blob: e94fd39c45dc15ff8d8fa257b46f35684733eced [file] [log] [blame]
//===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DataflowAnalysisContext class that owns objects that
// encompass the state of a program and stores context that is used during
// dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Analysis/FlowSensitive/ASTOps.h"
#include "clang/Analysis/FlowSensitive/DebugSupport.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/Logger.h"
#include "clang/Analysis/FlowSensitive/SimplifyConstraints.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <memory>
#include <string>
#include <utility>
#include <vector>
static llvm::cl::opt<std::string> DataflowLog(
"dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional,
llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual "
"log to stderr. With an arg, writes HTML logs under the "
"specified directory (one per analyzed function)."));
namespace clang {
namespace dataflow {
FieldSet DataflowAnalysisContext::getModeledFields(QualType Type) {
// During context-sensitive analysis, a struct may be allocated in one
// function, but its field accessed in a function lower in the stack than
// the allocation. Since we only collect fields used in the function where
// the allocation occurs, we can't apply that filter when performing
// context-sensitive analysis. But, this only applies to storage locations,
// since field access it not allowed to fail. In contrast, field *values*
// don't need this allowance, since the API allows for uninitialized fields.
if (Opts.ContextSensitiveOpts)
return getObjectFields(Type);
return llvm::set_intersection(getObjectFields(Type), ModeledFields);
}
void DataflowAnalysisContext::addModeledFields(const FieldSet &Fields) {
ModeledFields.set_union(Fields);
}
StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
if (!Type.isNull() && Type->isRecordType()) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
for (const FieldDecl *Field : getModeledFields(Type))
if (Field->getType()->isReferenceType())
FieldLocs.insert({Field, nullptr});
else
FieldLocs.insert({Field, &createStorageLocation(
Field->getType().getNonReferenceType())});
RecordStorageLocation::SyntheticFieldMap SyntheticFields;
for (const auto &Entry : getSyntheticFields(Type))
SyntheticFields.insert(
{Entry.getKey(),
&createStorageLocation(Entry.getValue().getNonReferenceType())});
return createRecordStorageLocation(Type, std::move(FieldLocs),
std::move(SyntheticFields));
}
return arena().create<ScalarStorageLocation>(Type);
}
// Returns the keys for a given `StringMap`.
// Can't use `StringSet` as the return type as it doesn't support `operator==`.
template <typename T>
static llvm::DenseSet<llvm::StringRef> getKeys(const llvm::StringMap<T> &Map) {
return llvm::DenseSet<llvm::StringRef>(Map.keys().begin(), Map.keys().end());
}
RecordStorageLocation &DataflowAnalysisContext::createRecordStorageLocation(
QualType Type, RecordStorageLocation::FieldToLoc FieldLocs,
RecordStorageLocation::SyntheticFieldMap SyntheticFields) {
assert(Type->isRecordType());
assert(containsSameFields(getModeledFields(Type), FieldLocs));
assert(getKeys(getSyntheticFields(Type)) == getKeys(SyntheticFields));
RecordStorageLocationCreated = true;
return arena().create<RecordStorageLocation>(Type, std::move(FieldLocs),
std::move(SyntheticFields));
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const ValueDecl &D) {
if (auto *Loc = DeclToLoc.lookup(&D))
return *Loc;
auto &Loc = createStorageLocation(D.getType().getNonReferenceType());
DeclToLoc[&D] = &Loc;
return Loc;
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
if (auto *Loc = ExprToLoc.lookup(&CanonE))
return *Loc;
auto &Loc = createStorageLocation(CanonE.getType());
ExprToLoc[&CanonE] = &Loc;
return Loc;
}
PointerValue &
DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
auto CanonicalPointeeType =
PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
if (Res.second) {
auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
Res.first->second = &arena().create<PointerValue>(PointeeLoc);
}
return *Res.first->second;
}
void DataflowAnalysisContext::addInvariant(const Formula &Constraint) {
if (Invariant == nullptr)
Invariant = &Constraint;
else
Invariant = &arena().makeAnd(*Invariant, Constraint);
}
void DataflowAnalysisContext::addFlowConditionConstraint(
Atom Token, const Formula &Constraint) {
auto Res = FlowConditionConstraints.try_emplace(Token, &Constraint);
if (!Res.second) {
Res.first->second =
&arena().makeAnd(*Res.first->second, Constraint);
}
}
Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) {
Atom ForkToken = arena().makeFlowConditionToken();
FlowConditionDeps[ForkToken].insert(Token);
addFlowConditionConstraint(ForkToken, arena().makeAtomRef(Token));
return ForkToken;
}
Atom
DataflowAnalysisContext::joinFlowConditions(Atom FirstToken,
Atom SecondToken) {
Atom Token = arena().makeFlowConditionToken();
FlowConditionDeps[Token].insert(FirstToken);
FlowConditionDeps[Token].insert(SecondToken);
addFlowConditionConstraint(Token,
arena().makeOr(arena().makeAtomRef(FirstToken),
arena().makeAtomRef(SecondToken)));
return Token;
}
Solver::Result DataflowAnalysisContext::querySolver(
llvm::SetVector<const Formula *> Constraints) {
return S->solve(Constraints.getArrayRef());
}
bool DataflowAnalysisContext::flowConditionImplies(Atom Token,
const Formula &F) {
if (F.isLiteral(true))
return true;
// Returns true if and only if truth assignment of the flow condition implies
// that `F` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `F` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
Constraints.insert(&arena().makeNot(F));
addTransitiveFlowConditionConstraints(Token, Constraints);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::flowConditionAllows(Atom Token,
const Formula &F) {
if (F.isLiteral(false))
return false;
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
Constraints.insert(&F);
addTransitiveFlowConditionConstraints(Token, Constraints);
return isSatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1,
const Formula &Val2) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeNot(arena().makeEquals(Val1, Val2)));
return isUnsatisfiable(std::move(Constraints));
}
void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
Atom Token, llvm::SetVector<const Formula *> &Constraints) {
llvm::DenseSet<Atom> AddedTokens;
std::vector<Atom> Remaining = {Token};
if (Invariant)
Constraints.insert(Invariant);
// Define all the flow conditions that might be referenced in constraints.
