//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | |
// | |
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
// See https://llvm.org/LICENSE.txt for license information. | |
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This file implements semantic analysis for declarations. | |
// | |
//===----------------------------------------------------------------------===// | |
#include "TypeLocBuilder.h" | |
#include "clang/AST/ASTConsumer.h" | |
#include "clang/AST/ASTContext.h" | |
#include "clang/AST/ASTLambda.h" | |
#include "clang/AST/CXXInheritance.h" | |
#include "clang/AST/CharUnits.h" | |
#include "clang/AST/CommentDiagnostic.h" | |
#include "clang/AST/DeclCXX.h" | |
#include "clang/AST/DeclObjC.h" | |
#include "clang/AST/DeclTemplate.h" | |
#include "clang/AST/EvaluatedExprVisitor.h" | |
#include "clang/AST/Expr.h" | |
#include "clang/AST/ExprCXX.h" | |
#include "clang/AST/NonTrivialTypeVisitor.h" | |
#include "clang/AST/StmtCXX.h" | |
#include "clang/Basic/Builtins.h" | |
#include "clang/Basic/PartialDiagnostic.h" | |
#include "clang/Basic/SourceManager.h" | |
#include "clang/Basic/TargetInfo.h" | |
#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex | |
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. | |
#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex | |
#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() | |
#include "clang/Sema/CXXFieldCollector.h" | |
#include "clang/Sema/DeclSpec.h" | |
#include "clang/Sema/DelayedDiagnostic.h" | |
#include "clang/Sema/Initialization.h" | |
#include "clang/Sema/Lookup.h" | |
#include "clang/Sema/ParsedTemplate.h" | |
#include "clang/Sema/Scope.h" | |
#include "clang/Sema/ScopeInfo.h" | |
#include "clang/Sema/SemaInternal.h" | |
#include "clang/Sema/Template.h" | |
#include "llvm/ADT/SmallString.h" | |
#include "llvm/ADT/Triple.h" | |
#include <algorithm> | |
#include <cstring> | |
#include <functional> | |
#include <unordered_map> | |
using namespace clang; | |
using namespace sema; | |
Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { | |
if (OwnedType) { | |
Decl *Group[2] = { OwnedType, Ptr }; | |
return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); | |
} | |
return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); | |
} | |
namespace { | |
class TypeNameValidatorCCC final : public CorrectionCandidateCallback { | |
public: | |
TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, | |
bool AllowTemplates = false, | |
bool AllowNonTemplates = true) | |
: AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), | |
AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { | |
WantExpressionKeywords = false; | |
WantCXXNamedCasts = false; | |
WantRemainingKeywords = false; | |
} | |
bool ValidateCandidate(const TypoCorrection &candidate) override { | |
if (NamedDecl *ND = candidate.getCorrectionDecl()) { | |
if (!AllowInvalidDecl && ND->isInvalidDecl()) | |
return false; | |
if (getAsTypeTemplateDecl(ND)) | |
return AllowTemplates; | |
bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); | |
if (!IsType) | |
return false; | |
if (AllowNonTemplates) | |
return true; | |
// An injected-class-name of a class template (specialization) is valid | |
// as a template or as a non-template. | |
if (AllowTemplates) { | |
auto *RD = dyn_cast<CXXRecordDecl>(ND); | |
if (!RD || !RD->isInjectedClassName()) | |
return false; | |
RD = cast<CXXRecordDecl>(RD->getDeclContext()); | |
return RD->getDescribedClassTemplate() || | |
isa<ClassTemplateSpecializationDecl>(RD); | |
} | |
return false; | |
} | |
return !WantClassName && candidate.isKeyword(); | |
} | |
std::unique_ptr<CorrectionCandidateCallback> clone() override { | |
return std::make_unique<TypeNameValidatorCCC>(*this); | |
} | |
private: | |
bool AllowInvalidDecl; | |
bool WantClassName; | |
bool AllowTemplates; | |
bool AllowNonTemplates; | |
}; | |
} // end anonymous namespace | |
/// Determine whether the token kind starts a simple-type-specifier. | |
bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { | |
switch (Kind) { | |
// FIXME: Take into account the current language when deciding whether a | |
// token kind is a valid type specifier | |
case tok::kw_short: | |
case tok::kw_long: | |
case tok::kw___int64: | |
case tok::kw___int128: | |
case tok::kw_signed: | |
case tok::kw_unsigned: | |
case tok::kw_void: | |
case tok::kw_char: | |
case tok::kw_int: | |
case tok::kw_half: | |
case tok::kw_float: | |
case tok::kw_double: | |
case tok::kw___bf16: | |
case tok::kw__Float16: | |
case tok::kw___float128: | |
case tok::kw_wchar_t: | |
case tok::kw_bool: | |
case tok::kw___underlying_type: | |
case tok::kw___auto_type: | |
return true; | |
case tok::annot_typename: | |
case tok::kw_char16_t: | |
case tok::kw_char32_t: | |
case tok::kw_typeof: | |
case tok::annot_decltype: | |
case tok::kw_decltype: | |
return getLangOpts().CPlusPlus; | |
case tok::kw_char8_t: | |
return getLangOpts().Char8; | |
default: | |
break; | |
} | |
return false; | |
} | |
namespace { | |
enum class UnqualifiedTypeNameLookupResult { | |
NotFound, | |
FoundNonType, | |
FoundType | |
}; | |
} // end anonymous namespace | |
/// Tries to perform unqualified lookup of the type decls in bases for | |
/// dependent class. | |
/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a | |
/// type decl, \a FoundType if only type decls are found. | |
static UnqualifiedTypeNameLookupResult | |
lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, | |
SourceLocation NameLoc, | |
const CXXRecordDecl *RD) { | |
if (!RD->hasDefinition()) | |
return UnqualifiedTypeNameLookupResult::NotFound; | |
// Look for type decls in base classes. | |
UnqualifiedTypeNameLookupResult FoundTypeDecl = | |
UnqualifiedTypeNameLookupResult::NotFound; | |
for (const auto &Base : RD->bases()) { | |
const CXXRecordDecl *BaseRD = nullptr; | |
if (auto *BaseTT = Base.getType()->getAs<TagType>()) | |
BaseRD = BaseTT->getAsCXXRecordDecl(); | |
else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { | |
// Look for type decls in dependent base classes that have known primary | |
// templates. | |
if (!TST || !TST->isDependentType()) | |
continue; | |
auto *TD = TST->getTemplateName().getAsTemplateDecl(); | |
if (!TD) | |
continue; | |
if (auto *BasePrimaryTemplate = | |
dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { | |
if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) | |
BaseRD = BasePrimaryTemplate; | |
else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { | |
if (const ClassTemplatePartialSpecializationDecl *PS = | |
CTD->findPartialSpecialization(Base.getType())) | |
if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) | |
BaseRD = PS; | |
} | |
} | |
} | |
if (BaseRD) { | |
for (NamedDecl *ND : BaseRD->lookup(&II)) { | |
if (!isa<TypeDecl>(ND)) | |
return UnqualifiedTypeNameLookupResult::FoundNonType; | |
FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | |
} | |
if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { | |
switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { | |
case UnqualifiedTypeNameLookupResult::FoundNonType: | |
return UnqualifiedTypeNameLookupResult::FoundNonType; | |
case UnqualifiedTypeNameLookupResult::FoundType: | |
FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | |
break; | |
case UnqualifiedTypeNameLookupResult::NotFound: | |
break; | |
} | |
} | |
} | |
} | |
return FoundTypeDecl; | |
} | |
static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, | |
const IdentifierInfo &II, | |
SourceLocation NameLoc) { | |
// Lookup in the parent class template context, if any. | |
const CXXRecordDecl *RD = nullptr; | |
UnqualifiedTypeNameLookupResult FoundTypeDecl = | |
UnqualifiedTypeNameLookupResult::NotFound; | |
for (DeclContext *DC = S.CurContext; | |
DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; | |
DC = DC->getParent()) { | |
// Look for type decls in dependent base classes that have known primary | |
// templates. | |
RD = dyn_cast<CXXRecordDecl>(DC); | |
if (RD && RD->getDescribedClassTemplate()) | |
FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); | |
} | |
if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) | |
return nullptr; | |
// We found some types in dependent base classes. Recover as if the user | |
// wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the | |
// lookup during template instantiation. | |
S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; | |
ASTContext &Context = S.Context; | |
auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, | |
cast<Type>(Context.getRecordType(RD))); | |
QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); | |
CXXScopeSpec SS; | |
SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |
TypeLocBuilder Builder; | |
DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | |
DepTL.setNameLoc(NameLoc); | |
DepTL.setElaboratedKeywordLoc(SourceLocation()); | |
DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); | |
return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |
} | |
/// If the identifier refers to a type name within this scope, | |
/// return the declaration of that type. | |
/// | |
/// This routine performs ordinary name lookup of the identifier II | |
/// within the given scope, with optional C++ scope specifier SS, to | |
/// determine whether the name refers to a type. If so, returns an | |
/// opaque pointer (actually a QualType) corresponding to that | |
/// type. Otherwise, returns NULL. | |
ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, | |
Scope *S, CXXScopeSpec *SS, | |
bool isClassName, bool HasTrailingDot, | |
ParsedType ObjectTypePtr, | |
bool IsCtorOrDtorName, | |
bool WantNontrivialTypeSourceInfo, | |
bool IsClassTemplateDeductionContext, | |
IdentifierInfo **CorrectedII) { | |
// FIXME: Consider allowing this outside C++1z mode as an extension. | |
bool AllowDeducedTemplate = IsClassTemplateDeductionContext && | |
getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && | |
!isClassName && !HasTrailingDot; | |
// Determine where we will perform name lookup. | |
DeclContext *LookupCtx = nullptr; | |
if (ObjectTypePtr) { | |
QualType ObjectType = ObjectTypePtr.get(); | |
if (ObjectType->isRecordType()) | |
LookupCtx = computeDeclContext(ObjectType); | |
} else if (SS && SS->isNotEmpty()) { | |
LookupCtx = computeDeclContext(*SS, false); | |
if (!LookupCtx) { | |
if (isDependentScopeSpecifier(*SS)) { | |
// C++ [temp.res]p3: | |
// A qualified-id that refers to a type and in which the | |
// nested-name-specifier depends on a template-parameter (14.6.2) | |
// shall be prefixed by the keyword typename to indicate that the | |
// qualified-id denotes a type, forming an | |
// elaborated-type-specifier (7.1.5.3). | |
// | |
// We therefore do not perform any name lookup if the result would | |
// refer to a member of an unknown specialization. | |
if (!isClassName && !IsCtorOrDtorName) | |
return nullptr; | |
// We know from the grammar that this name refers to a type, | |
// so build a dependent node to describe the type. | |
if (WantNontrivialTypeSourceInfo) | |
return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); | |
NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); | |
QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, | |
II, NameLoc); | |
return ParsedType::make(T); | |
} | |
return nullptr; | |
} | |
if (!LookupCtx->isDependentContext() && | |
RequireCompleteDeclContext(*SS, LookupCtx)) | |
return nullptr; | |
} | |
// FIXME: LookupNestedNameSpecifierName isn't the right kind of | |
// lookup for class-names. | |
LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : | |
LookupOrdinaryName; | |
LookupResult Result(*this, &II, NameLoc, Kind); | |
if (LookupCtx) { | |
// Perform "qualified" name lookup into the declaration context we | |
// computed, which is either the type of the base of a member access | |
// expression or the declaration context associated with a prior | |
// nested-name-specifier. | |
LookupQualifiedName(Result, LookupCtx); | |
if (ObjectTypePtr && Result.empty()) { | |
// C++ [basic.lookup.classref]p3: | |
// If the unqualified-id is ~type-name, the type-name is looked up | |
// in the context of the entire postfix-expression. If the type T of | |
// the object expression is of a class type C, the type-name is also | |
// looked up in the scope of class C. At least one of the lookups shall | |
// find a name that refers to (possibly cv-qualified) T. | |
LookupName(Result, S); | |
} | |
} else { | |
// Perform unqualified name lookup. | |
LookupName(Result, S); | |
// For unqualified lookup in a class template in MSVC mode, look into | |
// dependent base classes where the primary class template is known. | |
if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { | |
if (ParsedType TypeInBase = | |
recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) | |
return TypeInBase; | |
} | |
} | |
NamedDecl *IIDecl = nullptr; | |
switch (Result.getResultKind()) { | |
case LookupResult::NotFound: | |
case LookupResult::NotFoundInCurrentInstantiation: | |
if (CorrectedII) { | |
TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, | |
AllowDeducedTemplate); | |
TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, | |
S, SS, CCC, CTK_ErrorRecovery); | |
IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); | |
TemplateTy Template; | |
bool MemberOfUnknownSpecialization; | |
UnqualifiedId TemplateName; | |
TemplateName.setIdentifier(NewII, NameLoc); | |
NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); | |
CXXScopeSpec NewSS, *NewSSPtr = SS; | |
if (SS && NNS) { | |
NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |
NewSSPtr = &NewSS; | |
} | |
if (Correction && (NNS || NewII != &II) && | |
// Ignore a correction to a template type as the to-be-corrected | |
// identifier is not a template (typo correction for template names | |
// is handled elsewhere). | |
!(getLangOpts().CPlusPlus && NewSSPtr && | |
isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, | |
Template, MemberOfUnknownSpecialization))) { | |
ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, | |
isClassName, HasTrailingDot, ObjectTypePtr, | |
IsCtorOrDtorName, | |
WantNontrivialTypeSourceInfo, | |
IsClassTemplateDeductionContext); | |
if (Ty) { | |
diagnoseTypo(Correction, | |
PDiag(diag::err_unknown_type_or_class_name_suggest) | |
<< Result.getLookupName() << isClassName); | |
if (SS && NNS) | |
SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |
*CorrectedII = NewII; | |
return Ty; | |
} | |
} | |
} | |
// If typo correction failed or was not performed, fall through | |
LLVM_FALLTHROUGH; | |
case LookupResult::FoundOverloaded: | |
case LookupResult::FoundUnresolvedValue: | |
Result.suppressDiagnostics(); | |
return nullptr; | |
case LookupResult::Ambiguous: | |
// Recover from type-hiding ambiguities by hiding the type. We'll | |
// do the lookup again when looking for an object, and we can | |
// diagnose the error then. If we don't do this, then the error | |
// about hiding the type will be immediately followed by an error | |
// that only makes sense if the identifier was treated like a type. | |
if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { | |
Result.suppressDiagnostics(); | |
return nullptr; | |
} | |
// Look to see if we have a type anywhere in the list of results. | |
for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); | |
Res != ResEnd; ++Res) { | |
if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) || | |
(AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) { | |
if (!IIDecl || | |
(*Res)->getLocation().getRawEncoding() < | |
IIDecl->getLocation().getRawEncoding()) | |
IIDecl = *Res; | |
} | |
} | |
if (!IIDecl) { | |
// None of the entities we found is a type, so there is no way | |
// to even assume that the result is a type. In this case, don't | |
// complain about the ambiguity. The parser will either try to | |
// perform this lookup again (e.g., as an object name), which | |
// will produce the ambiguity, or will complain that it expected | |
// a type name. | |
Result.suppressDiagnostics(); | |
return nullptr; | |
} | |
// We found a type within the ambiguous lookup; diagnose the | |
// ambiguity and then return that type. This might be the right | |
// answer, or it might not be, but it suppresses any attempt to | |
// perform the name lookup again. | |
break; | |
case LookupResult::Found: | |
IIDecl = Result.getFoundDecl(); | |
break; | |
} | |
assert(IIDecl && "Didn't find decl"); | |
QualType T; | |
if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { | |
// C++ [class.qual]p2: A lookup that would find the injected-class-name | |
// instead names the constructors of the class, except when naming a class. | |
// This is ill-formed when we're not actually forming a ctor or dtor name. | |
auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); | |
auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); | |
if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && | |
FoundRD->isInjectedClassName() && | |
declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) | |
Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) | |
<< &II << /*Type*/1; | |
DiagnoseUseOfDecl(IIDecl, NameLoc); | |
T = Context.getTypeDeclType(TD); | |
MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); | |
} else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { | |
(void)DiagnoseUseOfDecl(IDecl, NameLoc); | |
if (!HasTrailingDot) | |
T = Context.getObjCInterfaceType(IDecl); | |
} else if (AllowDeducedTemplate) { | |
if (auto *TD = getAsTypeTemplateDecl(IIDecl)) | |
T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), | |
QualType(), false); | |
} | |
if (T.isNull()) { | |
// If it's not plausibly a type, suppress diagnostics. | |
Result.suppressDiagnostics(); | |
return nullptr; | |
} | |
// NOTE: avoid constructing an ElaboratedType(Loc) if this is a | |
// constructor or destructor name (in such a case, the scope specifier | |
// will be attached to the enclosing Expr or Decl node). | |
if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && | |
!isa<ObjCInterfaceDecl>(IIDecl)) { | |
if (WantNontrivialTypeSourceInfo) { | |
// Construct a type with type-source information. | |
TypeLocBuilder Builder; | |
Builder.pushTypeSpec(T).setNameLoc(NameLoc); | |
T = getElaboratedType(ETK_None, *SS, T); | |
ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); | |
ElabTL.setElaboratedKeywordLoc(SourceLocation()); | |
ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); | |
return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |
} else { | |
T = getElaboratedType(ETK_None, *SS, T); | |
} | |
} | |
return ParsedType::make(T); | |
} | |
// Builds a fake NNS for the given decl context. | |
static NestedNameSpecifier * | |
synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { | |
for (;; DC = DC->getLookupParent()) { | |
DC = DC->getPrimaryContext(); | |
auto *ND = dyn_cast<NamespaceDecl>(DC); | |
if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) | |
return NestedNameSpecifier::Create(Context, nullptr, ND); | |
else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) | |
return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | |
RD->getTypeForDecl()); | |
else if (isa<TranslationUnitDecl>(DC)) | |
return NestedNameSpecifier::GlobalSpecifier(Context); | |
} | |
llvm_unreachable("something isn't in TU scope?"); | |
} | |
/// Find the parent class with dependent bases of the innermost enclosing method | |
/// context. Do not look for enclosing CXXRecordDecls directly, or we will end | |
/// up allowing unqualified dependent type names at class-level, which MSVC | |
/// correctly rejects. | |
static const CXXRecordDecl * | |
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { | |
for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { | |
DC = DC->getPrimaryContext(); | |
if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | |
if (MD->getParent()->hasAnyDependentBases()) | |
return MD->getParent(); | |
} | |
return nullptr; | |
} | |
ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, | |
SourceLocation NameLoc, | |
bool IsTemplateTypeArg) { | |
assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); | |
NestedNameSpecifier *NNS = nullptr; | |
if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { | |
// If we weren't able to parse a default template argument, delay lookup | |
// until instantiation time by making a non-dependent DependentTypeName. We | |
// pretend we saw a NestedNameSpecifier referring to the current scope, and | |
// lookup is retried. | |
// FIXME: This hurts our diagnostic quality, since we get errors like "no | |
// type named 'Foo' in 'current_namespace'" when the user didn't write any | |
// name specifiers. | |
NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); | |
Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; | |
} else if (const CXXRecordDecl *RD = | |
findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { | |
// Build a DependentNameType that will perform lookup into RD at | |
// instantiation time. | |
NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | |
RD->getTypeForDecl()); | |
// Diagnose that this identifier was undeclared, and retry the lookup during | |
// template instantiation. | |
Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II | |
<< RD; | |
} else { | |
// This is not a situation that we should recover from. | |
return ParsedType(); | |
} | |
QualType T = Context.getDependentNameType(ETK_None, NNS, &II); | |
// Build type location information. We synthesized the qualifier, so we have | |
// to build a fake NestedNameSpecifierLoc. | |
NestedNameSpecifierLocBuilder NNSLocBuilder; | |
NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |
NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); | |
TypeLocBuilder Builder; | |
DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | |
DepTL.setNameLoc(NameLoc); | |
DepTL.setElaboratedKeywordLoc(SourceLocation()); | |
DepTL.setQualifierLoc(QualifierLoc); | |
return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |
} | |
/// isTagName() - This method is called *for error recovery purposes only* | |
/// to determine if the specified name is a valid tag name ("struct foo"). If | |
/// so, this returns the TST for the tag corresponding to it (TST_enum, | |
/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose | |
/// cases in C where the user forgot to specify the tag. | |
DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { | |
// Do a tag name lookup in this scope. | |
LookupResult R(*this, &II, SourceLocation(), LookupTagName); | |
LookupName(R, S, false); | |
R.suppressDiagnostics(); | |
if (R.getResultKind() == LookupResult::Found) | |
if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { | |
switch (TD->getTagKind()) { | |
case TTK_Struct: return DeclSpec::TST_struct; | |
case TTK_Interface: return DeclSpec::TST_interface; | |
case TTK_Union: return DeclSpec::TST_union; | |
case TTK_Class: return DeclSpec::TST_class; | |
case TTK_Enum: return DeclSpec::TST_enum; | |
} | |
} | |
return DeclSpec::TST_unspecified; | |
} | |
/// isMicrosoftMissingTypename - In Microsoft mode, within class scope, | |
/// if a CXXScopeSpec's type is equal to the type of one of the base classes | |
/// then downgrade the missing typename error to a warning. | |
/// This is needed for MSVC compatibility; Example: | |
/// @code | |
/// template<class T> class A { | |
/// public: | |
/// typedef int TYPE; | |
/// }; | |
/// template<class T> class B : public A<T> { | |
/// public: | |
/// A<T>::TYPE a; // no typename required because A<T> is a base class. | |
/// }; | |
/// @endcode | |
bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { | |
if (CurContext->isRecord()) { | |
if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) | |
return true; | |
const Type *Ty = SS->getScopeRep()->getAsType(); | |
CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); | |
for (const auto &Base : RD->bases()) | |
if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) | |
return true; | |
return S->isFunctionPrototypeScope(); | |
} | |
return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); | |
} | |
void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, | |
SourceLocation IILoc, | |
Scope *S, | |
CXXScopeSpec *SS, | |
ParsedType &SuggestedType, | |
bool IsTemplateName) { | |
// Don't report typename errors for editor placeholders. | |
if (II->isEditorPlaceholder()) | |
return; | |
// We don't have anything to suggest (yet). | |
SuggestedType = nullptr; | |
// There may have been a typo in the name of the type. Look up typo | |
// results, in case we have something that we can suggest. | |
TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, | |
/*AllowTemplates=*/IsTemplateName, | |
/*AllowNonTemplates=*/!IsTemplateName); | |
if (TypoCorrection Corrected = | |
CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, | |
CCC, CTK_ErrorRecovery)) { | |
// FIXME: Support error recovery for the template-name case. | |
bool CanRecover = !IsTemplateName; | |
if (Corrected.isKeyword()) { | |
// We corrected to a keyword. | |
diagnoseTypo(Corrected, | |
PDiag(IsTemplateName ? diag::err_no_template_suggest | |
: diag::err_unknown_typename_suggest) | |
<< II); | |
II = Corrected.getCorrectionAsIdentifierInfo(); | |
} else { | |
// We found a similarly-named type or interface; suggest that. | |
if (!SS || !SS->isSet()) { | |
diagnoseTypo(Corrected, | |
PDiag(IsTemplateName ? diag::err_no_template_suggest | |
: diag::err_unknown_typename_suggest) | |
<< II, CanRecover); | |
} else if (DeclContext *DC = computeDeclContext(*SS, false)) { | |
std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |
II->getName().equals(CorrectedStr); | |
diagnoseTypo(Corrected, | |
PDiag(IsTemplateName | |
? diag::err_no_member_template_suggest | |
: diag::err_unknown_nested_typename_suggest) | |
<< II << DC << DroppedSpecifier << SS->getRange(), | |
CanRecover); | |
} else { | |
llvm_unreachable("could not have corrected a typo here"); | |
} | |
if (!CanRecover) | |
return; | |
CXXScopeSpec tmpSS; | |
if (Corrected.getCorrectionSpecifier()) | |
tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), | |
SourceRange(IILoc)); | |
// FIXME: Support class template argument deduction here. | |
SuggestedType = | |
getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, | |
tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, | |
/*IsCtorOrDtorName=*/false, | |
/*WantNontrivialTypeSourceInfo=*/true); | |
} | |
return; | |
} | |
if (getLangOpts().CPlusPlus && !IsTemplateName) { | |
// See if II is a class template that the user forgot to pass arguments to. | |
UnqualifiedId Name; | |
Name.setIdentifier(II, IILoc); | |
CXXScopeSpec EmptySS; | |
TemplateTy TemplateResult; | |
bool MemberOfUnknownSpecialization; | |
if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, | |
Name, nullptr, true, TemplateResult, | |
MemberOfUnknownSpecialization) == TNK_Type_template) { | |
diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); | |
return; | |
} | |
} | |
// FIXME: Should we move the logic that tries to recover from a missing tag | |
// (struct, union, enum) from Parser::ParseImplicitInt here, instead? | |
if (!SS || (!SS->isSet() && !SS->isInvalid())) | |
Diag(IILoc, IsTemplateName ? diag::err_no_template | |
: diag::err_unknown_typename) | |
<< II; | |
else if (DeclContext *DC = computeDeclContext(*SS, false)) | |
Diag(IILoc, IsTemplateName ? diag::err_no_member_template | |
: diag::err_typename_nested_not_found) | |
<< II << DC << SS->getRange(); | |
else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { | |
SuggestedType = | |
ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); | |
} else if (isDependentScopeSpecifier(*SS)) { | |
unsigned DiagID = diag::err_typename_missing; | |
if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) | |
DiagID = diag::ext_typename_missing; | |
Diag(SS->getRange().getBegin(), DiagID) | |
<< SS->getScopeRep() << II->getName() | |
<< SourceRange(SS->getRange().getBegin(), IILoc) | |
<< FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); | |
SuggestedType = ActOnTypenameType(S, SourceLocation(), | |
*SS, *II, IILoc).get(); | |
} else { | |
assert(SS && SS->isInvalid() && | |
"Invalid scope specifier has already been diagnosed"); | |
} | |
} | |
/// Determine whether the given result set contains either a type name | |
/// or | |
static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { | |
bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && | |
NextToken.is(tok::less); | |
for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { | |
if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) | |
return true; | |
if (CheckTemplate && isa<TemplateDecl>(*I)) | |
return true; | |
} | |
return false; | |
} | |
static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, | |
Scope *S, CXXScopeSpec &SS, | |
IdentifierInfo *&Name, | |
SourceLocation NameLoc) { | |
LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); | |
SemaRef.LookupParsedName(R, S, &SS); | |
if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { | |
StringRef FixItTagName; | |
switch (Tag->getTagKind()) { | |
case TTK_Class: | |
FixItTagName = "class "; | |
break; | |
case TTK_Enum: | |
FixItTagName = "enum "; | |
break; | |
case TTK_Struct: | |
FixItTagName = "struct "; | |
break; | |
case TTK_Interface: | |
FixItTagName = "__interface "; | |
break; | |
case TTK_Union: | |
FixItTagName = "union "; | |
break; | |
} | |
StringRef TagName = FixItTagName.drop_back(); | |
SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) | |
<< Name << TagName << SemaRef.getLangOpts().CPlusPlus | |
<< FixItHint::CreateInsertion(NameLoc, FixItTagName); | |
for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); | |
I != IEnd; ++I) | |
SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) | |
<< Name << TagName; | |
// Replace lookup results with just the tag decl. | |
Result.clear(Sema::LookupTagName); | |
SemaRef.LookupParsedName(Result, S, &SS); | |
return true; | |
} | |
return false; | |
} | |
/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. | |
static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, | |
QualType T, SourceLocation NameLoc) { | |
ASTContext &Context = S.Context; | |
TypeLocBuilder Builder; | |
Builder.pushTypeSpec(T).setNameLoc(NameLoc); | |
T = S.getElaboratedType(ETK_None, SS, T); | |
ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); | |
ElabTL.setElaboratedKeywordLoc(SourceLocation()); | |
ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); | |
return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |
} | |
Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, | |
IdentifierInfo *&Name, | |
SourceLocation NameLoc, | |
const Token &NextToken, | |
CorrectionCandidateCallback *CCC) { | |
DeclarationNameInfo NameInfo(Name, NameLoc); | |
ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |
assert(NextToken.isNot(tok::coloncolon) && | |
"parse nested name specifiers before calling ClassifyName"); | |
if (getLangOpts().CPlusPlus && SS.isSet() && | |
isCurrentClassName(*Name, S, &SS)) { | |
// Per [class.qual]p2, this names the constructors of SS, not the | |
// injected-class-name. We don't have a classification for that. | |
// There's not much point caching this result, since the parser | |
// will reject it later. | |
return NameClassification::Unknown(); | |
} | |
LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | |
LookupParsedName(Result, S, &SS, !CurMethod); | |
if (SS.isInvalid()) | |
return NameClassification::Error(); | |
// For unqualified lookup in a class template in MSVC mode, look into | |
// dependent base classes where the primary class template is known. | |
if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { | |
if (ParsedType TypeInBase = | |
recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) | |
return TypeInBase; | |
} | |
// Perform lookup for Objective-C instance variables (including automatically | |
// synthesized instance variables), if we're in an Objective-C method. | |
// FIXME: This lookup really, really needs to be folded in to the normal | |
// unqualified lookup mechanism. | |
if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { | |
DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); | |
if (Ivar.isInvalid()) | |
return NameClassification::Error(); | |
if (Ivar.isUsable()) | |
return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); | |
// We defer builtin creation until after ivar lookup inside ObjC methods. | |
if (Result.empty()) | |
LookupBuiltin(Result); | |
} | |
bool SecondTry = false; | |
bool IsFilteredTemplateName = false; | |
Corrected: | |
switch (Result.getResultKind()) { | |
case LookupResult::NotFound: | |
// If an unqualified-id is followed by a '(', then we have a function | |
// call. | |
if (SS.isEmpty() && NextToken.is(tok::l_paren)) { | |
// In C++, this is an ADL-only call. | |
// FIXME: Reference? | |
if (getLangOpts().CPlusPlus) | |
return NameClassification::UndeclaredNonType(); | |
// C90 6.3.2.2: | |
// If the expression that precedes the parenthesized argument list in a | |
// function call consists solely of an identifier, and if no | |
// declaration is visible for this identifier, the identifier is | |
// implicitly declared exactly as if, in the innermost block containing | |
// the function call, the declaration | |
// | |
// extern int identifier (); | |
// | |
// appeared. | |
// | |
// We also allow this in C99 as an extension. | |
if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) | |
return NameClassification::NonType(D); | |
} | |
if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { | |
// In C++20 onwards, this could be an ADL-only call to a function | |
// template, and we're required to assume that this is a template name. | |
// | |
// FIXME: Find a way to still do typo correction in this case. | |
TemplateName Template = | |
Context.getAssumedTemplateName(NameInfo.getName()); | |
return NameClassification::UndeclaredTemplate(Template); | |
} | |
// In C, we first see whether there is a tag type by the same name, in | |
// which case it's likely that the user just forgot to write "enum", | |
// "struct", or "union". | |
if (!getLangOpts().CPlusPlus && !SecondTry && | |
isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | |
break; | |
} | |
// Perform typo correction to determine if there is another name that is | |
// close to this name. | |
if (!SecondTry && CCC) { | |
SecondTry = true; | |
if (TypoCorrection Corrected = | |
CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, | |
&SS, *CCC, CTK_ErrorRecovery)) { | |
unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; | |
unsigned QualifiedDiag = diag::err_no_member_suggest; | |
NamedDecl *FirstDecl = Corrected.getFoundDecl(); | |
NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); | |
if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |
UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { | |
UnqualifiedDiag = diag::err_no_template_suggest; | |
QualifiedDiag = diag::err_no_member_template_suggest; | |
} else if (UnderlyingFirstDecl && | |
(isa<TypeDecl>(UnderlyingFirstDecl) || | |
isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || | |
isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { | |
UnqualifiedDiag = diag::err_unknown_typename_suggest; | |
QualifiedDiag = diag::err_unknown_nested_typename_suggest; | |
} | |
if (SS.isEmpty()) { | |
diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); | |
} else {// FIXME: is this even reachable? Test it. | |
std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |
Name->getName().equals(CorrectedStr); | |
diagnoseTypo(Corrected, PDiag(QualifiedDiag) | |
<< Name << computeDeclContext(SS, false) | |
<< DroppedSpecifier << SS.getRange()); | |
} | |
// Update the name, so that the caller has the new name. | |
Name = Corrected.getCorrectionAsIdentifierInfo(); | |
// Typo correction corrected to a keyword. | |
if (Corrected.isKeyword()) | |
return Name; | |
// Also update the LookupResult... | |
// FIXME: This should probably go away at some point | |
Result.clear(); | |
Result.setLookupName(Corrected.getCorrection()); | |
if (FirstDecl) | |
Result.addDecl(FirstDecl); | |
// If we found an Objective-C instance variable, let | |
// LookupInObjCMethod build the appropriate expression to | |
// reference the ivar. | |
// FIXME: This is a gross hack. | |
if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { | |
DeclResult R = | |
LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); | |
if (R.isInvalid()) | |
return NameClassification::Error(); | |
if (R.isUsable()) | |
return NameClassification::NonType(Ivar); | |
} | |
goto Corrected; | |
} | |
} | |
// We failed to correct; just fall through and let the parser deal with it. | |
Result.suppressDiagnostics(); | |
return NameClassification::Unknown(); | |
case LookupResult::NotFoundInCurrentInstantiation: { | |
// We performed name lookup into the current instantiation, and there were | |
// dependent bases, so we treat this result the same way as any other | |
// dependent nested-name-specifier. | |
// C++ [temp.res]p2: | |
// A name used in a template declaration or definition and that is | |
// dependent on a template-parameter is assumed not to name a type | |
// unless the applicable name lookup finds a type name or the name is | |
// qualified by the keyword typename. | |
// | |
// FIXME: If the next token is '<', we might want to ask the parser to | |
// perform some heroics to see if we actually have a | |
// template-argument-list, which would indicate a missing 'template' | |
// keyword here. | |
return NameClassification::DependentNonType(); | |
} | |
case LookupResult::Found: | |
case LookupResult::FoundOverloaded: | |
case LookupResult::FoundUnresolvedValue: | |
break; | |
case LookupResult::Ambiguous: | |
if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |
hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, | |
/*AllowDependent=*/false)) { | |
// C++ [temp.local]p3: | |
// A lookup that finds an injected-class-name (10.2) can result in an | |
// ambiguity in certain cases (for example, if it is found in more than | |
// one base class). If all of the injected-class-names that are found | |
// refer to specializations of the same class template, and if the name | |
// is followed by a template-argument-list, the reference refers to the | |
// class template itself and not a specialization thereof, and is not | |
// ambiguous. | |
// | |
// This filtering can make an ambiguous result into an unambiguous one, | |
// so try again after filtering out template names. | |
FilterAcceptableTemplateNames(Result); | |
if (!Result.isAmbiguous()) { | |
IsFilteredTemplateName = true; | |
break; | |
} | |
} | |
// Diagnose the ambiguity and return an error. | |
return NameClassification::Error(); | |
} | |
if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |
(IsFilteredTemplateName || | |
hasAnyAcceptableTemplateNames( | |
Result, /*AllowFunctionTemplates=*/true, | |
/*AllowDependent=*/false, | |
/*AllowNonTemplateFunctions*/ SS.isEmpty() && | |
getLangOpts().CPlusPlus20))) { | |
// C++ [temp.names]p3: | |
// After name lookup (3.4) finds that a name is a template-name or that | |
// an operator-function-id or a literal- operator-id refers to a set of | |
// overloaded functions any member of which is a function template if | |
// this is followed by a <, the < is always taken as the delimiter of a | |
// template-argument-list and never as the less-than operator. | |
// C++2a [temp.names]p2: | |
// A name is also considered to refer to a template if it is an | |
// unqualified-id followed by a < and name lookup finds either one | |
// or more functions or finds nothing. | |
if (!IsFilteredTemplateName) | |
FilterAcceptableTemplateNames(Result); | |
bool IsFunctionTemplate; | |
bool IsVarTemplate; | |
TemplateName Template; | |
if (Result.end() - Result.begin() > 1) { | |
IsFunctionTemplate = true; | |
Template = Context.getOverloadedTemplateName(Result.begin(), | |
Result.end()); | |
} else if (!Result.empty()) { | |
auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( | |
*Result.begin(), /*AllowFunctionTemplates=*/true, | |
/*AllowDependent=*/false)); | |
IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); | |
IsVarTemplate = isa<VarTemplateDecl>(TD); | |
if (SS.isNotEmpty()) | |
Template = | |
Context.getQualifiedTemplateName(SS.getScopeRep(), | |
/*TemplateKeyword=*/false, TD); | |
else | |
Template = TemplateName(TD); | |
} else { | |
// All results were non-template functions. This is a function template | |
// name. | |
IsFunctionTemplate = true; | |
Template = Context.getAssumedTemplateName(NameInfo.getName()); | |
} | |
if (IsFunctionTemplate) { | |
// Function templates always go through overload resolution, at which | |
// point we'll perform the various checks (e.g., accessibility) we need | |
// to based on which function we selected. | |
Result.suppressDiagnostics(); | |
return NameClassification::FunctionTemplate(Template); | |
} | |
return IsVarTemplate ? NameClassification::VarTemplate(Template) | |
: NameClassification::TypeTemplate(Template); | |
} | |
NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); | |
if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { | |
DiagnoseUseOfDecl(Type, NameLoc); | |
MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | |
QualType T = Context.getTypeDeclType(Type); | |
if (SS.isNotEmpty()) | |
return buildNestedType(*this, SS, T, NameLoc); | |
return ParsedType::make(T); | |
} | |
ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); | |
if (!Class) { | |
// FIXME: It's unfortunate that we don't have a Type node for handling this. | |
if (ObjCCompatibleAliasDecl *Alias = | |
dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) | |
Class = Alias->getClassInterface(); | |
} | |
if (Class) { | |
DiagnoseUseOfDecl(Class, NameLoc); | |
if (NextToken.is(tok::period)) { | |
// Interface. <something> is parsed as a property reference expression. | |
// Just return "unknown" as a fall-through for now. | |
Result.suppressDiagnostics(); | |
return NameClassification::Unknown(); | |
} | |
QualType T = Context.getObjCInterfaceType(Class); | |
return ParsedType::make(T); | |
} | |
if (isa<ConceptDecl>(FirstDecl)) | |
return NameClassification::Concept( | |
TemplateName(cast<TemplateDecl>(FirstDecl))); | |
// We can have a type template here if we're classifying a template argument. | |
if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && | |
!isa<VarTemplateDecl>(FirstDecl)) | |
return NameClassification::TypeTemplate( | |
TemplateName(cast<TemplateDecl>(FirstDecl))); | |
// Check for a tag type hidden by a non-type decl in a few cases where it | |
// seems likely a type is wanted instead of the non-type that was found. | |
bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); | |
if ((NextToken.is(tok::identifier) || | |
(NextIsOp && | |
FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && | |
isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | |
TypeDecl *Type = Result.getAsSingle<TypeDecl>(); | |
DiagnoseUseOfDecl(Type, NameLoc); | |
QualType T = Context.getTypeDeclType(Type); | |
if (SS.isNotEmpty()) | |
return buildNestedType(*this, SS, T, NameLoc); | |
return ParsedType::make(T); | |
} | |
// If we already know which single declaration is referenced, just annotate | |
// that declaration directly. Defer resolving even non-overloaded class | |
// member accesses, as we need to defer certain access checks until we know | |
// the context. | |
bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | |
if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember()) | |
return NameClassification::NonType(Result.getRepresentativeDecl()); | |
// Otherwise, this is an overload set that we will need to resolve later. | |
Result.suppressDiagnostics(); | |
return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( | |
Context, Result.getNamingClass(), SS.getWithLocInContext(Context), | |
Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), | |
Result.begin(), Result.end())); | |
} | |
ExprResult | |
Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, | |
SourceLocation NameLoc) { | |
assert(getLangOpts().CPlusPlus && "ADL-only call in C?"); | |
CXXScopeSpec SS; | |
LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | |
return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); | |
} | |
ExprResult | |
Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, | |
IdentifierInfo *Name, | |
SourceLocation NameLoc, | |
bool IsAddressOfOperand) { | |
DeclarationNameInfo NameInfo(Name, NameLoc); | |
return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), | |
NameInfo, IsAddressOfOperand, | |
/*TemplateArgs=*/nullptr); | |
} | |
ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, | |
