blob: df7c4a72f21a75badc28aed5612b9cfbfc54c001 [file] [log] [blame]
//===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ByteCodeExprGen.h"
#include "ByteCodeEmitter.h"
#include "ByteCodeGenError.h"
#include "ByteCodeStmtGen.h"
#include "Context.h"
#include "Floating.h"
#include "Function.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
namespace clang {
namespace interp {
/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public VariableScope<Emitter> {
public:
DeclScope(ByteCodeExprGen<Emitter> *Ctx, const ValueDecl *VD)
: VariableScope<Emitter>(Ctx), Scope(Ctx->P, VD) {}
void addExtended(const Scope::Local &Local) override {
return this->addLocal(Local);
}
private:
Program::DeclScope Scope;
};
/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope final {
public:
/// Root constructor, compiling or discarding primitives.
OptionScope(ByteCodeExprGen<Emitter> *Ctx, bool NewDiscardResult)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult) {
Ctx->DiscardResult = NewDiscardResult;
}
~OptionScope() { Ctx->DiscardResult = OldDiscardResult; }
private:
/// Parent context.
ByteCodeExprGen<Emitter> *Ctx;
/// Old discard flag to restore.
bool OldDiscardResult;
};
} // namespace interp
} // namespace clang
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCastExpr(const CastExpr *CE) {
auto *SubExpr = CE->getSubExpr();
switch (CE->getCastKind()) {
case CK_LValueToRValue: {
return dereference(
CE->getSubExpr(), DerefKind::Read,
[](PrimType) {
// Value loaded - nothing to do here.
return true;
},
[this, CE](PrimType T) {
// Pointer on stack - dereference it.
if (!this->emitLoadPop(T, CE))
return false;
return DiscardResult ? this->emitPop(T, CE) : true;
});
}
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
if (!this->visit(SubExpr))
return false;
return this->emitDerivedToBaseCasts(getRecordTy(SubExpr->getType()),
getRecordTy(CE->getType()), CE);
}
case CK_FloatingCast: {
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
}
case CK_IntegralToFloating: {
std::optional<PrimType> FromT = classify(SubExpr->getType());
if (!FromT)
return false;
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
llvm::RoundingMode RM = getRoundingMode(CE);
return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE);
}
case CK_FloatingToBoolean:
case CK_FloatingToIntegral: {
std::optional<PrimType> ToT = classify(CE->getType());
if (!ToT)
return false;
if (!this->visit(SubExpr))
return false;
return this->emitCastFloatingIntegral(*ToT, CE);
}
case CK_NullToPointer:
if (DiscardResult)
return true;
return this->emitNull(classifyPrim(CE->getType()), CE);
case CK_ArrayToPointerDecay:
case CK_AtomicToNonAtomic:
case CK_ConstructorConversion:
case CK_FunctionToPointerDecay:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_UserDefinedConversion:
return this->visit(SubExpr);
case CK_IntegralToBoolean:
case CK_IntegralCast: {
std::optional<PrimType> FromT = classify(SubExpr->getType());
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
if (!this->visit(SubExpr))
return false;
if (FromT == ToT)
return true;
return this->emitCast(*FromT, *ToT, CE);
}
case CK_PointerToBoolean: {
// Just emit p != nullptr for this.
if (!this->visit(SubExpr))
return false;
if (!this->emitNullPtr(CE))
return false;
return this->emitNEPtr(CE);
}
case CK_ToVoid:
return discard(SubExpr);
default:
assert(false && "Cast not implemented");
}
llvm_unreachable("Unhandled clang::CastKind enum");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
if (DiscardResult)
return true;
return this->emitConst(LE->getValue(), LE);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
if (DiscardResult)
return true;
return this->emitConstFloat(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitParenExpr(const ParenExpr *PE) {
const Expr *SubExpr = PE->getSubExpr();
if (DiscardResult)
return this->discard(SubExpr);
return this->visit(SubExpr);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
// Need short-circuiting for these.
if (BO->isLogicalOp())
return this->VisitLogicalBinOp(BO);
const Expr *LHS = BO->getLHS();
const Expr *RHS = BO->getRHS();
// Typecheck the args.
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
std::optional<PrimType> T = classify(BO->getType());
if (!LT || !RT || !T) {
return this->bail(BO);
}
auto Discard = [this, T, BO](bool Result) {
if (!Result)
return false;
return DiscardResult ? this->emitPop(*T, BO) : true;
};
// Deal with operations which have composite or void types.
if (BO->isCommaOp()) {
if (!discard(LHS))
return false;
return Discard(this->visit(RHS));
}
// Pointer arithmetic special case.
