| //===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Context.h" |
| #include "ByteCodeEmitter.h" |
| #include "Compiler.h" |
| #include "EvalEmitter.h" |
| #include "Interp.h" |
| #include "InterpFrame.h" |
| #include "InterpStack.h" |
| #include "PrimType.h" |
| #include "Program.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Basic/TargetInfo.h" |
| |
| using namespace clang; |
| using namespace clang::interp; |
| |
| Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) { |
| this->ShortWidth = Ctx.getTargetInfo().getShortWidth(); |
| this->IntWidth = Ctx.getTargetInfo().getIntWidth(); |
| this->LongWidth = Ctx.getTargetInfo().getLongWidth(); |
| this->LongLongWidth = Ctx.getTargetInfo().getLongLongWidth(); |
| assert(Ctx.getTargetInfo().getCharWidth() == 8 && |
| "We're assuming 8 bit chars"); |
| } |
| |
| Context::~Context() {} |
| |
| bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) { |
| assert(Stk.empty()); |
| |
| // Get a function handle. |
| const Function *Func = getOrCreateFunction(FD); |
| if (!Func) |
| return false; |
| |
| // Compile the function. |
| Compiler<ByteCodeEmitter>(*this, *P).compileFunc( |
| FD, const_cast<Function *>(Func)); |
| |
| if (!Func->isValid()) |
| return false; |
| |
| ++EvalID; |
| // And run it. |
| return Run(Parent, Func); |
| } |
| |
| void Context::isPotentialConstantExprUnevaluated(State &Parent, const Expr *E, |
| const FunctionDecl *FD) { |
| assert(Stk.empty()); |
| ++EvalID; |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| if (!C.interpretCall(FD, E)) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| } |
| } |
| |
| bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) { |
| ++EvalID; |
| bool Recursing = !Stk.empty(); |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/E->isGLValue()); |
| |
| if (Res.isInvalid()) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| return false; |
| } |
| |
| if (!Recursing) { |
| // We *can* actually get here with a non-empty stack, since |
| // things like InterpState::noteSideEffect() exist. |
| C.cleanup(); |
| #ifndef NDEBUG |
| // Make sure we don't rely on some value being still alive in |
| // InterpStack memory. |
| Stk.clearTo(StackSizeBefore); |
| #endif |
| } |
| |
| Result = Res.stealAPValue(); |
| |
| return true; |
| } |
| |
| bool Context::evaluate(State &Parent, const Expr *E, APValue &Result, |
| ConstantExprKind Kind) { |
| ++EvalID; |
| bool Recursing = !Stk.empty(); |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/false, |
| /*DestroyToplevelScope=*/true); |
| if (Res.isInvalid()) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| return false; |
| } |
| |
| if (!Recursing) { |
| assert(Stk.empty()); |
| C.cleanup(); |
| #ifndef NDEBUG |
| // Make sure we don't rely on some value being still alive in |
| // InterpStack memory. |
| Stk.clearTo(StackSizeBefore); |
| #endif |
| } |
| |
| Result = Res.stealAPValue(); |
| return true; |
| } |
| |
| bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD, |
| APValue &Result) { |
| ++EvalID; |
| bool Recursing = !Stk.empty(); |
| size_t StackSizeBefore = Stk.size(); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| bool CheckGlobalInitialized = |
| shouldBeGloballyIndexed(VD) && |
| (VD->getType()->isRecordType() || VD->getType()->isArrayType()); |
| auto Res = C.interpretDecl(VD, CheckGlobalInitialized); |
| if (Res.isInvalid()) { |
| C.cleanup(); |
| Stk.clearTo(StackSizeBefore); |
| |
| return false; |
| } |
| |
| if (!Recursing) { |
| assert(Stk.empty()); |
| C.cleanup(); |
| #ifndef NDEBUG |
| // Make sure we don't rely on some value being still alive in |
| // InterpStack memory. |
| Stk.clearTo(StackSizeBefore); |
| #endif |
| } |
| |