NamedDecl *Found, | |
SourceLocation NameLoc, | |
const Token &NextToken) { | |
if (getCurMethodDecl() && SS.isEmpty()) | |
if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) | |
return BuildIvarRefExpr(S, NameLoc, Ivar); | |
// Reconstruct the lookup result. | |
LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); | |
Result.addDecl(Found); | |
Result.resolveKind(); | |
bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | |
return BuildDeclarationNameExpr(SS, Result, ADL); | |
} | |
ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { | |
// For an implicit class member access, transform the result into a member | |
// access expression if necessary. | |
auto *ULE = cast<UnresolvedLookupExpr>(E); | |
if ((*ULE->decls_begin())->isCXXClassMember()) { | |
CXXScopeSpec SS; | |
SS.Adopt(ULE->getQualifierLoc()); | |
// Reconstruct the lookup result. | |
LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), | |
LookupOrdinaryName); | |
Result.setNamingClass(ULE->getNamingClass()); | |
for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) | |
Result.addDecl(*I, I.getAccess()); | |
Result.resolveKind(); | |
return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, | |
nullptr, S); | |
} | |
// Otherwise, this is already in the form we needed, and no further checks | |
// are necessary. | |
return ULE; | |
} | |
Sema::TemplateNameKindForDiagnostics | |
Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { | |
auto *TD = Name.getAsTemplateDecl(); | |
if (!TD) | |
return TemplateNameKindForDiagnostics::DependentTemplate; | |
if (isa<ClassTemplateDecl>(TD)) | |
return TemplateNameKindForDiagnostics::ClassTemplate; | |
if (isa<FunctionTemplateDecl>(TD)) | |
return TemplateNameKindForDiagnostics::FunctionTemplate; | |
if (isa<VarTemplateDecl>(TD)) | |
return TemplateNameKindForDiagnostics::VarTemplate; | |
if (isa<TypeAliasTemplateDecl>(TD)) | |
return TemplateNameKindForDiagnostics::AliasTemplate; | |
if (isa<TemplateTemplateParmDecl>(TD)) | |
return TemplateNameKindForDiagnostics::TemplateTemplateParam; | |
if (isa<ConceptDecl>(TD)) | |
return TemplateNameKindForDiagnostics::Concept; | |
return TemplateNameKindForDiagnostics::DependentTemplate; | |
} | |
void Sema::PushDeclContext(Scope *S, DeclContext *DC) { | |
assert(DC->getLexicalParent() == CurContext && | |
"The next DeclContext should be lexically contained in the current one."); | |
CurContext = DC; | |
S->setEntity(DC); | |
} | |
void Sema::PopDeclContext() { | |
assert(CurContext && "DeclContext imbalance!"); | |
CurContext = CurContext->getLexicalParent(); | |
assert(CurContext && "Popped translation unit!"); | |
} | |
Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, | |
Decl *D) { | |
// Unlike PushDeclContext, the context to which we return is not necessarily | |
// the containing DC of TD, because the new context will be some pre-existing | |
// TagDecl definition instead of a fresh one. | |
auto Result = static_cast<SkippedDefinitionContext>(CurContext); | |
CurContext = cast<TagDecl>(D)->getDefinition(); | |
assert(CurContext && "skipping definition of undefined tag"); | |
// Start lookups from the parent of the current context; we don't want to look | |
// into the pre-existing complete definition. | |
S->setEntity(CurContext->getLookupParent()); | |
return Result; | |
} | |
void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { | |
CurContext = static_cast<decltype(CurContext)>(Context); | |
} | |
/// EnterDeclaratorContext - Used when we must lookup names in the context | |
/// of a declarator's nested name specifier. | |
/// | |
void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { | |
// C++0x [basic.lookup.unqual]p13: | |
// A name used in the definition of a static data member of class | |
// X (after the qualified-id of the static member) is looked up as | |
// if the name was used in a member function of X. | |
// C++0x [basic.lookup.unqual]p14: | |
// If a variable member of a namespace is defined outside of the | |
// scope of its namespace then any name used in the definition of | |
// the variable member (after the declarator-id) is looked up as | |
// if the definition of the variable member occurred in its | |
// namespace. | |
// Both of these imply that we should push a scope whose context | |
// is the semantic context of the declaration. We can't use | |
// PushDeclContext here because that context is not necessarily | |
// lexically contained in the current context. Fortunately, | |
// the containing scope should have the appropriate information. | |
assert(!S->getEntity() && "scope already has entity"); | |
#ifndef NDEBUG | |
Scope *Ancestor = S->getParent(); | |
while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | |
assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); | |
#endif | |
CurContext = DC; | |
S->setEntity(DC); | |
if (S->getParent()->isTemplateParamScope()) { | |
// Also set the corresponding entities for all immediately-enclosing | |
// template parameter scopes. | |
EnterTemplatedContext(S->getParent(), DC); | |
} | |
} | |
void Sema::ExitDeclaratorContext(Scope *S) { | |
assert(S->getEntity() == CurContext && "Context imbalance!"); | |
// Switch back to the lexical context. The safety of this is | |
// enforced by an assert in EnterDeclaratorContext. | |
Scope *Ancestor = S->getParent(); | |
while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | |
CurContext = Ancestor->getEntity(); | |
// We don't need to do anything with the scope, which is going to | |
// disappear. | |
} | |
void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { | |
assert(S->isTemplateParamScope() && | |
"expected to be initializing a template parameter scope"); | |
// C++20 [temp.local]p7: | |
// In the definition of a member of a class template that appears outside | |
// of the class template definition, the name of a member of the class | |
// template hides the name of a template-parameter of any enclosing class | |
// templates (but not a template-parameter of the member if the member is a | |
// class or function template). | |
// C++20 [temp.local]p9: | |
// In the definition of a class template or in the definition of a member | |
// of such a template that appears outside of the template definition, for | |
// each non-dependent base class (13.8.2.1), if the name of the base class | |
// or the name of a member of the base class is the same as the name of a | |
// template-parameter, the base class name or member name hides the | |
// template-parameter name (6.4.10). | |
// | |
// This means that a template parameter scope should be searched immediately | |
// after searching the DeclContext for which it is a template parameter | |
// scope. For example, for | |
// template<typename T> template<typename U> template<typename V> | |
// void N::A<T>::B<U>::f(...) | |
// we search V then B<U> (and base classes) then U then A<T> (and base | |
// classes) then T then N then ::. | |
unsigned ScopeDepth = getTemplateDepth(S); | |
for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { | |
DeclContext *SearchDCAfterScope = DC; | |
for (; DC; DC = DC->getLookupParent()) { | |
if (const TemplateParameterList *TPL = | |
cast<Decl>(DC)->getDescribedTemplateParams()) { | |
unsigned DCDepth = TPL->getDepth() + 1; | |
if (DCDepth > ScopeDepth) | |
continue; | |
if (ScopeDepth == DCDepth) | |
SearchDCAfterScope = DC = DC->getLookupParent(); | |
break; | |
} | |
} | |
S->setLookupEntity(SearchDCAfterScope); | |
} | |
} | |
void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { | |
// We assume that the caller has already called | |
// ActOnReenterTemplateScope so getTemplatedDecl() works. | |
FunctionDecl *FD = D->getAsFunction(); | |
if (!FD) | |
return; | |
// Same implementation as PushDeclContext, but enters the context | |
// from the lexical parent, rather than the top-level class. | |
assert(CurContext == FD->getLexicalParent() && | |
"The next DeclContext should be lexically contained in the current one."); | |
CurContext = FD; | |
S->setEntity(CurContext); | |
for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { | |
ParmVarDecl *Param = FD->getParamDecl(P); | |
// If the parameter has an identifier, then add it to the scope | |
if (Param->getIdentifier()) { | |
S->AddDecl(Param); | |
IdResolver.AddDecl(Param); | |
} | |
} | |
} | |
void Sema::ActOnExitFunctionContext() { | |
// Same implementation as PopDeclContext, but returns to the lexical parent, | |
// rather than the top-level class. | |
assert(CurContext && "DeclContext imbalance!"); | |
CurContext = CurContext->getLexicalParent(); | |
assert(CurContext && "Popped translation unit!"); | |
} | |
/// Determine whether we allow overloading of the function | |
/// PrevDecl with another declaration. | |
/// | |
/// This routine determines whether overloading is possible, not | |
/// whether some new function is actually an overload. It will return | |
/// true in C++ (where we can always provide overloads) or, as an | |
/// extension, in C when the previous function is already an | |
/// overloaded function declaration or has the "overloadable" | |
/// attribute. | |
static bool AllowOverloadingOfFunction(LookupResult &Previous, | |
ASTContext &Context, | |
const FunctionDecl *New) { | |
if (Context.getLangOpts().CPlusPlus) | |
return true; | |
if (Previous.getResultKind() == LookupResult::FoundOverloaded) | |
return true; | |
return Previous.getResultKind() == LookupResult::Found && | |
(Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || | |
New->hasAttr<OverloadableAttr>()); | |
} | |
/// Add this decl to the scope shadowed decl chains. | |
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { | |
// Move up the scope chain until we find the nearest enclosing | |
// non-transparent context. The declaration will be introduced into this | |
// scope. | |
while (S->getEntity() && S->getEntity()->isTransparentContext()) | |
S = S->getParent(); | |
// Add scoped declarations into their context, so that they can be | |
// found later. Declarations without a context won't be inserted | |
// into any context. | |
if (AddToContext) | |
CurContext->addDecl(D); | |
// Out-of-line definitions shouldn't be pushed into scope in C++, unless they | |
// are function-local declarations. | |
if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) | |
return; | |
// Template instantiations should also not be pushed into scope. | |
if (isa<FunctionDecl>(D) && | |
cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) | |
return; | |
// If this replaces anything in the current scope, | |
IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), | |
IEnd = IdResolver.end(); | |
for (; I != IEnd; ++I) { | |
if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { | |
S->RemoveDecl(*I); | |
IdResolver.RemoveDecl(*I); | |
// Should only need to replace one decl. | |
break; | |
} | |
} | |
S->AddDecl(D); | |
if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { | |
// Implicitly-generated labels may end up getting generated in an order that | |
// isn't strictly lexical, which breaks name lookup. Be careful to insert | |
// the label at the appropriate place in the identifier chain. | |
for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { | |
DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); | |
if (IDC == CurContext) { | |
if (!S->isDeclScope(*I)) | |
continue; | |
} else if (IDC->Encloses(CurContext)) | |
break; | |
} | |
IdResolver.InsertDeclAfter(I, D); | |
} else { | |
IdResolver.AddDecl(D); | |
} | |
} | |
bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, | |
bool AllowInlineNamespace) { | |
return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); | |
} | |
Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { | |
DeclContext *TargetDC = DC->getPrimaryContext(); | |
do { | |
if (DeclContext *ScopeDC = S->getEntity()) | |
if (ScopeDC->getPrimaryContext() == TargetDC) | |
return S; | |
} while ((S = S->getParent())); | |
return nullptr; | |
} | |
static bool isOutOfScopePreviousDeclaration(NamedDecl *, | |
DeclContext*, | |
ASTContext&); | |
/// Filters out lookup results that don't fall within the given scope | |
/// as determined by isDeclInScope. | |
void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, | |
bool ConsiderLinkage, | |
bool AllowInlineNamespace) { | |
LookupResult::Filter F = R.makeFilter(); | |
while (F.hasNext()) { | |
NamedDecl *D = F.next(); | |
if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) | |
continue; | |
if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) | |
continue; | |
F.erase(); | |
} | |
F.done(); | |
} | |
/// We've determined that \p New is a redeclaration of \p Old. Check that they | |
/// have compatible owning modules. | |
bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { | |
// FIXME: The Modules TS is not clear about how friend declarations are | |
// to be treated. It's not meaningful to have different owning modules for | |
// linkage in redeclarations of the same entity, so for now allow the | |
// redeclaration and change the owning modules to match. | |
if (New->getFriendObjectKind() && | |
Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { | |
New->setLocalOwningModule(Old->getOwningModule()); | |
makeMergedDefinitionVisible(New); | |
return false; | |
} | |
Module *NewM = New->getOwningModule(); | |
Module *OldM = Old->getOwningModule(); | |
if (NewM && NewM->Kind == Module::PrivateModuleFragment) | |
NewM = NewM->Parent; | |
if (OldM && OldM->Kind == Module::PrivateModuleFragment) | |
OldM = OldM->Parent; | |
if (NewM == OldM) | |
return false; | |
bool NewIsModuleInterface = NewM && NewM->isModulePurview(); | |
bool OldIsModuleInterface = OldM && OldM->isModulePurview(); | |
if (NewIsModuleInterface || OldIsModuleInterface) { | |
// C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: | |
// if a declaration of D [...] appears in the purview of a module, all | |
// other such declarations shall appear in the purview of the same module | |
Diag(New->getLocation(), diag::err_mismatched_owning_module) | |
<< New | |
<< NewIsModuleInterface | |
<< (NewIsModuleInterface ? NewM->getFullModuleName() : "") | |
<< OldIsModuleInterface | |
<< (OldIsModuleInterface ? OldM->getFullModuleName() : ""); | |
Diag(Old->getLocation(), diag::note_previous_declaration); | |
New->setInvalidDecl(); | |
return true; | |
} | |
return false; | |
} | |
static bool isUsingDecl(NamedDecl *D) { | |
return isa<UsingShadowDecl>(D) || | |
isa<UnresolvedUsingTypenameDecl>(D) || | |
isa<UnresolvedUsingValueDecl>(D); | |
} | |
/// Removes using shadow declarations from the lookup results. | |
static void RemoveUsingDecls(LookupResult &R) { | |
LookupResult::Filter F = R.makeFilter(); | |
while (F.hasNext()) | |
if (isUsingDecl(F.next())) | |
F.erase(); | |
F.done(); | |
} | |
/// Check for this common pattern: | |
/// @code | |
/// class S { | |
/// S(const S&); // DO NOT IMPLEMENT | |
/// void operator=(const S&); // DO NOT IMPLEMENT | |
/// }; | |
/// @endcode | |
static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { | |
// FIXME: Should check for private access too but access is set after we get | |
// the decl here. | |
if (D->doesThisDeclarationHaveABody()) | |
return false; | |
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | |
return CD->isCopyConstructor(); | |
return D->isCopyAssignmentOperator(); | |
} | |
// We need this to handle | |
// | |
// typedef struct { | |
// void *foo() { return 0; } | |
// } A; | |
// | |
// When we see foo we don't know if after the typedef we will get 'A' or '*A' | |
// for example. If 'A', foo will have external linkage. If we have '*A', | |
// foo will have no linkage. Since we can't know until we get to the end | |
// of the typedef, this function finds out if D might have non-external linkage. | |
// Callers should verify at the end of the TU if it D has external linkage or | |
// not. | |
bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { | |
const DeclContext *DC = D->getDeclContext(); | |
while (!DC->isTranslationUnit()) { | |
if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ | |
if (!RD->hasNameForLinkage()) | |
return true; | |
} | |
DC = DC->getParent(); | |
} | |
return !D->isExternallyVisible(); | |
} | |
// FIXME: This needs to be refactored; some other isInMainFile users want | |
// these semantics. | |
static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { | |
if (S.TUKind != TU_Complete) | |
return false; | |
return S.SourceMgr.isInMainFile(Loc); | |
} | |
bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { | |
assert(D); | |
if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) | |
return false; | |
// Ignore all entities declared within templates, and out-of-line definitions | |
// of members of class templates. | |
if (D->getDeclContext()->isDependentContext() || | |
D->getLexicalDeclContext()->isDependentContext()) | |
return false; | |
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | |
return false; | |
// A non-out-of-line declaration of a member specialization was implicitly | |
// instantiated; it's the out-of-line declaration that we're interested in. | |
if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |
FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) | |
return false; | |
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | |
if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) | |
return false; | |
} else { | |
// 'static inline' functions are defined in headers; don't warn. | |
if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) | |
return false; | |
} | |
if (FD->doesThisDeclarationHaveABody() && | |
Context.DeclMustBeEmitted(FD)) | |
return false; | |
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |
// Constants and utility variables are defined in headers with internal | |
// linkage; don't warn. (Unlike functions, there isn't a convenient marker | |
// like "inline".) | |
if (!isMainFileLoc(*this, VD->getLocation())) | |
return false; | |
if (Context.DeclMustBeEmitted(VD)) | |
return false; | |
if (VD->isStaticDataMember() && | |
VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | |
return false; | |
if (VD->isStaticDataMember() && | |
VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |
VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) | |
return false; | |
if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) | |
return false; | |
} else { | |
return false; | |
} | |
// Only warn for unused decls internal to the translation unit. | |
// FIXME: This seems like a bogus check; it suppresses -Wunused-function | |
// for inline functions defined in the main source file, for instance. | |
return mightHaveNonExternalLinkage(D); | |
} | |
void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { | |
if (!D) | |
return; | |
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |
const FunctionDecl *First = FD->getFirstDecl(); | |
if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | |
return; // First should already be in the vector. | |
} | |
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |
const VarDecl *First = VD->getFirstDecl(); | |
if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | |
return; // First should already be in the vector. | |
} | |
if (ShouldWarnIfUnusedFileScopedDecl(D)) | |
UnusedFileScopedDecls.push_back(D); | |
} | |
static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { | |
if (D->isInvalidDecl()) | |
return false; | |
if (auto *DD = dyn_cast<DecompositionDecl>(D)) { | |
// For a decomposition declaration, warn if none of the bindings are | |
// referenced, instead of if the variable itself is referenced (which | |
// it is, by the bindings' expressions). | |
for (auto *BD : DD->bindings()) | |
if (BD->isReferenced()) | |
return false; | |
} else if (!D->getDeclName()) { | |
return false; | |
} else if (D->isReferenced() || D->isUsed()) { | |
return false; | |
} | |
if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>()) | |
return false; | |
if (isa<LabelDecl>(D)) | |
return true; | |
// Except for labels, we only care about unused decls that are local to | |
// functions. | |
bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); | |
if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) | |
// For dependent types, the diagnostic is deferred. | |
WithinFunction = | |
WithinFunction || (R->isLocalClass() && !R->isDependentType()); | |
if (!WithinFunction) | |
return false; | |
if (isa<TypedefNameDecl>(D)) | |
return true; | |
// White-list anything that isn't a local variable. | |
if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) | |
return false; | |
// Types of valid local variables should be complete, so this should succeed. | |
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |
// White-list anything with an __attribute__((unused)) type. | |
const auto *Ty = VD->getType().getTypePtr(); | |
// Only look at the outermost level of typedef. | |
if (const TypedefType *TT = Ty->getAs<TypedefType>()) { | |
if (TT->getDecl()->hasAttr<UnusedAttr>()) | |
return false; | |
} | |
// If we failed to complete the type for some reason, or if the type is | |
// dependent, don't diagnose the variable. | |
if (Ty->isIncompleteType() || Ty->isDependentType()) | |
return false; | |
// Look at the element type to ensure that the warning behaviour is | |
// consistent for both scalars and arrays. | |
Ty = Ty->getBaseElementTypeUnsafe(); | |
if (const TagType *TT = Ty->getAs<TagType>()) { | |
const TagDecl *Tag = TT->getDecl(); | |
if (Tag->hasAttr<UnusedAttr>()) | |
return false; | |
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | |
if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) | |
return false; | |
if (const Expr *Init = VD->getInit()) { | |
if (const ExprWithCleanups *Cleanups = | |
dyn_cast<ExprWithCleanups>(Init)) | |
Init = Cleanups->getSubExpr(); | |
const CXXConstructExpr *Construct = | |
dyn_cast<CXXConstructExpr>(Init); | |
if (Construct && !Construct->isElidable()) { | |
CXXConstructorDecl *CD = Construct->getConstructor(); | |
if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && | |
(VD->getInit()->isValueDependent() || !VD->evaluateValue())) | |
return false; | |
} | |
// Suppress the warning if we don't know how this is constructed, and | |
// it could possibly be non-trivial constructor. | |
if (Init->isTypeDependent()) | |
for (const CXXConstructorDecl *Ctor : RD->ctors()) | |
if (!Ctor->isTrivial()) | |
