blob: aa2c366cb164a92612088bbcefae8f897ca84898 [file] [log] [blame]
//===-- DataflowAnalysisContext.h -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DataflowAnalysisContext class that owns objects that
// encompass the state of a program and stores context that is used during
// dataflow analysis.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSISCONTEXT_H
#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSISCONTEXT_H
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Analysis/FlowSensitive/ASTOps.h"
#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
#include "clang/Analysis/FlowSensitive/Arena.h"
#include "clang/Analysis/FlowSensitive/Solver.h"
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <memory>
#include <optional>
namespace clang {
namespace dataflow {
class Logger;
struct ContextSensitiveOptions {
/// The maximum depth to analyze. A value of zero is equivalent to disabling
/// context-sensitive analysis entirely.
unsigned Depth = 2;
};
/// Owns objects that encompass the state of a program and stores context that
/// is used during dataflow analysis.
class DataflowAnalysisContext {
public:
struct Options {
/// Options for analyzing function bodies when present in the translation
/// unit, or empty to disable context-sensitive analysis. Note that this is
/// fundamentally limited: some constructs, such as recursion, are
/// explicitly unsupported.
std::optional<ContextSensitiveOptions> ContextSensitiveOpts;
/// If provided, analysis details will be recorded here.
/// (This is always non-null within an AnalysisContext, the framework
/// provides a fallback no-op logger).
Logger *Log = nullptr;
};
/// Constructs a dataflow analysis context.
///
/// Requirements:
///
/// `S` must not be null.
DataflowAnalysisContext(std::unique_ptr<Solver> S,
Options Opts = Options{
/*ContextSensitiveOpts=*/std::nullopt,
/*Logger=*/nullptr});
~DataflowAnalysisContext();
/// Sets a callback that returns the names and types of the synthetic fields
/// to add to a `RecordStorageLocation` of a given type.
/// Typically, this is called from the constructor of a `DataflowAnalysis`
///
/// The field types returned by the callback may not have reference type.
///
/// To maintain the invariant that all `RecordStorageLocation`s of a given
/// type have the same fields:
/// * The callback must always return the same result for a given type
/// * `setSyntheticFieldCallback()` must be called before any
// `RecordStorageLocation`s are created.
void setSyntheticFieldCallback(
std::function<llvm::StringMap<QualType>(QualType)> CB) {
assert(!RecordStorageLocationCreated);
SyntheticFieldCallback = CB;
}
/// Returns a new storage location appropriate for `Type`.
///
/// A null `Type` is interpreted as the pointee type of `std::nullptr_t`.
StorageLocation &createStorageLocation(QualType Type);
/// Creates a `RecordStorageLocation` for the given type and with the given
/// fields.
///
/// Requirements:
///
/// `FieldLocs` must contain exactly the fields returned by
/// `getModeledFields(Type)`.
/// `SyntheticFields` must contain exactly the fields returned by
/// `getSyntheticFields(Type)`.
RecordStorageLocation &createRecordStorageLocation(
QualType Type, RecordStorageLocation::FieldToLoc FieldLocs,
RecordStorageLocation::SyntheticFieldMap SyntheticFields);
/// Returns a stable storage location for `D`.
StorageLocation &getStableStorageLocation(const ValueDecl &D);
/// Returns a stable storage location for `E`.
StorageLocation &getStableStorageLocation(const Expr &E);
/// Returns a pointer value that represents a null pointer. Calls with
/// `PointeeType` that are canonically equivalent will return the same result.
/// A null `PointeeType` can be used for the pointee of `std::nullptr_t`.
PointerValue &getOrCreateNullPointerValue(QualType PointeeType);
/// Adds `Constraint` to current and future flow conditions in this context.
///
/// Invariants must contain only flow-insensitive information, i.e. facts that
/// are true on all paths through the program.
/// Information can be added eagerly (when analysis begins), or lazily (e.g.
/// when values are first used). The analysis must be careful that the same
/// information is added regardless of which order blocks are analyzed in.
void addInvariant(const Formula &Constraint);
/// Adds `Constraint` to the flow condition identified by `Token`.
void addFlowConditionConstraint(Atom Token, const Formula &Constraint);
/// Creates a new flow condition with the same constraints as the flow
/// condition identified by `Token` and returns its token.
Atom forkFlowCondition(Atom Token);
/// Creates a new flow condition that represents the disjunction of the flow
/// conditions identified by `FirstToken` and `SecondToken`, and returns its
/// token.
Atom joinFlowConditions(Atom FirstToken, Atom SecondToken);
/// Returns true if the constraints of the flow condition identified by
/// `Token` imply that `F` is true.
/// Returns false if the flow condition does not imply `F` or if the solver
/// times out.
bool flowConditionImplies(Atom Token, const Formula &F);
/// Returns true if the constraints of the flow condition identified by
/// `Token` still allow `F` to be true.
/// Returns false if the flow condition implies that `F` is false or if the
/// solver times out.
bool flowConditionAllows(Atom Token, const Formula &F);
/// Returns true if `Val1` is equivalent to `Val2`.