| Result = Res.stealAPValue(); |
| return true; |
| } |
| |
| template <typename ResultT> |
| bool Context::evaluateStringRepr(State &Parent, const Expr *SizeExpr, |
| const Expr *PtrExpr, ResultT &Result) { |
| assert(Stk.empty()); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| // Evaluate size value. |
| APValue SizeValue; |
| if (!evaluateAsRValue(Parent, SizeExpr, SizeValue)) |
| return false; |
| |
| if (!SizeValue.isInt()) |
| return false; |
| uint64_t Size = SizeValue.getInt().getZExtValue(); |
| |
| auto PtrRes = C.interpretAsPointer(PtrExpr, [&](const Pointer &Ptr) { |
| if (Size == 0) { |
| if constexpr (std::is_same_v<ResultT, APValue>) |
| Result = APValue(APValue::UninitArray{}, 0, 0); |
| return true; |
| } |
| |
| if (!Ptr.isLive() || !Ptr.getFieldDesc()->isPrimitiveArray()) |
| return false; |
| |
| // Must be char. |
| if (Ptr.getFieldDesc()->getElemSize() != 1 /*bytes*/) |
| return false; |
| |
| if (Size > Ptr.getNumElems()) { |
| Parent.FFDiag(SizeExpr, diag::note_constexpr_access_past_end) << AK_Read; |
| Size = Ptr.getNumElems(); |
| } |
| |
| if constexpr (std::is_same_v<ResultT, APValue>) { |
| QualType CharTy = PtrExpr->getType()->getPointeeType(); |
| Result = APValue(APValue::UninitArray{}, Size, Size); |
| for (uint64_t I = 0; I != Size; ++I) { |
| if (std::optional<APValue> ElemVal = |
| Ptr.atIndex(I).toRValue(*this, CharTy)) |
| Result.getArrayInitializedElt(I) = *ElemVal; |
| else |
| return false; |
| } |
| } else { |
| assert((std::is_same_v<ResultT, std::string>)); |
| if (Size < Result.max_size()) |
| Result.resize(Size); |
| Result.assign(reinterpret_cast<const char *>(Ptr.getRawAddress()), Size); |
| } |
| |
| return true; |
| }); |
| |
| if (PtrRes.isInvalid()) { |
| C.cleanup(); |
| Stk.clear(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Context::evaluateCharRange(State &Parent, const Expr *SizeExpr, |
| const Expr *PtrExpr, APValue &Result) { |
| assert(SizeExpr); |
| assert(PtrExpr); |
| |
| return evaluateStringRepr(Parent, SizeExpr, PtrExpr, Result); |
| } |
| |
| bool Context::evaluateCharRange(State &Parent, const Expr *SizeExpr, |
| const Expr *PtrExpr, std::string &Result) { |
| assert(SizeExpr); |
| assert(PtrExpr); |
| |
| return evaluateStringRepr(Parent, SizeExpr, PtrExpr, Result); |
| } |
| |
| bool Context::evaluateStrlen(State &Parent, const Expr *E, uint64_t &Result) { |
| assert(Stk.empty()); |
| Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| |
| auto PtrRes = C.interpretAsPointer(E, [&](const Pointer &Ptr) { |
| const Descriptor *FieldDesc = Ptr.getFieldDesc(); |
| if (!FieldDesc->isPrimitiveArray()) |
| return false; |
| |
| unsigned N = Ptr.getNumElems(); |
| if (Ptr.elemSize() == 1) { |
| Result = strnlen(reinterpret_cast<const char *>(Ptr.getRawAddress()), N); |
| return Result != N; |
| } |
| |
| PrimType ElemT = FieldDesc->getPrimType(); |
| Result = 0; |
| for (unsigned I = Ptr.getIndex(); I != N; ++I) { |
| INT_TYPE_SWITCH(ElemT, { |
| auto Elem = Ptr.elem<T>(I); |
| if (Elem.isZero()) |
| return true; |
| ++Result; |
| }); |
| } |
| // We didn't find a 0 byte. |
| return false; |
| }); |
| |
| if (PtrRes.isInvalid()) { |
| C.cleanup(); |
| Stk.clear(); |
| return false; |
| } |
| return true; |
| } |
| |
| const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); } |
| |
| static PrimType integralTypeToPrimTypeS(unsigned BitWidth) { |
| switch (BitWidth) { |
| case 64: |
| return PT_Sint64; |
| case 32: |
| return PT_Sint32; |
| case 16: |
| return PT_Sint16; |
| case 8: |
| return PT_Sint8; |
| default: |
| return PT_IntAPS; |
| } |
| llvm_unreachable("Unhandled BitWidth"); |
| } |
| |
| static PrimType integralTypeToPrimTypeU(unsigned BitWidth) { |