return false; | |
} | |
} | |
} | |
// TODO: __attribute__((unused)) templates? | |
} | |
return true; | |
} | |
static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, | |
FixItHint &Hint) { | |
if (isa<LabelDecl>(D)) { | |
SourceLocation AfterColon = Lexer::findLocationAfterToken( | |
D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), | |
true); | |
if (AfterColon.isInvalid()) | |
return; | |
Hint = FixItHint::CreateRemoval( | |
CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); | |
} | |
} | |
void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { | |
if (D->getTypeForDecl()->isDependentType()) | |
return; | |
for (auto *TmpD : D->decls()) { | |
if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) | |
DiagnoseUnusedDecl(T); | |
else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) | |
DiagnoseUnusedNestedTypedefs(R); | |
} | |
} | |
/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used | |
/// unless they are marked attr(unused). | |
void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { | |
if (!ShouldDiagnoseUnusedDecl(D)) | |
return; | |
if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { | |
// typedefs can be referenced later on, so the diagnostics are emitted | |
// at end-of-translation-unit. | |
UnusedLocalTypedefNameCandidates.insert(TD); | |
return; | |
} | |
FixItHint Hint; | |
GenerateFixForUnusedDecl(D, Context, Hint); | |
unsigned DiagID; | |
if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) | |
DiagID = diag::warn_unused_exception_param; | |
else if (isa<LabelDecl>(D)) | |
DiagID = diag::warn_unused_label; | |
else | |
DiagID = diag::warn_unused_variable; | |
Diag(D->getLocation(), DiagID) << D << Hint; | |
} | |
static void CheckPoppedLabel(LabelDecl *L, Sema &S) { | |
// Verify that we have no forward references left. If so, there was a goto | |
// or address of a label taken, but no definition of it. Label fwd | |
// definitions are indicated with a null substmt which is also not a resolved | |
// MS inline assembly label name. | |
bool Diagnose = false; | |
if (L->isMSAsmLabel()) | |
Diagnose = !L->isResolvedMSAsmLabel(); | |
else | |
Diagnose = L->getStmt() == nullptr; | |
if (Diagnose) | |
S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L; | |
} | |
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { | |
S->mergeNRVOIntoParent(); | |
if (S->decl_empty()) return; | |
assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && | |
"Scope shouldn't contain decls!"); | |
for (auto *TmpD : S->decls()) { | |
assert(TmpD && "This decl didn't get pushed??"); | |
assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); | |
NamedDecl *D = cast<NamedDecl>(TmpD); | |
// Diagnose unused variables in this scope. | |
if (!S->hasUnrecoverableErrorOccurred()) { | |
DiagnoseUnusedDecl(D); | |
if (const auto *RD = dyn_cast<RecordDecl>(D)) | |
DiagnoseUnusedNestedTypedefs(RD); | |
} | |
if (!D->getDeclName()) continue; | |
// If this was a forward reference to a label, verify it was defined. | |
if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) | |
CheckPoppedLabel(LD, *this); | |
// Remove this name from our lexical scope, and warn on it if we haven't | |
// already. | |
IdResolver.RemoveDecl(D); | |
auto ShadowI = ShadowingDecls.find(D); | |
if (ShadowI != ShadowingDecls.end()) { | |
if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { | |
Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) | |
<< D << FD << FD->getParent(); | |
Diag(FD->getLocation(), diag::note_previous_declaration); | |
} | |
ShadowingDecls.erase(ShadowI); | |
} | |
} | |
} | |
/// Look for an Objective-C class in the translation unit. | |
/// | |
/// \param Id The name of the Objective-C class we're looking for. If | |
/// typo-correction fixes this name, the Id will be updated | |
/// to the fixed name. | |
/// | |
/// \param IdLoc The location of the name in the translation unit. | |
/// | |
/// \param DoTypoCorrection If true, this routine will attempt typo correction | |
/// if there is no class with the given name. | |
/// | |
/// \returns The declaration of the named Objective-C class, or NULL if the | |
/// class could not be found. | |
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, | |
SourceLocation IdLoc, | |
bool DoTypoCorrection) { | |
// The third "scope" argument is 0 since we aren't enabling lazy built-in | |
// creation from this context. | |
NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); | |
if (!IDecl && DoTypoCorrection) { | |
// Perform typo correction at the given location, but only if we | |
// find an Objective-C class name. | |
DeclFilterCCC<ObjCInterfaceDecl> CCC{}; | |
if (TypoCorrection C = | |
CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, | |
TUScope, nullptr, CCC, CTK_ErrorRecovery)) { | |
diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); | |
IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); | |
Id = IDecl->getIdentifier(); | |
} | |
} | |
ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); | |
// This routine must always return a class definition, if any. | |
if (Def && Def->getDefinition()) | |
Def = Def->getDefinition(); | |
return Def; | |
} | |
/// getNonFieldDeclScope - Retrieves the innermost scope, starting | |
/// from S, where a non-field would be declared. This routine copes | |
/// with the difference between C and C++ scoping rules in structs and | |
/// unions. For example, the following code is well-formed in C but | |
/// ill-formed in C++: | |
/// @code | |
/// struct S6 { | |
/// enum { BAR } e; | |
/// }; | |
/// | |
/// void test_S6() { | |
/// struct S6 a; | |
/// a.e = BAR; | |
/// } | |
/// @endcode | |
/// For the declaration of BAR, this routine will return a different | |
/// scope. The scope S will be the scope of the unnamed enumeration | |
/// within S6. In C++, this routine will return the scope associated | |
/// with S6, because the enumeration's scope is a transparent | |
/// context but structures can contain non-field names. In C, this | |
/// routine will return the translation unit scope, since the | |
/// enumeration's scope is a transparent context and structures cannot | |
/// contain non-field names. | |
Scope *Sema::getNonFieldDeclScope(Scope *S) { | |
while (((S->getFlags() & Scope::DeclScope) == 0) || | |
(S->getEntity() && S->getEntity()->isTransparentContext()) || | |
(S->isClassScope() && !getLangOpts().CPlusPlus)) | |
S = S->getParent(); | |
return S; | |
} | |
static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, | |
ASTContext::GetBuiltinTypeError Error) { | |
switch (Error) { | |
case ASTContext::GE_None: | |
return ""; | |
case ASTContext::GE_Missing_type: | |
return BuiltinInfo.getHeaderName(ID); | |
case ASTContext::GE_Missing_stdio: | |
return "stdio.h"; | |
case ASTContext::GE_Missing_setjmp: | |
return "setjmp.h"; | |
case ASTContext::GE_Missing_ucontext: | |
return "ucontext.h"; | |
} | |
llvm_unreachable("unhandled error kind"); | |
} | |
FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, | |
unsigned ID, SourceLocation Loc) { | |
DeclContext *Parent = Context.getTranslationUnitDecl(); | |
if (getLangOpts().CPlusPlus) { | |
LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( | |
Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); | |
CLinkageDecl->setImplicit(); | |
Parent->addDecl(CLinkageDecl); | |
Parent = CLinkageDecl; | |
} | |
FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, | |
/*TInfo=*/nullptr, SC_Extern, false, | |
Type->isFunctionProtoType()); | |
New->setImplicit(); | |
New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); | |
// Create Decl objects for each parameter, adding them to the | |
// FunctionDecl. | |
if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { | |
SmallVector<ParmVarDecl *, 16> Params; | |
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | |
ParmVarDecl *parm = ParmVarDecl::Create( | |
Context, New, SourceLocation(), SourceLocation(), nullptr, | |
FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); | |
parm->setScopeInfo(0, i); | |
Params.push_back(parm); | |
} | |
New->setParams(Params); | |
} | |
AddKnownFunctionAttributes(New); | |
return New; | |
} | |
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at | |
/// file scope. lazily create a decl for it. ForRedeclaration is true | |
/// if we're creating this built-in in anticipation of redeclaring the | |
/// built-in. | |
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, | |
Scope *S, bool ForRedeclaration, | |
SourceLocation Loc) { | |
LookupNecessaryTypesForBuiltin(S, ID); | |
ASTContext::GetBuiltinTypeError Error; | |
QualType R = Context.GetBuiltinType(ID, Error); | |
if (Error) { | |
if (!ForRedeclaration) | |
return nullptr; | |
// If we have a builtin without an associated type we should not emit a | |
// warning when we were not able to find a type for it. | |
if (Error == ASTContext::GE_Missing_type || | |
Context.BuiltinInfo.allowTypeMismatch(ID)) | |
return nullptr; | |
// If we could not find a type for setjmp it is because the jmp_buf type was | |
// not defined prior to the setjmp declaration. | |
if (Error == ASTContext::GE_Missing_setjmp) { | |
Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) | |
<< Context.BuiltinInfo.getName(ID); | |
return nullptr; | |
} | |
// Generally, we emit a warning that the declaration requires the | |
// appropriate header. | |
Diag(Loc, diag::warn_implicit_decl_requires_sysheader) | |
<< getHeaderName(Context.BuiltinInfo, ID, Error) | |
<< Context.BuiltinInfo.getName(ID); | |
return nullptr; | |
} | |
if (!ForRedeclaration && | |
(Context.BuiltinInfo.isPredefinedLibFunction(ID) || | |
Context.BuiltinInfo.isHeaderDependentFunction(ID))) { | |
Diag(Loc, diag::ext_implicit_lib_function_decl) | |
<< Context.BuiltinInfo.getName(ID) << R; | |
if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) | |
Diag(Loc, diag::note_include_header_or_declare) | |
<< Header << Context.BuiltinInfo.getName(ID); | |
} | |
if (R.isNull()) | |
return nullptr; | |
FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); | |
RegisterLocallyScopedExternCDecl(New, S); | |
// TUScope is the translation-unit scope to insert this function into. | |
// FIXME: This is hideous. We need to teach PushOnScopeChains to | |
// relate Scopes to DeclContexts, and probably eliminate CurContext | |
// entirely, but we're not there yet. | |
DeclContext *SavedContext = CurContext; | |
CurContext = New->getDeclContext(); | |
PushOnScopeChains(New, TUScope); | |
CurContext = SavedContext; | |
return New; | |
} | |
/// Typedef declarations don't have linkage, but they still denote the same | |
/// entity if their types are the same. | |
/// FIXME: This is notionally doing the same thing as ASTReaderDecl's | |
/// isSameEntity. | |
static void filterNonConflictingPreviousTypedefDecls(Sema &S, | |
TypedefNameDecl *Decl, | |
LookupResult &Previous) { | |
// This is only interesting when modules are enabled. | |
if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) | |
return; | |
// Empty sets are uninteresting. | |
if (Previous.empty()) | |
return; | |
LookupResult::Filter Filter = Previous.makeFilter(); | |
while (Filter.hasNext()) { | |
NamedDecl *Old = Filter.next(); | |
// Non-hidden declarations are never ignored. | |
if (S.isVisible(Old)) | |
continue; | |
// Declarations of the same entity are not ignored, even if they have | |
// different linkages. | |
if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | |
if (S.Context.hasSameType(OldTD->getUnderlyingType(), | |
Decl->getUnderlyingType())) | |
continue; | |
// If both declarations give a tag declaration a typedef name for linkage | |
// purposes, then they declare the same entity. | |
if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && | |
Decl->getAnonDeclWithTypedefName()) | |
continue; | |
} | |
Filter.erase(); | |
} | |
Filter.done(); | |
} | |
bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { | |
QualType OldType; | |
if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) | |
OldType = OldTypedef->getUnderlyingType(); | |
else | |
OldType = Context.getTypeDeclType(Old); | |
QualType NewType = New->getUnderlyingType(); | |
if (NewType->isVariablyModifiedType()) { | |
// Must not redefine a typedef with a variably-modified type. | |
int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | |
Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) | |
<< Kind << NewType; | |
if (Old->getLocation().isValid()) | |
notePreviousDefinition(Old, New->getLocation()); | |
New->setInvalidDecl(); | |
return true; | |
} | |
if (OldType != NewType && | |
!OldType->isDependentType() && | |
!NewType->isDependentType() && | |
!Context.hasSameType(OldType, NewType)) { | |
int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | |
Diag(New->getLocation(), diag::err_redefinition_different_typedef) | |
<< Kind << NewType << OldType; | |
if (Old->getLocation().isValid()) | |
notePreviousDefinition(Old, New->getLocation()); | |
New->setInvalidDecl(); | |
return true; | |
} | |
return false; | |
} | |
/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the | |
/// same name and scope as a previous declaration 'Old'. Figure out | |
/// how to resolve this situation, merging decls or emitting | |
/// diagnostics as appropriate. If there was an error, set New to be invalid. | |
/// | |
void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, | |
LookupResult &OldDecls) { | |
// If the new decl is known invalid already, don't bother doing any | |
// merging checks. | |
if (New->isInvalidDecl()) return; | |
// Allow multiple definitions for ObjC built-in typedefs. | |
// FIXME: Verify the underlying types are equivalent! | |
if (getLangOpts().ObjC) { | |
const IdentifierInfo *TypeID = New->getIdentifier(); | |
switch (TypeID->getLength()) { | |
default: break; | |
case 2: | |
{ | |
if (!TypeID->isStr("id")) | |
break; | |
QualType T = New->getUnderlyingType(); | |
if (!T->isPointerType()) | |
break; | |
if (!T->isVoidPointerType()) { | |
QualType PT = T->castAs<PointerType>()->getPointeeType(); | |
if (!PT->isStructureType()) | |
break; | |
} | |
Context.setObjCIdRedefinitionType(T); | |
// Install the built-in type for 'id', ignoring the current definition. | |
New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); | |
return; | |
} | |
case 5: | |
if (!TypeID->isStr("Class")) | |
break; | |
Context.setObjCClassRedefinitionType(New->getUnderlyingType()); | |
// Install the built-in type for 'Class', ignoring the current definition. | |
New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); | |
return; | |
case 3: | |
if (!TypeID->isStr("SEL")) | |
break; | |
Context.setObjCSelRedefinitionType(New->getUnderlyingType()); | |
// Install the built-in type for 'SEL', ignoring the current definition. | |
New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); | |
return; | |
} | |
// Fall through - the typedef name was not a builtin type. | |
} | |
// Verify the old decl was also a type. | |
TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); | |
if (!Old) { | |
Diag(New->getLocation(), diag::err_redefinition_different_kind) | |
<< New->getDeclName(); | |
NamedDecl *OldD = OldDecls.getRepresentativeDecl(); | |
if (OldD->getLocation().isValid()) | |
notePreviousDefinition(OldD, New->getLocation()); | |
return New->setInvalidDecl(); | |
} | |
// If the old declaration is invalid, just give up here. | |
if (Old->isInvalidDecl()) | |
return New->setInvalidDecl(); | |
if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | |
auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); | |
auto *NewTag = New->getAnonDeclWithTypedefName(); | |
NamedDecl *Hidden = nullptr; | |
if (OldTag && NewTag && | |
OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && | |
!hasVisibleDefinition(OldTag, &Hidden)) { | |
// There is a definition of this tag, but it is not visible. Use it | |
// instead of our tag. | |
New->setTypeForDecl(OldTD->getTypeForDecl()); | |
if (OldTD->isModed()) | |
New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), | |
OldTD->getUnderlyingType()); | |
else | |
New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); | |
// Make the old tag definition visible. | |
makeMergedDefinitionVisible(Hidden); | |
// If this was an unscoped enumeration, yank all of its enumerators | |
// out of the scope. | |
if (isa<EnumDecl>(NewTag)) { | |
Scope *EnumScope = getNonFieldDeclScope(S); | |
for (auto *D : NewTag->decls()) { | |
auto *ED = cast<EnumConstantDecl>(D); | |
assert(EnumScope->isDeclScope(ED)); | |
EnumScope->RemoveDecl(ED); | |
IdResolver.RemoveDecl(ED); | |
ED->getLexicalDeclContext()->removeDecl(ED); | |
} | |
} | |
} | |
} | |
// If the typedef types are not identical, reject them in all languages and | |
// with any extensions enabled. | |
if (isIncompatibleTypedef(Old, New)) | |
return; | |
// The types match. Link up the redeclaration chain and merge attributes if | |
// the old declaration was a typedef. | |
if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { | |
New->setPreviousDecl(Typedef); | |
mergeDeclAttributes(New, Old); | |
} | |
if (getLangOpts().MicrosoftExt) | |
return; | |
if (getLangOpts().CPlusPlus) { | |
// C++ [dcl.typedef]p2: | |
// In a given non-class scope, a typedef specifier can be used to | |
// redefine the name of any type declared in that scope to refer | |
// to the type to which it already refers. | |
if (!isa<CXXRecordDecl>(CurContext)) | |
return; | |
// C++0x [dcl.typedef]p4: | |
// In a given class scope, a typedef specifier can be used to redefine | |
// any class-name declared in that scope that is not also a typedef-name | |
// to refer to the type to which it already refers. | |
// | |
// This wording came in via DR424, which was a correction to the | |
// wording in DR56, which accidentally banned code like: | |
// | |
// struct S { | |
// typedef struct A { } A; | |
// }; | |
// | |
// in the C++03 standard. We implement the C++0x semantics, which | |
// allow the above but disallow | |
// | |
// struct S { | |
// typedef int I; | |
// typedef int I; | |
// }; | |
// | |
// since that was the intent of DR56. | |
if (!isa<TypedefNameDecl>(Old)) | |
return; | |
Diag(New->getLocation(), diag::err_redefinition) | |
<< New->getDeclName(); | |
notePreviousDefinition(Old, New->getLocation()); | |
return New->setInvalidDecl(); | |
} | |
// Modules always permit redefinition of typedefs, as does C11. | |
if (getLangOpts().Modules || getLangOpts().C11) | |
return; | |
// If we have a redefinition of a typedef in C, emit a warning. This warning | |
// is normally mapped to an error, but can be controlled with | |
// -Wtypedef-redefinition. If either the original or the redefinition is | |
// in a system header, don't emit this for compatibility with GCC. | |
if (getDiagnostics().getSuppressSystemWarnings() && | |
// Some standard types are defined implicitly in Clang (e.g. OpenCL). | |
(Old->isImplicit() || | |
Context.getSourceManager().isInSystemHeader(Old->getLocation()) || | |
Context.getSourceManager().isInSystemHeader(New->getLocation()))) | |
return; | |
Diag(New->getLocation(), diag::ext_redefinition_of_typedef) | |
<< New->getDeclName(); | |
notePreviousDefinition(Old, New->getLocation()); | |
} | |
/// DeclhasAttr - returns true if decl Declaration already has the target | |
/// attribute. | |
static bool DeclHasAttr(const Decl *D, const Attr *A) { | |
const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); | |
const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); | |
for (const auto *i : D->attrs()) | |
if (i->getKind() == A->getKind()) { | |
if (Ann) { | |
if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) | |
return true; | |
continue; | |
} | |
// FIXME: Don't hardcode this check | |
if (OA && isa<OwnershipAttr>(i)) | |
return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); | |
return true; | |
} | |
return false; | |
} | |
static bool isAttributeTargetADefinition(Decl *D) { | |
if (VarDecl *VD = dyn_cast<VarDecl>(D)) | |
return VD->isThisDeclarationADefinition(); | |
if (TagDecl *TD = dyn_cast<TagDecl>(D)) | |
return TD->isCompleteDefinition() || TD->isBeingDefined(); | |
return true; | |
} | |
/// Merge alignment attributes from \p Old to \p New, taking into account the | |
/// special semantics of C11's _Alignas specifier and C++11's alignas attribute. | |
/// | |
/// \return \c true if any attributes were added to \p New. | |
static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { | |
// Look for alignas attributes on Old, and pick out whichever attribute | |
// specifies the strictest alignment requirement. | |
AlignedAttr *OldAlignasAttr = nullptr; | |
AlignedAttr *OldStrictestAlignAttr = nullptr; | |
unsigned OldAlign = 0; | |
for (auto *I : Old->specific_attrs<AlignedAttr>()) { | |
// FIXME: We have no way of representing inherited dependent alignments | |
// in a case like: | |
// template<int A, int B> struct alignas(A) X; | |
// template<int A, int B> struct alignas(B) X {}; | |
// For now, we just ignore any alignas attributes which are not on the | |
// definition in such a case. | |
if (I->isAlignmentDependent()) | |
return false; | |
if (I->isAlignas()) | |
OldAlignasAttr = I; | |
unsigned Align = I->getAlignment(S.Context); | |
if (Align > OldAlign) { | |
OldAlign = Align; | |
OldStrictestAlignAttr = I; | |
} | |
} | |
// Look for alignas attributes on New. | |
AlignedAttr *NewAlignasAttr = nullptr; | |
unsigned NewAlign = 0; | |
for (auto *I : New->specific_attrs<AlignedAttr>()) { | |
if (I->isAlignmentDependent()) | |
return false; | |
if (I->isAlignas()) | |
NewAlignasAttr = I; | |
unsigned Align = I->getAlignment(S.Context); | |
if (Align > NewAlign) | |
NewAlign = Align; | |
} | |
if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { | |
// Both declarations have 'alignas' attributes. We require them to match. | |
// C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but | |
// fall short. (If two declarations both have alignas, they must both match | |
// every definition, and so must match each other if there is a definition.) | |
// If either declaration only contains 'alignas(0)' specifiers, then it | |
// specifies the natural alignment for the type. | |
if (OldAlign == 0 || NewAlign == 0) { | |
QualType Ty; | |
if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) | |
Ty = VD->getType(); | |
else | |
Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); | |
