blob: ce2f39aeb082137771f4fa9b46e20a499d0246df [file] [log] [blame]
//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based code coverage mapping generator
//
//===----------------------------------------------------------------------===//
#include "CoverageMappingGen.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include <optional>
// This selects the coverage mapping format defined when `InstrProfData.inc`
// is textually included.
#define COVMAP_V3
namespace llvm {
cl::opt<bool>
EnableSingleByteCoverage("enable-single-byte-coverage",
llvm::cl::ZeroOrMore,
llvm::cl::desc("Enable single byte coverage"),
llvm::cl::Hidden, llvm::cl::init(false));
} // namespace llvm
static llvm::cl::opt<bool> EmptyLineCommentCoverage(
"emptyline-comment-coverage",
llvm::cl::desc("Emit emptylines and comment lines as skipped regions (only "
"disable it on test)"),
llvm::cl::init(true), llvm::cl::Hidden);
llvm::cl::opt<bool> SystemHeadersCoverage(
"system-headers-coverage",
llvm::cl::desc("Enable collecting coverage from system headers"),
llvm::cl::init(false), llvm::cl::Hidden);
using namespace clang;
using namespace CodeGen;
using namespace llvm::coverage;
CoverageSourceInfo *
CoverageMappingModuleGen::setUpCoverageCallbacks(Preprocessor &PP) {
CoverageSourceInfo *CoverageInfo =
new CoverageSourceInfo(PP.getSourceManager());
PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(CoverageInfo));
if (EmptyLineCommentCoverage) {
PP.addCommentHandler(CoverageInfo);
PP.setEmptylineHandler(CoverageInfo);
PP.setPreprocessToken(true);
PP.setTokenWatcher([CoverageInfo](clang::Token Tok) {
// Update previous token location.
CoverageInfo->PrevTokLoc = Tok.getLocation();
if (Tok.getKind() != clang::tok::eod)
CoverageInfo->updateNextTokLoc(Tok.getLocation());
});
}
return CoverageInfo;
}
void CoverageSourceInfo::AddSkippedRange(SourceRange Range,
SkippedRange::Kind RangeKind) {
if (EmptyLineCommentCoverage && !SkippedRanges.empty() &&
PrevTokLoc == SkippedRanges.back().PrevTokLoc &&
SourceMgr.isWrittenInSameFile(SkippedRanges.back().Range.getEnd(),
Range.getBegin()))
SkippedRanges.back().Range.setEnd(Range.getEnd());
else
SkippedRanges.push_back({Range, RangeKind, PrevTokLoc});
}
void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range, SourceLocation) {
AddSkippedRange(Range, SkippedRange::PPIfElse);
}
void CoverageSourceInfo::HandleEmptyline(SourceRange Range) {
AddSkippedRange(Range, SkippedRange::EmptyLine);
}
bool CoverageSourceInfo::HandleComment(Preprocessor &PP, SourceRange Range) {
AddSkippedRange(Range, SkippedRange::Comment);
return false;
}
void CoverageSourceInfo::updateNextTokLoc(SourceLocation Loc) {
if (!SkippedRanges.empty() && SkippedRanges.back().NextTokLoc.isInvalid())
SkippedRanges.back().NextTokLoc = Loc;
}
namespace {
/// A region of source code that can be mapped to a counter.
class SourceMappingRegion {
/// Primary Counter that is also used for Branch Regions for "True" branches.
Counter Count;
/// Secondary Counter used for Branch Regions for "False" branches.
std::optional<Counter> FalseCount;
/// Parameters used for Modified Condition/Decision Coverage
mcdc::Parameters MCDCParams;
/// The region's starting location.
std::optional<SourceLocation> LocStart;
/// The region's ending location.
std::optional<SourceLocation> LocEnd;
/// Whether this region is a gap region. The count from a gap region is set
/// as the line execution count if there are no other regions on the line.
bool GapRegion;
/// Whetever this region is skipped ('if constexpr' or 'if consteval' untaken
/// branch, or anything skipped but not empty line / comments)
bool SkippedRegion;
public:
SourceMappingRegion(Counter Count, std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd,
bool GapRegion = false)
: Count(Count), LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
SkippedRegion(false) {}
SourceMappingRegion(Counter Count, std::optional<Counter> FalseCount,
mcdc::Parameters MCDCParams,
std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd,
bool GapRegion = false)
: Count(Count), FalseCount(FalseCount), MCDCParams(MCDCParams),
LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
SkippedRegion(false) {}
SourceMappingRegion(mcdc::Parameters MCDCParams,
std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd)
: MCDCParams(MCDCParams), LocStart(LocStart), LocEnd(LocEnd),
GapRegion(false), SkippedRegion(false) {}
const Counter &getCounter() const { return Count; }
const Counter &getFalseCounter() const {
assert(FalseCount && "Region has no alternate counter");
return *FalseCount;
}
void setCounter(Counter C) { Count = C; }
bool hasStartLoc() const { return LocStart.has_value(); }
void setStartLoc(SourceLocation Loc) { LocStart = Loc; }
SourceLocation getBeginLoc() const {
assert(LocStart && "Region has no start location");
return *LocStart;
}
bool hasEndLoc() const { return LocEnd.has_value(); }
void setEndLoc(SourceLocation Loc) {
assert(Loc.isValid() && "Setting an invalid end location");
LocEnd = Loc;
}
SourceLocation getEndLoc() const {
assert(LocEnd && "Region has no end location");
return *LocEnd;
}
bool isGap() const { return GapRegion; }
void setGap(bool Gap) { GapRegion = Gap; }
bool isSkipped() const { return SkippedRegion; }
void setSkipped(bool Skipped) { SkippedRegion = Skipped; }
bool isBranch() const { return FalseCount.has_value(); }
bool isMCDCDecision() const {
return std::holds_alternative<mcdc::DecisionParameters>(MCDCParams);
}
const auto &getMCDCDecisionParams() const {
return mcdc::getParams<const mcdc::DecisionParameters>(MCDCParams);
}
const mcdc::Parameters &getMCDCParams() const { return MCDCParams; }
};
/// Spelling locations for the start and end of a source region.
struct SpellingRegion {
/// The line where the region starts.
unsigned LineStart;
/// The column where the region starts.
unsigned ColumnStart;
/// The line where the region ends.
unsigned LineEnd;
/// The column where the region ends.
unsigned ColumnEnd;
SpellingRegion(SourceManager &SM, SourceLocation LocStart,
SourceLocation LocEnd) {
LineStart = SM.getSpellingLineNumber(LocStart);
ColumnStart = SM.getSpellingColumnNumber(LocStart);
LineEnd = SM.getSpellingLineNumber(LocEnd);
ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
}
SpellingRegion(SourceManager &SM, SourceMappingRegion &R)
: SpellingRegion(SM, R.getBeginLoc(), R.getEndLoc()) {}
/// Check if the start and end locations appear in source order, i.e
/// top->bottom, left->right.
bool isInSourceOrder() const {
return (LineStart < LineEnd) ||
(LineStart == LineEnd && ColumnStart <= ColumnEnd);
}
};
/// Provides the common functionality for the different
/// coverage mapping region builders.
class CoverageMappingBuilder {
public:
CoverageMappingModuleGen &CVM;
SourceManager &SM;
const LangOptions &LangOpts;
private:
/// Map of clang's FileIDs to IDs used for coverage mapping.
llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8>
FileIDMapping;
public:
/// The coverage mapping regions for this function
llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
/// The source mapping regions for this function.
std::vector<SourceMappingRegion> SourceRegions;
/// A set of regions which can be used as a filter.
///
/// It is produced by emitExpansionRegions() and is used in
/// emitSourceRegions() to suppress producing code regions if
/// the same area is covered by expansion regions.
typedef llvm::SmallSet<std::pair<SourceLocation, SourceLocation>, 8>
SourceRegionFilter;
CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CVM(CVM), SM(SM), LangOpts(LangOpts) {}
/// Return the precise end location for the given token.
SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
// We avoid getLocForEndOfToken here, because it doesn't do what we want for
// macro locations, which we just treat as expanded files.
unsigned TokLen =
Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts);
return Loc.getLocWithOffset(TokLen);
}
/// Return the start location of an included file or expanded macro.
SourceLocation getStartOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(-SM.getFileOffset(Loc));
return SM.getLocForStartOfFile(SM.getFileID(Loc));
}
/// Return the end location of an included file or expanded macro.
SourceLocation getEndOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) -
SM.getFileOffset(Loc));
return SM.getLocForEndOfFile(SM.getFileID(Loc));
}
/// Find out where the current file is included or macro is expanded.
SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) {
return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getBegin()
: SM.getIncludeLoc(SM.getFileID(Loc));
}
/// Return true if \c Loc is a location in a built-in macro.
bool isInBuiltin(SourceLocation Loc) {
return SM.getBufferName(SM.getSpellingLoc(Loc)) == "<built-in>";
}
/// Check whether \c Loc is included or expanded from \c Parent.
bool isNestedIn(SourceLocation Loc, FileID Parent) {
do {
Loc = getIncludeOrExpansionLoc(Loc);
if (Loc.isInvalid())
return false;
} while (!SM.isInFileID(Loc, Parent));
return true;
}
/// Get the start of \c S ignoring macro arguments and builtin macros.
