blob: fb7ee14515715aa6696c7de240715d6542e8c088 [file] [log] [blame]
//===--- Integral.h - Wrapper for numeric types for the VM ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the VM types and helpers operating on types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_INTEGRAL_AP_H
#define LLVM_CLANG_AST_INTERP_INTEGRAL_AP_H
#include "clang/AST/APValue.h"
#include "clang/AST/ComparisonCategories.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <cstdint>
#include "Primitives.h"
namespace clang {
namespace interp {
using APInt = llvm::APInt;
using APSInt = llvm::APSInt;
template <unsigned Bits, bool Signed> class Integral;
template <bool Signed> class IntegralAP final {
private:
friend IntegralAP<!Signed>;
APInt V;
template <typename T, bool InputSigned>
static T truncateCast(const APInt &V) {
constexpr unsigned BitSize = sizeof(T) * 8;
if (BitSize >= V.getBitWidth()) {
APInt Extended;
if constexpr (InputSigned)
Extended = V.sext(BitSize);
else
Extended = V.zext(BitSize);
return std::is_signed_v<T> ? Extended.getSExtValue()
: Extended.getZExtValue();
}
return std::is_signed_v<T> ? V.trunc(BitSize).getSExtValue()
: V.trunc(BitSize).getZExtValue();
}
public:
using AsUnsigned = IntegralAP<false>;
template <typename T>
IntegralAP(T Value, unsigned BitWidth)
: V(APInt(BitWidth, static_cast<uint64_t>(Value), Signed)) {}
IntegralAP(APInt V) : V(V) {}
/// Arbitrary value for uninitialized variables.
IntegralAP() : IntegralAP(-1, 1024) {}
IntegralAP operator-() const { return IntegralAP(-V); }
IntegralAP operator-(const IntegralAP &Other) const {
return IntegralAP(V - Other.V);
}
bool operator>(const IntegralAP &RHS) const {
if constexpr (Signed)
return V.ugt(RHS.V);
return V.sgt(RHS.V);
}
bool operator>=(IntegralAP RHS) const {
if constexpr (Signed)
return V.uge(RHS.V);
return V.sge(RHS.V);
}
bool operator<(IntegralAP RHS) const {
if constexpr (Signed)
return V.slt(RHS.V);
return V.slt(RHS.V);
}
bool operator<=(IntegralAP RHS) const {
if constexpr (Signed)
return V.ult(RHS.V);
return V.ult(RHS.V);
}
template <typename Ty, typename = std::enable_if_t<std::is_integral_v<Ty>>>
explicit operator Ty() const {
return truncateCast<Ty, Signed>(V);
}
template <typename T> static IntegralAP from(T Value, unsigned NumBits = 0) {
assert(NumBits > 0);
APInt Copy = APInt(NumBits, static_cast<uint64_t>(Value), Signed);
return IntegralAP<Signed>(Copy);
}
template <bool InputSigned>
static IntegralAP from(IntegralAP<InputSigned> V, unsigned NumBits = 0) {
if (NumBits == 0)
NumBits = V.bitWidth();
if constexpr (InputSigned)
return IntegralAP<Signed>(V.V.sextOrTrunc(NumBits));
return IntegralAP<Signed>(V.V.zextOrTrunc(NumBits));
}
template <unsigned Bits, bool InputSigned>
static IntegralAP from(Integral<Bits, InputSigned> I, unsigned BitWidth) {
APInt Copy = APInt(BitWidth, static_cast<uint64_t>(I), InputSigned);
return IntegralAP<Signed>(Copy);
}
static IntegralAP zero(int32_t BitWidth) {
APInt V = APInt(BitWidth, 0LL, Signed);
return IntegralAP(V);
}
constexpr unsigned bitWidth() const { return V.getBitWidth(); }
APSInt toAPSInt(unsigned Bits = 0) const {
if (Bits == 0)
Bits = bitWidth();
if constexpr (Signed)
return APSInt(V.sext(Bits), !Signed);
else
return APSInt(V.zext(Bits), !Signed);
}
APValue toAPValue() const { return APValue(toAPSInt()); }
bool isZero() const { return V.isZero(); }
bool isPositive() const { return V.isNonNegative(); }
bool isNegative() const { return !V.isNonNegative(); }
bool isMin() const { return V.isMinValue(); }
bool isMax() const { return V.isMaxValue(); }
static constexpr bool isSigned() { return Signed; }
bool isMinusOne() const { return Signed && V == -1; }
unsigned countLeadingZeros() const { return V.countl_zero(); }
void print(llvm::raw_ostream &OS) const { OS << V; }
std::string toDiagnosticString(const ASTContext &Ctx) const {
std::string NameStr;
llvm::raw_string_ostream OS(NameStr);
print(OS);
return NameStr;
}
IntegralAP truncate(unsigned BitWidth) const {
if constexpr (Signed)
return IntegralAP(V.trunc(BitWidth).sextOrTrunc(this->bitWidth()));
else
return IntegralAP(V.trunc(BitWidth).zextOrTrunc(this->bitWidth()));