if (OldAlign == 0) | |
OldAlign = S.Context.getTypeAlign(Ty); | |
if (NewAlign == 0) | |
NewAlign = S.Context.getTypeAlign(Ty); | |
} | |
if (OldAlign != NewAlign) { | |
S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) | |
<< (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() | |
<< (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); | |
S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); | |
} | |
} | |
if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { | |
// C++11 [dcl.align]p6: | |
// if any declaration of an entity has an alignment-specifier, | |
// every defining declaration of that entity shall specify an | |
// equivalent alignment. | |
// C11 6.7.5/7: | |
// If the definition of an object does not have an alignment | |
// specifier, any other declaration of that object shall also | |
// have no alignment specifier. | |
S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) | |
<< OldAlignasAttr; | |
S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) | |
<< OldAlignasAttr; | |
} | |
bool AnyAdded = false; | |
// Ensure we have an attribute representing the strictest alignment. | |
if (OldAlign > NewAlign) { | |
AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); | |
Clone->setInherited(true); | |
New->addAttr(Clone); | |
AnyAdded = true; | |
} | |
// Ensure we have an alignas attribute if the old declaration had one. | |
if (OldAlignasAttr && !NewAlignasAttr && | |
!(AnyAdded && OldStrictestAlignAttr->isAlignas())) { | |
AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); | |
Clone->setInherited(true); | |
New->addAttr(Clone); | |
AnyAdded = true; | |
} | |
return AnyAdded; | |
} | |
static bool mergeDeclAttribute(Sema &S, NamedDecl *D, | |
const InheritableAttr *Attr, | |
Sema::AvailabilityMergeKind AMK) { | |
// This function copies an attribute Attr from a previous declaration to the | |
// new declaration D if the new declaration doesn't itself have that attribute | |
// yet or if that attribute allows duplicates. | |
// If you're adding a new attribute that requires logic different from | |
// "use explicit attribute on decl if present, else use attribute from | |
// previous decl", for example if the attribute needs to be consistent | |
// between redeclarations, you need to call a custom merge function here. | |
InheritableAttr *NewAttr = nullptr; | |
if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) | |
NewAttr = S.mergeAvailabilityAttr( | |
D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), | |
AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), | |
AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, | |
AA->getPriority()); | |
else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) | |
NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); | |
else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) | |
NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); | |
else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) | |
NewAttr = S.mergeDLLImportAttr(D, *ImportA); | |
else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) | |
NewAttr = S.mergeDLLExportAttr(D, *ExportA); | |
else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) | |
NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), | |
FA->getFirstArg()); | |
else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) | |
NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); | |
else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) | |
NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); | |
else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) | |
NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), | |
IA->getInheritanceModel()); | |
else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) | |
NewAttr = S.mergeAlwaysInlineAttr(D, *AA, | |
&S.Context.Idents.get(AA->getSpelling())); | |
else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && | |
(isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || | |
isa<CUDAGlobalAttr>(Attr))) { | |
// CUDA target attributes are part of function signature for | |
// overloading purposes and must not be merged. | |
return false; | |
} else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) | |
NewAttr = S.mergeMinSizeAttr(D, *MA); | |
else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) | |
NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); | |
else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) | |
NewAttr = S.mergeOptimizeNoneAttr(D, *OA); | |
else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) | |
NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); | |
else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr)) | |
NewAttr = S.mergeCommonAttr(D, *CommonA); | |
else if (isa<AlignedAttr>(Attr)) | |
// AlignedAttrs are handled separately, because we need to handle all | |
// such attributes on a declaration at the same time. | |
NewAttr = nullptr; | |
else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && | |
(AMK == Sema::AMK_Override || | |
AMK == Sema::AMK_ProtocolImplementation)) | |
NewAttr = nullptr; | |
else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) | |
NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); | |
else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr)) | |
NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA); | |
else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr)) | |
NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA); | |
else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) | |
NewAttr = S.mergeImportModuleAttr(D, *IMA); | |
else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) | |
NewAttr = S.mergeImportNameAttr(D, *INA); | |
else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) | |
NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); | |
if (NewAttr) { | |
NewAttr->setInherited(true); | |
D->addAttr(NewAttr); | |
if (isa<MSInheritanceAttr>(NewAttr)) | |
S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); | |
return true; | |
} | |
return false; | |
} | |
static const NamedDecl *getDefinition(const Decl *D) { | |
if (const TagDecl *TD = dyn_cast<TagDecl>(D)) | |
return TD->getDefinition(); | |
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |
const VarDecl *Def = VD->getDefinition(); | |
if (Def) | |
return Def; | |
return VD->getActingDefinition(); | |
} | |
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |
const FunctionDecl *Def = nullptr; | |
if (FD->isDefined(Def, true)) | |
return Def; | |
} | |
return nullptr; | |
} | |
static bool hasAttribute(const Decl *D, attr::Kind Kind) { | |
for (const auto *Attribute : D->attrs()) | |
if (Attribute->getKind() == Kind) | |
return true; | |
return false; | |
} | |
/// checkNewAttributesAfterDef - If we already have a definition, check that | |
/// there are no new attributes in this declaration. | |
static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { | |
if (!New->hasAttrs()) | |
return; | |
const NamedDecl *Def = getDefinition(Old); | |
if (!Def || Def == New) | |
return; | |
AttrVec &NewAttributes = New->getAttrs(); | |
for (unsigned I = 0, E = NewAttributes.size(); I != E;) { | |
const Attr *NewAttribute = NewAttributes[I]; | |
if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { | |
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { | |
Sema::SkipBodyInfo SkipBody; | |
S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); | |
// If we're skipping this definition, drop the "alias" attribute. | |
if (SkipBody.ShouldSkip) { | |
NewAttributes.erase(NewAttributes.begin() + I); | |
--E; | |
continue; | |
} | |
} else { | |
VarDecl *VD = cast<VarDecl>(New); | |
unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == | |
VarDecl::TentativeDefinition | |
? diag::err_alias_after_tentative | |
: diag::err_redefinition; | |
S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); | |
if (Diag == diag::err_redefinition) | |
S.notePreviousDefinition(Def, VD->getLocation()); | |
else | |
S.Diag(Def->getLocation(), diag::note_previous_definition); | |
VD->setInvalidDecl(); | |
} | |
++I; | |
continue; | |
} | |
if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { | |
// Tentative definitions are only interesting for the alias check above. | |
if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { | |
++I; | |
continue; | |
} | |
} | |
if (hasAttribute(Def, NewAttribute->getKind())) { | |
++I; | |
continue; // regular attr merging will take care of validating this. | |
} | |
if (isa<C11NoReturnAttr>(NewAttribute)) { | |
// C's _Noreturn is allowed to be added to a function after it is defined. | |
++I; | |
continue; | |
} else if (isa<UuidAttr>(NewAttribute)) { | |
// msvc will allow a subsequent definition to add an uuid to a class | |
++I; | |
continue; | |
} else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { | |
if (AA->isAlignas()) { | |
// C++11 [dcl.align]p6: | |
// if any declaration of an entity has an alignment-specifier, | |
// every defining declaration of that entity shall specify an | |
// equivalent alignment. | |
// C11 6.7.5/7: | |
// If the definition of an object does not have an alignment | |
// specifier, any other declaration of that object shall also | |
// have no alignment specifier. | |
S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) | |
<< AA; | |
S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) | |
<< AA; | |
NewAttributes.erase(NewAttributes.begin() + I); | |
--E; | |
continue; | |
} | |
} else if (isa<LoaderUninitializedAttr>(NewAttribute)) { | |
// If there is a C definition followed by a redeclaration with this | |
// attribute then there are two different definitions. In C++, prefer the | |
// standard diagnostics. | |
if (!S.getLangOpts().CPlusPlus) { | |
S.Diag(NewAttribute->getLocation(), | |
diag::err_loader_uninitialized_redeclaration); | |
S.Diag(Def->getLocation(), diag::note_previous_definition); | |
NewAttributes.erase(NewAttributes.begin() + I); | |
--E; | |
continue; | |
} | |
} else if (isa<SelectAnyAttr>(NewAttribute) && | |
cast<VarDecl>(New)->isInline() && | |
!cast<VarDecl>(New)->isInlineSpecified()) { | |
// Don't warn about applying selectany to implicitly inline variables. | |
// Older compilers and language modes would require the use of selectany | |
// to make such variables inline, and it would have no effect if we | |
// honored it. | |
++I; | |
continue; | |
} else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { | |
// We allow to add OMP[Begin]DeclareVariantAttr to be added to | |
// declarations after defintions. | |
++I; | |
continue; | |
} | |
S.Diag(NewAttribute->getLocation(), | |
diag::warn_attribute_precede_definition); | |
S.Diag(Def->getLocation(), diag::note_previous_definition); | |
NewAttributes.erase(NewAttributes.begin() + I); | |
--E; | |
} | |
} | |
static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, | |
const ConstInitAttr *CIAttr, | |
bool AttrBeforeInit) { | |
SourceLocation InsertLoc = InitDecl->getInnerLocStart(); | |
// Figure out a good way to write this specifier on the old declaration. | |
// FIXME: We should just use the spelling of CIAttr, but we don't preserve | |
// enough of the attribute list spelling information to extract that without | |
// heroics. | |
std::string SuitableSpelling; | |
if (S.getLangOpts().CPlusPlus20) | |
SuitableSpelling = std::string( | |
S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); | |
if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) | |
SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( | |
InsertLoc, {tok::l_square, tok::l_square, | |
S.PP.getIdentifierInfo("clang"), tok::coloncolon, | |
S.PP.getIdentifierInfo("require_constant_initialization"), | |
tok::r_square, tok::r_square})); | |
if (SuitableSpelling.empty()) | |
SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( | |
InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, | |
S.PP.getIdentifierInfo("require_constant_initialization"), | |
tok::r_paren, tok::r_paren})); | |
if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) | |
SuitableSpelling = "constinit"; | |
if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) | |
SuitableSpelling = "[[clang::require_constant_initialization]]"; | |
if (SuitableSpelling.empty()) | |
SuitableSpelling = "__attribute__((require_constant_initialization))"; | |
SuitableSpelling += " "; | |
if (AttrBeforeInit) { | |
// extern constinit int a; | |
// int a = 0; // error (missing 'constinit'), accepted as extension | |
assert(CIAttr->isConstinit() && "should not diagnose this for attribute"); | |
S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) | |
<< InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); | |
S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); | |
} else { | |
// int a = 0; | |
// constinit extern int a; // error (missing 'constinit') | |
S.Diag(CIAttr->getLocation(), | |
CIAttr->isConstinit() ? diag::err_constinit_added_too_late | |
: diag::warn_require_const_init_added_too_late) | |
<< FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); | |
S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) | |
<< CIAttr->isConstinit() | |
<< FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); | |
} | |
} | |
/// mergeDeclAttributes - Copy attributes from the Old decl to the New one. | |
void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, | |
AvailabilityMergeKind AMK) { | |
if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { | |
UsedAttr *NewAttr = OldAttr->clone(Context); | |
NewAttr->setInherited(true); | |
New->addAttr(NewAttr); | |
} | |
if (!Old->hasAttrs() && !New->hasAttrs()) | |
return; | |
// [dcl.constinit]p1: | |
// If the [constinit] specifier is applied to any declaration of a | |
// variable, it shall be applied to the initializing declaration. | |
const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); | |
const auto *NewConstInit = New->getAttr<ConstInitAttr>(); | |
if (bool(OldConstInit) != bool(NewConstInit)) { | |
const auto *OldVD = cast<VarDecl>(Old); | |
auto *NewVD = cast<VarDecl>(New); | |
// Find the initializing declaration. Note that we might not have linked | |
// the new declaration into the redeclaration chain yet. | |
const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); | |
if (!InitDecl && | |
(NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) | |
InitDecl = NewVD; | |
if (InitDecl == NewVD) { | |
// This is the initializing declaration. If it would inherit 'constinit', | |
// that's ill-formed. (Note that we do not apply this to the attribute | |
// form). | |
if (OldConstInit && OldConstInit->isConstinit()) | |
diagnoseMissingConstinit(*this, NewVD, OldConstInit, | |
/*AttrBeforeInit=*/true); | |
} else if (NewConstInit) { | |
// This is the first time we've been told that this declaration should | |
// have a constant initializer. If we already saw the initializing | |
// declaration, this is too late. | |
if (InitDecl && InitDecl != NewVD) { | |
diagnoseMissingConstinit(*this, InitDecl, NewConstInit, | |
/*AttrBeforeInit=*/false); | |
NewVD->dropAttr<ConstInitAttr>(); | |
} | |
} | |
} | |
// Attributes declared post-definition are currently ignored. | |
checkNewAttributesAfterDef(*this, New, Old); | |
if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { | |
if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { | |
if (!OldA->isEquivalent(NewA)) { | |
// This redeclaration changes __asm__ label. | |
Diag(New->getLocation(), diag::err_different_asm_label); | |
Diag(OldA->getLocation(), diag::note_previous_declaration); | |
} | |
} else if (Old->isUsed()) { | |
// This redeclaration adds an __asm__ label to a declaration that has | |
// already been ODR-used. | |
Diag(New->getLocation(), diag::err_late_asm_label_name) | |
<< isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); | |
} | |
} | |
// Re-declaration cannot add abi_tag's. | |
if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { | |
if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { | |
for (const auto &NewTag : NewAbiTagAttr->tags()) { | |
if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), | |
NewTag) == OldAbiTagAttr->tags_end()) { | |
Diag(NewAbiTagAttr->getLocation(), | |
diag::err_new_abi_tag_on_redeclaration) | |
<< NewTag; | |
Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); | |
} | |
} | |
} else { | |
Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); | |
Diag(Old->getLocation(), diag::note_previous_declaration); | |
} | |
} | |
// This redeclaration adds a section attribute. | |
if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { | |
if (auto *VD = dyn_cast<VarDecl>(New)) { | |
if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { | |
Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); | |
Diag(Old->getLocation(), diag::note_previous_declaration); | |
} | |
} | |
} | |
// Redeclaration adds code-seg attribute. | |
const auto *NewCSA = New->getAttr<CodeSegAttr>(); | |
if (NewCSA && !Old->hasAttr<CodeSegAttr>() && | |
!NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { | |
Diag(New->getLocation(), diag::warn_mismatched_section) | |
<< 0 /*codeseg*/; | |
Diag(Old->getLocation(), diag::note_previous_declaration); | |
} | |
if (!Old->hasAttrs()) | |
return; | |
bool foundAny = New->hasAttrs(); | |
// Ensure that any moving of objects within the allocated map is done before | |
// we process them. | |
if (!foundAny) New->setAttrs(AttrVec()); | |
for (auto *I : Old->specific_attrs<InheritableAttr>()) { | |
// Ignore deprecated/unavailable/availability attributes if requested. | |
AvailabilityMergeKind LocalAMK = AMK_None; | |
if (isa<DeprecatedAttr>(I) || | |
isa<UnavailableAttr>(I) || | |
isa<AvailabilityAttr>(I)) { | |
switch (AMK) { | |
case AMK_None: | |
continue; | |
case AMK_Redeclaration: | |
case AMK_Override: | |
case AMK_ProtocolImplementation: | |
LocalAMK = AMK; | |
break; | |
} | |
} | |
// Already handled. | |
if (isa<UsedAttr>(I)) | |
continue; | |
if (mergeDeclAttribute(*this, New, I, LocalAMK)) | |
foundAny = true; | |
} | |
if (mergeAlignedAttrs(*this, New, Old)) | |
foundAny = true; | |
if (!foundAny) New->dropAttrs(); | |
} | |
/// mergeParamDeclAttributes - Copy attributes from the old parameter | |
/// to the new one. | |
static void mergeParamDeclAttributes(ParmVarDecl *newDecl, | |
const ParmVarDecl *oldDecl, | |
Sema &S) { | |
// C++11 [dcl.attr.depend]p2: | |
// The first declaration of a function shall specify the | |
// carries_dependency attribute for its declarator-id if any declaration | |
// of the function specifies the carries_dependency attribute. | |
const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); | |
if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { | |
S.Diag(CDA->getLocation(), | |
diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; | |
// Find the first declaration of the parameter. | |
// FIXME: Should we build redeclaration chains for function parameters? | |
const FunctionDecl *FirstFD = | |
cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); | |
const ParmVarDecl *FirstVD = | |
FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); | |
S.Diag(FirstVD->getLocation(), | |
diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; | |
} | |
if (!oldDecl->hasAttrs()) | |
return; | |
bool foundAny = newDecl->hasAttrs(); | |
// Ensure that any moving of objects within the allocated map is | |
// done before we process them. | |
if (!foundAny) newDecl->setAttrs(AttrVec()); | |
for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { | |
if (!DeclHasAttr(newDecl, I)) { | |
InheritableAttr *newAttr = | |
cast<InheritableParamAttr>(I->clone(S.Context)); | |
newAttr->setInherited(true); | |
newDecl->addAttr(newAttr); | |
foundAny = true; | |
} | |
} | |
if (!foundAny) newDecl->dropAttrs(); | |
} | |
static void mergeParamDeclTypes(ParmVarDecl *NewParam, | |
const ParmVarDecl *OldParam, | |
Sema &S) { | |
if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { | |
if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { | |
if (*Oldnullability != *Newnullability) { | |
S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) | |
<< DiagNullabilityKind( | |
*Newnullability, | |
((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | |
!= 0)) | |
<< DiagNullabilityKind( | |
*Oldnullability, | |
((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | |
!= 0)); | |
S.Diag(OldParam->getLocation(), diag::note_previous_declaration); | |
} | |
} else { | |
QualType NewT = NewParam->getType(); | |
NewT = S.Context.getAttributedType( | |
AttributedType::getNullabilityAttrKind(*Oldnullability), | |
NewT, NewT); | |
NewParam->setType(NewT); | |
} | |
} | |
} | |
namespace { | |
/// Used in MergeFunctionDecl to keep track of function parameters in | |
/// C. | |
struct GNUCompatibleParamWarning { | |
ParmVarDecl *OldParm; | |
ParmVarDecl *NewParm; | |
QualType PromotedType; | |
}; | |
} // end anonymous namespace | |
// Determine whether the previous declaration was a definition, implicit | |
// declaration, or a declaration. | |
template <typename T> | |
static std::pair<diag::kind, SourceLocation> | |
getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { | |
diag::kind PrevDiag; | |
SourceLocation OldLocation = Old->getLocation(); | |
if (Old->isThisDeclarationADefinition()) | |
PrevDiag = diag::note_previous_definition; | |
else if (Old->isImplicit()) { | |
PrevDiag = diag::note_previous_implicit_declaration; | |
if (OldLocation.isInvalid()) | |
OldLocation = New->getLocation(); | |
} else | |
PrevDiag = diag::note_previous_declaration; | |
return std::make_pair(PrevDiag, OldLocation); | |
} | |
/// canRedefineFunction - checks if a function can be redefined. Currently, | |
/// only extern inline functions can be redefined, and even then only in | |
/// GNU89 mode. | |
static bool canRedefineFunction(const FunctionDecl *FD, | |
const LangOptions& LangOpts) { | |
return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && | |
!LangOpts.CPlusPlus && | |
FD->isInlineSpecified() && | |
FD->getStorageClass() == SC_Extern); | |
} | |
const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { | |
const AttributedType *AT = T->getAs<AttributedType>(); | |
while (AT && !AT->isCallingConv()) | |
AT = AT->getModifiedType()->getAs<AttributedType>(); | |
return AT; | |
} | |
template <typename T> | |
static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { | |
const DeclContext *DC = Old->getDeclContext(); | |
if (DC->isRecord()) | |