SourceLocation getStart(const Stmt *S) {
SourceLocation Loc = S->getBeginLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return Loc;
}
/// Get the end of \c S ignoring macro arguments and builtin macros.
SourceLocation getEnd(const Stmt *S) {
SourceLocation Loc = S->getEndLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return getPreciseTokenLocEnd(Loc);
}
/// Find the set of files we have regions for and assign IDs
///
/// Fills \c Mapping with the virtual file mapping needed to write out
/// coverage and collects the necessary file information to emit source and
/// expansion regions.
void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) {
FileIDMapping.clear();
llvm::SmallSet<FileID, 8> Visited;
SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs;
for (const auto &Region : SourceRegions) {
SourceLocation Loc = Region.getBeginLoc();
FileID File = SM.getFileID(Loc);
if (!Visited.insert(File).second)
continue;
// Do not map FileID's associated with system headers unless collecting
// coverage from system headers is explicitly enabled.
if (!SystemHeadersCoverage && SM.isInSystemHeader(SM.getSpellingLoc(Loc)))
continue;
unsigned Depth = 0;
for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc);
Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent))
++Depth;
FileLocs.push_back(std::make_pair(Loc, Depth));
}
llvm::stable_sort(FileLocs, llvm::less_second());
for (const auto &FL : FileLocs) {
SourceLocation Loc = FL.first;
FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first;
auto Entry = SM.getFileEntryRefForID(SpellingFile);
if (!Entry)
continue;
FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc);
Mapping.push_back(CVM.getFileID(*Entry));
}
}
/// Get the coverage mapping file ID for \c Loc.
///
/// If such file id doesn't exist, return std::nullopt.
std::optional<unsigned> getCoverageFileID(SourceLocation Loc) {
auto Mapping = FileIDMapping.find(SM.getFileID(Loc));
if (Mapping != FileIDMapping.end())
return Mapping->second.first;
return std::nullopt;
}
/// This shrinks the skipped range if it spans a line that contains a
/// non-comment token. If shrinking the skipped range would make it empty,
/// this returns std::nullopt.
/// Note this function can potentially be expensive because
/// getSpellingLineNumber uses getLineNumber, which is expensive.
std::optional<SpellingRegion> adjustSkippedRange(SourceManager &SM,
SourceLocation LocStart,
SourceLocation LocEnd,
SourceLocation PrevTokLoc,
SourceLocation NextTokLoc) {
SpellingRegion SR{SM, LocStart, LocEnd};
SR.ColumnStart = 1;
if (PrevTokLoc.isValid() && SM.isWrittenInSameFile(LocStart, PrevTokLoc) &&
SR.LineStart == SM.getSpellingLineNumber(PrevTokLoc))
SR.LineStart++;
if (NextTokLoc.isValid() && SM.isWrittenInSameFile(LocEnd, NextTokLoc) &&
SR.LineEnd == SM.getSpellingLineNumber(NextTokLoc)) {
SR.LineEnd--;
SR.ColumnEnd++;
}
if (SR.isInSourceOrder())
return SR;
return std::nullopt;
}
/// Gather all the regions that were skipped by the preprocessor
/// using the constructs like #if or comments.
void gatherSkippedRegions() {
/// An array of the minimum lineStarts and the maximum lineEnds
/// for mapping regions from the appropriate source files.
llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
FileLineRanges.resize(
FileIDMapping.size(),
std::make_pair(std::numeric_limits<unsigned>::max(), 0));
for (const auto &R : MappingRegions) {
FileLineRanges[R.FileID].first =
std::min(FileLineRanges[R.FileID].first, R.LineStart);
FileLineRanges[R.FileID].second =
std::max(FileLineRanges[R.FileID].second, R.LineEnd);
}
auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
for (auto &I : SkippedRanges) {
SourceRange Range = I.Range;
auto LocStart = Range.getBegin();
auto LocEnd = Range.getEnd();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
auto CovFileID = getCoverageFileID(LocStart);
if (!CovFileID)
continue;
std::optional<SpellingRegion> SR;
if (I.isComment())
SR = adjustSkippedRange(SM, LocStart, LocEnd, I.PrevTokLoc,
I.NextTokLoc);
else if (I.isPPIfElse() || I.isEmptyLine())
SR = {SM, LocStart, LocEnd};
if (!SR)
continue;
auto Region = CounterMappingRegion::makeSkipped(
*CovFileID, SR->LineStart, SR->ColumnStart, SR->LineEnd,
SR->ColumnEnd);
// Make sure that we only collect the regions that are inside
// the source code of this function.
if (Region.LineStart >= FileLineRanges[*CovFileID].first &&
Region.LineEnd <= FileLineRanges[*CovFileID].second)
MappingRegions.push_back(Region);
}
}
/// Generate the coverage counter mapping regions from collected
/// source regions.
void emitSourceRegions(const SourceRegionFilter &Filter) {
for (const auto &Region : SourceRegions) {
assert(Region.hasEndLoc() && "incomplete region");
SourceLocation LocStart = Region.getBeginLoc();
assert(SM.getFileID(LocStart).isValid() && "region in invalid file");
// Ignore regions from system headers unless collecting coverage from
// system headers is explicitly enabled.
if (!SystemHeadersCoverage &&
SM.isInSystemHeader(SM.getSpellingLoc(LocStart)))
continue;
auto CovFileID = getCoverageFileID(LocStart);
// Ignore regions that don't have a file, such as builtin macros.
if (!CovFileID)
continue;
SourceLocation LocEnd = Region.getEndLoc();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
// Don't add code regions for the area covered by expansion regions.
// This not only suppresses redundant regions, but sometimes prevents
// creating regions with wrong counters if, for example, a statement's
// body ends at the end of a nested macro.
if (Filter.count(std::make_pair(LocStart, LocEnd)))
continue;
// Find the spelling locations for the mapping region.
SpellingRegion SR{SM, LocStart, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
if (Region.isGap()) {
MappingRegions.push_back(CounterMappingRegion::makeGapRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
} else if (Region.isSkipped()) {
MappingRegions.push_back(CounterMappingRegion::makeSkipped(
*CovFileID, SR.LineStart, SR.ColumnStart, SR.LineEnd,
SR.ColumnEnd));
} else if (Region.isBranch()) {
MappingRegions.push_back(CounterMappingRegion::makeBranchRegion(
Region.getCounter(), Region.getFalseCounter(), *CovFileID,
SR.LineStart, SR.ColumnStart, SR.LineEnd, SR.ColumnEnd,
Region.getMCDCParams()));
} else if (Region.isMCDCDecision()) {
MappingRegions.push_back(CounterMappingRegion::makeDecisionRegion(
Region.getMCDCDecisionParams(), *CovFileID, SR.LineStart,
SR.ColumnStart, SR.LineEnd, SR.ColumnEnd));
} else {
MappingRegions.push_back(CounterMappingRegion::makeRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
}
}
/// Generate expansion regions for each virtual file we've seen.
SourceRegionFilter emitExpansionRegions() {
SourceRegionFilter Filter;
for (const auto &FM : FileIDMapping) {
SourceLocation ExpandedLoc = FM.second.second;
SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc);
if (ParentLoc.isInvalid())
continue;
auto ParentFileID = getCoverageFileID(ParentLoc);
if (!ParentFileID)
continue;
auto ExpandedFileID = getCoverageFileID(ExpandedLoc);
assert(ExpandedFileID && "expansion in uncovered file");
SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc);
assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) &&
"region spans multiple files");
Filter.insert(std::make_pair(ParentLoc, LocEnd));
SpellingRegion SR{SM, ParentLoc, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
MappingRegions.push_back(CounterMappingRegion::makeExpansion(
*ParentFileID, *ExpandedFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
return Filter;
}
};
/// Creates unreachable coverage regions for the functions that
/// are not emitted.
struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts) {}
void VisitDecl(const Decl *D) {
if (!D->hasBody())
return;
auto Body = D->getBody();
SourceLocation Start = getStart(Body);
SourceLocation End = getEnd(Body);
if (!SM.isWrittenInSameFile(Start, End)) {
// Walk up to find the common ancestor.
// Correct the locations accordingly.