| switch (BitWidth) { |
| case 64: |
| return PT_Uint64; |
| case 32: |
| return PT_Uint32; |
| case 16: |
| return PT_Uint16; |
| case 8: |
| return PT_Uint8; |
| default: |
| return PT_IntAP; |
| } |
| llvm_unreachable("Unhandled BitWidth"); |
| } |
| |
| OptPrimType Context::classify(QualType T) const { |
| |
| if (const auto *BT = dyn_cast<BuiltinType>(T.getCanonicalType())) { |
| auto Kind = BT->getKind(); |
| if (Kind == BuiltinType::Bool) |
| return PT_Bool; |
| if (Kind == BuiltinType::NullPtr) |
| return PT_Ptr; |
| if (Kind == BuiltinType::BoundMember) |
| return PT_MemberPtr; |
| |
| // Just trying to avoid the ASTContext::getIntWidth call below. |
| if (Kind == BuiltinType::Short) |
| return integralTypeToPrimTypeS(this->ShortWidth); |
| if (Kind == BuiltinType::UShort) |
| return integralTypeToPrimTypeU(this->ShortWidth); |
| |
| if (Kind == BuiltinType::Int) |
| return integralTypeToPrimTypeS(this->IntWidth); |
| if (Kind == BuiltinType::UInt) |
| return integralTypeToPrimTypeU(this->IntWidth); |
| if (Kind == BuiltinType::Long) |
| return integralTypeToPrimTypeS(this->LongWidth); |
| if (Kind == BuiltinType::ULong) |
| return integralTypeToPrimTypeU(this->LongWidth); |
| if (Kind == BuiltinType::LongLong) |
| return integralTypeToPrimTypeS(this->LongLongWidth); |
| if (Kind == BuiltinType::ULongLong) |
| return integralTypeToPrimTypeU(this->LongLongWidth); |
| |
| if (Kind == BuiltinType::SChar || Kind == BuiltinType::Char_S) |
| return integralTypeToPrimTypeS(8); |
| if (Kind == BuiltinType::UChar || Kind == BuiltinType::Char_U || |
| Kind == BuiltinType::Char8) |
| return integralTypeToPrimTypeU(8); |
| |
| if (BT->isSignedInteger()) |
| return integralTypeToPrimTypeS(Ctx.getIntWidth(T)); |
| if (BT->isUnsignedInteger()) |
| return integralTypeToPrimTypeU(Ctx.getIntWidth(T)); |
| |
| if (BT->isFloatingPoint()) |
| return PT_Float; |
| } |
| |
| if (T->isPointerOrReferenceType()) |
| return PT_Ptr; |
| |
| if (T->isMemberPointerType()) |
| return PT_MemberPtr; |
| |
| if (const auto *BT = T->getAs<BitIntType>()) { |
| if (BT->isSigned()) |
| return integralTypeToPrimTypeS(BT->getNumBits()); |
| return integralTypeToPrimTypeU(BT->getNumBits()); |
| } |
| |
| if (const auto *D = T->getAsEnumDecl()) { |
| if (!D->isComplete()) |
| return std::nullopt; |
| return classify(D->getIntegerType()); |
| } |
| |
| if (const auto *AT = T->getAs<AtomicType>()) |
| return classify(AT->getValueType()); |
| |
| if (const auto *DT = dyn_cast<DecltypeType>(T)) |
| return classify(DT->getUnderlyingType()); |
| |
| if (T->isObjCObjectPointerType() || T->isBlockPointerType()) |
| return PT_Ptr; |
| |
| if (T->isFixedPointType()) |
| return PT_FixedPoint; |
| |
| // Vector and complex types get here. |
| return std::nullopt; |
| } |
| |
| unsigned Context::getCharBit() const { |
| return Ctx.getTargetInfo().getCharWidth(); |
| } |
| |
| /// Simple wrapper around getFloatTypeSemantics() to make code a |
| /// little shorter. |
| const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const { |
| return Ctx.getFloatTypeSemantics(T); |
| } |
| |
| bool Context::Run(State &Parent, const Function *Func) { |
| InterpState State(Parent, *P, Stk, *this, Func); |
| if (Interpret(State)) { |
| assert(Stk.empty()); |
| return true; |
| } |
| Stk.clear(); |
| return false; |
| } |
| |
| // TODO: Virtual bases? |
| const CXXMethodDecl * |
| Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl, |
| const CXXRecordDecl *StaticDecl, |
| const CXXMethodDecl *InitialFunction) const { |
| assert(DynamicDecl); |
| assert(StaticDecl); |
| assert(InitialFunction); |
| |
| const CXXRecordDecl *CurRecord = DynamicDecl; |
| const CXXMethodDecl *FoundFunction = InitialFunction; |