if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
if (*T == PT_Ptr || (*LT == PT_Ptr && *RT == PT_Ptr))
return this->VisitPointerArithBinOp(BO);
}
if (!visit(LHS) || !visit(RHS))
return false;
switch (BO->getOpcode()) {
case BO_EQ:
return Discard(this->emitEQ(*LT, BO));
case BO_NE:
return Discard(this->emitNE(*LT, BO));
case BO_LT:
return Discard(this->emitLT(*LT, BO));
case BO_LE:
return Discard(this->emitLE(*LT, BO));
case BO_GT:
return Discard(this->emitGT(*LT, BO));
case BO_GE:
return Discard(this->emitGE(*LT, BO));
case BO_Sub:
if (BO->getType()->isFloatingType())
return Discard(this->emitSubf(getRoundingMode(BO), BO));
return Discard(this->emitSub(*T, BO));
case BO_Add:
if (BO->getType()->isFloatingType())
return Discard(this->emitAddf(getRoundingMode(BO), BO));
return Discard(this->emitAdd(*T, BO));
case BO_Mul:
if (BO->getType()->isFloatingType())
return Discard(this->emitMulf(getRoundingMode(BO), BO));
return Discard(this->emitMul(*T, BO));
case BO_Rem:
return Discard(this->emitRem(*T, BO));
case BO_Div:
if (BO->getType()->isFloatingType())
return Discard(this->emitDivf(getRoundingMode(BO), BO));
return Discard(this->emitDiv(*T, BO));
case BO_Assign:
if (DiscardResult)
return this->emitStorePop(*T, BO);
return this->emitStore(*T, BO);
case BO_And:
return Discard(this->emitBitAnd(*T, BO));
case BO_Or:
return Discard(this->emitBitOr(*T, BO));
case BO_Shl:
return Discard(this->emitShl(*LT, *RT, BO));
case BO_Shr:
return Discard(this->emitShr(*LT, *RT, BO));
case BO_Xor:
return Discard(this->emitBitXor(*T, BO));
case BO_LOr:
case BO_LAnd:
llvm_unreachable("Already handled earlier");
default:
return this->bail(BO);
}
llvm_unreachable("Unhandled binary op");
}
/// Perform addition/subtraction of a pointer and an integer or
/// subtraction of two pointers.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
if ((Op != BO_Add && Op != BO_Sub) ||
(!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
return false;
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
if (!LT || !RT)
return false;
if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
if (Op != BO_Sub)
return false;
assert(E->getType()->isIntegerType());
if (!visit(RHS) || !visit(LHS))
return false;
return this->emitSubPtr(classifyPrim(E->getType()), E);
}
PrimType OffsetType;
if (LHS->getType()->isIntegerType()) {
if (!visit(RHS) || !visit(LHS))
return false;
OffsetType = *LT;
} else if (RHS->getType()->isIntegerType()) {
if (!visit(LHS) || !visit(RHS))
return false;
OffsetType = *RT;
} else {
return false;
}
if (Op == BO_Add)
return this->emitAddOffset(OffsetType, E);
else if (Op == BO_Sub)
return this->emitSubOffset(OffsetType, E);
return this->bail(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
assert(E->isLogicalOp());
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
if (Op == BO_LOr) {
// Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
LabelTy LabelTrue = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->visit(LHS))
return false;
if (!this->jumpTrue(LabelTrue))
return false;
if (!this->visit(RHS))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelTrue);
this->emitConstBool(true, E);
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
if (DiscardResult)
return this->emitPopBool(E);
return true;
}
// Logical AND.
// Visit LHS. Only visit RHS if LHS was TRUE.
LabelTy LabelFalse = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->visit(LHS))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!this->visit(RHS))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
this->emitConstBool(false, E);
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
if (DiscardResult)
return this->emitPopBool(E);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
std::optional<PrimType> T = classify(E);
if (!T)
return false;
return this->visitZeroInitializer(E->getType(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArraySubscriptExpr(
const ArraySubscriptExpr *E) {
const Expr *Base = E->getBase();
const Expr *Index = E->getIdx();
PrimType IndexT = classifyPrim(Index->getType());
// Take pointer of LHS, add offset from RHS.
// What's left on the stack after this is a pointer.
if (!this->visit(Base))
return false;
if (!this->visit(Index))
return false;
if (!this->emitArrayElemPtrPop(IndexT, E))
return false;
if (DiscardResult)
return this->emitPopPtr(E);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitInitListExpr(const InitListExpr *E) {
for (const Expr *Init : E->inits()) {
if (!this->visit(Init))
return false;
}
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
return this->visit(E->getReplacement());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
// TODO: Check if the ConstantExpr already has a value set and if so,
// use that instead of evaluating it again.
return this->visit(E->getSubExpr());
}
static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
UnaryExprOrTypeTrait Kind) {
bool AlignOfReturnsPreferred =
ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
// C++ [expr.alignof]p3:
// When alignof is applied to a reference type, the result is the
// alignment of the referenced type.
if (const auto *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
// __alignof is defined to return the preferred alignment.
// Before 8, clang returned the preferred alignment for alignof and
// _Alignof as well.
if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
return ASTCtx.getTypeAlignInChars(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
UnaryExprOrTypeTrait Kind = E->getKind();
ASTContext &ASTCtx = Ctx.getASTContext();
if (Kind == UETT_SizeOf) {
QualType ArgType = E->getTypeOfArgument();
CharUnits Size;
if (ArgType->isVoidType() || ArgType->isFunctionType())
Size = CharUnits::One();
else {
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
return false;
Size = ASTCtx.getTypeSizeInChars(ArgType);
}
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
CharUnits Size;
if (E->isArgumentType()) {
QualType ArgType = E->getTypeOfArgument();
Size = AlignOfType(ArgType, ASTCtx, Kind);
} else {
// Argument is an expression, not a type.
const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
// The kinds of expressions that we have special-case logic here for
// should be kept up to date with the special checks for those
// expressions in Sema.
// alignof decl is always accepted, even if it doesn't make sense: we
// default to 1 in those cases.
if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
Size = ASTCtx.getDeclAlign(DRE->getDecl(),
/*RefAsPointee*/ true);
else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
/*RefAsPointee*/ true);
else
Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
}
return this->emitConst(Size.getQuantity(), E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMemberExpr(const MemberExpr *E) {
if (DiscardResult)
return true;
// 'Base.Member'
const Expr *Base = E->getBase();
const ValueDecl *Member = E->getMemberDecl();
if (!this->visit(Base))
return false;
// Base above gives us a pointer on the stack.