FileID StartFileID = SM.getFileID(Start);
FileID EndFileID = SM.getFileID(End);
while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) {
Start = getIncludeOrExpansionLoc(Start);
assert(Start.isValid() &&
"Declaration start location not nested within a known region");
StartFileID = SM.getFileID(Start);
}
while (StartFileID != EndFileID) {
End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End));
assert(End.isValid() &&
"Declaration end location not nested within a known region");
EndFileID = SM.getFileID(End);
}
}
SourceRegions.emplace_back(Counter(), Start, End);
}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
SmallVector<unsigned, 16> FileIDMapping;
gatherFileIDs(FileIDMapping);
emitSourceRegions(SourceRegionFilter());
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(FileIDMapping, std::nullopt, MappingRegions);
Writer.write(OS);
}
};
/// A wrapper object for maintaining stacks to track the resursive AST visitor
/// walks for the purpose of assigning IDs to leaf-level conditions measured by
/// MC/DC. The object is created with a reference to the MCDCBitmapMap that was
/// created during the initial AST walk. The presence of a bitmap associated
/// with a boolean expression (top-level logical operator nest) indicates that
/// the boolean expression qualified for MC/DC. The resulting condition IDs
/// are preserved in a map reference that is also provided during object
/// creation.
struct MCDCCoverageBuilder {
/// The AST walk recursively visits nested logical-AND or logical-OR binary
/// operator nodes and then visits their LHS and RHS children nodes. As this
/// happens, the algorithm will assign IDs to each operator's LHS and RHS side
/// as the walk moves deeper into the nest. At each level of the recursive
/// nest, the LHS and RHS may actually correspond to larger subtrees (not
/// leaf-conditions). If this is the case, when that node is visited, the ID
/// assigned to the subtree is re-assigned to its LHS, and a new ID is given
/// to its RHS. At the end of the walk, all leaf-level conditions will have a
/// unique ID -- keep in mind that the final set of IDs may not be in
/// numerical order from left to right.
///
/// Example: "x = (A && B) || (C && D) || (D && F)"
///
/// Visit Depth1:
/// (A && B) || (C && D) || (D && F)
/// ^-------LHS--------^ ^-RHS--^
/// ID=1 ID=2
///
/// Visit LHS-Depth2:
/// (A && B) || (C && D)
/// ^-LHS--^ ^-RHS--^
/// ID=1 ID=3
///
/// Visit LHS-Depth3:
/// (A && B)
/// LHS RHS
/// ID=1 ID=4
///
/// Visit RHS-Depth3:
/// (C && D)
/// LHS RHS
/// ID=3 ID=5
///
/// Visit RHS-Depth2: (D && F)
/// LHS RHS
/// ID=2 ID=6
///
/// Visit Depth1:
/// (A && B) || (C && D) || (D && F)
/// ID=1 ID=4 ID=3 ID=5 ID=2 ID=6
///
/// A node ID of '0' always means MC/DC isn't being tracked.
///
/// As the AST walk proceeds recursively, the algorithm will also use a stack
/// to track the IDs of logical-AND and logical-OR operations on the RHS so
/// that it can be determined which nodes are executed next, depending on how
/// a LHS or RHS of a logical-AND or logical-OR is evaluated. This
/// information relies on the assigned IDs and are embedded within the
/// coverage region IDs of each branch region associated with a leaf-level
/// condition. This information helps the visualization tool reconstruct all
/// possible test vectors for the purposes of MC/DC analysis. If a "next" node
/// ID is '0', it means it's the end of the test vector. The following rules
/// are used:
///
/// For logical-AND ("LHS && RHS"):
/// - If LHS is TRUE, execution goes to the RHS node.
/// - If LHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// For logical-OR ("LHS || RHS"):
/// - If LHS is TRUE, execution goes to the LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If LHS is FALSE, execution goes to the RHS node.
///
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// Finally, the condition IDs are also used when instrumenting the code to
/// indicate a unique offset into a temporary bitmap that represents the true
/// or false evaluation of that particular condition.
///
/// NOTE regarding the use of CodeGenFunction::stripCond(). Even though, for
/// simplicity, parentheses and unary logical-NOT operators are considered
/// part of their underlying condition for both MC/DC and branch coverage, the
/// condition IDs themselves are assigned and tracked using the underlying
/// condition itself. This is done solely for consistency since parentheses
/// and logical-NOTs are ignored when checking whether the condition is
/// actually an instrumentable condition. This can also make debugging a bit
/// easier.
private:
CodeGenModule &CGM;
llvm::SmallVector<mcdc::ConditionIDs> DecisionStack;
MCDC::State &MCDCState;
mcdc::ConditionID NextID = 0;
bool NotMapped = false;
/// Represent a sentinel value as a pair of final decisions for the bottom
// of DecisionStack.
static constexpr mcdc::ConditionIDs DecisionStackSentinel{-1, -1};
/// Is this a logical-AND operation?
bool isLAnd(const BinaryOperator *E) const {
return E->getOpcode() == BO_LAnd;
}
public:
MCDCCoverageBuilder(CodeGenModule &CGM, MCDC::State &MCDCState)
: CGM(CGM), DecisionStack(1, DecisionStackSentinel),
MCDCState(MCDCState) {}
/// Return whether the build of the control flow map is at the top-level
/// (root) of a logical operator nest in a boolean expression prior to the
/// assignment of condition IDs.
bool isIdle() const { return (NextID == 0 && !NotMapped); }
/// Return whether any IDs have been assigned in the build of the control
/// flow map, indicating that the map is being generated for this boolean
/// expression.
bool isBuilding() const { return (NextID > 0); }
/// Set the given condition's ID.
void setCondID(const Expr *Cond, mcdc::ConditionID ID) {
MCDCState.BranchByStmt[CodeGenFunction::stripCond(Cond)].ID = ID;
}
/// Return the ID of a given condition.
mcdc::ConditionID getCondID(const Expr *Cond) const {
auto I = MCDCState.BranchByStmt.find(CodeGenFunction::stripCond(Cond));
if (I == MCDCState.BranchByStmt.end())
return -1;
else
return I->second.ID;
}
/// Return the LHS Decision ([0,0] if not set).
const mcdc::ConditionIDs &back() const { return DecisionStack.back(); }
/// Push the binary operator statement to track the nest level and assign IDs
/// to the operator's LHS and RHS. The RHS may be a larger subtree that is
/// broken up on successive levels.
void pushAndAssignIDs(const BinaryOperator *E) {
if (!CGM.getCodeGenOpts().MCDCCoverage)
return;
// If binary expression is disqualified, don't do mapping.
if (!isBuilding() &&
!MCDCState.DecisionByStmt.contains(CodeGenFunction::stripCond(E)))
NotMapped = true;
// Don't go any further if we don't need to map condition IDs.
if (NotMapped)
return;
const mcdc::ConditionIDs &ParentDecision = DecisionStack.back();
// If the operator itself has an assigned ID, this means it represents a
// larger subtree. In this case, assign that ID to its LHS node. Its RHS
// will receive a new ID below. Otherwise, assign ID+1 to LHS.
if (MCDCState.BranchByStmt.contains(CodeGenFunction::stripCond(E)))
setCondID(E->getLHS(), getCondID(E));
else
setCondID(E->getLHS(), NextID++);
// Assign a ID+1 for the RHS.
mcdc::ConditionID RHSid = NextID++;
setCondID(E->getRHS(), RHSid);
// Push the LHS decision IDs onto the DecisionStack.
if (isLAnd(E))
DecisionStack.push_back({ParentDecision[false], RHSid});
else
DecisionStack.push_back({RHSid, ParentDecision[true]});
}
/// Pop and return the LHS Decision ([0,0] if not set).
mcdc::ConditionIDs pop() {
if (!CGM.getCodeGenOpts().MCDCCoverage || NotMapped)
return DecisionStackSentinel;
assert(DecisionStack.size() > 1);
return DecisionStack.pop_back_val();
}
/// Return the total number of conditions and reset the state. The number of
/// conditions is zero if the expression isn't mapped.
unsigned getTotalConditionsAndReset(const BinaryOperator *E) {
if (!CGM.getCodeGenOpts().MCDCCoverage)
return 0;
assert(!isIdle());
assert(DecisionStack.size() == 1);
// Reset state if not doing mapping.
if (NotMapped) {
NotMapped = false;
assert(NextID == 0);
return 0;
}
// Set number of conditions and reset.
unsigned TotalConds = NextID;
// Reset ID back to beginning.
NextID = 0;
return TotalConds;
}
};
/// A StmtVisitor that creates coverage mapping regions which map
/// from the source code locations to the PGO counters.
struct CounterCoverageMappingBuilder
: public CoverageMappingBuilder,
public ConstStmtVisitor<CounterCoverageMappingBuilder> {
/// The map of statements to count values.
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
MCDC::State &MCDCState;
/// A stack of currently live regions.
llvm::SmallVector<SourceMappingRegion> RegionStack;
/// An object to manage MCDC regions.
MCDCCoverageBuilder MCDCBuilder;
CounterExpressionBuilder Builder;
/// A location in the most recently visited file or macro.
///
/// This is used to adjust the active source regions appropriately when
/// expressions cross file or macro boundaries.
SourceLocation MostRecentLocation;
/// Whether the visitor at a terminate statement.
bool HasTerminateStmt = false;
/// Gap region counter after terminate statement.
Counter GapRegionCounter;
/// Return a counter for the subtraction of \c RHS from \c LHS
Counter subtractCounters(Counter LHS, Counter RHS, bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return Builder.subtract(LHS, RHS, Simplify);
}
/// Return a counter for the sum of \c LHS and \c RHS.
Counter addCounters(Counter LHS, Counter RHS, bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return Builder.add(LHS, RHS, Simplify);
}
Counter addCounters(Counter C1, Counter C2, Counter C3,
bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return addCounters(addCounters(C1, C2, Simplify), C3, Simplify);
}
/// Return the region counter for the given statement.
///
/// This should only be called on statements that have a dedicated counter.
Counter getRegionCounter(const Stmt *S) {
return Counter::getCounter(CounterMap[S]);
}
/// Push a region onto the stack.