| for (;;) { |
| const CXXMethodDecl *Overrider = |
| FoundFunction->getCorrespondingMethodDeclaredInClass(CurRecord, false); |
| if (Overrider) |
| return Overrider; |
| |
| // Common case of only one base class. |
| if (CurRecord->getNumBases() == 1) { |
| CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl(); |
| continue; |
| } |
| |
| // Otherwise, go to the base class that will lead to the StaticDecl. |
| for (const CXXBaseSpecifier &Spec : CurRecord->bases()) { |
| const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl(); |
| if (Base == StaticDecl || Base->isDerivedFrom(StaticDecl)) { |
| CurRecord = Base; |
| break; |
| } |
| } |
| } |
| |
| llvm_unreachable( |
| "Couldn't find an overriding function in the class hierarchy?"); |
| return nullptr; |
| } |
| |
| const Function *Context::getOrCreateFunction(const FunctionDecl *FuncDecl) { |
| assert(FuncDecl); |
| FuncDecl = FuncDecl->getMostRecentDecl(); |
| |
| if (const Function *Func = P->getFunction(FuncDecl)) |
| return Func; |
| |
| // Manually created functions that haven't been assigned proper |
| // parameters yet. |
| if (!FuncDecl->param_empty() && !FuncDecl->param_begin()) |
| return nullptr; |
| |
| bool IsLambdaStaticInvoker = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl); |
| MD && MD->isLambdaStaticInvoker()) { |
| // For a lambda static invoker, we might have to pick a specialized |
| // version if the lambda is generic. In that case, the picked function |
| // will *NOT* be a static invoker anymore. However, it will still |
| // be a non-static member function, this (usually) requiring an |
| // instance pointer. We suppress that later in this function. |
| IsLambdaStaticInvoker = true; |
| |
| const CXXRecordDecl *ClosureClass = MD->getParent(); |
| assert(ClosureClass->captures().empty()); |
| if (ClosureClass->isGenericLambda()) { |
| const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); |
| assert(MD->isFunctionTemplateSpecialization() && |
| "A generic lambda's static-invoker function must be a " |
| "template specialization"); |
| const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
| FunctionTemplateDecl *CallOpTemplate = |
| LambdaCallOp->getDescribedFunctionTemplate(); |
| void *InsertPos = nullptr; |
| const FunctionDecl *CorrespondingCallOpSpecialization = |
| CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); |
| assert(CorrespondingCallOpSpecialization); |
| FuncDecl = CorrespondingCallOpSpecialization; |
| } |
| } |
| // Set up argument indices. |
| unsigned ParamOffset = 0; |
| SmallVector<PrimType, 8> ParamTypes; |
| SmallVector<unsigned, 8> ParamOffsets; |
| llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors; |
| |
| // If the return is not a primitive, a pointer to the storage where the |
| // value is initialized in is passed as the first argument. See 'RVO' |
| // elsewhere in the code. |
| QualType Ty = FuncDecl->getReturnType(); |
| bool HasRVO = false; |
| if (!Ty->isVoidType() && !canClassify(Ty)) { |
| HasRVO = true; |
| ParamTypes.push_back(PT_Ptr); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT_Ptr)); |
| } |
| |
| // If the function decl is a member decl, the next parameter is |
| // the 'this' pointer. This parameter is pop()ed from the |
| // InterpStack when calling the function. |
| bool HasThisPointer = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) { |
| if (!IsLambdaStaticInvoker) { |
| HasThisPointer = MD->isInstance(); |
| if (MD->isImplicitObjectMemberFunction()) { |
| ParamTypes.push_back(PT_Ptr); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT_Ptr)); |
| } |
| } |
| |
| if (isLambdaCallOperator(MD)) { |
| // The parent record needs to be complete, we need to know about all |