// TODO: Implement non-FieldDecl members.
if (const auto *FD = dyn_cast<FieldDecl>(Member)) {
const RecordDecl *RD = FD->getParent();
const Record *R = getRecord(RD);
const Record::Field *F = R->getField(FD);
// Leave a pointer to the field on the stack.
if (F->Decl->getType()->isReferenceType())
return this->emitGetFieldPop(PT_Ptr, F->Offset, E);
return this->emitGetPtrField(F->Offset, E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArrayInitIndexExpr(
const ArrayInitIndexExpr *E) {
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
// stand-alone, e.g. via EvaluateAsInt().
if (!ArrayIndex)
return false;
return this->emitConst(*ArrayIndex, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
return this->visit(E->getSourceExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
return this->visitConditional(
E, [this](const Expr *E) { return this->visit(E); });
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitStringLiteral(const StringLiteral *E) {
unsigned StringIndex = P.createGlobalString(E);
return this->emitGetPtrGlobal(StringIndex, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCharacterLiteral(
const CharacterLiteral *E) {
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitFloatCompoundAssignOperator(
const CompoundAssignOperator *E) {
assert(E->getType()->isFloatingType());
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
llvm::RoundingMode RM = getRoundingMode(E);
QualType LHSComputationType = E->getComputationLHSType();
QualType ResultType = E->getComputationResultType();
std::optional<PrimType> LT = classify(LHSComputationType);
std::optional<PrimType> RT = classify(ResultType);
if (!LT || !RT)
return false;
// First, visit LHS.
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, E))
return false;
// If necessary, convert LHS to its computation type.
if (LHS->getType() != LHSComputationType) {
const auto *TargetSemantics = &Ctx.getFloatSemantics(LHSComputationType);
if (!this->emitCastFP(TargetSemantics, RM, E))
return false;
}
// Now load RHS.
if (!visit(RHS))
return false;
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAddf(RM, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSubf(RM, E))
return false;
break;
case BO_MulAssign:
if (!this->emitMulf(RM, E))
return false;
break;
case BO_DivAssign:
if (!this->emitDivf(RM, E))
return false;
break;
default:
return false;
}
// If necessary, convert result to LHS's type.
if (LHS->getType() != ResultType) {
const auto *TargetSemantics = &Ctx.getFloatSemantics(LHS->getType());
if (!this->emitCastFP(TargetSemantics, RM, E))
return false;
}
if (DiscardResult)
return this->emitStorePop(*LT, E);
return this->emitStore(*LT, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPointerCompoundAssignOperator(
const CompoundAssignOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
if (Op != BO_AddAssign && Op != BO_SubAssign)
return false;
if (!LT || !RT)
return false;
assert(*LT == PT_Ptr);
if (!visit(LHS))
return false;
if (!this->emitLoadPtr(LHS))
return false;
if (!visit(RHS))
return false;
if (Op == BO_AddAssign)
this->emitAddOffset(*RT, E);
else
this->emitSubOffset(*RT, E);
if (DiscardResult)
return this->emitStorePopPtr(E);
return this->emitStorePtr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCompoundAssignOperator(
const CompoundAssignOperator *E) {
// Handle floating point operations separately here, since they
// require special care.
if (E->getType()->isFloatingType())
return VisitFloatCompoundAssignOperator(E);
if (E->getType()->isPointerType())
return VisitPointerCompoundAssignOperator(E);
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LHSComputationT =
classify(E->getComputationLHSType());
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(E->getComputationResultType());
std::optional<PrimType> ResultT = classify(E->getType());
if (!LT || !RT || !ResultT || !LHSComputationT)
return false;
assert(!E->getType()->isPointerType() && "Handled above");
assert(!E->getType()->isFloatingType() && "Handled above");
// Get LHS pointer, load its value and get RHS value.
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, E))
return false;
// If necessary, cast LHS to its computation type.
if (*LT != *LHSComputationT) {
if (!this->emitCast(*LT, *LHSComputationT, E))
return false;
}
if (!visit(RHS))
return false;
// Perform operation.
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAdd(*LHSComputationT, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSub(*LHSComputationT, E))
return false;
break;
case BO_MulAssign:
if (!this->emitMul(*LHSComputationT, E))
return false;
break;
case BO_DivAssign:
if (!this->emitDiv(*LHSComputationT, E))
return false;
break;
case BO_RemAssign:
if (!this->emitRem(*LHSComputationT, E))
return false;
break;
case BO_ShlAssign:
if (!this->emitShl(*LHSComputationT, *RT, E))
return false;
break;
case BO_ShrAssign:
if (!this->emitShr(*LHSComputationT, *RT, E))
return false;
break;
case BO_AndAssign:
if (!this->emitBitAnd(*LHSComputationT, E))
return false;
break;
case BO_XorAssign:
if (!this->emitBitXor(*LHSComputationT, E))
return false;
break;
case BO_OrAssign:
if (!this->emitBitOr(*LHSComputationT, E))
return false;
break;
default:
llvm_unreachable("Unimplemented compound assign operator");
}
// And now cast from LHSComputationT to ResultT.
if (*ResultT != *LHSComputationT) {
if (!this->emitCast(*LHSComputationT, *ResultT, E))
return false;
}
// And store the result in LHS.