return false; | |
LanguageLinkage OldLinkage = Old->getLanguageLinkage(); | |
if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) | |
return true; | |
if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) | |
return true; | |
return false; | |
} | |
template<typename T> static bool isExternC(T *D) { return D->isExternC(); } | |
static bool isExternC(VarTemplateDecl *) { return false; } | |
/// Check whether a redeclaration of an entity introduced by a | |
/// using-declaration is valid, given that we know it's not an overload | |
/// (nor a hidden tag declaration). | |
template<typename ExpectedDecl> | |
static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, | |
ExpectedDecl *New) { | |
// C++11 [basic.scope.declarative]p4: | |
// Given a set of declarations in a single declarative region, each of | |
// which specifies the same unqualified name, | |
// -- they shall all refer to the same entity, or all refer to functions | |
// and function templates; or | |
// -- exactly one declaration shall declare a class name or enumeration | |
// name that is not a typedef name and the other declarations shall all | |
// refer to the same variable or enumerator, or all refer to functions | |
// and function templates; in this case the class name or enumeration | |
// name is hidden (3.3.10). | |
// C++11 [namespace.udecl]p14: | |
// If a function declaration in namespace scope or block scope has the | |
// same name and the same parameter-type-list as a function introduced | |
// by a using-declaration, and the declarations do not declare the same | |
// function, the program is ill-formed. | |
auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); | |
if (Old && | |
!Old->getDeclContext()->getRedeclContext()->Equals( | |
New->getDeclContext()->getRedeclContext()) && | |
!(isExternC(Old) && isExternC(New))) | |
Old = nullptr; | |
if (!Old) { | |
S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); | |
S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); | |
S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; | |
return true; | |
} | |
return false; | |
} | |
static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, | |
const FunctionDecl *B) { | |
assert(A->getNumParams() == B->getNumParams()); | |
auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { | |
const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); | |
const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); | |
if (AttrA == AttrB) | |
return true; | |
return AttrA && AttrB && AttrA->getType() == AttrB->getType() && | |
AttrA->isDynamic() == AttrB->isDynamic(); | |
}; | |
return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); | |
} | |
/// If necessary, adjust the semantic declaration context for a qualified | |
/// declaration to name the correct inline namespace within the qualifier. | |
static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, | |
DeclaratorDecl *OldD) { | |
// The only case where we need to update the DeclContext is when | |
// redeclaration lookup for a qualified name finds a declaration | |
// in an inline namespace within the context named by the qualifier: | |
// | |
// inline namespace N { int f(); } | |
// int ::f(); // Sema DC needs adjusting from :: to N::. | |
// | |
// For unqualified declarations, the semantic context *can* change | |
// along the redeclaration chain (for local extern declarations, | |
// extern "C" declarations, and friend declarations in particular). | |
if (!NewD->getQualifier()) | |
return; | |
// NewD is probably already in the right context. | |
auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); | |
auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); | |
if (NamedDC->Equals(SemaDC)) | |
return; | |
assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || | |
NewD->isInvalidDecl() || OldD->isInvalidDecl()) && | |
"unexpected context for redeclaration"); | |
auto *LexDC = NewD->getLexicalDeclContext(); | |
auto FixSemaDC = [=](NamedDecl *D) { | |
if (!D) | |
return; | |
D->setDeclContext(SemaDC); | |
D->setLexicalDeclContext(LexDC); | |
}; | |
FixSemaDC(NewD); | |
if (auto *FD = dyn_cast<FunctionDecl>(NewD)) | |
FixSemaDC(FD->getDescribedFunctionTemplate()); | |
else if (auto *VD = dyn_cast<VarDecl>(NewD)) | |
FixSemaDC(VD->getDescribedVarTemplate()); | |
} | |
/// MergeFunctionDecl - We just parsed a function 'New' from | |
/// declarator D which has the same name and scope as a previous | |
/// declaration 'Old'. Figure out how to resolve this situation, | |
/// merging decls or emitting diagnostics as appropriate. | |
/// | |
/// In C++, New and Old must be declarations that are not | |
/// overloaded. Use IsOverload to determine whether New and Old are | |
/// overloaded, and to select the Old declaration that New should be | |
/// merged with. | |
/// | |
/// Returns true if there was an error, false otherwise. | |
bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, | |
Scope *S, bool MergeTypeWithOld) { | |
// Verify the old decl was also a function. | |
FunctionDecl *Old = OldD->getAsFunction(); | |
if (!Old) { | |
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { | |
if (New->getFriendObjectKind()) { | |
Diag(New->getLocation(), diag::err_using_decl_friend); | |
Diag(Shadow->getTargetDecl()->getLocation(), | |
diag::note_using_decl_target); | |
Diag(Shadow->getUsingDecl()->getLocation(), | |
diag::note_using_decl) << 0; | |
return true; | |
} | |
// Check whether the two declarations might declare the same function. | |
if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) | |
return true; | |
OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); | |
} else { | |
Diag(New->getLocation(), diag::err_redefinition_different_kind) | |
<< New->getDeclName(); | |
notePreviousDefinition(OldD, New->getLocation()); | |
return true; | |
} | |
} | |
// If the old declaration is invalid, just give up here. | |
if (Old->isInvalidDecl()) | |
return true; | |
// Disallow redeclaration of some builtins. | |
if (!getASTContext().canBuiltinBeRedeclared(Old)) { | |
Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); | |
Diag(Old->getLocation(), diag::note_previous_builtin_declaration) | |
<< Old << Old->getType(); | |
return true; | |
} | |
diag::kind PrevDiag; | |
SourceLocation OldLocation; | |
std::tie(PrevDiag, OldLocation) = | |
getNoteDiagForInvalidRedeclaration(Old, New); | |
// Don't complain about this if we're in GNU89 mode and the old function | |
// is an extern inline function. | |
// Don't complain about specializations. They are not supposed to have | |
// storage classes. | |
if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && | |
New->getStorageClass() == SC_Static && | |
Old->hasExternalFormalLinkage() && | |
!New->getTemplateSpecializationInfo() && | |
!canRedefineFunction(Old, getLangOpts())) { | |
if (getLangOpts().MicrosoftExt) { | |
Diag(New->getLocation(), diag::ext_static_non_static) << New; | |
Diag(OldLocation, PrevDiag); | |
} else { | |
Diag(New->getLocation(), diag::err_static_non_static) << New; | |
Diag(OldLocation, PrevDiag); | |
return true; | |
} | |
} | |
if (New->hasAttr<InternalLinkageAttr>() && | |
!Old->hasAttr<InternalLinkageAttr>()) { | |
Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) | |
<< New->getDeclName(); | |
notePreviousDefinition(Old, New->getLocation()); | |
New->dropAttr<InternalLinkageAttr>(); | |
} | |
if (CheckRedeclarationModuleOwnership(New, Old)) | |
return true; | |
if (!getLangOpts().CPlusPlus) { | |
bool OldOvl = Old->hasAttr<OverloadableAttr>(); | |
if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { | |
Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) | |
<< New << OldOvl; | |
// Try our best to find a decl that actually has the overloadable | |
// attribute for the note. In most cases (e.g. programs with only one | |
// broken declaration/definition), this won't matter. | |
// | |
// FIXME: We could do this if we juggled some extra state in | |
// OverloadableAttr, rather than just removing it. | |
const Decl *DiagOld = Old; | |
if (OldOvl) { | |
auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { | |
const auto *A = D->getAttr<OverloadableAttr>(); | |
return A && !A->isImplicit(); | |
}); | |
// If we've implicitly added *all* of the overloadable attrs to this | |
// chain, emitting a "previous redecl" note is pointless. | |
DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; | |
} | |
if (DiagOld) | |
Diag(DiagOld->getLocation(), | |
diag::note_attribute_overloadable_prev_overload) | |
<< OldOvl; | |
if (OldOvl) | |
New->addAttr(OverloadableAttr::CreateImplicit(Context)); | |
else | |
New->dropAttr<OverloadableAttr>(); | |
} | |
} | |
// If a function is first declared with a calling convention, but is later | |
// declared or defined without one, all following decls assume the calling | |
// convention of the first. | |
// | |
// It's OK if a function is first declared without a calling convention, | |
// but is later declared or defined with the default calling convention. | |
// | |
// To test if either decl has an explicit calling convention, we look for | |
// AttributedType sugar nodes on the type as written. If they are missing or | |
// were canonicalized away, we assume the calling convention was implicit. | |
// | |
// Note also that we DO NOT return at this point, because we still have | |
// other tests to run. | |
QualType OldQType = Context.getCanonicalType(Old->getType()); | |
QualType NewQType = Context.getCanonicalType(New->getType()); | |
const FunctionType *OldType = cast<FunctionType>(OldQType); | |
const FunctionType *NewType = cast<FunctionType>(NewQType); | |
FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | |
FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | |
bool RequiresAdjustment = false; | |
if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { | |
FunctionDecl *First = Old->getFirstDecl(); | |
const FunctionType *FT = | |
First->getType().getCanonicalType()->castAs<FunctionType>(); | |
FunctionType::ExtInfo FI = FT->getExtInfo(); | |
bool NewCCExplicit = getCallingConvAttributedType(New->getType()); | |
if (!NewCCExplicit) { | |
// Inherit the CC from the previous declaration if it was specified | |
// there but not here. | |
NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | |
RequiresAdjustment = true; | |
} else if (Old->getBuiltinID()) { | |
// Builtin attribute isn't propagated to the new one yet at this point, | |
// so we check if the old one is a builtin. | |
// Calling Conventions on a Builtin aren't really useful and setting a | |
// default calling convention and cdecl'ing some builtin redeclarations is | |
// common, so warn and ignore the calling convention on the redeclaration. | |
Diag(New->getLocation(), diag::warn_cconv_unsupported) | |
<< FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | |
<< (int)CallingConventionIgnoredReason::BuiltinFunction; | |
NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | |
RequiresAdjustment = true; | |
} else { | |
// Calling conventions aren't compatible, so complain. | |
bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); | |
Diag(New->getLocation(), diag::err_cconv_change) | |
<< FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | |
<< !FirstCCExplicit | |
<< (!FirstCCExplicit ? "" : | |
FunctionType::getNameForCallConv(FI.getCC())); | |
// Put the note on the first decl, since it is the one that matters. | |
Diag(First->getLocation(), diag::note_previous_declaration); | |
return true; | |
} | |
} | |
// FIXME: diagnose the other way around? | |
if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { | |
NewTypeInfo = NewTypeInfo.withNoReturn(true); | |
RequiresAdjustment = true; | |
} | |
// Merge regparm attribute. | |
if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || | |
OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { | |
if (NewTypeInfo.getHasRegParm()) { | |
Diag(New->getLocation(), diag::err_regparm_mismatch) | |
<< NewType->getRegParmType() | |
<< OldType->getRegParmType(); | |
Diag(OldLocation, diag::note_previous_declaration); | |
return true; | |
} | |
NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); | |
RequiresAdjustment = true; | |
} | |
// Merge ns_returns_retained attribute. | |
if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { | |
if (NewTypeInfo.getProducesResult()) { | |
Diag(New->getLocation(), diag::err_function_attribute_mismatch) | |
<< "'ns_returns_retained'"; | |
Diag(OldLocation, diag::note_previous_declaration); | |
return true; | |
} | |
NewTypeInfo = NewTypeInfo.withProducesResult(true); | |
RequiresAdjustment = true; | |
} | |
if (OldTypeInfo.getNoCallerSavedRegs() != | |
NewTypeInfo.getNoCallerSavedRegs()) { | |
if (NewTypeInfo.getNoCallerSavedRegs()) { | |
AnyX86NoCallerSavedRegistersAttr *Attr = | |
New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); | |
Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; | |
Diag(OldLocation, diag::note_previous_declaration); | |
return true; | |
} | |
NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); | |
RequiresAdjustment = true; | |
} | |
if (RequiresAdjustment) { | |
const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); | |
AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); | |
New->setType(QualType(AdjustedType, 0)); | |
NewQType = Context.getCanonicalType(New->getType()); | |
} | |
// If this redeclaration makes the function inline, we may need to add it to | |
// UndefinedButUsed. | |
if (!Old->isInlined() && New->isInlined() && | |
!New->hasAttr<GNUInlineAttr>() && | |
!getLangOpts().GNUInline && | |
Old->isUsed(false) && | |
!Old->isDefined() && !New->isThisDeclarationADefinition()) | |
UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | |
SourceLocation())); | |
// If this redeclaration makes it newly gnu_inline, we don't want to warn | |
// about it. | |
if (New->hasAttr<GNUInlineAttr>() && | |
Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { | |
UndefinedButUsed.erase(Old->getCanonicalDecl()); | |
} | |
// If pass_object_size params don't match up perfectly, this isn't a valid | |
// redeclaration. | |
if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && | |
!hasIdenticalPassObjectSizeAttrs(Old, New)) { | |
Diag(New->getLocation(), diag::err_different_pass_object_size_params) | |
<< New->getDeclName(); | |
Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |
return true; | |
} | |
if (getLangOpts().CPlusPlus) { | |
// C++1z [over.load]p2 | |
// Certain function declarations cannot be overloaded: | |
// -- Function declarations that differ only in the return type, | |
// the exception specification, or both cannot be overloaded. | |
// Check the exception specifications match. This may recompute the type of | |
// both Old and New if it resolved exception specifications, so grab the | |
// types again after this. Because this updates the type, we do this before | |
// any of the other checks below, which may update the "de facto" NewQType | |
// but do not necessarily update the type of New. | |
if (CheckEquivalentExceptionSpec(Old, New)) | |
return true; | |
OldQType = Context.getCanonicalType(Old->getType()); | |
NewQType = Context.getCanonicalType(New->getType()); | |
// Go back to the type source info to compare the declared return types, | |
// per C++1y [dcl.type.auto]p13: | |
// Redeclarations or specializations of a function or function template | |
// with a declared return type that uses a placeholder type shall also | |
// use that placeholder, not a deduced type. | |
QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); | |
QualType NewDeclaredReturnType = New->getDeclaredReturnType(); | |
if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && | |
canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, | |
OldDeclaredReturnType)) { | |
QualType ResQT; | |
if (NewDeclaredReturnType->isObjCObjectPointerType() && | |
OldDeclaredReturnType->isObjCObjectPointerType()) | |
// FIXME: This does the wrong thing for a deduced return type. | |
ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); | |
if (ResQT.isNull()) { | |
if (New->isCXXClassMember() && New->isOutOfLine()) | |
Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) | |
<< New << New->getReturnTypeSourceRange(); | |
else | |
Diag(New->getLocation(), diag::err_ovl_diff_return_type) | |
<< New->getReturnTypeSourceRange(); | |
Diag(OldLocation, PrevDiag) << Old << Old->getType() | |
<< Old->getReturnTypeSourceRange(); | |
return true; | |
} | |
else | |
NewQType = ResQT; | |
} | |
QualType OldReturnType = OldType->getReturnType(); | |
QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); | |
if (OldReturnType != NewReturnType) { | |
// If this function has a deduced return type and has already been | |
// defined, copy the deduced value from the old declaration. | |
AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); | |
if (OldAT && OldAT->isDeduced()) { | |
New->setType( | |
SubstAutoType(New->getType(), | |
OldAT->isDependentType() ? Context.DependentTy | |
: OldAT->getDeducedType())); | |
NewQType = Context.getCanonicalType( | |
SubstAutoType(NewQType, | |
OldAT->isDependentType() ? Context.DependentTy | |
: OldAT->getDeducedType())); | |
} | |
} | |
const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | |
CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | |
if (OldMethod && NewMethod) { | |
// Preserve triviality. | |
NewMethod->setTrivial(OldMethod->isTrivial()); | |
// MSVC allows explicit template specialization at class scope: | |
// 2 CXXMethodDecls referring to the same function will be injected. | |
// We don't want a redeclaration error. | |
bool IsClassScopeExplicitSpecialization = | |
OldMethod->isFunctionTemplateSpecialization() && | |
NewMethod->isFunctionTemplateSpecialization(); | |
bool isFriend = NewMethod->getFriendObjectKind(); | |
if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && | |
!IsClassScopeExplicitSpecialization) { | |
// -- Member function declarations with the same name and the | |
// same parameter types cannot be overloaded if any of them | |
// is a static member function declaration. | |
if (OldMethod->isStatic() != NewMethod->isStatic()) { | |
Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); | |
Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |
return true; | |
} | |
// C++ [class.mem]p1: | |
// [...] A member shall not be declared twice in the | |
// member-specification, except that a nested class or member | |
// class template can be declared and then later defined. | |
if (!inTemplateInstantiation()) { | |
unsigned NewDiag; | |
if (isa<CXXConstructorDecl>(OldMethod)) | |
NewDiag = diag::err_constructor_redeclared; | |
else if (isa<CXXDestructorDecl>(NewMethod)) | |
NewDiag = diag::err_destructor_redeclared; | |
else if (isa<CXXConversionDecl>(NewMethod)) | |
NewDiag = diag::err_conv_function_redeclared; | |
else | |
NewDiag = diag::err_member_redeclared; | |
Diag(New->getLocation(), NewDiag); | |
} else { | |
Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) | |
<< New << New->getType(); | |
} | |
Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |
return true; | |
// Complain if this is an explicit declaration of a special | |
// member that was initially declared implicitly. | |
// | |
// As an exception, it's okay to befriend such methods in order | |
// to permit the implicit constructor/destructor/operator calls. | |
} else if (OldMethod->isImplicit()) { | |
if (isFriend) { | |
NewMethod->setImplicit(); | |
} else { | |
Diag(NewMethod->getLocation(), | |
diag::err_definition_of_implicitly_declared_member) | |
<< New << getSpecialMember(OldMethod); | |
return true; | |
} | |
} else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { | |
Diag(NewMethod->getLocation(), | |
diag::err_definition_of_explicitly_defaulted_member) | |
<< getSpecialMember(OldMethod); | |
return true; | |
} | |
} | |
// C++11 [dcl.attr.noreturn]p1: | |
// The first declaration of a function shall specify the noreturn | |
// attribute if any declaration of that function specifies the noreturn | |
// attribute. | |
const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); | |
if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { | |
Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); | |
Diag(Old->getFirstDecl()->getLocation(), | |
diag::note_noreturn_missing_first_decl); | |
} | |
// C++11 [dcl.attr.depend]p2: | |
// The first declaration of a function shall specify the | |
// carries_dependency attribute for its declarator-id if any declaration | |
// of the function specifies the carries_dependency attribute. | |
const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); | |
if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { | |
Diag(CDA->getLocation(), | |
diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; | |
Diag(Old->getFirstDecl()->getLocation(), | |
diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; | |
} | |
// (C++98 8.3.5p3): | |
// All declarations for a function shall agree exactly in both the | |
// return type and the parameter-type-list. | |
// We also want to respect all the extended bits except noreturn. | |
// noreturn should now match unless the old type info didn't have it. | |
QualType OldQTypeForComparison = OldQType; | |
if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { | |
auto *OldType = OldQType->castAs<FunctionProtoType>(); | |
const FunctionType *OldTypeForComparison | |
= Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); | |
OldQTypeForComparison = QualType(OldTypeForComparison, 0); | |
assert(OldQTypeForComparison.isCanonical()); | |
} | |
if (haveIncompatibleLanguageLinkages(Old, New)) { | |
// As a special case, retain the language linkage from previous | |
// declarations of a friend function as an extension. | |
// | |
// This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC | |
// and is useful because there's otherwise no way to specify language | |
// linkage within class scope. | |
// | |
// Check cautiously as the friend object kind isn't yet complete. | |
if (New->getFriendObjectKind() != Decl::FOK_None) { | |
Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; | |
Diag(OldLocation, PrevDiag); | |
} else { | |
Diag(New->getLocation(), diag::err_different_language_linkage) << New; | |
Diag(OldLocation, PrevDiag); | |
return true; | |
} | |
} | |
// If the function types are compatible, merge the declarations. Ignore the | |