/// Note: This function doesn't take into account constraints on `Val1` and
/// `Val2` imposed by the flow condition.
bool equivalentFormulas(const Formula &Val1, const Formula &Val2);
LLVM_DUMP_METHOD void dumpFlowCondition(Atom Token,
llvm::raw_ostream &OS = llvm::dbgs());
/// Returns the `AdornedCFG` registered for `F`, if any. Otherwise,
/// returns null.
const AdornedCFG *getAdornedCFG(const FunctionDecl *F);
const Options &getOptions() { return Opts; }
Arena &arena() { return *A; }
/// Returns the outcome of satisfiability checking on `Constraints`.
///
/// Flow conditions are not incorporated, so they may need to be manually
/// included in `Constraints` to provide contextually-accurate results, e.g.
/// if any definitions or relationships of the values in `Constraints` have
/// been stored in flow conditions.
Solver::Result querySolver(llvm::SetVector<const Formula *> Constraints);
/// Returns the fields of `Type`, limited to the set of fields modeled by this
/// context.
FieldSet getModeledFields(QualType Type);
/// Returns the names and types of the synthetic fields for the given record
/// type.
llvm::StringMap<QualType> getSyntheticFields(QualType Type) {
assert(Type->isRecordType());
if (SyntheticFieldCallback) {
llvm::StringMap<QualType> Result = SyntheticFieldCallback(Type);
// Synthetic fields are not allowed to have reference type.
assert([&Result] {
for (const auto &Entry : Result)
if (Entry.getValue()->isReferenceType())
return false;
return true;
}());
return Result;
}
return {};
}
private:
friend class Environment;
struct NullableQualTypeDenseMapInfo : private llvm::DenseMapInfo<QualType> {
static QualType getEmptyKey() {
// Allow a NULL `QualType` by using a different value as the empty key.
return QualType::getFromOpaquePtr(reinterpret_cast<Type *>(1));
}
using DenseMapInfo::getHashValue;
using DenseMapInfo::getTombstoneKey;
using DenseMapInfo::isEqual;
};
// Extends the set of modeled field declarations.
void addModeledFields(const FieldSet &Fields);
/// Adds all constraints of the flow condition identified by `Token` and all
/// of its transitive dependencies to `Constraints`.
void
addTransitiveFlowConditionConstraints(Atom Token,
llvm::SetVector<const Formula *> &Out);
/// Returns true if the solver is able to prove that there is a satisfying
/// assignment for `Constraints`.
bool isSatisfiable(llvm::SetVector<const Formula *> Constraints) {
return querySolver(std::move(Constraints)).getStatus() ==
Solver::Result::Status::Satisfiable;
}
/// Returns true if the solver is able to prove that there is no satisfying
/// assignment for `Constraints`
bool isUnsatisfiable(llvm::SetVector<const Formula *> Constraints) {
return querySolver(std::move(Constraints)).getStatus() ==
Solver::Result::Status::Unsatisfiable;
}
std::unique_ptr<Solver> S;
std::unique_ptr<Arena> A;
// Maps from program declarations and statements to storage locations that are
// assigned to them. These assignments are global (aggregated across all basic
// blocks) and are used to produce stable storage locations when the same
// basic blocks are evaluated multiple times. The storage locations that are
// in scope for a particular basic block are stored in `Environment`.
llvm::DenseMap<const ValueDecl *, StorageLocation *> DeclToLoc;
llvm::DenseMap<const Expr *, StorageLocation *> ExprToLoc;
// Null pointer values, keyed by the canonical pointee type.
//
// FIXME: The pointer values are indexed by the pointee types which are
// required to initialize the `PointeeLoc` field in `PointerValue`. Consider
// creating a type-independent `NullPointerValue` without a `PointeeLoc`
// field.
llvm::DenseMap<QualType, PointerValue *, NullableQualTypeDenseMapInfo>
NullPointerVals;
Options Opts;
// Flow conditions are tracked symbolically: each unique flow condition is
// associated with a fresh symbolic variable (token), bound to the clause that
// defines the flow condition. Conceptually, each binding corresponds to an
// "iff" of the form `FC <=> (C1 ^ C2 ^ ...)` where `FC` is a flow condition
// token (an atomic boolean) and `Ci`s are the set of constraints in the flow
// flow condition clause. The set of constraints (C1 ^ C2 ^ ...) are stored in
// the `FlowConditionConstraints` map, keyed by the token of the flow
// condition.
//
// Flow conditions depend on other flow conditions if they are created using
// `forkFlowCondition` or `joinFlowConditions`. The graph of flow condition
// dependencies is stored in the `FlowConditionDeps` map.
llvm::DenseMap<Atom, llvm::DenseSet<Atom>> FlowConditionDeps;
llvm::DenseMap<Atom, const Formula *> FlowConditionConstraints;
const Formula *Invariant = nullptr;
llvm::DenseMap<const FunctionDecl *, AdornedCFG> FunctionContexts;
// Fields modeled by environments covered by this context.
FieldSet ModeledFields;
std::unique_ptr<Logger> LogOwner; // If created via flags.
std::function<llvm::StringMap<QualType>(QualType)> SyntheticFieldCallback;
/// Has any `RecordStorageLocation` been created yet?
bool RecordStorageLocationCreated = false;
};
} // namespace dataflow
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSISCONTEXT_H