if (DiscardResult)
return this->emitStorePop(*ResultT, E);
return this->emitStore(*ResultT, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitExprWithCleanups(
const ExprWithCleanups *E) {
const Expr *SubExpr = E->getSubExpr();
assert(E->getNumObjects() == 0 && "TODO: Implement cleanups");
if (DiscardResult)
return this->discard(SubExpr);
return this->visit(SubExpr);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *E) {
const Expr *SubExpr = E->getSubExpr();
std::optional<PrimType> SubExprT = classify(SubExpr);
if (E->getStorageDuration() == SD_Static) {
if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
const LifetimeExtendedTemporaryDecl *TempDecl =
E->getLifetimeExtendedTemporaryDecl();
if (!this->visitInitializer(SubExpr))
return false;
if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
return false;
return this->emitGetPtrGlobal(*GlobalIndex, E);
}
return false;
}
// For everyhing else, use local variables.
if (SubExprT) {
if (std::optional<unsigned> LocalIndex = allocateLocalPrimitive(
SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true)) {
if (!this->visitInitializer(SubExpr))
return false;
this->emitSetLocal(*SubExprT, *LocalIndex, E);
return this->emitGetPtrLocal(*LocalIndex, E);
}
} else {
if (std::optional<unsigned> LocalIndex =
allocateLocal(SubExpr, /*IsExtended=*/true)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
return this->visitInitializer(SubExpr);
}
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCompoundLiteralExpr(
const CompoundLiteralExpr *E) {
std::optional<PrimType> T = classify(E->getType());
const Expr *Init = E->getInitializer();
if (E->isFileScope()) {
if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
if (classify(E->getType()))
return this->visit(Init);
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
return this->visitInitializer(Init);
}
}
// Otherwise, use a local variable.
if (T) {
// For primitive types, we just visit the initializer.
return this->visit(Init);
} else {
if (std::optional<unsigned> LocalIndex = allocateLocal(Init)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
return this->visitInitializer(Init);
}
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter> bool ByteCodeExprGen<Emitter>::discard(const Expr *E) {
if (E->containsErrors())
return false;
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visit(const Expr *E) {
if (E->containsErrors())
return false;
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitBool(const Expr *E) {
if (std::optional<PrimType> T = classify(E->getType())) {
return visit(E);
} else {
return this->bail(E);
}
}
/// Visit a conditional operator, i.e. `A ? B : C`.
/// \V determines what function to call for the B and C expressions.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitConditional(
const AbstractConditionalOperator *E,
llvm::function_ref<bool(const Expr *)> V) {
const Expr *Condition = E->getCond();
const Expr *TrueExpr = E->getTrueExpr();
const Expr *FalseExpr = E->getFalseExpr();
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
if (!this->visit(Condition))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!V(TrueExpr))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
if (!V(FalseExpr))
return false;
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitZeroInitializer(QualType QT,
const Expr *E) {
// FIXME: We need the QualType to get the float semantics, but that means we
// classify it over and over again in array situations.
PrimType T = classifyPrim(QT);
switch (T) {
case PT_Bool:
return this->emitZeroBool(E);
case PT_Sint8:
return this->emitZeroSint8(E);
case PT_Uint8:
return this->emitZeroUint8(E);
case PT_Sint16:
return this->emitZeroSint16(E);
case PT_Uint16:
return this->emitZeroUint16(E);
case PT_Sint32:
return this->emitZeroSint32(E);
case PT_Uint32:
return this->emitZeroUint32(E);
case PT_Sint64:
return this->emitZeroSint64(E);
case PT_Uint64:
return this->emitZeroUint64(E);
case PT_Ptr:
return this->emitNullPtr(E);
case PT_FnPtr:
return this->emitNullFnPtr(E);
case PT_Float: {
return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
}
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereference(
const Expr *LV, DerefKind AK, llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
if (std::optional<PrimType> T = classify(LV->getType())) {
if (!LV->refersToBitField()) {
// Only primitive, non bit-field types can be dereferenced directly.
if (const auto *DE = dyn_cast<DeclRefExpr>(LV)) {
if (!DE->getDecl()->getType()->isReferenceType()) {
if (const auto *PD = dyn_cast<ParmVarDecl>(DE->getDecl()))
return dereferenceParam(LV, *T, PD, AK, Direct, Indirect);
if (const auto *VD = dyn_cast<VarDecl>(DE->getDecl()))
return dereferenceVar(LV, *T, VD, AK, Direct, Indirect);
}
}
}
if (!visit(LV))
return false;
return Indirect(*T);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceParam(
const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = this->Params.find(PD);
if (It != this->Params.end()) {
unsigned Idx = It->second;
switch (AK) {
case DerefKind::Read:
return DiscardResult ? true : this->emitGetParam(T, Idx, LV);
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetParam(T, Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
}
return true;
}
// If the param is a pointer, we can dereference a dummy value.
if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) {
if (auto Idx = P.getOrCreateDummy(PD))
return this->emitGetPtrGlobal(*Idx, PD);
return false;
}
// Value cannot be produced - try to emit pointer and do stuff with it.
return visit(LV) && Indirect(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceVar(
const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = Locals.find(VD);
if (It != Locals.end()) {
const auto &L = It->second;
switch (AK) {
case DerefKind::Read:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
case DerefKind::ReadWrite:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
}
} else if (auto Idx = P.getGlobal(VD)) {
switch (AK) {
case DerefKind::Read:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
}
}
// If the declaration is a constant value, emit it here even
// though the declaration was not evaluated in the current scope.
