormatTok.TokenText.starts_with("//") ||
FormatTok.TokenText.starts_with("/*")) {
IndentContent = FormatTok.TokenText.substr(2);
}
if (CommentPragmasRegex.match(IndentContent))
return false;
// If Line starts with a line comment, then FormatTok continues the comment
// section if its original column is greater or equal to the original start
// column of the line.
//
// Define the min column token of a line as follows: if a line ends in '{' or
// contains a '{' followed by a line comment, then the min column token is
// that '{'. Otherwise, the min column token of the line is the first token of
// the line.
//
// If Line starts with a token other than a line comment, then FormatTok
// continues the comment section if its original column is greater than the
// original start column of the min column token of the line.
//
// For example, the second line comment continues the first in these cases:
//
// // first line
// // second line
//
// and:
//
// // first line
// // second line
//
// and:
//
// int i; // first line
// // second line
//
// and:
//
// do { // first line
// // second line
// int i;
// } while (true);
//
// and:
//
// enum {
// a, // first line
// // second line
// b
// };
//
// The second line comment doesn't continue the first in these cases:
//
// // first line
// // second line
//
// and:
//
// int i; // first line
// // second line
//
// and:
//
// do { // first line
// // second line
// int i;
// } while (true);
//
// and:
//
// enum {
// a, // first line
// // second line
// };
const FormatToken *MinColumnToken = Line.Tokens.front().Tok;
// Scan for '{//'. If found, use the column of '{' as a min column for line
// comment section continuation.
const FormatToken *PreviousToken = nullptr;
for (const UnwrappedLineNode &Node : Line.Tokens) {
if (PreviousToken && PreviousToken->is(tok::l_brace) &&
isLineComment(*Node.Tok)) {
MinColumnToken = PreviousToken;
break;
}
PreviousToken = Node.Tok;
// Grab the last newline preceding a token in this unwrapped line.
if (Node.Tok->NewlinesBefore > 0)
MinColumnToken = Node.Tok;
}
if (PreviousToken && PreviousToken->is(tok::l_brace))
MinColumnToken = PreviousToken;
return continuesLineComment(FormatTok, /*Previous=*/Line.Tokens.back().Tok,
MinColumnToken);
}
void UnwrappedLineParser::flushComments(bool NewlineBeforeNext) {
bool JustComments = Line->Tokens.empty();
for (FormatToken *Tok : CommentsBeforeNextToken) {
// Line comments that belong to the same line comment section are put on the
// same line since later we might want to reflow content between them.
// Additional fine-grained breaking of line comment sections is controlled
// by the class BreakableLineCommentSection in case it is desirable to keep
// several line comment sections in the same unwrapped line.
//
// FIXME: Consider putting separate line comment sections as children to the
// unwrapped line instead.
Tok->ContinuesLineCommentSection =
continuesLineCommentSection(*Tok, *Line, CommentPragmasRegex);
if (isOnNewLine(*Tok) && JustComments && !Tok->ContinuesLineCommentSection)
addUnwrappedLine();
pushToken(Tok);
}
if (NewlineBeforeNext && JustComments)
addUnwrappedLine();
CommentsBeforeNextToken.clear();
}
void UnwrappedLineParser::nextToken(int LevelDifference) {
if (eof())
return;
flushComments(isOnNewLine(*FormatTok));
pushToken(FormatTok);
FormatToken *Previous = FormatTok;
if (!Style.isJavaScript())
readToken(LevelDifference);
else
readTokenWithJavaScriptASI();
FormatTok->Previous = Previous;
if (Style.isVerilog()) {
// Blocks in Verilog can have `begin` and `end` instead of braces. For
// keywords like `begin`, we can't treat them the same as left braces
// because some contexts require one of them. For example structs use
// braces and if blocks use keywords, and a left brace can occur in an if
// statement, but it is not a block. For keywords like `end`, we simply
// treat them the same as right braces.
if (Keywords.isVerilogEnd(*FormatTok))
FormatTok->Tok.setKind(tok::r_brace);
}
}
void UnwrappedLineParser::distributeComments(
const SmallVectorImpl<FormatToken *> &Comments,
const FormatToken *NextTok) {
// Whether or not a line comment token continues a line is controlled by
// the method continuesLineCommentSection, with the following caveat:
//
// Define a trail of Comments to be a nonempty proper postfix of Comments such
// that each comment line from the trail is aligned with the next token, if
// the next token exists. If a trail exists, the beginning of the maximal
// trail is marked as a start of a new comment section.