///
/// Returns the index on the stack where the region was pushed. This can be
/// used with popRegions to exit a "scope", ending the region that was pushed.
size_t pushRegion(Counter Count,
std::optional<SourceLocation> StartLoc = std::nullopt,
std::optional<SourceLocation> EndLoc = std::nullopt,
std::optional<Counter> FalseCount = std::nullopt,
const mcdc::Parameters &BranchParams = std::monostate()) {
if (StartLoc && !FalseCount) {
MostRecentLocation = *StartLoc;
}
// If either of these locations is invalid, something elsewhere in the
// compiler has broken.
assert((!StartLoc || StartLoc->isValid()) && "Start location is not valid");
assert((!EndLoc || EndLoc->isValid()) && "End location is not valid");
// However, we can still recover without crashing.
// If either location is invalid, set it to std::nullopt to avoid
// letting users of RegionStack think that region has a valid start/end
// location.
if (StartLoc && StartLoc->isInvalid())
StartLoc = std::nullopt;
if (EndLoc && EndLoc->isInvalid())
EndLoc = std::nullopt;
RegionStack.emplace_back(Count, FalseCount, BranchParams, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
size_t pushRegion(const mcdc::DecisionParameters &DecisionParams,
std::optional<SourceLocation> StartLoc = std::nullopt,
std::optional<SourceLocation> EndLoc = std::nullopt) {
RegionStack.emplace_back(DecisionParams, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
size_t locationDepth(SourceLocation Loc) {
size_t Depth = 0;
while (Loc.isValid()) {
Loc = getIncludeOrExpansionLoc(Loc);
Depth++;
}
return Depth;
}
/// Pop regions from the stack into the function's list of regions.
///
/// Adds all regions from \c ParentIndex to the top of the stack to the
/// function's \c SourceRegions.
void popRegions(size_t ParentIndex) {
assert(RegionStack.size() >= ParentIndex && "parent not in stack");
while (RegionStack.size() > ParentIndex) {
SourceMappingRegion &Region = RegionStack.back();
if (Region.hasStartLoc() &&
(Region.hasEndLoc() || RegionStack[ParentIndex].hasEndLoc())) {
SourceLocation StartLoc = Region.getBeginLoc();
SourceLocation EndLoc = Region.hasEndLoc()
? Region.getEndLoc()
: RegionStack[ParentIndex].getEndLoc();
bool isBranch = Region.isBranch();
size_t StartDepth = locationDepth(StartLoc);
size_t EndDepth = locationDepth(EndLoc);
while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
// The region ends in a nested file or macro expansion. If the
// region is not a branch region, create a separate region for each
// expansion, and for all regions, update the EndLoc. Branch
// regions should not be split in order to keep a straightforward
// correspondance between the region and its associated branch
// condition, even if the condition spans multiple depths.
SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc);
assert(SM.isWrittenInSameFile(NestedLoc, EndLoc));
if (!isBranch && !isRegionAlreadyAdded(NestedLoc, EndLoc))
SourceRegions.emplace_back(Region.getCounter(), NestedLoc,
EndLoc);
EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc));
if (EndLoc.isInvalid())
llvm::report_fatal_error(
"File exit not handled before popRegions");
EndDepth--;
}
if (UnnestStart) {
// The region ends in a nested file or macro expansion. If the
// region is not a branch region, create a separate region for each
// expansion, and for all regions, update the StartLoc. Branch
// regions should not be split in order to keep a straightforward
// correspondance between the region and its associated branch
// condition, even if the condition spans multiple depths.
SourceLocation NestedLoc = getEndOfFileOrMacro(StartLoc);
assert(SM.isWrittenInSameFile(StartLoc, NestedLoc));
if (!isBranch && !isRegionAlreadyAdded(StartLoc, NestedLoc))
SourceRegions.emplace_back(Region.getCounter(), StartLoc,
NestedLoc);
StartLoc = getIncludeOrExpansionLoc(StartLoc);
if (StartLoc.isInvalid())
llvm::report_fatal_error(
"File exit not handled before popRegions");
StartDepth--;
}
}
Region.setStartLoc(StartLoc);
Region.setEndLoc(EndLoc);
if (!isBranch) {
MostRecentLocation = EndLoc;
// If this region happens to span an entire expansion, we need to
// make sure we don't overlap the parent region with it.
if (StartLoc == getStartOfFileOrMacro(StartLoc) &&
EndLoc == getEndOfFileOrMacro(EndLoc))
MostRecentLocation = getIncludeOrExpansionLoc(EndLoc);
}
assert(SM.isWrittenInSameFile(Region.getBeginLoc(), EndLoc));
assert(SpellingRegion(SM, Region).isInSourceOrder());
SourceRegions.push_back(Region);
}
RegionStack.pop_back();
}
}
/// Return the currently active region.
SourceMappingRegion &getRegion() {
assert(!RegionStack.empty() && "statement has no region");
return RegionStack.back();
}
/// Propagate counts through the children of \p S if \p VisitChildren is true.
/// Otherwise, only emit a count for \p S itself.
Counter propagateCounts(Counter TopCount, const Stmt *S,
bool VisitChildren = true) {
SourceLocation StartLoc = getStart(S);
SourceLocation EndLoc = getEnd(S);
size_t Index = pushRegion(TopCount, StartLoc, EndLoc);
if (VisitChildren)
Visit(S);
Counter ExitCount = getRegion().getCounter();
popRegions(Index);
// The statement may be spanned by an expansion. Make sure we handle a file
// exit out of this expansion before moving to the next statement.
if (SM.isBeforeInTranslationUnit(StartLoc, S->getBeginLoc()))
MostRecentLocation = EndLoc;
return ExitCount;
}
/// Determine whether the given condition can be constant folded.
bool ConditionFoldsToBool(const Expr *Cond) {
Expr::EvalResult Result;
return (Cond->EvaluateAsInt(Result, CVM.getCodeGenModule().getContext()));
}
/// Create a Branch Region around an instrumentable condition for coverage
/// and add it to the function's SourceRegions. A branch region tracks a
/// "True" counter and a "False" counter for boolean expressions that
/// result in the generation of a branch.
void createBranchRegion(const Expr *C, Counter TrueCnt, Counter FalseCnt,
const mcdc::ConditionIDs &Conds = {}) {
// Check for NULL conditions.
if (!C)
return;
// Ensure we are an instrumentable condition (i.e. no "&&" or "||"). Push
// region onto RegionStack but immediately pop it (which adds it to the
// function's SourceRegions) because it doesn't apply to any other source
// code other than the Condition.
if (CodeGenFunction::isInstrumentedCondition(C)) {
mcdc::Parameters BranchParams;
mcdc::ConditionID ID = MCDCBuilder.getCondID(C);
if (ID >= 0)
BranchParams = mcdc::BranchParameters{ID, Conds};
// If a condition can fold to true or false, the corresponding branch
// will be removed. Create a region with both counters hard-coded to
// zero. This allows us to visualize them in a special way.
// Alternatively, we can prevent any optimization done via
// constant-folding by ensuring that ConstantFoldsToSimpleInteger() in
// CodeGenFunction.c always returns false, but that is very heavy-handed.
if (ConditionFoldsToBool(C))
popRegions(pushRegion(Counter::getZero(), getStart(C), getEnd(C),
Counter::getZero(), BranchParams));
else
// Otherwise, create a region with the True counter and False counter.
popRegions(pushRegion(TrueCnt, getStart(C), getEnd(C), FalseCnt,
BranchParams));
}
}
/// Create a Decision Region with a BitmapIdx and number of Conditions. This
/// type of region "contains" branch regions, one for each of the conditions.
/// The visualization tool will group everything together.
void createDecisionRegion(const Expr *C,
const mcdc::DecisionParameters &DecisionParams) {
popRegions(pushRegion(DecisionParams, getStart(C), getEnd(C)));
}
/// Create a Branch Region around a SwitchCase for code coverage
/// and add it to the function's SourceRegions.
void createSwitchCaseRegion(const SwitchCase *SC, Counter TrueCnt,
Counter FalseCnt) {
// Push region onto RegionStack but immediately pop it (which adds it to
// the function's SourceRegions) because it doesn't apply to any other
// source other than the SwitchCase.
popRegions(pushRegion(TrueCnt, getStart(SC), SC->getColonLoc(), FalseCnt));
}
/// Check whether a region with bounds \c StartLoc and \c EndLoc
/// is already added to \c SourceRegions.
bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc,
bool isBranch = false) {
return llvm::any_of(
llvm::reverse(SourceRegions), [&](const SourceMappingRegion &Region) {
return Region.getBeginLoc() == StartLoc &&
Region.getEndLoc() == EndLoc && Region.isBranch() == isBranch;
});
}
/// Adjust the most recently visited location to \c EndLoc.
///
/// This should be used after visiting any statements in non-source order.
void adjustForOutOfOrderTraversal(SourceLocation EndLoc) {
MostRecentLocation = EndLoc;
// The code region for a whole macro is created in handleFileExit() when
// it detects exiting of the virtual file of that macro. If we visited
// statements in non-source order, we might already have such a region
// added, for example, if a body of a loop is divided among multiple
// macros. Avoid adding duplicate regions in such case.
if (getRegion().hasEndLoc() &&
MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) &&
isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation),
MostRecentLocation, getRegion().isBranch()))
MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation);
}
/// Adjust regions and state when \c NewLoc exits a file.