// The access mode can only be read in this case.
if (!DiscardResult && AK == DerefKind::Read) {
if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) {
QualType VT = VD->getType();
if (VT.isConstQualified() && VT->isFundamentalType())
return this->visit(VD->getInit());
}
}
// Value cannot be produced - try to emit pointer.
return visit(LV) && Indirect(T);
}
template <class Emitter>
template <typename T>
bool ByteCodeExprGen<Emitter>::emitConst(T Value, const Expr *E) {
switch (classifyPrim(E->getType())) {
case PT_Sint8:
return this->emitConstSint8(Value, E);
case PT_Uint8:
return this->emitConstUint8(Value, E);
case PT_Sint16:
return this->emitConstSint16(Value, E);
case PT_Uint16:
return this->emitConstUint16(Value, E);
case PT_Sint32:
return this->emitConstSint32(Value, E);
case PT_Uint32:
return this->emitConstUint32(Value, E);
case PT_Sint64:
return this->emitConstSint64(Value, E);
case PT_Uint64:
return this->emitConstUint64(Value, E);
case PT_Bool:
return this->emitConstBool(Value, E);
case PT_Ptr:
case PT_FnPtr:
case PT_Float:
llvm_unreachable("Invalid integral type");
break;
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
if (Value.isSigned())
return this->emitConst(Value.getSExtValue(), E);
return this->emitConst(Value.getZExtValue(), E);
}
template <class Emitter>
unsigned ByteCodeExprGen<Emitter>::allocateLocalPrimitive(DeclTy &&Src,
PrimType Ty,
bool IsConst,
bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(!Locals.contains(VD));
}
// FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
// (int){12} in C. Consider using Expr::isTemporaryObject() instead
// or isa<MaterializeTemporaryExpr>().
Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
Src.is<const Expr *>());
Scope::Local Local = this->createLocal(D);
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
Locals.insert({VD, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
template <class Emitter>
std::optional<unsigned>
ByteCodeExprGen<Emitter>::allocateLocal(DeclTy &&Src, bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(!Locals.contains(VD));
}
QualType Ty;
const ValueDecl *Key = nullptr;
const Expr *Init = nullptr;
bool IsTemporary = false;
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
Key = VD;
Ty = VD->getType();
if (const auto *VarD = dyn_cast<VarDecl>(VD))
Init = VarD->getInit();
}
if (auto *E = Src.dyn_cast<const Expr *>()) {
IsTemporary = true;
Ty = E->getType();
}
Descriptor *D = P.createDescriptor(
Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
IsTemporary, /*IsMutable=*/false, Init);
if (!D)
return {};
Scope::Local Local = this->createLocal(D);
if (Key)
Locals.insert({Key, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
// NB: When calling this function, we have a pointer to the
// array-to-initialize on the stack.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitArrayInitializer(const Expr *Initializer) {
assert(Initializer->getType()->isArrayType());
// TODO: Fillers?
if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
unsigned ElementIndex = 0;
for (const Expr *Init : InitList->inits()) {
if (std::optional<PrimType> T = classify(Init->getType())) {
// Visit the primitive element like normal.
if (!this->visit(Init))
return false;
if (!this->emitInitElem(*T, ElementIndex, Init))
return false;
} else {
// Advance the pointer currently on the stack to the given
// dimension.
if (!this->emitConstUint32(ElementIndex, Init))
return false;
if (!this->emitArrayElemPtrUint32(Init))
return false;
if (!visitInitializer(Init))
return false;
if (!this->emitPopPtr(Init))
return false;
}
++ElementIndex;
}
return true;
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
} else if (const auto *AILE = dyn_cast<ArrayInitLoopExpr>(Initializer)) {
// TODO: This compiles to quite a lot of bytecode if the array is larger.
// Investigate compiling this to a loop, or at least try to use
// the AILE's Common expr.
const Expr *SubExpr = AILE->getSubExpr();
size_t Size = AILE->getArraySize().getZExtValue();
std::optional<PrimType> ElemT = classify(SubExpr->getType());
// So, every iteration, we execute an assignment here
// where the LHS is on the stack (the target array)
// and the RHS is our SubExpr.
for (size_t I = 0; I != Size; ++I) {
ArrayIndexScope<Emitter> IndexScope(this, I);
if (ElemT) {
if (!this->visit(SubExpr))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
} else {
// Get to our array element and recurse into visitInitializer()
if (!this->emitConstUint64(I, SubExpr))
return false;
if (!this->emitArrayElemPtrUint64(SubExpr))
return false;
if (!visitInitializer(SubExpr))
return false;
if (!this->emitPopPtr(Initializer))
return false;
}
}
return true;
} else if (const auto *IVIE = dyn_cast<ImplicitValueInitExpr>(Initializer)) {
const ArrayType *AT = IVIE->getType()->getAsArrayTypeUnsafe();
assert(AT);
const auto *CAT = cast<ConstantArrayType>(AT);
size_t NumElems = CAT->getSize().getZExtValue();
if (std::optional<PrimType> ElemT = classify(CAT->getElementType())) {
// TODO(perf): For int and bool types, we can probably just skip this
// since we memset our Block*s to 0 and so we have the desired value
// without this.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->visitZeroInitializer(CAT->getElementType(), Initializer))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
}
} else {
assert(false && "default initializer for non-primitive type");
}
return true;
} else if (const auto *Ctor = dyn_cast<CXXConstructExpr>(Initializer)) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(Ctor->getType());
assert(CAT);
size_t NumElems = CAT->getSize().getZExtValue();
const Function *Func = getFunction(Ctor->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// FIXME(perf): We're calling the constructor once per array element here,
// in the old intepreter we had a special-case for trivial constructors.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitConstUint64(I, Initializer))
return false;
if (!this->emitArrayElemPtrUint64(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : Ctor->arguments()) {
if (!this->visit(Arg))
return false;
}
if (!this->emitCall(Func, Initializer))
return false;
}
return true;
} else if (const auto *SL = dyn_cast<StringLiteral>(Initializer)) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(SL->getType());
assert(CAT && "a string literal that's not a constant array?");
// If the initializer string is too long, a diagnostic has already been
// emitted. Read only the array length from the string literal.