//
// For example in this code:
//
// int a; // line about a
// // line 1 about b
// // line 2 about b
// int b;
//
// the two lines about b form a maximal trail, so there are two sections, the
// first one consisting of the single comment "// line about a" and the
// second one consisting of the next two comments.
if (Comments.empty())
return;
bool ShouldPushCommentsInCurrentLine = true;
bool HasTrailAlignedWithNextToken = false;
unsigned StartOfTrailAlignedWithNextToken = 0;
if (NextTok) {
// We are skipping the first element intentionally.
for (unsigned i = Comments.size() - 1; i > 0; --i) {
if (Comments[i]->OriginalColumn == NextTok->OriginalColumn) {
HasTrailAlignedWithNextToken = true;
StartOfTrailAlignedWithNextToken = i;
}
}
}
for (unsigned i = 0, e = Comments.size(); i < e; ++i) {
FormatToken *FormatTok = Comments[i];
if (HasTrailAlignedWithNextToken && i == StartOfTrailAlignedWithNextToken) {
FormatTok->ContinuesLineCommentSection = false;
} else {
FormatTok->ContinuesLineCommentSection =
continuesLineCommentSection(*FormatTok, *Line, CommentPragmasRegex);
}
if (!FormatTok->ContinuesLineCommentSection &&
(isOnNewLine(*FormatTok) || FormatTok->IsFirst)) {
ShouldPushCommentsInCurrentLine = false;
}
if (ShouldPushCommentsInCurrentLine)
pushToken(FormatTok);
else
CommentsBeforeNextToken.push_back(FormatTok);
}
}
void UnwrappedLineParser::readToken(int LevelDifference) {
SmallVector<FormatToken *, 1> Comments;
bool PreviousWasComment = false;
bool FirstNonCommentOnLine = false;
do {
FormatTok = Tokens->getNextToken();
assert(FormatTok);
while (FormatTok->isOneOf(TT_ConflictStart, TT_ConflictEnd,
TT_ConflictAlternative)) {
if (FormatTok->is(TT_ConflictStart))
conditionalCompilationStart(/*Unreachable=*/false);
else if (FormatTok->is(TT_ConflictAlternative))
conditionalCompilationAlternative();
else if (FormatTok->is(TT_ConflictEnd))
conditionalCompilationEnd();
FormatTok = Tokens->getNextToken();
FormatTok->MustBreakBefore = true;
FormatTok->MustBreakBeforeFinalized = true;
}
auto IsFirstNonCommentOnLine = [](bool FirstNonCommentOnLine,
const FormatToken &Tok,
bool PreviousWasComment) {
auto IsFirstOnLine = [](const FormatToken &Tok) {
return Tok.HasUnescapedNewline || Tok.IsFirst;
};
// Consider preprocessor directives preceded by block comments as first
// on line.
if (PreviousWasComment)
return FirstNonCommentOnLine || IsFirstOnLine(Tok);
return IsFirstOnLine(Tok);
};
FirstNonCommentOnLine = IsFirstNonCommentOnLine(
FirstNonCommentOnLine, *FormatTok, PreviousWasComment);
PreviousWasComment = FormatTok->is(tok::comment);
while (!Line->InPPDirective && FormatTok->is(tok::hash) &&
(!Style.isVerilog() ||
Keywords.isVerilogPPDirective(*Tokens->peekNextToken())) &&
FirstNonCommentOnLine) {
distributeComments(Comments, FormatTok);
Comments.clear();
// If there is an unfinished unwrapped line, we flush the preprocessor
// directives only after that unwrapped line was finished later.
bool SwitchToPreprocessorLines = !Line->Tokens.empty();
ScopedLineState BlockState(*this, SwitchToPreprocessorLines);
assert((LevelDifference >= 0 ||
static_cast<unsigned>(-LevelDifference) <= Line->Level) &&
"LevelDifference makes Line->Level negative");
Line->Level += LevelDifference;
// Comments stored before the preprocessor directive need to be output
// before the preprocessor directive, at the same level as the
// preprocessor directive, as we consider them to apply to the directive.
if (Style.IndentPPDirectives == FormatStyle::PPDIS_BeforeHash &&
PPBranchLevel > 0) {
Line->Level += PPBranchLevel;
}
flushComments(isOnNewLine(*FormatTok));
parsePPDirective();
PreviousWasComment = FormatTok->is(tok::comment);
FirstNonCommentOnLine = IsFirstNonCommentOnLine(
FirstNonCommentOnLine, *FormatTok, PreviousWasComment);
}
if (!PPStack.empty() && (PPStack.back().Kind == PP_Unreachable) &&
!Line->InPPDirective) {
continue;
}
if (FormatTok->is(tok::identifier) &&
Macros.defined(FormatTok->TokenText) &&
// FIXME: Allow expanding macros in preprocessor directives.
!Line->InPPDirective) {
FormatToken *ID = FormatTok;
unsigned Position = Tokens->getPosition();
// To correctly parse the code, we need to replace the tokens of the macro
// call with its expansion.
auto PreCall = std::move(Line);
Line.reset(new UnwrappedLine);
bool OldInExpansion = InExpansion;
InExpansion = true;
// We parse the macro call into a new line.
auto Args = parseMacroCall();
InExpansion = OldInExpansion;
assert(Line->Tokens.front().Tok == ID);
// And remember the unexpanded macro call tokens.
auto UnexpandedLine = std::move(Line);
// Reset to the old line.