///
/// If moving from our most recently tracked location to \c NewLoc exits any
/// files, this adjusts our current region stack and creates the file regions
/// for the exited file.
void handleFileExit(SourceLocation NewLoc) {
if (NewLoc.isInvalid() ||
SM.isWrittenInSameFile(MostRecentLocation, NewLoc))
return;
// If NewLoc is not in a file that contains MostRecentLocation, walk up to
// find the common ancestor.
SourceLocation LCA = NewLoc;
FileID ParentFile = SM.getFileID(LCA);
while (!isNestedIn(MostRecentLocation, ParentFile)) {
LCA = getIncludeOrExpansionLoc(LCA);
if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) {
// Since there isn't a common ancestor, no file was exited. We just need
// to adjust our location to the new file.
MostRecentLocation = NewLoc;
return;
}
ParentFile = SM.getFileID(LCA);
}
llvm::SmallSet<SourceLocation, 8> StartLocs;
std::optional<Counter> ParentCounter;
for (SourceMappingRegion &I : llvm::reverse(RegionStack)) {
if (!I.hasStartLoc())
continue;
SourceLocation Loc = I.getBeginLoc();
if (!isNestedIn(Loc, ParentFile)) {
ParentCounter = I.getCounter();
break;
}
while (!SM.isInFileID(Loc, ParentFile)) {
// The most nested region for each start location is the one with the
// correct count. We avoid creating redundant regions by stopping once
// we've seen this region.
if (StartLocs.insert(Loc).second) {
if (I.isBranch())
SourceRegions.emplace_back(I.getCounter(), I.getFalseCounter(),
I.getMCDCParams(), Loc,
getEndOfFileOrMacro(Loc), I.isBranch());
else
SourceRegions.emplace_back(I.getCounter(), Loc,
getEndOfFileOrMacro(Loc));
}
Loc = getIncludeOrExpansionLoc(Loc);
}
I.setStartLoc(getPreciseTokenLocEnd(Loc));
}
if (ParentCounter) {
// If the file is contained completely by another region and doesn't
// immediately start its own region, the whole file gets a region
// corresponding to the parent.
SourceLocation Loc = MostRecentLocation;
while (isNestedIn(Loc, ParentFile)) {
SourceLocation FileStart = getStartOfFileOrMacro(Loc);
if (StartLocs.insert(FileStart).second) {
SourceRegions.emplace_back(*ParentCounter, FileStart,
getEndOfFileOrMacro(Loc));
assert(SpellingRegion(SM, SourceRegions.back()).isInSourceOrder());
}
Loc = getIncludeOrExpansionLoc(Loc);
}
}
MostRecentLocation = NewLoc;
}
/// Ensure that \c S is included in the current region.
void extendRegion(const Stmt *S) {
SourceMappingRegion &Region = getRegion();
SourceLocation StartLoc = getStart(S);
handleFileExit(StartLoc);
if (!Region.hasStartLoc())
Region.setStartLoc(StartLoc);
}
/// Mark \c S as a terminator, starting a zero region.
void terminateRegion(const Stmt *S) {
extendRegion(S);
SourceMappingRegion &Region = getRegion();
SourceLocation EndLoc = getEnd(S);
if (!Region.hasEndLoc())
Region.setEndLoc(EndLoc);
pushRegion(Counter::getZero());
HasTerminateStmt = true;
}
/// Find a valid gap range between \p AfterLoc and \p BeforeLoc.
std::optional<SourceRange> findGapAreaBetween(SourceLocation AfterLoc,
SourceLocation BeforeLoc) {
// Some statements (like AttributedStmt and ImplicitValueInitExpr) don't
// have valid source locations. Do not emit a gap region if this is the case
// in either AfterLoc end or BeforeLoc end.
if (AfterLoc.isInvalid() || BeforeLoc.isInvalid())
return std::nullopt;
// If AfterLoc is in function-like macro, use the right parenthesis
// location.
if (AfterLoc.isMacroID()) {
FileID FID = SM.getFileID(AfterLoc);
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
if (EI->isFunctionMacroExpansion())
AfterLoc = EI->getExpansionLocEnd();
}
size_t StartDepth = locationDepth(AfterLoc);
size_t EndDepth = locationDepth(BeforeLoc);
while (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
BeforeLoc));
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
assert(BeforeLoc.isValid());
EndDepth--;
}
if (UnnestStart) {
assert(SM.isWrittenInSameFile(AfterLoc,
getEndOfFileOrMacro(AfterLoc)));
AfterLoc = getIncludeOrExpansionLoc(AfterLoc);
assert(AfterLoc.isValid());
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
assert(AfterLoc.isValid());
StartDepth--;
}
}
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (AfterLoc.isMacroID() || BeforeLoc.isMacroID())
return std::nullopt;
if (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc) ||
!SpellingRegion(SM, AfterLoc, BeforeLoc).isInSourceOrder())
return std::nullopt;
return {{AfterLoc, BeforeLoc}};
}
/// Emit a gap region between \p StartLoc and \p EndLoc with the given count.
void fillGapAreaWithCount(SourceLocation StartLoc, SourceLocation EndLoc,
Counter Count) {
if (StartLoc == EndLoc)
return;
assert(SpellingRegion(SM, StartLoc, EndLoc).isInSourceOrder());
handleFileExit(StartLoc);
size_t Index = pushRegion(Count, StartLoc, EndLoc);
getRegion().setGap(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Find a valid range starting with \p StartingLoc and ending before \p
/// BeforeLoc.
std::optional<SourceRange> findAreaStartingFromTo(SourceLocation StartingLoc,
SourceLocation BeforeLoc) {
// If StartingLoc is in function-like macro, use its start location.
if (StartingLoc.isMacroID()) {
FileID FID = SM.getFileID(StartingLoc);
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
if (EI->isFunctionMacroExpansion())
StartingLoc = EI->getExpansionLocStart();
}
size_t StartDepth = locationDepth(StartingLoc);
size_t EndDepth = locationDepth(BeforeLoc);
while (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
BeforeLoc));
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
assert(BeforeLoc.isValid());
EndDepth--;
}
if (UnnestStart) {
assert(SM.isWrittenInSameFile(StartingLoc,
getStartOfFileOrMacro(StartingLoc)));
StartingLoc = getIncludeOrExpansionLoc(StartingLoc);
assert(StartingLoc.isValid());
StartDepth--;
}
}
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (StartingLoc.isMacroID() || BeforeLoc.isMacroID())
return std::nullopt;
if (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc) ||
!SpellingRegion(SM, StartingLoc, BeforeLoc).isInSourceOrder())
return std::nullopt;
return {{StartingLoc, BeforeLoc}};
}
void markSkipped(SourceLocation StartLoc, SourceLocation BeforeLoc) {
const auto Skipped = findAreaStartingFromTo(StartLoc, BeforeLoc);
if (!Skipped)
return;
const auto NewStartLoc = Skipped->getBegin();
const auto EndLoc = Skipped->getEnd();
if (NewStartLoc == EndLoc)
return;
assert(SpellingRegion(SM, NewStartLoc, EndLoc).isInSourceOrder());
handleFileExit(NewStartLoc);
size_t Index = pushRegion(Counter{}, NewStartLoc, EndLoc);
getRegion().setSkipped(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Keep counts of breaks and continues inside loops.
struct BreakContinue {
Counter BreakCount;
Counter ContinueCount;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
CounterCoverageMappingBuilder(
CoverageMappingModuleGen &CVM,
llvm::DenseMap<const Stmt *, unsigned> &CounterMap,
MCDC::State &MCDCState, SourceManager &SM, const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap),
MCDCState(MCDCState), MCDCBuilder(CVM.getCodeGenModule(), MCDCState) {}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
gatherFileIDs(VirtualFileMapping);
SourceRegionFilter Filter = emitExpansionRegions();
emitSourceRegions(Filter);
gatherSkippedRegions();
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(),
MappingRegions);
Writer.write(OS);
}
void VisitStmt(const Stmt *S) {
if (S->getBeginLoc().isValid())
extendRegion(S);
const Stmt *LastStmt = nullptr;
bool SaveTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
GapRegionCounter = Counter::getZero();
for (const Stmt *Child : S->children())
if (Child) {
// If last statement contains terminate statements, add a gap area
// between the two statements.
if (LastStmt && HasTerminateStmt) {
auto Gap = findGapAreaBetween(getEnd(LastStmt), getStart(Child));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(),
GapRegionCounter);
SaveTerminateStmt = true;
HasTerminateStmt = false;
}
this->Visit(Child);
LastStmt = Child;
}
if (SaveTerminateStmt)
HasTerminateStmt = true;
handleFileExit(getEnd(S));
}
void VisitDecl(const Decl *D) {
Stmt *Body = D->getBody();
// Do not propagate region counts into system headers unless collecting
// coverage from system headers is explicitly enabled.
if (!SystemHeadersCoverage && Body &&
SM.isInSystemHeader(SM.getSpellingLoc(getStart(Body))))
return;
// Do not visit the artificial children nodes of defaulted methods. The
// lexer may not be able to report back precise token end locations for
// these children nodes (llvm.org/PR39822), and moreover users will not be
// able to see coverage for them.