unsigned N =
std::min(unsigned(CAT->getSize().getZExtValue()), SL->getLength());
size_t CharWidth = SL->getCharByteWidth();
for (unsigned I = 0; I != N; ++I) {
uint32_t CodeUnit = SL->getCodeUnit(I);
if (CharWidth == 1) {
this->emitConstSint8(CodeUnit, SL);
this->emitInitElemSint8(I, SL);
} else if (CharWidth == 2) {
this->emitConstUint16(CodeUnit, SL);
this->emitInitElemUint16(I, SL);
} else if (CharWidth == 4) {
this->emitConstUint32(CodeUnit, SL);
this->emitInitElemUint32(I, SL);
} else {
llvm_unreachable("unsupported character width");
}
}
return true;
} else if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Initializer)) {
return visitInitializer(CLE->getInitializer());
} else if (const auto *EWC = dyn_cast<ExprWithCleanups>(Initializer)) {
return visitInitializer(EWC->getSubExpr());
}
assert(false && "Unknown expression for array initialization");
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitRecordInitializer(const Expr *Initializer) {
Initializer = Initializer->IgnoreParenImpCasts();
assert(Initializer->getType()->isRecordType());
if (const auto CtorExpr = dyn_cast<CXXConstructExpr>(Initializer)) {
const Function *Func = getFunction(CtorExpr->getConstructor());
if (!Func)
return false;
// The This pointer is already on the stack because this is an initializer,
// but we need to dup() so the call() below has its own copy.
if (!this->emitDupPtr(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : CtorExpr->arguments()) {
if (!this->visit(Arg))
return false;
}
return this->emitCall(Func, Initializer);
} else if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
const Record *R = getRecord(InitList->getType());
unsigned InitIndex = 0;
for (const Expr *Init : InitList->inits()) {
if (!this->emitDupPtr(Initializer))
return false;
if (std::optional<PrimType> T = classify(Init)) {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!this->visit(Init))
return false;
if (!this->emitInitField(*T, FieldToInit->Offset, Initializer))
return false;
if (!this->emitPopPtr(Initializer))
return false;
++InitIndex;
} else {
// Initializer for a direct base class.
if (const Record::Base *B = R->getBase(Init->getType())) {
if (!this->emitGetPtrBasePop(B->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(Initializer))
return false;
// Base initializers don't increase InitIndex, since they don't count
// into the Record's fields.
} else {
const Record::Field *FieldToInit = R->getField(InitIndex);
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and recurse into visitInitializer().
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(Initializer))
return false;
++InitIndex;
}
}
}
return true;
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Initializer)) {
// RVO functions expect a pointer to initialize on the stack.
// Dup our existing pointer so it has its own copy to use.
if (!this->emitDupPtr(Initializer))
return false;
return this->visit(CE);
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
} else if (const auto *CE = dyn_cast<CastExpr>(Initializer)) {
return this->visitInitializer(CE->getSubExpr());
} else if (const auto *CE = dyn_cast<CXXBindTemporaryExpr>(Initializer)) {
return this->visitInitializer(CE->getSubExpr());
} else if (const auto *ACO =
dyn_cast<AbstractConditionalOperator>(Initializer)) {
return this->visitConditional(
ACO, [this](const Expr *E) { return this->visitRecordInitializer(E); });
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitInitializer(const Expr *Initializer) {
QualType InitializerType = Initializer->getType();
if (InitializerType->isArrayType())
return visitArrayInitializer(Initializer);
if (InitializerType->isRecordType())
return visitRecordInitializer(Initializer);
// Otherwise, visit the expression like normal.
return this->visit(Initializer);
}
template <class Emitter>
const RecordType *ByteCodeExprGen<Emitter>::getRecordTy(QualType Ty) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAs<RecordType>();
else
return Ty->getAs<RecordType>();
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(QualType Ty) {
if (auto *RecordTy = getRecordTy(Ty)) {
return getRecord(RecordTy->getDecl());
}
return nullptr;
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(const RecordDecl *RD) {
return P.getOrCreateRecord(RD);
}
template <class Emitter>
const Function *ByteCodeExprGen<Emitter>::getFunction(const FunctionDecl *FD) {
assert(FD);
const Function *Func = P.getFunction(FD);
bool IsBeingCompiled = Func && !Func->isFullyCompiled();
bool WasNotDefined = Func && !Func->isConstexpr() && !Func->hasBody();
if (IsBeingCompiled)
return Func;
if (!Func || WasNotDefined) {
if (auto R = ByteCodeStmtGen<ByteCodeEmitter>(Ctx, P).compileFunc(FD))
Func = *R;
else {
llvm::consumeError(R.takeError());
return nullptr;
}
}
return Func;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitExpr(const Expr *Exp) {
ExprScope<Emitter> RootScope(this);
if (!visit(Exp))
return false;
if (std::optional<PrimType> T = classify(Exp))
return this->emitRet(*T, Exp);
else
return this->emitRetValue(Exp);
}
/// Toplevel visitDecl().
/// We get here from evaluateAsInitializer().