// exception specifier because it was already checked above in | |
// CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics | |
// about incompatible types under -fms-compatibility. | |
if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, | |
NewQType)) | |
return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |
// If the types are imprecise (due to dependent constructs in friends or | |
// local extern declarations), it's OK if they differ. We'll check again | |
// during instantiation. | |
if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) | |
return false; | |
// Fall through for conflicting redeclarations and redefinitions. | |
} | |
// C: Function types need to be compatible, not identical. This handles | |
// duplicate function decls like "void f(int); void f(enum X);" properly. | |
if (!getLangOpts().CPlusPlus && | |
Context.typesAreCompatible(OldQType, NewQType)) { | |
const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); | |
const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); | |
const FunctionProtoType *OldProto = nullptr; | |
if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && | |
(OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { | |
// The old declaration provided a function prototype, but the | |
// new declaration does not. Merge in the prototype. | |
assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); | |
SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); | |
NewQType = | |
Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, | |
OldProto->getExtProtoInfo()); | |
New->setType(NewQType); | |
New->setHasInheritedPrototype(); | |
// Synthesize parameters with the same types. | |
SmallVector<ParmVarDecl*, 16> Params; | |
for (const auto &ParamType : OldProto->param_types()) { | |
ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), | |
SourceLocation(), nullptr, | |
ParamType, /*TInfo=*/nullptr, | |
SC_None, nullptr); | |
Param->setScopeInfo(0, Params.size()); | |
Param->setImplicit(); | |
Params.push_back(Param); | |
} | |
New->setParams(Params); | |
} | |
return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |
} | |
// Check if the function types are compatible when pointer size address | |
// spaces are ignored. | |
if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) | |
return false; | |
// GNU C permits a K&R definition to follow a prototype declaration | |
// if the declared types of the parameters in the K&R definition | |
// match the types in the prototype declaration, even when the | |
// promoted types of the parameters from the K&R definition differ | |
// from the types in the prototype. GCC then keeps the types from | |
// the prototype. | |
// | |
// If a variadic prototype is followed by a non-variadic K&R definition, | |
// the K&R definition becomes variadic. This is sort of an edge case, but | |
// it's legal per the standard depending on how you read C99 6.7.5.3p15 and | |
// C99 6.9.1p8. | |
if (!getLangOpts().CPlusPlus && | |
Old->hasPrototype() && !New->hasPrototype() && | |
New->getType()->getAs<FunctionProtoType>() && | |
Old->getNumParams() == New->getNumParams()) { | |
SmallVector<QualType, 16> ArgTypes; | |
SmallVector<GNUCompatibleParamWarning, 16> Warnings; | |
const FunctionProtoType *OldProto | |
= Old->getType()->getAs<FunctionProtoType>(); | |
const FunctionProtoType *NewProto | |
= New->getType()->getAs<FunctionProtoType>(); | |
// Determine whether this is the GNU C extension. | |
QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), | |
NewProto->getReturnType()); | |
bool LooseCompatible = !MergedReturn.isNull(); | |
for (unsigned Idx = 0, End = Old->getNumParams(); | |
LooseCompatible && Idx != End; ++Idx) { | |
ParmVarDecl *OldParm = Old->getParamDecl(Idx); | |
ParmVarDecl *NewParm = New->getParamDecl(Idx); | |
if (Context.typesAreCompatible(OldParm->getType(), | |
NewProto->getParamType(Idx))) { | |
ArgTypes.push_back(NewParm->getType()); | |
} else if (Context.typesAreCompatible(OldParm->getType(), | |
NewParm->getType(), | |
/*CompareUnqualified=*/true)) { | |
GNUCompatibleParamWarning Warn = { OldParm, NewParm, | |
NewProto->getParamType(Idx) }; | |
Warnings.push_back(Warn); | |
ArgTypes.push_back(NewParm->getType()); | |
} else | |
LooseCompatible = false; | |
} | |
if (LooseCompatible) { | |
for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { | |
Diag(Warnings[Warn].NewParm->getLocation(), | |
diag::ext_param_promoted_not_compatible_with_prototype) | |
<< Warnings[Warn].PromotedType | |
<< Warnings[Warn].OldParm->getType(); | |
if (Warnings[Warn].OldParm->getLocation().isValid()) | |
Diag(Warnings[Warn].OldParm->getLocation(), | |
diag::note_previous_declaration); | |
} | |
if (MergeTypeWithOld) | |
New->setType(Context.getFunctionType(MergedReturn, ArgTypes, | |
OldProto->getExtProtoInfo())); | |
return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |
} | |
// Fall through to diagnose conflicting types. | |
} | |
// A function that has already been declared has been redeclared or | |
// defined with a different type; show an appropriate diagnostic. | |
// If the previous declaration was an implicitly-generated builtin | |
// declaration, then at the very least we should use a specialized note. | |
unsigned BuiltinID; | |
if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { | |
// If it's actually a library-defined builtin function like 'malloc' | |
// or 'printf', just warn about the incompatible redeclaration. | |
if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | |
Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; | |
Diag(OldLocation, diag::note_previous_builtin_declaration) | |
<< Old << Old->getType(); | |
return false; | |
} | |
PrevDiag = diag::note_previous_builtin_declaration; | |
} | |
Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |
return true; | |
} | |
/// Completes the merge of two function declarations that are | |
/// known to be compatible. | |
/// | |
/// This routine handles the merging of attributes and other | |
/// properties of function declarations from the old declaration to | |
/// the new declaration, once we know that New is in fact a | |
/// redeclaration of Old. | |
/// | |
/// \returns false | |
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, | |
Scope *S, bool MergeTypeWithOld) { | |
// Merge the attributes | |
mergeDeclAttributes(New, Old); | |
// Merge "pure" flag. | |
if (Old->isPure()) | |
New->setPure(); | |
// Merge "used" flag. | |
if (Old->getMostRecentDecl()->isUsed(false)) | |
New->setIsUsed(); | |
// Merge attributes from the parameters. These can mismatch with K&R | |
// declarations. | |
if (New->getNumParams() == Old->getNumParams()) | |
for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { | |
ParmVarDecl *NewParam = New->getParamDecl(i); | |
ParmVarDecl *OldParam = Old->getParamDecl(i); | |
mergeParamDeclAttributes(NewParam, OldParam, *this); | |
mergeParamDeclTypes(NewParam, OldParam, *this); | |
} | |
if (getLangOpts().CPlusPlus) | |
return MergeCXXFunctionDecl(New, Old, S); | |
// Merge the function types so the we get the composite types for the return | |
// and argument types. Per C11 6.2.7/4, only update the type if the old decl | |
// was visible. | |
QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); | |
if (!Merged.isNull() && MergeTypeWithOld) | |
New->setType(Merged); | |
return false; | |
} | |
void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, | |
ObjCMethodDecl *oldMethod) { | |
// Merge the attributes, including deprecated/unavailable | |
AvailabilityMergeKind MergeKind = | |
isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) | |
? AMK_ProtocolImplementation | |
: isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration | |
: AMK_Override; | |
mergeDeclAttributes(newMethod, oldMethod, MergeKind); | |
// Merge attributes from the parameters. | |
ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), | |
oe = oldMethod->param_end(); | |
for (ObjCMethodDecl::param_iterator | |
ni = newMethod->param_begin(), ne = newMethod->param_end(); | |
ni != ne && oi != oe; ++ni, ++oi) | |
mergeParamDeclAttributes(*ni, *oi, *this); | |
CheckObjCMethodOverride(newMethod, oldMethod); | |
} | |
static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { | |
assert(!S.Context.hasSameType(New->getType(), Old->getType())); | |
S.Diag(New->getLocation(), New->isThisDeclarationADefinition() | |
? diag::err_redefinition_different_type | |
: diag::err_redeclaration_different_type) | |
<< New->getDeclName() << New->getType() << Old->getType(); | |
diag::kind PrevDiag; | |
SourceLocation OldLocation; | |
std::tie(PrevDiag, OldLocation) | |
= getNoteDiagForInvalidRedeclaration(Old, New); | |
S.Diag(OldLocation, PrevDiag); | |
New->setInvalidDecl(); | |
} | |
/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and | |
/// scope as a previous declaration 'Old'. Figure out how to merge their types, | |
/// emitting diagnostics as appropriate. | |
/// | |
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back | |
/// to here in AddInitializerToDecl. We can't check them before the initializer | |
/// is attached. | |
void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, | |
bool MergeTypeWithOld) { | |
if (New->isInvalidDecl() || Old->isInvalidDecl()) | |
return; | |
QualType MergedT; | |
if (getLangOpts().CPlusPlus) { | |
if (New->getType()->isUndeducedType()) { | |
// We don't know what the new type is until the initializer is attached. | |
return; | |
} else if (Context.hasSameType(New->getType(), Old->getType())) { | |
// These could still be something that needs exception specs checked. | |
return MergeVarDeclExceptionSpecs(New, Old); | |
} | |
// C++ [basic.link]p10: | |
// [...] the types specified by all declarations referring to a given | |
// object or function shall be identical, except that declarations for an | |
// array object can specify array types that differ by the presence or | |
// absence of a major array bound (8.3.4). | |
else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { | |
const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); | |
const ArrayType *NewArray = Context.getAsArrayType(New->getType()); | |
// We are merging a variable declaration New into Old. If it has an array | |
// bound, and that bound differs from Old's bound, we should diagnose the | |
// mismatch. | |
if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { | |
for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; | |
PrevVD = PrevVD->getPreviousDecl()) { | |
QualType PrevVDTy = PrevVD->getType(); | |
if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) | |
continue; | |
if (!Context.hasSameType(New->getType(), PrevVDTy)) | |
return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); | |
} | |
} | |
if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { | |
if (Context.hasSameType(OldArray->getElementType(), | |
NewArray->getElementType())) | |
MergedT = New->getType(); | |
} | |
// FIXME: Check visibility. New is hidden but has a complete type. If New | |
// has no array bound, it should not inherit one from Old, if Old is not | |
// visible. | |
else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { | |
if (Context.hasSameType(OldArray->getElementType(), | |
NewArray->getElementType())) | |
MergedT = Old->getType(); | |
} | |
} | |
else if (New->getType()->isObjCObjectPointerType() && | |
Old->getType()->isObjCObjectPointerType()) { | |
MergedT = Context.mergeObjCGCQualifiers(New->getType(), | |
Old->getType()); | |
} | |
} else { | |
// C 6.2.7p2: | |
// All declarations that refer to the same object or function shall have | |
// compatible type. | |
MergedT = Context.mergeTypes(New->getType(), Old->getType()); | |
} | |
if (MergedT.isNull()) { | |
// It's OK if we couldn't merge types if either type is dependent, for a | |
// block-scope variable. In other cases (static data members of class | |
// templates, variable templates, ...), we require the types to be | |
// equivalent. | |
// FIXME: The C++ standard doesn't say anything about this. | |
if ((New->getType()->isDependentType() || | |
Old->getType()->isDependentType()) && New->isLocalVarDecl()) { | |
// If the old type was dependent, we can't merge with it, so the new type | |
// becomes dependent for now. We'll reproduce the original type when we | |
// instantiate the TypeSourceInfo for the variable. | |
if (!New->getType()->isDependentType() && MergeTypeWithOld) | |
New->setType(Context.DependentTy); | |
return; | |
} | |
return diagnoseVarDeclTypeMismatch(*this, New, Old); | |
} | |
// Don't actually update the type on the new declaration if the old | |
// declaration was an extern declaration in a different scope. | |
if (MergeTypeWithOld) | |
New->setType(MergedT); | |
} | |
static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, | |
LookupResult &Previous) { | |
// C11 6.2.7p4: | |
// For an identifier with internal or external linkage declared | |
// in a scope in which a prior declaration of that identifier is | |
// visible, if the prior declaration specifies internal or | |
// external linkage, the type of the identifier at the later | |
// declaration becomes the composite type. | |
// | |
// If the variable isn't visible, we do not merge with its type. | |
if (Previous.isShadowed()) | |
return false; | |
if (S.getLangOpts().CPlusPlus) { | |
// C++11 [dcl.array]p3: | |
// If there is a preceding declaration of the entity in the same | |
// scope in which the bound was specified, an omitted array bound | |
// is taken to be the same as in that earlier declaration. | |
return NewVD->isPreviousDeclInSameBlockScope() || | |
(!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && | |
!NewVD->getLexicalDeclContext()->isFunctionOrMethod()); | |
} else { | |
// If the old declaration was function-local, don't merge with its | |
// type unless we're in the same function. | |
return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || | |
OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); | |
} | |
} | |
/// MergeVarDecl - We just parsed a variable 'New' which has the same name | |
/// and scope as a previous declaration 'Old'. Figure out how to resolve this | |
/// situation, merging decls or emitting diagnostics as appropriate. | |
/// | |
/// Tentative definition rules (C99 6.9.2p2) are checked by | |
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative | |
/// definitions here, since the initializer hasn't been attached. | |
/// | |
void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { | |
// If the new decl is already invalid, don't do any other checking. | |
if (New->isInvalidDecl()) | |
return; | |
if (!shouldLinkPossiblyHiddenDecl(Previous, New)) | |
return; | |
VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); | |
// Verify the old decl was also a variable or variable template. | |
VarDecl *Old = nullptr; | |
VarTemplateDecl *OldTemplate = nullptr; | |
if (Previous.isSingleResult()) { | |
if (NewTemplate) { | |
OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); | |
Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; | |
if (auto *Shadow = | |
dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | |
if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) | |
return New->setInvalidDecl(); | |
} else { | |
Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); | |
if (auto *Shadow = | |
dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | |
if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) | |
return New->setInvalidDecl(); | |
} | |
} | |
if (!Old) { | |
Diag(New->getLocation(), diag::err_redefinition_different_kind) | |
<< New->getDeclName(); | |
notePreviousDefinition(Previous.getRepresentativeDecl(), | |
New->getLocation()); | |
return New->setInvalidDecl(); | |
} | |
// Ensure the template parameters are compatible. | |
if (NewTemplate && | |
!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | |
OldTemplate->getTemplateParameters(), | |
/*Complain=*/true, TPL_TemplateMatch)) | |
return New->setInvalidDecl(); | |
// C++ [class.mem]p1: | |
// A member shall not be declared twice in the member-specification [...] | |
// | |
// Here, we need only consider static data members. | |
if (Old->isStaticDataMember() && !New->isOutOfLine()) { | |
Diag(New->getLocation(), diag::err_duplicate_member) | |
<< New->getIdentifier(); | |
Diag(Old->getLocation(), diag::note_previous_declaration); | |
New->setInvalidDecl(); | |
} | |
mergeDeclAttributes(New, Old); | |
// Warn if an already-declared variable is made a weak_import in a subsequent | |
// declaration | |
if (New->hasAttr<WeakImportAttr>() && | |
Old->getStorageClass() == SC_None && | |
!Old->hasAttr<WeakImportAttr>()) { | |
Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); | |
notePreviousDefinition(Old, New->getLocation()); | |
// Remove weak_import attribute on new declaration. | |
New->dropAttr<WeakImportAttr>(); | |
} | |
if (New->hasAttr<InternalLinkageAttr>() && | |
!Old->hasAttr<InternalLinkageAttr>()) { | |
Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) | |
<< New->getDeclName(); | |
notePreviousDefinition(Old, New->getLocation()); | |
New->dropAttr<InternalLinkageAttr>(); | |
} | |
// Merge the types. | |
VarDecl *MostRecent = Old->getMostRecentDecl(); | |
if (MostRecent != Old) { | |
MergeVarDeclTypes(New, MostRecent, | |
mergeTypeWithPrevious(*this, New, MostRecent, Previous)); | |
if (New->isInvalidDecl()) | |
return; | |
} | |
MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); | |
if (New->isInvalidDecl()) | |
return; | |
diag::kind PrevDiag; | |
SourceLocation OldLocation; | |
std::tie(PrevDiag, OldLocation) = | |
getNoteDiagForInvalidRedeclaration(Old, New); | |
// [dcl.stc]p8: Check if we have a non-static decl followed by a static. | |
if (New->getStorageClass() == SC_Static && | |
!New->isStaticDataMember() && | |
Old->hasExternalFormalLinkage()) { | |
if (getLangOpts().MicrosoftExt) { | |
Diag(New->getLocation(), diag::ext_static_non_static) | |
<< New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
} else { | |
Diag(New->getLocation(), diag::err_static_non_static) | |
<< New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
return New->setInvalidDecl(); | |
} | |
} | |
// C99 6.2.2p4: | |
// For an identifier declared with the storage-class specifier | |
// extern in a scope in which a prior declaration of that | |
// identifier is visible,23) if the prior declaration specifies | |
// internal or external linkage, the linkage of the identifier at | |
// the later declaration is the same as the linkage specified at | |
// the prior declaration. If no prior declaration is visible, or | |
// if the prior declaration specifies no linkage, then the | |
// identifier has external linkage. | |
if (New->hasExternalStorage() && Old->hasLinkage()) | |
/* Okay */; | |
else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && | |
!New->isStaticDataMember() && | |
Old->getCanonicalDecl()->getStorageClass() == SC_Static) { | |
Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
return New->setInvalidDecl(); | |
} | |
// Check if extern is followed by non-extern and vice-versa. | |
if (New->hasExternalStorage() && | |
!Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { | |
Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
return New->setInvalidDecl(); | |
} | |
if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && | |
!New->hasExternalStorage()) { | |
Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
return New->setInvalidDecl(); | |
} | |
if (CheckRedeclarationModuleOwnership(New, Old)) | |
return; | |
// Variables with external linkage are analyzed in FinalizeDeclaratorGroup. | |
// FIXME: The test for external storage here seems wrong? We still | |
// need to check for mismatches. | |
if (!New->hasExternalStorage() && !New->isFileVarDecl() && | |
// Don't complain about out-of-line definitions of static members. | |
!(Old->getLexicalDeclContext()->isRecord() && | |
!New->getLexicalDeclContext()->isRecord())) { | |
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
return New->setInvalidDecl(); | |
} | |
if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { | |
if (VarDecl *Def = Old->getDefinition()) { | |
// C++1z [dcl.fcn.spec]p4: | |
// If the definition of a variable appears in a translation unit before | |
// its first declaration as inline, the program is ill-formed. | |
Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | |
Diag(Def->getLocation(), diag::note_previous_definition); | |
} | |
} | |
// If this redeclaration makes the variable inline, we may need to add it to | |
// UndefinedButUsed. | |
if (!Old->isInline() && New->isInline() && Old->isUsed(false) && | |
!Old->getDefinition() && !New->isThisDeclarationADefinition()) | |
UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | |
SourceLocation())); | |
if (New->getTLSKind() != Old->getTLSKind()) { | |
if (!Old->getTLSKind()) { | |
Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
} else if (!New->getTLSKind()) { | |
Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); | |
Diag(OldLocation, PrevDiag); | |
} else { | |
// Do not allow redeclaration to change the variable between requiring | |
// static and dynamic initialization. | |
// FIXME: GCC allows this, but uses the TLS keyword on the first | |
// declaration to determine the kind. Do we need to be compatible here? | |
Diag(New->getLocation(), diag::err_thread_thread_different_kind) | |
<< New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); | |
Diag(OldLocation, PrevDiag); | |
} | |
} | |
// C++ doesn't have tentative definitions, so go right ahead and check here. | |
if (getLangOpts().CPlusPlus && | |
New->isThisDeclarationADefinition() == VarDecl::Definition) { | |
if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && | |
Old->getCanonicalDecl()->isConstexpr()) { | |
// This definition won't be a definition any more once it's been merged. | |
Diag(New->getLocation(), | |
diag::warn_deprecated_redundant_constexpr_static_def); | |
} else if (VarDecl *Def = Old->getDefinition()) { | |
if (checkVarDeclRedefinition(Def, New)) | |
return; | |
} | |
} | |
if (haveIncompatibleLanguageLinkages(Old, New)) { | |
Diag(New->getLocation(), diag::err_different_language_linkage) << New; | |
Diag(OldLocation, PrevDiag); | |
New->setInvalidDecl(); | |
return; | |
} | |
// Merge "used" flag. | |
if (Old->getMostRecentDecl()->isUsed(false)) | |
New->setIsUsed(); | |