Counter BodyCounter = getRegionCounter(Body);
bool Defaulted = false;
if (auto *Method = dyn_cast<CXXMethodDecl>(D))
Defaulted = Method->isDefaulted();
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
for (auto *Initializer : Ctor->inits()) {
if (Initializer->isWritten()) {
auto *Init = Initializer->getInit();
if (getStart(Init).isValid() && getEnd(Init).isValid())
propagateCounts(BodyCounter, Init);
}
}
}
propagateCounts(BodyCounter, Body,
/*VisitChildren=*/!Defaulted);
assert(RegionStack.empty() && "Regions entered but never exited");
}
void VisitReturnStmt(const ReturnStmt *S) {
extendRegion(S);
if (S->getRetValue())
Visit(S->getRetValue());
terminateRegion(S);
}
void VisitCoroutineBodyStmt(const CoroutineBodyStmt *S) {
extendRegion(S);
Visit(S->getBody());
}
void VisitCoreturnStmt(const CoreturnStmt *S) {
extendRegion(S);
if (S->getOperand())
Visit(S->getOperand());
terminateRegion(S);
}
void VisitCXXThrowExpr(const CXXThrowExpr *E) {
extendRegion(E);
if (E->getSubExpr())
Visit(E->getSubExpr());
terminateRegion(E);
}
void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); }
void VisitLabelStmt(const LabelStmt *S) {
Counter LabelCount = getRegionCounter(S);
SourceLocation Start = getStart(S);
// We can't extendRegion here or we risk overlapping with our new region.
handleFileExit(Start);
pushRegion(LabelCount, Start);
Visit(S->getSubStmt());
}
void VisitBreakStmt(const BreakStmt *S) {
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
if (!llvm::EnableSingleByteCoverage)
BreakContinueStack.back().BreakCount = addCounters(
BreakContinueStack.back().BreakCount, getRegion().getCounter());
// FIXME: a break in a switch should terminate regions for all preceding
// case statements, not just the most recent one.
terminateRegion(S);
}
void VisitContinueStmt(const ContinueStmt *S) {
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
if (!llvm::EnableSingleByteCoverage)
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, getRegion().getCounter());
terminateRegion(S);
}
void VisitCallExpr(const CallExpr *E) {
VisitStmt(E);
// Terminate the region when we hit a noreturn function.
// (This is helpful dealing with switch statements.)
QualType CalleeType = E->getCallee()->getType();
if (getFunctionExtInfo(*CalleeType).getNoReturn())
terminateRegion(E);
}
void VisitWhileStmt(const WhileStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
// Handle the body first so that we can get the backedge count.
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// Go back to handle the condition.
Counter CondCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
adjustForOutOfOrderTraversal(getEnd(S));
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
}
void VisitDoStmt(const DoStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount;
if (llvm::EnableSingleByteCoverage)
propagateCounts(BodyCount, S->getBody());
else
BackedgeCount =
propagateCounts(addCounters(ParentCount, BodyCount), S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
Counter CondCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
void VisitForStmt(const ForStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
// The loop increment may contain a break or continue.
if (S->getInc())
BreakContinueStack.emplace_back();
// Handle the body first so that we can get the backedge count.
BreakContinueStack.emplace_back();
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BodyBC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
BreakContinue IncrementBC;
if (const Stmt *Inc = S->getInc()) {
Counter IncCount;
if (llvm::EnableSingleByteCoverage)
IncCount = getRegionCounter(S->getInc());
else
IncCount = addCounters(BackedgeCount, BodyBC.ContinueCount);
propagateCounts(IncCount, Inc);
IncrementBC = BreakContinueStack.pop_back_val();
}
// Go back to handle the condition.
Counter CondCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(
addCounters(ParentCount, BackedgeCount, BodyBC.ContinueCount),
IncrementBC.ContinueCount);
if (const Expr *Cond = S->getCond()) {
propagateCounts(CondCount, Cond);
adjustForOutOfOrderTraversal(getEnd(S));
}
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BodyBC.BreakCount, IncrementBC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getLoopVarStmt());
Visit(S->getRangeStmt());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The body count applies to the area immediately after the range.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount;
Counter LoopCount;
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(S);
else {
LoopCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
}
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(LoopCount, BodyCount));
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
extendRegion(S);
Visit(S->getElement());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
// The body count applies to the area immediately after the collection.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter LoopCount =
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
}
void VisitSwitchStmt(const SwitchStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getCond());
BreakContinueStack.push_back(BreakContinue());
const Stmt *Body = S->getBody();
extendRegion(Body);
if (const auto *CS = dyn_cast<CompoundStmt>(Body)) {
if (!CS->body_empty()) {
// Make a region for the body of the switch. If the body starts with
// a case, that case will reuse this region; otherwise, this covers
// the unreachable code at the beginning of the switch body.
size_t Index = pushRegion(Counter::getZero(), getStart(CS));
getRegion().setGap(true);
Visit(Body);
// Set the end for the body of the switch, if it isn't already set.
for (size_t i = RegionStack.size(); i != Index; --i) {
if (!RegionStack[i - 1].hasEndLoc())
RegionStack[i - 1].setEndLoc(getEnd(CS->body_back()));
}
popRegions(Index);
}
} else
propagateCounts(Counter::getZero(), Body);
BreakContinue BC = BreakContinueStack.pop_back_val();
if (!BreakContinueStack.empty() && !llvm::EnableSingleByteCoverage)
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, BC.ContinueCount);
Counter ParentCount = getRegion().getCounter();
Counter ExitCount = getRegionCounter(S);
SourceLocation ExitLoc = getEnd(S);
pushRegion(ExitCount);
GapRegionCounter = ExitCount;
// Ensure that handleFileExit recognizes when the end location is located
// in a different file.
MostRecentLocation = getStart(S);
handleFileExit(ExitLoc);
// When single byte coverage mode is enabled, do not create branch region by
// early returning.
if (llvm::EnableSingleByteCoverage)
return;
// Create a Branch Region around each Case. Subtract the case's
// counter from the Parent counter to track the "False" branch count.
Counter CaseCountSum;
bool HasDefaultCase = false;
const SwitchCase *Case = S->getSwitchCaseList();
for (; Case; Case = Case->getNextSwitchCase()) {
HasDefaultCase = HasDefaultCase || isa<DefaultStmt>(Case);
CaseCountSum =
addCounters(CaseCountSum, getRegionCounter(Case), /*Simplify=*/false);
createSwitchCaseRegion(
Case, getRegionCounter(Case),
subtractCounters(ParentCount, getRegionCounter(Case)));
}
// Simplify is skipped while building the counters above: it can get really
// slow on top of switches with thousands of cases. Instead, trigger
// simplification by adding zero to the last counter.
CaseCountSum = addCounters(CaseCountSum, Counter::getZero());
// If no explicit default case exists, create a branch region to represent
// the hidden branch, which will be added later by the CodeGen. This region
// will be associated with the switch statement's condition.
if (!HasDefaultCase) {
Counter DefaultTrue = subtractCounters(ParentCount, CaseCountSum);
Counter DefaultFalse = subtractCounters(ParentCount, DefaultTrue);
createBranchRegion(S->getCond(), DefaultTrue, DefaultFalse);
}
}
void VisitSwitchCase(const SwitchCase *S) {
extendRegion(S);
SourceMappingRegion &Parent = getRegion();
Counter Count = llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(Parent.getCounter(), getRegionCounter(S));
// Reuse the existing region if it starts at our label. This is typical of
// the first case in a switch.
if (Parent.hasStartLoc() && Parent.getBeginLoc() == getStart(S))
Parent.setCounter(Count);
else
pushRegion(Count, getStart(S));
GapRegionCounter = Count;
if (const auto *CS = dyn_cast<CaseStmt>(S)) {
Visit(CS->getLHS());
if (const Expr *RHS = CS->getRHS())
Visit(RHS);
}
Visit(S->getSubStmt());
}
void coverIfConsteval(const IfStmt *S) {
assert(S->isConsteval());
const auto *Then = S->getThen();
const auto *Else = S->getElse();
// It's better for llvm-cov to create a new region with same counter
// so line-coverage can be properly calculated for lines containing
// a skipped region (without it the line is marked uncovered)
const Counter ParentCount = getRegion().getCounter();
extendRegion(S);
if (S->isNegatedConsteval()) {
// ignore 'if consteval'
markSkipped(S->getIfLoc(), getStart(Then));
propagateCounts(ParentCount, Then);
if (Else) {
// ignore 'else <else>'
markSkipped(getEnd(Then), getEnd(Else));
}
} else {
assert(S->isNonNegatedConsteval());
// ignore 'if consteval <then> [else]'
markSkipped(S->getIfLoc(), Else ? getStart(Else) : getEnd(Then));
if (Else)
propagateCounts(ParentCount, Else);
}
}
void coverIfConstexpr(const IfStmt *S) {
assert(S->isConstexpr());
// evaluate constant condition...