Line = std::move(PreCall);
LLVM_DEBUG({
llvm::dbgs() << "Macro call: " << ID->TokenText << "(";
if (Args) {
llvm::dbgs() << "(";
for (const auto &Arg : Args.value())
for (const auto &T : Arg)
llvm::dbgs() << T->TokenText << " ";
llvm::dbgs() << ")";
}
llvm::dbgs() << "\n";
});
if (Macros.objectLike(ID->TokenText) && Args &&
!Macros.hasArity(ID->TokenText, Args->size())) {
// The macro is either
// - object-like, but we got argumnets, or
// - overloaded to be both object-like and function-like, but none of
// the function-like arities match the number of arguments.
// Thus, expand as object-like macro.
LLVM_DEBUG(llvm::dbgs()
<< "Macro \"" << ID->TokenText
<< "\" not overloaded for arity " << Args->size()
<< "or not function-like, using object-like overload.");
Args.reset();
UnexpandedLine->Tokens.resize(1);
Tokens->setPosition(Position);
nextToken();
assert(!Args && Macros.objectLike(ID->TokenText));
}
if ((!Args && Macros.objectLike(ID->TokenText)) ||
(Args && Macros.hasArity(ID->TokenText, Args->size()))) {
// Next, we insert the expanded tokens in the token stream at the
// current position, and continue parsing.
Unexpanded[ID] = std::move(UnexpandedLine);
SmallVector<FormatToken *, 8> Expansion =
Macros.expand(ID, std::move(Args));
if (!Expansion.empty())
FormatTok = Tokens->insertTokens(Expansion);
LLVM_DEBUG({
llvm::dbgs() << "Expanded: ";
for (const auto &T : Expansion)
llvm::dbgs() << T->TokenText << " ";
llvm::dbgs() << "\n";
});
} else {
LLVM_DEBUG({
llvm::dbgs() << "Did not expand macro \"" << ID->TokenText
<< "\", because it was used ";
if (Args)
llvm::dbgs() << "with " << Args->size();
else
llvm::dbgs() << "without";
llvm::dbgs() << " arguments, which doesn't match any definition.\n";
});
Tokens->setPosition(Position);
FormatTok = ID;
}
}
if (FormatTok->isNot(tok::comment)) {
distributeComments(Comments, FormatTok);
Comments.clear();
return;
}
Comments.push_back(FormatTok);
} while (!eof());
distributeComments(Comments, nullptr);
Comments.clear();
}
namespace {
template <typename Iterator>
void pushTokens(Iterator Begin, Iterator End,
llvm::SmallVectorImpl<FormatToken *> &Into) {
for (auto I = Begin; I != End; ++I) {
Into.push_back(I->Tok);
for (const auto &Child : I->Children)
pushTokens(Child.Tokens.begin(), Child.Tokens.end(), Into);
}
}
} // namespace
std::optional<llvm::SmallVector<llvm::SmallVector<FormatToken *, 8>, 1>>
UnwrappedLineParser::parseMacroCall() {
std::optional<llvm::SmallVector<llvm::SmallVector<FormatToken *, 8>, 1>> Args;
assert(Line->Tokens.empty());
nextToken();
if (FormatTok->isNot(tok::l_paren))
return Args;
unsigned Position = Tokens->getPosition();
FormatToken *Tok = FormatTok;
nextToken();
Args.emplace();
auto ArgStart = std::prev(Line->Tokens.end());
int Parens = 0;
do {
switch (FormatTok->Tok.getKind()) {
case tok::l_paren:
++Parens;
nextToken();
break;
case tok::r_paren: {
if (Parens > 0) {
--Parens;
nextToken();
break;
}
Args->push_back({});
pushTokens(std::next(ArgStart), Line->Tokens.end(), Args->back());
nextToken();
return Args;
}
case tok::comma: {
if (Parens > 0) {
nextToken();
break;
}
Args->push_back({});
pushTokens(std::next(ArgStart), Line->Tokens.end(), Args->back());
nextToken();
ArgStart = std::prev(Line->Tokens.end());
break;
}
default:
nextToken();
break;
}
} while (!eof());
Line->Tokens.resize(1);
Tokens->setPosition(Position);
FormatTok = Tok;
return {};
}
void UnwrappedLineParser::pushToken(FormatToken *Tok) {
Line->Tokens.push_back(UnwrappedLineNode(Tok));
if (MustBreakBeforeNextToken) {
Line->Tokens.back().Tok->MustBreakBefore = true;
Line->Tokens.back().Tok->MustBreakBeforeFinalized = true;
MustBreakBeforeNextToken = false;
}
}
} // end namespace format
} // end namespace clang