blob: 97efa3a93ce6d9d9c58d435bd65aba255ebbc477 [file] [log] [blame]
//===-- Value.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines classes for values computed by abstract interpretation
// during dataflow analysis.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_VALUE_H
#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_VALUE_H
#include "clang/AST/Decl.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include <cassert>
#include <utility>
namespace clang {
namespace dataflow {
/// Base class for all values computed by abstract interpretation.
///
/// Don't use `Value` instances by value. All `Value` instances are allocated
/// and owned by `DataflowAnalysisContext`.
class Value {
public:
enum class Kind {
Integer,
Pointer,
// TODO: Top values should not be need to be type-specific.
TopBool,
AtomicBool,
FormulaBool,
};
explicit Value(Kind ValKind) : ValKind(ValKind) {}
// Non-copyable because addresses of values are used as their identities
// throughout framework and user code. The framework is responsible for
// construction and destruction of values.
Value(const Value &) = delete;
Value &operator=(const Value &) = delete;
virtual ~Value() = default;
Kind getKind() const { return ValKind; }
/// Returns the value of the synthetic property with the given `Name` or null
/// if the property isn't assigned a value.
Value *getProperty(llvm::StringRef Name) const {
return Properties.lookup(Name);
}
/// Assigns `Val` as the value of the synthetic property with the given
/// `Name`.
///
/// Properties may not be set on `RecordValue`s; use synthetic fields instead
/// (for details, see documentation for `RecordStorageLocation`).
void setProperty(llvm::StringRef Name, Value &Val) {
Properties.insert_or_assign(Name, &Val);
}
llvm::iterator_range<llvm::StringMap<Value *>::const_iterator>
properties() const {
return {Properties.begin(), Properties.end()};
}
private:
Kind ValKind;
llvm::StringMap<Value *> Properties;
};
/// An equivalence relation for values. It obeys reflexivity, symmetry and
/// transitivity. It does *not* include comparison of `Properties`.
///
/// Computes equivalence for these subclasses:
/// * PointerValue -- pointee locations are equal. Does not compute deep
/// equality of `Value` at said location.
/// * TopBoolValue -- both are `TopBoolValue`s.
///
/// Otherwise, falls back to pointer equality.
bool areEquivalentValues(const Value &Val1, const Value &Val2);
/// Models a boolean.
class BoolValue : public Value {
const Formula *F;
public:
explicit BoolValue(Kind ValueKind, const Formula &F)
: Value(ValueKind), F(&F) {}
static bool classof(const Value *Val) {
return Val->getKind() == Kind::TopBool ||
Val->getKind() == Kind::AtomicBool ||
Val->getKind() == Kind::FormulaBool;
}
const Formula &formula() const { return *F; }
};
/// A TopBoolValue represents a boolean that is explicitly unconstrained.
///
/// This is equivalent to an AtomicBoolValue that does not appear anywhere
/// else in a system of formula.
/// Knowing the value is unconstrained is useful when e.g. reasoning about
/// convergence.
class TopBoolValue final : public BoolValue {
public:
TopBoolValue(const Formula &F) : BoolValue(Kind::TopBool, F) {
assert(F.kind() == Formula::AtomRef);
}
static bool classof(const Value *Val) {
return Val->getKind() == Kind::TopBool;
}
Atom getAtom() const { return formula().getAtom(); }
};
/// Models an atomic boolean.
///
/// FIXME: Merge this class into FormulaBoolValue.
/// When we want to specify atom identity, use Atom.
class AtomicBoolValue final : public BoolValue {
public:
explicit AtomicBoolValue(const Formula &F) : BoolValue(Kind::AtomicBool, F) {
assert(F.kind() == Formula::AtomRef);
}
static bool classof(const Value *Val) {
return Val->getKind() == Kind::AtomicBool;
}
Atom getAtom() const { return formula().getAtom(); }
};
/// Models a compound boolean formula.
class FormulaBoolValue final : public BoolValue {
public:
explicit FormulaBoolValue(const Formula &F)
: BoolValue(Kind::FormulaBool, F) {
assert(F.kind() != Formula::AtomRef && "For now, use AtomicBoolValue");
}
static bool classof(const Value *Val) {
return Val->getKind() == Kind::FormulaBool;
}
};
/// Models an integer.
class IntegerValue : public Value {
public:
explicit IntegerValue() : Value(Kind::Integer) {}
static bool classof(const Value *Val) {
return Val->getKind() == Kind::Integer;
}
};
/// Models a symbolic pointer. Specifically, any value of type `T*`.
class PointerValue final : public Value {
public:
explicit PointerValue(StorageLocation &PointeeLoc)
: Value(Kind::Pointer), PointeeLoc(PointeeLoc) {}
static bool classof(const Value *Val) {
return Val->getKind() == Kind::Pointer;
}
StorageLocation &getPointeeLoc() const { return PointeeLoc; }
private:
StorageLocation &PointeeLoc;
};
raw_ostream &operator<<(raw_ostream &OS, const Value &Val);
} // namespace dataflow
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_VALUE_H