const bool isTrue =
S->getCond()
->EvaluateKnownConstInt(CVM.getCodeGenModule().getContext())
.getBoolValue();
extendRegion(S);
// I'm using 'propagateCounts' later as new region is better and allows me
// to properly calculate line coverage in llvm-cov utility
const Counter ParentCount = getRegion().getCounter();
// ignore 'if constexpr ('
SourceLocation startOfSkipped = S->getIfLoc();
if (const auto *Init = S->getInit()) {
const auto start = getStart(Init);
const auto end = getEnd(Init);
// this check is to make sure typedef here which doesn't have valid source
// location won't crash it
if (start.isValid() && end.isValid()) {
markSkipped(startOfSkipped, start);
propagateCounts(ParentCount, Init);
startOfSkipped = getEnd(Init);
}
}
const auto *Then = S->getThen();
const auto *Else = S->getElse();
if (isTrue) {
// ignore '<condition>)'
markSkipped(startOfSkipped, getStart(Then));
propagateCounts(ParentCount, Then);
if (Else)
// ignore 'else <else>'
markSkipped(getEnd(Then), getEnd(Else));
} else {
// ignore '<condition>) <then> [else]'
markSkipped(startOfSkipped, Else ? getStart(Else) : getEnd(Then));
if (Else)
propagateCounts(ParentCount, Else);
}
}
void VisitIfStmt(const IfStmt *S) {
// "if constexpr" and "if consteval" are not normal conditional statements,
// their discarded statement should be skipped
if (S->isConsteval())
return coverIfConsteval(S);
else if (S->isConstexpr())
return coverIfConstexpr(S);
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
// Extend into the condition before we propagate through it below - this is
// needed to handle macros that generate the "if" but not the condition.
extendRegion(S->getCond());
Counter ParentCount = getRegion().getCounter();
Counter ThenCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getThen())
: getRegionCounter(S);
// Emitting a counter for the condition makes it easier to interpret the
// counter for the body when looking at the coverage.
propagateCounts(ParentCount, S->getCond());
// The 'then' count applies to the area immediately after the condition.
std::optional<SourceRange> Gap =
findGapAreaBetween(S->getRParenLoc(), getStart(S->getThen()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ThenCount);
extendRegion(S->getThen());
Counter OutCount = propagateCounts(ThenCount, S->getThen());
Counter ElseCount;
if (!llvm::EnableSingleByteCoverage)
ElseCount = subtractCounters(ParentCount, ThenCount);
else if (S->getElse())
ElseCount = getRegionCounter(S->getElse());
if (const Stmt *Else = S->getElse()) {
bool ThenHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The 'else' count applies to the area immediately after the 'then'.
std::optional<SourceRange> Gap =
findGapAreaBetween(getEnd(S->getThen()), getStart(Else));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ElseCount);
extendRegion(Else);
Counter ElseOutCount = propagateCounts(ElseCount, Else);
if (!llvm::EnableSingleByteCoverage)
OutCount = addCounters(OutCount, ElseOutCount);
if (ThenHasTerminateStmt)
HasTerminateStmt = true;
} else if (!llvm::EnableSingleByteCoverage)
OutCount = addCounters(OutCount, ElseCount);
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(S);
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
if (!S->isConsteval() && !llvm::EnableSingleByteCoverage)
// Create Branch Region around condition.
createBranchRegion(S->getCond(), ThenCount,
subtractCounters(ParentCount, ThenCount));
}
void VisitCXXTryStmt(const CXXTryStmt *S) {
extendRegion(S);
// Handle macros that generate the "try" but not the rest.
extendRegion(S->getTryBlock());
Counter ParentCount = getRegion().getCounter();
propagateCounts(ParentCount, S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
Counter ExitCount = getRegionCounter(S);
pushRegion(ExitCount);
}
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
propagateCounts(getRegionCounter(S), S->getHandlerBlock());
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
extendRegion(E);
Counter ParentCount = getRegion().getCounter();
Counter TrueCount = llvm::EnableSingleByteCoverage
? getRegionCounter(E->getTrueExpr())
: getRegionCounter(E);
Counter OutCount;
if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
propagateCounts(ParentCount, BCO->getCommon());
OutCount = TrueCount;
} else {
propagateCounts(ParentCount, E->getCond());
// The 'then' count applies to the area immediately after the condition.
auto Gap =
findGapAreaBetween(E->getQuestionLoc(), getStart(E->getTrueExpr()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), TrueCount);
extendRegion(E->getTrueExpr());
OutCount = propagateCounts(TrueCount, E->getTrueExpr());
}
extendRegion(E->getFalseExpr());
Counter FalseCount = llvm::EnableSingleByteCoverage
? getRegionCounter(E->getFalseExpr())
: subtractCounters(ParentCount, TrueCount);
Counter FalseOutCount = propagateCounts(FalseCount, E->getFalseExpr());
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(E);
else
OutCount = addCounters(OutCount, FalseOutCount);
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getCond(), TrueCount,
subtractCounters(ParentCount, TrueCount));
}
void createDecision(const BinaryOperator *E) {
unsigned NumConds = MCDCBuilder.getTotalConditionsAndReset(E);
if (NumConds == 0)
return;
auto DecisionParams = mcdc::DecisionParameters{
MCDCState.DecisionByStmt[E].BitmapIdx,
NumConds,
};
// Create MCDC Decision Region.
createDecisionRegion(E, DecisionParams);
}
void VisitBinLAnd(const BinaryOperator *E) {
bool IsRootNode = MCDCBuilder.isIdle();
// Keep track of Binary Operator and assign MCDC condition IDs.
MCDCBuilder.pushAndAssignIDs(E);
extendRegion(E->getLHS());
propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
// Track LHS True/False Decision.
const auto DecisionLHS = MCDCBuilder.pop();
// Counter tracks the right hand side of a logical and operator.
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
// Track RHS True/False Decision.
const auto DecisionRHS = MCDCBuilder.back();
// Extract the RHS's Execution Counter.
Counter RHSExecCnt = getRegionCounter(E);
// Extract the RHS's "True" Instance Counter.
Counter RHSTrueCnt = getRegionCounter(E->getRHS());
// Extract the Parent Region Counter.
Counter ParentCnt = getRegion().getCounter();
// Create Branch Region around LHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getLHS(), RHSExecCnt,
subtractCounters(ParentCnt, RHSExecCnt), DecisionLHS);
// Create Branch Region around RHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getRHS(), RHSTrueCnt,
subtractCounters(RHSExecCnt, RHSTrueCnt), DecisionRHS);
// Create MCDC Decision Region if at top-level (root).
if (IsRootNode)
createDecision(E);
}
// Determine whether the right side of OR operation need to be visited.
bool shouldVisitRHS(const Expr *LHS) {
bool LHSIsTrue = false;
bool LHSIsConst = false;
if (!LHS->isValueDependent())
LHSIsConst = LHS->EvaluateAsBooleanCondition(
LHSIsTrue, CVM.getCodeGenModule().getContext());
return !LHSIsConst || (LHSIsConst && !LHSIsTrue);
}
void VisitBinLOr(const BinaryOperator *E) {
bool IsRootNode = MCDCBuilder.isIdle();
// Keep track of Binary Operator and assign MCDC condition IDs.
MCDCBuilder.pushAndAssignIDs(E);
extendRegion(E->getLHS());
Counter OutCount = propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
// Track LHS True/False Decision.
const auto DecisionLHS = MCDCBuilder.pop();
// Counter tracks the right hand side of a logical or operator.
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
// Track RHS True/False Decision.
const auto DecisionRHS = MCDCBuilder.back();
// Extract the RHS's Execution Counter.
Counter RHSExecCnt = getRegionCounter(E);
// Extract the RHS's "False" Instance Counter.
Counter RHSFalseCnt = getRegionCounter(E->getRHS());
if (!shouldVisitRHS(E->getLHS())) {
GapRegionCounter = OutCount;
}
// Extract the Parent Region Counter.
Counter ParentCnt = getRegion().getCounter();
// Create Branch Region around LHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getLHS(), subtractCounters(ParentCnt, RHSExecCnt),
RHSExecCnt, DecisionLHS);
// Create Branch Region around RHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getRHS(), subtractCounters(RHSExecCnt, RHSFalseCnt),
RHSFalseCnt, DecisionRHS);
// Create MCDC Decision Region if at top-level (root).
if (IsRootNode)
createDecision(E);
}
void VisitLambdaExpr(const LambdaExpr *LE) {
// Lambdas are treated as their own functions for now, so we shouldn't
// propagate counts into them.
}
void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
// Just visit syntatic expression as this is what users actually write.