while (!Remaining.empty()) {
auto Token = Remaining.back();
Remaining.pop_back();
if (!AddedTokens.insert(Token).second)
continue;
auto ConstraintsIt = FlowConditionConstraints.find(Token);
if (ConstraintsIt == FlowConditionConstraints.end()) {
Constraints.insert(&arena().makeAtomRef(Token));
} else {
// Bind flow condition token via `iff` to its set of constraints:
// FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
Constraints.insert(&arena().makeEquals(arena().makeAtomRef(Token),
*ConstraintsIt->second));
}
if (auto DepsIt = FlowConditionDeps.find(Token);
DepsIt != FlowConditionDeps.end())
for (Atom A : DepsIt->second)
Remaining.push_back(A);
}
}
static void printAtomList(const llvm::SmallVector<Atom> &Atoms,
llvm::raw_ostream &OS) {
OS << "(";
for (size_t i = 0; i < Atoms.size(); ++i) {
OS << Atoms[i];
if (i + 1 < Atoms.size())
OS << ", ";
}
OS << ")\n";
}
void DataflowAnalysisContext::dumpFlowCondition(Atom Token,
llvm::raw_ostream &OS) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
addTransitiveFlowConditionConstraints(Token, Constraints);
OS << "Flow condition token: " << Token << "\n";
SimplifyConstraintsInfo Info;
llvm::SetVector<const Formula *> OriginalConstraints = Constraints;
simplifyConstraints(Constraints, arena(), &Info);
if (!Constraints.empty()) {
OS << "Constraints:\n";
for (const auto *Constraint : Constraints) {
Constraint->print(OS);
OS << "\n";
}
}
if (!Info.TrueAtoms.empty()) {
OS << "True atoms: ";
printAtomList(Info.TrueAtoms, OS);
}
if (!Info.FalseAtoms.empty()) {
OS << "False atoms: ";
printAtomList(Info.FalseAtoms, OS);
}
if (!Info.EquivalentAtoms.empty()) {
OS << "Equivalent atoms:\n";
for (const llvm::SmallVector<Atom> &Class : Info.EquivalentAtoms)
printAtomList(Class, OS);
}
OS << "\nFlow condition constraints before simplification:\n";
for (const auto *Constraint : OriginalConstraints) {
Constraint->print(OS);
OS << "\n";
}
}
const AdornedCFG *
DataflowAnalysisContext::getAdornedCFG(const FunctionDecl *F) {
// Canonicalize the key:
F = F->getDefinition();
if (F == nullptr)
return nullptr;
auto It = FunctionContexts.find(F);
if (It != FunctionContexts.end())
return &It->second;
if (F->doesThisDeclarationHaveABody()) {
auto ACFG = AdornedCFG::build(*F);
// FIXME: Handle errors.
assert(ACFG);
auto Result = FunctionContexts.insert({F, std::move(*ACFG)});
return &Result.first->second;
}
return nullptr;
}
static std::unique_ptr<Logger> makeLoggerFromCommandLine() {
if (DataflowLog.empty())
return Logger::textual(llvm::errs());
llvm::StringRef Dir = DataflowLog;
if (auto EC = llvm::sys::fs::create_directories(Dir))
llvm::errs() << "Failed to create log dir: " << EC.message() << "\n";
// All analysis runs within a process will log to the same directory.
// Share a counter so they don't all overwrite each other's 0.html.
// (Don't share a logger, it's not threadsafe).
static std::atomic<unsigned> Counter = {0};
auto StreamFactory =
[Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> {
llvm::SmallString<256> File(Dir);
llvm::sys::path::append(File,
std::to_string(Counter.fetch_add(1)) + ".html");
std::error_code EC;
auto OS = std::make_unique<llvm::raw_fd_ostream>(File, EC);
if (EC) {
llvm::errs() << "Failed to create log " << File << ": " << EC.message()
<< "\n";
return std::make_unique<llvm::raw_null_ostream>();
}
return OS;
};
return Logger::html(std::move(StreamFactory));
}
DataflowAnalysisContext::DataflowAnalysisContext(std::unique_ptr<Solver> S,
Options Opts)
: S(std::move(S)), A(std::make_unique<Arena>()), Opts(Opts) {
assert(this->S != nullptr);
// If the -dataflow-log command-line flag was set, synthesize a logger.
// This is ugly but provides a uniform method for ad-hoc debugging dataflow-
// based tools.
if (Opts.Log == nullptr) {
if (DataflowLog.getNumOccurrences() > 0) {
LogOwner = makeLoggerFromCommandLine();
this->Opts.Log = LogOwner.get();
// FIXME: if the flag is given a value, write an HTML log to a file.
} else {
this->Opts.Log = &Logger::null();
}
}
}
DataflowAnalysisContext::~DataflowAnalysisContext() = default;
} // namespace dataflow
} // namespace clang