| // the lambda captures. |
| if (!MD->getParent()->isCompleteDefinition()) |
| return nullptr; |
| llvm::DenseMap<const ValueDecl *, FieldDecl *> LC; |
| FieldDecl *LTC; |
| |
| MD->getParent()->getCaptureFields(LC, LTC); |
| |
| if (MD->isStatic() && !LC.empty()) { |
| // Static lambdas cannot have any captures. If this one does, |
| // it has already been diagnosed and we can only ignore it. |
| return nullptr; |
| } |
| } |
| } |
| |
| // Assign descriptors to all parameters. |
| // Composite objects are lowered to pointers. |
| for (const ParmVarDecl *PD : FuncDecl->parameters()) { |
| OptPrimType T = classify(PD->getType()); |
| PrimType PT = T.value_or(PT_Ptr); |
| Descriptor *Desc = P->createDescriptor(PD, PT); |
| ParamDescriptors.insert({ParamOffset, {PT, Desc}}); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT)); |
| ParamTypes.push_back(PT); |
| } |
| |
| // Create a handle over the emitted code. |
| assert(!P->getFunction(FuncDecl)); |
| const Function *Func = P->createFunction( |
| FuncDecl, ParamOffset, std::move(ParamTypes), std::move(ParamDescriptors), |
| std::move(ParamOffsets), HasThisPointer, HasRVO, IsLambdaStaticInvoker); |
| return Func; |
| } |
| |
| const Function *Context::getOrCreateObjCBlock(const BlockExpr *E) { |
| const BlockDecl *BD = E->getBlockDecl(); |
| // Set up argument indices. |
| unsigned ParamOffset = 0; |
| SmallVector<PrimType, 8> ParamTypes; |
| SmallVector<unsigned, 8> ParamOffsets; |
| llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors; |
| |
| // Assign descriptors to all parameters. |
| // Composite objects are lowered to pointers. |
| for (const ParmVarDecl *PD : BD->parameters()) { |
| OptPrimType T = classify(PD->getType()); |
| PrimType PT = T.value_or(PT_Ptr); |
| Descriptor *Desc = P->createDescriptor(PD, PT); |
| ParamDescriptors.insert({ParamOffset, {PT, Desc}}); |
| ParamOffsets.push_back(ParamOffset); |
| ParamOffset += align(primSize(PT)); |
| ParamTypes.push_back(PT); |
| } |
| |
| if (BD->hasCaptures()) |
| return nullptr; |
| |
| // Create a handle over the emitted code. |
| Function *Func = |
| P->createFunction(E, ParamOffset, std::move(ParamTypes), |
| std::move(ParamDescriptors), std::move(ParamOffsets), |
| /*HasThisPointer=*/false, /*HasRVO=*/false, |
| /*IsLambdaStaticInvoker=*/false); |
| |
| assert(Func); |
| Func->setDefined(true); |
| // We don't compile the BlockDecl code at all right now. |
| Func->setIsFullyCompiled(true); |
| return Func; |
| } |
| |
| unsigned Context::collectBaseOffset(const RecordDecl *BaseDecl, |
| const RecordDecl *DerivedDecl) const { |
| assert(BaseDecl); |
| assert(DerivedDecl); |
| const auto *FinalDecl = cast<CXXRecordDecl>(BaseDecl); |
| const RecordDecl *CurDecl = DerivedDecl; |
| const Record *CurRecord = P->getOrCreateRecord(CurDecl); |
| assert(CurDecl && FinalDecl); |
| |
| unsigned OffsetSum = 0; |
| for (;;) { |
| assert(CurRecord->getNumBases() > 0); |
| // One level up |
| for (const Record::Base &B : CurRecord->bases()) { |
| const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl); |
| |
| if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) { |
| OffsetSum += B.Offset; |
| CurRecord = B.R; |
| CurDecl = BaseDecl; |
| break; |
| } |
| } |
| if (CurDecl == FinalDecl) |
| break; |
| } |
| |
| assert(OffsetSum > 0); |
| return OffsetSum; |
| } |
| |
| const Record *Context::getRecord(const RecordDecl *D) const { |
| return P->getOrCreateRecord(D); |
| } |
| |
| bool Context::isUnevaluatedBuiltin(unsigned ID) { |
| return ID == Builtin::BI__builtin_classify_type || |
| ID == Builtin::BI__builtin_os_log_format_buffer_size || |
| ID == Builtin::BI__builtin_constant_p || ID == Builtin::BI__noop; |
| } |