/// We need to evaluate the initializer and return its value.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitDecl(const VarDecl *VD) {
assert(!VD->isInvalidDecl() && "Trying to constant evaluate an invalid decl");
std::optional<PrimType> VarT = classify(VD->getType());
// Create and initialize the variable.
if (!this->visitVarDecl(VD))
return false;
// Get a pointer to the variable
if (shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex); // visitVarDecl() didn't return false.
if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
return false;
} else {
auto Local = Locals.find(VD);
assert(Local != Locals.end()); // Same here.
if (!this->emitGetPtrLocal(Local->second.Offset, VD))
return false;
}
// Return the value
if (VarT) {
if (!this->emitLoadPop(*VarT, VD))
return false;
return this->emitRet(*VarT, VD);
}
return this->emitRetValue(VD);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitVarDecl(const VarDecl *VD) {
// We don't know what to do with these, so just return false.
if (VD->getType().isNull())
return false;
const Expr *Init = VD->getInit();
std::optional<PrimType> VarT = classify(VD->getType());
if (shouldBeGloballyIndexed(VD)) {
// We've already seen and initialized this global.
if (P.getGlobal(VD))
return true;
std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
if (!GlobalIndex)
return this->bail(VD);
assert(Init);
{
DeclScope<Emitter> LocalScope(this, VD);
if (VarT) {
if (!this->visit(Init))
return false;
return this->emitInitGlobal(*VarT, *GlobalIndex, VD);
}
return this->visitGlobalInitializer(Init, *GlobalIndex);
}
} else {
VariableScope<Emitter> LocalScope(this);
if (VarT) {
unsigned Offset = this->allocateLocalPrimitive(
VD, *VarT, VD->getType().isConstQualified());
if (Init) {
// Compile the initializer in its own scope.
ExprScope<Emitter> Scope(this);
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD);
}
} else {
if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
if (Init)
return this->visitLocalInitializer(Init, *Offset);
}
}
return true;
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
const Function *Func = getFunction(E->getDirectCallee());
if (!Func)
return false;
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
if (!this->emitCallBI(Func, E))
return false;
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
if (DiscardResult && !ReturnType->isVoidType()) {
PrimType T = classifyPrim(ReturnType);
return this->emitPop(T, E);
}
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCallExpr(const CallExpr *E) {
if (E->getBuiltinCallee())
return VisitBuiltinCallExpr(E);
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
std::optional<PrimType> T = classify(ReturnType);
bool HasRVO = !ReturnType->isVoidType() && !T;
if (HasRVO && DiscardResult) {
// If we need to discard the return value but the function returns its
// value via an RVO pointer, we need to create one such pointer just
// for this call.
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
}
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
if (const FunctionDecl *FuncDecl = E->getDirectCallee()) {
const Function *Func = getFunction(FuncDecl);
if (!Func)
return false;
// If the function is being compiled right now, this is a recursive call.
// In that case, the function can't be valid yet, even though it will be
// later.
// If the function is already fully compiled but not constexpr, it was
// found to be faulty earlier on, so bail out.
if (Func->isFullyCompiled() && !Func->isConstexpr())
return false;
assert(HasRVO == Func->hasRVO());
// In any case call the function. The return value will end up on the stack
// and if the function has RVO, we already have the pointer on the stack to
// write the result into.
if (!this->emitCall(Func, E))
return false;
} else {
// Indirect call. Visit the callee, which will leave a FunctionPointer on
// the stack. Cleanup of the returned value if necessary will be done after
// the function call completed.
if (!this->visit(E->getCallee()))
return false;
if (!this->emitCallPtr(E))
return false;
}
// Cleanup for discarded return values.
if (DiscardResult && !ReturnType->isVoidType() && T)
return this->emitPop(*T, E);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXMemberCallExpr(
const CXXMemberCallExpr *E) {
// Get a This pointer on the stack.
if (!this->visit(E->getImplicitObjectArgument()))
return false;
return VisitCallExpr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultInitExpr(
const CXXDefaultInitExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultArgExpr(
const CXXDefaultArgExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXBoolLiteralExpr(
const CXXBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXNullPtrLiteralExpr(
const CXXNullPtrLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitNullPtr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
if (DiscardResult)
return true;
return this->emitThis(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
std::optional<PrimType> T = classify(SubExpr->getType());
switch (E->getOpcode()) {
case UO_PostInc: { // x++
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr) {
if (!this->emitIncPtr(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
if (T == PT_Float) {
return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E)
: this->emitIncf(getRoundingMode(E), E);
}
return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
}
case UO_PostDec: { // x--
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr) {
if (!this->emitDecPtr(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
if (T == PT_Float) {
return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E)
: this->emitDecf(getRoundingMode(E), E);
}
return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
}
case UO_PreInc: { // ++x
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr) {
this->emitLoadPtr(E);
this->emitConstUint8(1, E);
this->emitAddOffsetUint8(E);
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
}
// Post-inc and pre-inc are the same if the value is to be discarded.
if (DiscardResult) {
if (T == PT_Float)
return this->emitIncfPop(getRoundingMode(E), E);
return this->emitIncPop(*T, E);
}
if (T == PT_Float) {
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
this->emitLoadFloat(E);
this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E);
this->emitAddf(getRoundingMode(E), E);
return this->emitStoreFloat(E);
}
this->emitLoad(*T, E);
this->emitConst(1, E);
this->emitAdd(*T, E);
return this->emitStore(*T, E);
}
case UO_PreDec: { // --x
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr) {
this->emitLoadPtr(E);
this->emitConstUint8(1, E);
this->emitSubOffsetUint8(E);
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
}
// Post-dec and pre-dec are the same if the value is to be discarded.
if (DiscardResult) {
if (T == PT_Float)
return this->emitDecfPop(getRoundingMode(E), E);
return this->emitDecPop(*T, E);
}
if (T == PT_Float) {
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
this->emitLoadFloat(E);
this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E);
this->emitSubf(getRoundingMode(E), E);
return this->emitStoreFloat(E);
}
this->emitLoad(*T, E);
this->emitConst(1, E);
this->emitSub(*T, E);
return this->emitStore(*T, E);
}
case UO_LNot: // !x
if (!this->visit(SubExpr))
return false;
// The Inv doesn't change anything, so skip it if we don't need the result.
return DiscardResult ? this->emitPop(*T, E) : this->emitInvBool(E);
case UO_Minus: // -x
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
case UO_Plus: // +x
if (!this->visit(SubExpr)) // noop
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_AddrOf: // &x
// We should already have a pointer when we get here.