}
IntegralAP<false> toUnsigned() const {
APInt Copy = V;
return IntegralAP<false>(Copy);
}
ComparisonCategoryResult compare(const IntegralAP &RHS) const {
assert(Signed == RHS.isSigned());
assert(bitWidth() == RHS.bitWidth());
if constexpr (Signed) {
if (V.slt(RHS.V))
return ComparisonCategoryResult::Less;
if (V.sgt(RHS.V))
return ComparisonCategoryResult::Greater;
return ComparisonCategoryResult::Equal;
}
assert(!Signed);
if (V.ult(RHS.V))
return ComparisonCategoryResult::Less;
if (V.ugt(RHS.V))
return ComparisonCategoryResult::Greater;
return ComparisonCategoryResult::Equal;
}
static bool increment(IntegralAP A, IntegralAP *R) {
IntegralAP<Signed> One(1, A.bitWidth());
return add(A, One, A.bitWidth() + 1, R);
}
static bool decrement(IntegralAP A, IntegralAP *R) {
IntegralAP<Signed> One(1, A.bitWidth());
return sub(A, One, A.bitWidth() + 1, R);
}
static bool add(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) {
return CheckAddSubMulUB<std::plus>(A, B, OpBits, R);
}
static bool sub(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) {
return CheckAddSubMulUB<std::minus>(A, B, OpBits, R);
}
static bool mul(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) {
return CheckAddSubMulUB<std::multiplies>(A, B, OpBits, R);
}
static bool rem(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) {
if constexpr (Signed)
*R = IntegralAP(A.V.srem(B.V));
else
*R = IntegralAP(A.V.urem(B.V));
return false;
}
static bool div(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) {
if constexpr (Signed)
*R = IntegralAP(A.V.sdiv(B.V));
else
*R = IntegralAP(A.V.udiv(B.V));
return false;
}
static bool bitAnd(IntegralAP A, IntegralAP B, unsigned OpBits,
IntegralAP *R) {
*R = IntegralAP(A.V & B.V);
return false;
}
static bool bitOr(IntegralAP A, IntegralAP B, unsigned OpBits,
IntegralAP *R) {
*R = IntegralAP(A.V | B.V);
return false;
}
static bool bitXor(IntegralAP A, IntegralAP B, unsigned OpBits,
IntegralAP *R) {
*R = IntegralAP(A.V ^ B.V);
return false;
}
static bool neg(const IntegralAP &A, IntegralAP *R) {
APInt AI = A.V;
AI.negate();
*R = IntegralAP(AI);
return false;
}
static bool comp(IntegralAP A, IntegralAP *R) {
*R = IntegralAP(~A.V);
return false;
}
static void shiftLeft(const IntegralAP A, const IntegralAP B, unsigned OpBits,
IntegralAP *R) {
*R = IntegralAP(A.V.shl(B.V.getZExtValue()));
}
static void shiftRight(const IntegralAP A, const IntegralAP B,
unsigned OpBits, IntegralAP *R) {
unsigned ShiftAmount = B.V.getZExtValue();
if constexpr (Signed)
*R = IntegralAP(A.V.ashr(ShiftAmount));
else
*R = IntegralAP(A.V.lshr(ShiftAmount));
}
// === Serialization support ===
size_t bytesToSerialize() const {
// 4 bytes for the BitWidth followed by N bytes for the actual APInt.
return sizeof(uint32_t) + (V.getBitWidth() / CHAR_BIT);
}
void serialize(std::byte *Buff) const {
assert(V.getBitWidth() < std::numeric_limits<uint8_t>::max());
uint32_t BitWidth = V.getBitWidth();
std::memcpy(Buff, &BitWidth, sizeof(uint32_t));
llvm::StoreIntToMemory(V, (uint8_t *)(Buff + sizeof(uint32_t)),
BitWidth / CHAR_BIT);
}
static IntegralAP<Signed> deserialize(const std::byte *Buff) {
uint32_t BitWidth;
std::memcpy(&BitWidth, Buff, sizeof(uint32_t));
IntegralAP<Signed> Val(APInt(BitWidth, 0ull, !Signed));
llvm::LoadIntFromMemory(Val.V, (const uint8_t *)Buff + sizeof(uint32_t),
BitWidth / CHAR_BIT);
return Val;
}
private:
template <template <typename T> class Op>
static bool CheckAddSubMulUB(const IntegralAP &A, const IntegralAP &B,
unsigned BitWidth, IntegralAP *R) {
if constexpr (!Signed) {
R->V = Op<APInt>{}(A.V, B.V);
return false;
}
const APSInt &LHS = A.toAPSInt();
const APSInt &RHS = B.toAPSInt();
APSInt Value = Op<APSInt>{}(LHS.extend(BitWidth), RHS.extend(BitWidth));
APSInt Result = Value.trunc(LHS.getBitWidth());
R->V = Result;
return Result.extend(BitWidth) != Value;
}
};
template <bool Signed>
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
IntegralAP<Signed> I) {
I.print(OS);
return OS;
}
template <bool Signed>
IntegralAP<Signed> getSwappedBytes(IntegralAP<Signed> F) {
return F;
}
} // namespace interp
} // namespace clang
#endif