VisitStmt(POE->getSyntacticForm());
}
void VisitOpaqueValueExpr(const OpaqueValueExpr* OVE) {
Visit(OVE->getSourceExpr());
}
};
} // end anonymous namespace
static void dump(llvm::raw_ostream &OS, StringRef FunctionName,
ArrayRef<CounterExpression> Expressions,
ArrayRef<CounterMappingRegion> Regions) {
OS << FunctionName << ":\n";
CounterMappingContext Ctx(Expressions);
for (const auto &R : Regions) {
OS.indent(2);
switch (R.Kind) {
case CounterMappingRegion::CodeRegion:
break;
case CounterMappingRegion::ExpansionRegion:
OS << "Expansion,";
break;
case CounterMappingRegion::SkippedRegion:
OS << "Skipped,";
break;
case CounterMappingRegion::GapRegion:
OS << "Gap,";
break;
case CounterMappingRegion::BranchRegion:
case CounterMappingRegion::MCDCBranchRegion:
OS << "Branch,";
break;
case CounterMappingRegion::MCDCDecisionRegion:
OS << "Decision,";
break;
}
OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart
<< " -> " << R.LineEnd << ":" << R.ColumnEnd << " = ";
if (const auto *DecisionParams =
std::get_if<mcdc::DecisionParameters>(&R.MCDCParams)) {
OS << "M:" << DecisionParams->BitmapIdx;
OS << ", C:" << DecisionParams->NumConditions;
} else {
Ctx.dump(R.Count, OS);
if (R.Kind == CounterMappingRegion::BranchRegion ||
R.Kind == CounterMappingRegion::MCDCBranchRegion) {
OS << ", ";
Ctx.dump(R.FalseCount, OS);
}
}
if (const auto *BranchParams =
std::get_if<mcdc::BranchParameters>(&R.MCDCParams)) {
OS << " [" << BranchParams->ID + 1 << ","
<< BranchParams->Conds[true] + 1;
OS << "," << BranchParams->Conds[false] + 1 << "] ";
}
if (R.Kind == CounterMappingRegion::ExpansionRegion)
OS << " (Expanded file = " << R.ExpandedFileID << ")";
OS << "\n";
}
}
CoverageMappingModuleGen::CoverageMappingModuleGen(
CodeGenModule &CGM, CoverageSourceInfo &SourceInfo)
: CGM(CGM), SourceInfo(SourceInfo) {}
std::string CoverageMappingModuleGen::getCurrentDirname() {
if (!CGM.getCodeGenOpts().CoverageCompilationDir.empty())
return CGM.getCodeGenOpts().CoverageCompilationDir;
SmallString<256> CWD;
llvm::sys::fs::current_path(CWD);
return CWD.str().str();
}
std::string CoverageMappingModuleGen::normalizeFilename(StringRef Filename) {
llvm::SmallString<256> Path(Filename);
llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true);
/// Traverse coverage prefix map in reverse order because prefix replacements
/// are applied in reverse order starting from the last one when multiple
/// prefix replacement options are provided.
for (const auto &[From, To] :
llvm::reverse(CGM.getCodeGenOpts().CoveragePrefixMap)) {
if (llvm::sys::path::replace_path_prefix(Path, From, To))
break;
}
return Path.str().str();
}
static std::string getInstrProfSection(const CodeGenModule &CGM,
llvm::InstrProfSectKind SK) {
return llvm::getInstrProfSectionName(
SK, CGM.getContext().getTargetInfo().getTriple().getObjectFormat());
}
void CoverageMappingModuleGen::emitFunctionMappingRecord(
const FunctionInfo &Info, uint64_t FilenamesRef) {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
// Assign a name to the function record. This is used to merge duplicates.
std::string FuncRecordName = "__covrec_" + llvm::utohexstr(Info.NameHash);
// A dummy description for a function included-but-not-used in a TU can be
// replaced by full description provided by a different TU. The two kinds of
// descriptions play distinct roles: therefore, assign them different names
// to prevent `linkonce_odr` merging.
if (Info.IsUsed)
FuncRecordName += "u";
// Create the function record type.
const uint64_t NameHash = Info.NameHash;
const uint64_t FuncHash = Info.FuncHash;
const std::string &CoverageMapping = Info.CoverageMapping;
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType,
llvm::Type *FunctionRecordTypes[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *FunctionRecordTy =
llvm::StructType::get(Ctx, ArrayRef(FunctionRecordTypes),
/*isPacked=*/true);
// Create the function record constant.
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init,
llvm::Constant *FunctionRecordVals[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *FuncRecordConstant =
llvm::ConstantStruct::get(FunctionRecordTy, ArrayRef(FunctionRecordVals));
// Create the function record global.
auto *FuncRecord = new llvm::GlobalVariable(
CGM.getModule(), FunctionRecordTy, /*isConstant=*/true,
llvm::GlobalValue::LinkOnceODRLinkage, FuncRecordConstant,
FuncRecordName);
FuncRecord->setVisibility(llvm::GlobalValue::HiddenVisibility);
FuncRecord->setSection(getInstrProfSection(CGM, llvm::IPSK_covfun));
FuncRecord->setAlignment(llvm::Align(8));
if (CGM.supportsCOMDAT())
FuncRecord->setComdat(CGM.getModule().getOrInsertComdat(FuncRecordName));
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(FuncRecord);
}
void CoverageMappingModuleGen::addFunctionMappingRecord(
llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash,
const std::string &CoverageMapping, bool IsUsed) {
const uint64_t NameHash = llvm::IndexedInstrProf::ComputeHash(NameValue);
FunctionRecords.push_back({NameHash, FuncHash, CoverageMapping, IsUsed});
if (!IsUsed)
FunctionNames.push_back(NamePtr);
if (CGM.getCodeGenOpts().DumpCoverageMapping) {
// Dump the coverage mapping data for this function by decoding the
// encoded data. This allows us to dump the mapping regions which were
// also processed by the CoverageMappingWriter which performs
// additional minimization operations such as reducing the number of
// expressions.
llvm::SmallVector<std::string, 16> FilenameStrs;
std::vector<StringRef> Filenames;
std::vector<CounterExpression> Expressions;
std::vector<CounterMappingRegion> Regions;
FilenameStrs.resize(FileEntries.size() + 1);
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
}
ArrayRef<std::string> FilenameRefs = llvm::ArrayRef(FilenameStrs);
RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames,
Expressions, Regions);
if (Reader.read())
return;
dump(llvm::outs(), NameValue, Expressions, Regions);
}
}
void CoverageMappingModuleGen::emit() {
if (FunctionRecords.empty())
return;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
// Create the filenames and merge them with coverage mappings
llvm::SmallVector<std::string, 16> FilenameStrs;
FilenameStrs.resize(FileEntries.size() + 1);
// The first filename is the current working directory.
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
}
std::string Filenames;
{
llvm::raw_string_ostream OS(Filenames);
CoverageFilenamesSectionWriter(FilenameStrs).write(OS);
}
auto *FilenamesVal =
llvm::ConstantDataArray::getString(Ctx, Filenames, false);
const int64_t FilenamesRef = llvm::IndexedInstrProf::ComputeHash(Filenames);
// Emit the function records.
for (const FunctionInfo &Info : FunctionRecords)
emitFunctionMappingRecord(Info, FilenamesRef);
const unsigned NRecords = 0;
const size_t FilenamesSize = Filenames.size();
const unsigned CoverageMappingSize = 0;
llvm::Type *CovDataHeaderTypes[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderTy =
llvm::StructType::get(Ctx, ArrayRef(CovDataHeaderTypes));
llvm::Constant *CovDataHeaderVals[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderVal =
llvm::ConstantStruct::get(CovDataHeaderTy, ArrayRef(CovDataHeaderVals));
// Create the coverage data record
llvm::Type *CovDataTypes[] = {CovDataHeaderTy, FilenamesVal->getType()};
auto CovDataTy = llvm::StructType::get(Ctx, ArrayRef(CovDataTypes));
llvm::Constant *TUDataVals[] = {CovDataHeaderVal, FilenamesVal};
auto CovDataVal = llvm::ConstantStruct::get(CovDataTy, ArrayRef(TUDataVals));
auto CovData = new llvm::GlobalVariable(
CGM.getModule(), CovDataTy, true, llvm::GlobalValue::PrivateLinkage,
CovDataVal, llvm::getCoverageMappingVarName());
CovData->setSection(getInstrProfSection(CGM, llvm::IPSK_covmap));
CovData->setAlignment(llvm::Align(8));
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(CovData);
// Create the deferred function records array
if (!FunctionNames.empty()) {
auto NamesArrTy = llvm::ArrayType::get(llvm::PointerType::getUnqual(Ctx),
FunctionNames.size());
auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames);
// This variable will *NOT* be emitted to the object file. It is used
// to pass the list of names referenced to codegen.
new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true,
llvm::GlobalValue::InternalLinkage, NamesArrVal,
llvm::getCoverageUnusedNamesVarName());
}
}
unsigned CoverageMappingModuleGen::getFileID(FileEntryRef File) {
auto It = FileEntries.find(File);
if (It != FileEntries.end())
return It->second;
unsigned FileID = FileEntries.size() + 1;
FileEntries.insert(std::make_pair(File, FileID));
return FileID;
}
void CoverageMappingGen::emitCounterMapping(const Decl *D,
llvm::raw_ostream &OS) {
assert(CounterMap && MCDCState);
CounterCoverageMappingBuilder Walker(CVM, *CounterMap, *MCDCState, SM,
LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}
void CoverageMappingGen::emitEmptyMapping(const Decl *D,
llvm::raw_ostream &OS) {
EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}