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_Deref: // *x
return dereference(
SubExpr, DerefKind::Read,
[](PrimType) {
llvm_unreachable("Dereferencing requires a pointer");
return false;
},
[this, E](PrimType T) {
return DiscardResult ? this->emitPop(T, E) : true;
});
case UO_Not: // ~x
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
case UO_Real: // __real x
case UO_Imag: // __imag x
case UO_Extension:
case UO_Coawait:
assert(false && "Unhandled opcode");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
if (DiscardResult)
return true;
const auto *D = E->getDecl();
if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
return this->emitConst(ECD->getInitVal(), E);
} else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
return this->visit(BD->getBinding());
} else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
const Function *F = getFunction(FuncDecl);
return F && this->emitGetFnPtr(F, E);
}
// References are implemented via pointers, so when we see a DeclRefExpr
// pointing to a reference, we need to get its value directly (i.e. the
// pointer to the actual value) instead of a pointer to the pointer to the
// value.
bool IsReference = D->getType()->isReferenceType();
// Check for local/global variables and parameters.
if (auto It = Locals.find(D); It != Locals.end()) {
const unsigned Offset = It->second.Offset;
if (IsReference)
return this->emitGetLocal(PT_Ptr, Offset, E);
return this->emitGetPtrLocal(Offset, E);
} else if (auto GlobalIndex = P.getGlobal(D)) {
if (IsReference)
return this->emitGetGlobalPtr(*GlobalIndex, E);
return this->emitGetPtrGlobal(*GlobalIndex, E);
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
if (IsReference)
return this->emitGetParamPtr(It->second, E);
return this->emitGetPtrParam(It->second, E);
}
}
return false;
}
template <class Emitter>
void ByteCodeExprGen<Emitter>::emitCleanup() {
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
C->emitDestruction();
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitDerivedToBaseCasts(
const RecordType *DerivedType, const RecordType *BaseType, const Expr *E) {
// Pointer of derived type is already on the stack.
const auto *FinalDecl = cast<CXXRecordDecl>(BaseType->getDecl());
const RecordDecl *CurDecl = DerivedType->getDecl();
const Record *CurRecord = getRecord(CurDecl);
assert(CurDecl && FinalDecl);
for (;;) {
assert(CurRecord->getNumBases() > 0);
// One level up
for (const Record::Base &B : CurRecord->bases()) {
const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl);
if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) {
// This decl will lead us to the final decl, so emit a base cast.
if (!this->emitGetPtrBasePop(B.Offset, E))
return false;
CurRecord = B.R;
CurDecl = BaseDecl;
break;
}
}
if (CurDecl == FinalDecl)
return true;
}
llvm_unreachable("Couldn't find the base class?");
return false;
}
/// When calling this, we have a pointer of the local-to-destroy
/// on the stack.
/// Emit destruction of record types (or arrays of record types).
/// FIXME: Handle virtual destructors.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitRecordDestruction(const Descriptor *Desc) {
assert(Desc);
assert(!Desc->isPrimitive());
assert(!Desc->isPrimitiveArray());
// Arrays.
if (Desc->isArray()) {
const Descriptor *ElemDesc = Desc->ElemDesc;
const Record *ElemRecord = ElemDesc->ElemRecord;
assert(ElemRecord); // This is not a primitive array.
if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
Dtor && !Dtor->isTrivial()) {
for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
if (!this->emitConstUint64(I, SourceInfo{}))
return false;
if (!this->emitArrayElemPtrUint64(SourceInfo{}))
return false;
if (!this->emitRecordDestruction(Desc->ElemDesc))
return false;
}
}
return this->emitPopPtr(SourceInfo{});
}
const Record *R = Desc->ElemRecord;
assert(R);
// First, destroy all fields.
for (const Record::Field &Field : llvm::reverse(R->fields())) {
const Descriptor *D = Field.Desc;
if (!D->isPrimitive() && !D->isPrimitiveArray()) {
if (!this->emitDupPtr(SourceInfo{}))
return false;
if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
return false;
if (!this->emitRecordDestruction(D))
return false;
}
}
// FIXME: Unions need to be handled differently here. We don't want to
// call the destructor of its members.
// Now emit the destructor and recurse into base classes.
if (const CXXDestructorDecl *Dtor = R->getDestructor();
Dtor && !Dtor->isTrivial()) {
const Function *DtorFunc = getFunction(Dtor);
if (DtorFunc && DtorFunc->isConstexpr()) {
assert(DtorFunc->hasThisPointer());
assert(DtorFunc->getNumParams() == 1);
if (!this->emitDupPtr(SourceInfo{}))
return false;
if (!this->emitCall(DtorFunc, SourceInfo{}))
return false;
}
}
for (const Record::Base &Base : llvm::reverse(R->bases())) {
if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
return false;
if (!this->emitRecordDestruction(Base.Desc))
return false;
}
// FIXME: Virtual bases.
// Remove the instance pointer.
return this->emitPopPtr(SourceInfo{});
}
namespace clang {
namespace interp {
template class ByteCodeExprGen<ByteCodeEmitter>;
template class ByteCodeExprGen<EvalEmitter>;
} // namespace interp
} // namespace clang