// Keep a chain of previous declarations. | |
New->setPreviousDecl(Old); | |
if (NewTemplate) | |
NewTemplate->setPreviousDecl(OldTemplate); | |
adjustDeclContextForDeclaratorDecl(New, Old); | |
// Inherit access appropriately. | |
New->setAccess(Old->getAccess()); | |
if (NewTemplate) | |
NewTemplate->setAccess(New->getAccess()); | |
if (Old->isInline()) | |
New->setImplicitlyInline(); | |
} | |
void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { | |
SourceManager &SrcMgr = getSourceManager(); | |
auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); | |
auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); | |
auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); | |
auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); | |
auto &HSI = PP.getHeaderSearchInfo(); | |
StringRef HdrFilename = | |
SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); | |
auto noteFromModuleOrInclude = [&](Module *Mod, | |
SourceLocation IncLoc) -> bool { | |
// Redefinition errors with modules are common with non modular mapped | |
// headers, example: a non-modular header H in module A that also gets | |
// included directly in a TU. Pointing twice to the same header/definition | |
// is confusing, try to get better diagnostics when modules is on. | |
if (IncLoc.isValid()) { | |
if (Mod) { | |
Diag(IncLoc, diag::note_redefinition_modules_same_file) | |
<< HdrFilename.str() << Mod->getFullModuleName(); | |
if (!Mod->DefinitionLoc.isInvalid()) | |
Diag(Mod->DefinitionLoc, diag::note_defined_here) | |
<< Mod->getFullModuleName(); | |
} else { | |
Diag(IncLoc, diag::note_redefinition_include_same_file) | |
<< HdrFilename.str(); | |
} | |
return true; | |
} | |
return false; | |
}; | |
// Is it the same file and same offset? Provide more information on why | |
// this leads to a redefinition error. | |
if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { | |
SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); | |
SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); | |
bool EmittedDiag = | |
noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); | |
EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); | |
// If the header has no guards, emit a note suggesting one. | |
if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) | |
Diag(Old->getLocation(), diag::note_use_ifdef_guards); | |
if (EmittedDiag) | |
return; | |
} | |
// Redefinition coming from different files or couldn't do better above. | |
if (Old->getLocation().isValid()) | |
Diag(Old->getLocation(), diag::note_previous_definition); | |
} | |
/// We've just determined that \p Old and \p New both appear to be definitions | |
/// of the same variable. Either diagnose or fix the problem. | |
bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { | |
if (!hasVisibleDefinition(Old) && | |
(New->getFormalLinkage() == InternalLinkage || | |
New->isInline() || | |
New->getDescribedVarTemplate() || | |
New->getNumTemplateParameterLists() || | |
New->getDeclContext()->isDependentContext())) { | |
// The previous definition is hidden, and multiple definitions are | |
// permitted (in separate TUs). Demote this to a declaration. | |
New->demoteThisDefinitionToDeclaration(); | |
// Make the canonical definition visible. | |
if (auto *OldTD = Old->getDescribedVarTemplate()) | |
makeMergedDefinitionVisible(OldTD); | |
makeMergedDefinitionVisible(Old); | |
return false; | |
} else { | |
Diag(New->getLocation(), diag::err_redefinition) << New; | |
notePreviousDefinition(Old, New->getLocation()); | |
New->setInvalidDecl(); | |
return true; | |
} | |
} | |
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | |
/// no declarator (e.g. "struct foo;") is parsed. | |
Decl * | |
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, | |
RecordDecl *&AnonRecord) { | |
return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, | |
AnonRecord); | |
} | |
// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to | |
// disambiguate entities defined in different scopes. | |
// While the VS2015 ABI fixes potential miscompiles, it is also breaks | |
// compatibility. | |
// We will pick our mangling number depending on which version of MSVC is being | |
// targeted. | |
static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { | |
return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) | |
? S->getMSCurManglingNumber() | |
: S->getMSLastManglingNumber(); | |
} | |
void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { | |
if (!Context.getLangOpts().CPlusPlus) | |
return; | |
if (isa<CXXRecordDecl>(Tag->getParent())) { | |
// If this tag is the direct child of a class, number it if | |
// it is anonymous. | |
if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) | |
return; | |
MangleNumberingContext &MCtx = | |
Context.getManglingNumberContext(Tag->getParent()); | |
Context.setManglingNumber( | |
Tag, MCtx.getManglingNumber( | |
Tag, getMSManglingNumber(getLangOpts(), TagScope))); | |
return; | |
} | |
// If this tag isn't a direct child of a class, number it if it is local. | |
MangleNumberingContext *MCtx; | |
Decl *ManglingContextDecl; | |
std::tie(MCtx, ManglingContextDecl) = | |
getCurrentMangleNumberContext(Tag->getDeclContext()); | |
if (MCtx) { | |
Context.setManglingNumber( | |
Tag, MCtx->getManglingNumber( | |
Tag, getMSManglingNumber(getLangOpts(), TagScope))); | |
} | |
} | |
namespace { | |
struct NonCLikeKind { | |
enum { | |
None, | |
BaseClass, | |
DefaultMemberInit, | |
Lambda, | |
Friend, | |
OtherMember, | |
Invalid, | |
} Kind = None; | |
SourceRange Range; | |
explicit operator bool() { return Kind != None; } | |
}; | |
} | |
/// Determine whether a class is C-like, according to the rules of C++ | |
/// [dcl.typedef] for anonymous classes with typedef names for linkage. | |
static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { | |
if (RD->isInvalidDecl()) | |
return {NonCLikeKind::Invalid, {}}; | |
// C++ [dcl.typedef]p9: [P1766R1] | |
// An unnamed class with a typedef name for linkage purposes shall not | |
// | |
// -- have any base classes | |
if (RD->getNumBases()) | |
return {NonCLikeKind::BaseClass, | |
SourceRange(RD->bases_begin()->getBeginLoc(), | |
RD->bases_end()[-1].getEndLoc())}; | |
bool Invalid = false; | |
for (Decl *D : RD->decls()) { | |
// Don't complain about things we already diagnosed. | |
if (D->isInvalidDecl()) { | |
Invalid = true; | |
continue; | |
} | |
// -- have any [...] default member initializers | |
if (auto *FD = dyn_cast<FieldDecl>(D)) { | |
if (FD->hasInClassInitializer()) { | |
auto *Init = FD->getInClassInitializer(); | |
return {NonCLikeKind::DefaultMemberInit, | |
Init ? Init->getSourceRange() : D->getSourceRange()}; | |
} | |
continue; | |
} | |
// FIXME: We don't allow friend declarations. This violates the wording of | |
// P1766, but not the intent. | |
if (isa<FriendDecl>(D)) | |
return {NonCLikeKind::Friend, D->getSourceRange()}; | |
// -- declare any members other than non-static data members, member | |
// enumerations, or member classes, | |
if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || | |
isa<EnumDecl>(D)) | |
continue; | |
auto *MemberRD = dyn_cast<CXXRecordDecl>(D); | |
if (!MemberRD) { | |
if (D->isImplicit()) | |
continue; | |
return {NonCLikeKind::OtherMember, D->getSourceRange()}; | |
} | |
// -- contain a lambda-expression, | |
if (MemberRD->isLambda()) | |
return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; | |
// and all member classes shall also satisfy these requirements | |
// (recursively). | |
if (MemberRD->isThisDeclarationADefinition()) { | |
if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) | |
return Kind; | |
} | |
} | |
return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; | |
} | |
void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, | |
TypedefNameDecl *NewTD) { | |
if (TagFromDeclSpec->isInvalidDecl()) | |
return; | |
// Do nothing if the tag already has a name for linkage purposes. | |
if (TagFromDeclSpec->hasNameForLinkage()) | |
return; | |
// A well-formed anonymous tag must always be a TUK_Definition. | |
assert(TagFromDeclSpec->isThisDeclarationADefinition()); | |
// The type must match the tag exactly; no qualifiers allowed. | |
if (!Context.hasSameType(NewTD->getUnderlyingType(), | |
Context.getTagDeclType(TagFromDeclSpec))) { | |
if (getLangOpts().CPlusPlus) | |
Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); | |
return; | |
} | |
// C++ [dcl.typedef]p9: [P1766R1, applied as DR] | |
// An unnamed class with a typedef name for linkage purposes shall [be | |
// C-like]. | |
// | |
// FIXME: Also diagnose if we've already computed the linkage. That ideally | |
// shouldn't happen, but there are constructs that the language rule doesn't | |
// disallow for which we can't reasonably avoid computing linkage early. | |
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); | |
NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) | |
: NonCLikeKind(); | |
bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); | |
if (NonCLike || ChangesLinkage) { | |
if (NonCLike.Kind == NonCLikeKind::Invalid) | |
return; | |
unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; | |
if (ChangesLinkage) { | |
// If the linkage changes, we can't accept this as an extension. | |
if (NonCLike.Kind == NonCLikeKind::None) | |
DiagID = diag::err_typedef_changes_linkage; | |
else | |
DiagID = diag::err_non_c_like_anon_struct_in_typedef; | |
} | |
SourceLocation FixitLoc = | |
getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); | |
llvm::SmallString<40> TextToInsert; | |
TextToInsert += ' '; | |
TextToInsert += NewTD->getIdentifier()->getName(); | |
Diag(FixitLoc, DiagID) | |
<< isa<TypeAliasDecl>(NewTD) | |
<< FixItHint::CreateInsertion(FixitLoc, TextToInsert); | |
if (NonCLike.Kind != NonCLikeKind::None) { | |
Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) | |
<< NonCLike.Kind - 1 << NonCLike.Range; | |
} | |
Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) | |
<< NewTD << isa<TypeAliasDecl>(NewTD); | |
if (ChangesLinkage) | |
return; | |
} | |
// Otherwise, set this as the anon-decl typedef for the tag. | |
TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); | |
} | |
static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { | |
switch (T) { | |
case DeclSpec::TST_class: | |
return 0; | |
case DeclSpec::TST_struct: | |
return 1; | |
case DeclSpec::TST_interface: | |
return 2; | |
case DeclSpec::TST_union: | |
return 3; | |
case DeclSpec::TST_enum: | |
return 4; | |
default: | |
llvm_unreachable("unexpected type specifier"); | |
} | |
} | |
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | |
/// no declarator (e.g. "struct foo;") is parsed. It also accepts template | |
/// parameters to cope with template friend declarations. | |
Decl * | |
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, | |
MultiTemplateParamsArg TemplateParams, | |
bool IsExplicitInstantiation, | |
RecordDecl *&AnonRecord) { | |
Decl *TagD = nullptr; | |
TagDecl *Tag = nullptr; | |
if (DS.getTypeSpecType() == DeclSpec::TST_class || | |
DS.getTypeSpecType() == DeclSpec::TST_struct || | |
DS.getTypeSpecType() == DeclSpec::TST_interface || | |
DS.getTypeSpecType() == DeclSpec::TST_union || | |
DS.getTypeSpecType() == DeclSpec::TST_enum) { | |
TagD = DS.getRepAsDecl(); | |
if (!TagD) // We probably had an error | |
return nullptr; | |
// Note that the above type specs guarantee that the | |
// type rep is a Decl, whereas in many of the others | |
// it's a Type. | |
if (isa<TagDecl>(TagD)) | |
Tag = cast<TagDecl>(TagD); | |
else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) | |
Tag = CTD->getTemplatedDecl(); | |
} | |
if (Tag) { | |
handleTagNumbering(Tag, S); | |
Tag->setFreeStanding(); | |
if (Tag->isInvalidDecl()) | |
return Tag; | |
} | |
if (unsigned TypeQuals = DS.getTypeQualifiers()) { | |
// Enforce C99 6.7.3p2: "Types other than pointer types derived from object | |
// or incomplete types shall not be restrict-qualified." | |
if (TypeQuals & DeclSpec::TQ_restrict) | |
Diag(DS.getRestrictSpecLoc(), | |
diag::err_typecheck_invalid_restrict_not_pointer_noarg) | |
<< DS.getSourceRange(); | |
} | |
if (DS.isInlineSpecified()) | |
Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | |
<< getLangOpts().CPlusPlus17; | |
if (DS.hasConstexprSpecifier()) { | |
// C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations | |
// and definitions of functions and variables. | |
// C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to | |
// the declaration of a function or function template | |
if (Tag) | |
Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) | |
<< GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) | |
<< static_cast<int>(DS.getConstexprSpecifier()); | |
else | |
Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) | |
<< static_cast<int>(DS.getConstexprSpecifier()); | |
// Don't emit warnings after this error. | |
return TagD; | |
} | |
DiagnoseFunctionSpecifiers(DS); | |
if (DS.isFriendSpecified()) { | |
// If we're dealing with a decl but not a TagDecl, assume that | |
// whatever routines created it handled the friendship aspect. | |
if (TagD && !Tag) | |
return nullptr; | |
return ActOnFriendTypeDecl(S, DS, TemplateParams); | |
} | |
const CXXScopeSpec &SS = DS.getTypeSpecScope(); | |
bool IsExplicitSpecialization = | |
!TemplateParams.empty() && TemplateParams.back()->size() == 0; | |
if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && | |
!IsExplicitInstantiation && !IsExplicitSpecialization && | |
!isa<ClassTemplatePartialSpecializationDecl>(Tag)) { | |
// Per C++ [dcl.type.elab]p1, a class declaration cannot have a | |
// nested-name-specifier unless it is an explicit instantiation | |
// or an explicit specialization. | |
// | |
// FIXME: We allow class template partial specializations here too, per the | |
// obvious intent of DR1819. | |
// | |
// Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. | |
Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) | |
<< GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); | |
return nullptr; | |
} | |
// Track whether this decl-specifier declares anything. | |
bool DeclaresAnything = true; | |
// Handle anonymous struct definitions. | |
if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { | |
if (!Record->getDeclName() && Record->isCompleteDefinition() && | |
DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { | |
if (getLangOpts().CPlusPlus || | |
Record->getDeclContext()->isRecord()) { | |
// If CurContext is a DeclContext that can contain statements, | |
// RecursiveASTVisitor won't visit the decls that | |
// BuildAnonymousStructOrUnion() will put into CurContext. | |
// Also store them here so that they can be part of the | |
// DeclStmt that gets created in this case. | |
// FIXME: Also return the IndirectFieldDecls created by | |
// BuildAnonymousStructOr union, for the same reason? | |
if (CurContext->isFunctionOrMethod()) | |
AnonRecord = Record; | |
return BuildAnonymousStructOrUnion(S, DS, AS, Record, | |
Context.getPrintingPolicy()); | |
} | |
DeclaresAnything = false; | |
} | |
} | |
// C11 6.7.2.1p2: | |
// A struct-declaration that does not declare an anonymous structure or | |
// anonymous union shall contain a struct-declarator-list. | |
// | |
// This rule also existed in C89 and C99; the grammar for struct-declaration | |
// did not permit a struct-declaration without a struct-declarator-list. | |
if (!getLangOpts().CPlusPlus && CurContext->isRecord() && | |
DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { | |
// Check for Microsoft C extension: anonymous struct/union member. | |
// Handle 2 kinds of anonymous struct/union: | |
// struct STRUCT; | |
// union UNION; | |
// and | |
// STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. | |
// UNION_TYPE; <- where UNION_TYPE is a typedef union. | |
if ((Tag && Tag->getDeclName()) || | |
DS.getTypeSpecType() == DeclSpec::TST_typename) { | |
RecordDecl *Record = nullptr; | |
if (Tag) | |
Record = dyn_cast<RecordDecl>(Tag); | |
else if (const RecordType *RT = | |
DS.getRepAsType().get()->getAsStructureType()) | |
Record = RT->getDecl(); | |
else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) | |
Record = UT->getDecl(); | |
if (Record && getLangOpts().MicrosoftExt) { | |
Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) | |
<< Record->isUnion() << DS.getSourceRange(); | |
return BuildMicrosoftCAnonymousStruct(S, DS, Record); | |
} | |
DeclaresAnything = false; | |
} | |
} | |
// Skip all the checks below if we have a type error. | |
if (DS.getTypeSpecType() == DeclSpec::TST_error || | |
(TagD && TagD->isInvalidDecl())) | |
return TagD; | |
if (getLangOpts().CPlusPlus && | |
DS.getStorageClassSpec() != DeclSpec::SCS_typedef) | |
if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) | |
if (Enum->enumerator_begin() == Enum->enumerator_end() && | |
!Enum->getIdentifier() && !Enum->isInvalidDecl()) | |
DeclaresAnything = false; | |
if (!DS.isMissingDeclaratorOk()) { | |
// Customize diagnostic for a typedef missing a name. | |
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | |
Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) | |
<< DS.getSourceRange(); | |
else | |
DeclaresAnything = false; | |
} | |
if (DS.isModulePrivateSpecified() && | |
Tag && Tag->getDeclContext()->isFunctionOrMethod()) | |
Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) | |
<< Tag->getTagKind() | |
<< FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); | |
ActOnDocumentableDecl(TagD); | |
// C 6.7/2: | |
// A declaration [...] shall declare at least a declarator [...], a tag, | |
// or the members of an enumeration. | |
// C++ [dcl.dcl]p3: | |
// [If there are no declarators], and except for the declaration of an | |
// unnamed bit-field, the decl-specifier-seq shall introduce one or more | |
// names into the program, or shall redeclare a name introduced by a | |
// previous declaration. | |
if (!DeclaresAnything) { | |
// In C, we allow this as a (popular) extension / bug. Don't bother | |
// producing further diagnostics for redundant qualifiers after this. | |
Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) | |
? diag::err_no_declarators | |
: diag::ext_no_declarators) | |
<< DS.getSourceRange(); | |
return TagD; | |
} | |
// C++ [dcl.stc]p1: | |
// If a storage-class-specifier appears in a decl-specifier-seq, [...] the | |
// init-declarator-list of the declaration shall not be empty. | |
// C++ [dcl.fct.spec]p1: | |
// If a cv-qualifier appears in a decl-specifier-seq, the | |
// init-declarator-list of the declaration shall not be empty. | |
// | |
// Spurious qualifiers here appear to be valid in C. | |
unsigned DiagID = diag::warn_standalone_specifier; | |
if (getLangOpts().CPlusPlus) | |
DiagID = diag::ext_standalone_specifier; | |
// Note that a linkage-specification sets a storage class, but | |
// 'extern "C" struct foo;' is actually valid and not theoretically | |
// useless. | |
if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { | |
if (SCS == DeclSpec::SCS_mutable) | |
// Since mutable is not a viable storage class specifier in C, there is | |
// no reason to treat it as an extension. Instead, diagnose as an error. | |
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); | |
else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) | |
Diag(DS.getStorageClassSpecLoc(), DiagID) | |
<< DeclSpec::getSpecifierName(SCS); | |
} | |
if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | |
Diag(DS.getThreadStorageClassSpecLoc(), DiagID) | |
<< DeclSpec::getSpecifierName(TSCS); | |
if (DS.getTypeQualifiers()) { | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |
Diag(DS.getConstSpecLoc(), DiagID) << "const"; | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |
Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; | |
// Restrict is covered above. | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |
Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |
Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; | |
} | |
// Warn about ignored type attributes, for example: | |
// __attribute__((aligned)) struct A; | |
// Attributes should be placed after tag to apply to type declaration. | |
if (!DS.getAttributes().empty()) { | |
DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); | |
if (TypeSpecType == DeclSpec::TST_class || | |
TypeSpecType == DeclSpec::TST_struct || | |
TypeSpecType == DeclSpec::TST_interface || | |
TypeSpecType == DeclSpec::TST_union || | |
TypeSpecType == DeclSpec::TST_enum) { | |
for (const ParsedAttr &AL : DS.getAttributes()) | |
Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) | |
<< AL << GetDiagnosticTypeSpecifierID(TypeSpecType); | |
} | |
} | |
return TagD; | |
} | |
/// We are trying to inject an anonymous member into the given scope; | |
/// check if there's an existing declaration that can't be overloaded. | |
/// | |
/// \return true if this is a forbidden redeclaration | |
static bool CheckAnonMemberRedeclaration(Sema &SemaRef, | |
Scope *S, | |
DeclContext *Owner, | |
DeclarationName Name, | |
SourceLocation NameLoc, | |
bool IsUnion) { | |
LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, | |
Sema::ForVisibleRedeclaration); | |
if (!SemaRef.LookupName(R, S)) return false; | |
// Pick a representative declaration. | |
NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); | |
assert(PrevDecl && "Expected a non-null Decl"); | |
if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) | |
return false; | |
SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) | |
<< IsUnion << Name; | |
SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |
return true; | |
} | |
/// InjectAnonymousStructOrUnionMembers - Inject the members of the | |
/// anonymous struct or union AnonRecord into the owning context Owner | |
/// and scope S. This routine will be invoked just after we realize | |
/// that an unnamed union or struct is actually an anonymous union or | |
/// struct, e.g., | |
/// | |
/// @code | |
/// union { | |
/// int i; | |
/// float f; | |
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and | |
/// // f into the surrounding scope.x | |
/// @endcode | |
/// | |
/// This routine is recursive, injecting the names of nested anonymous | |
/// structs/unions into the owning context and scope as well. | |
static bool | |
InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, | |
RecordDecl *AnonRecord, AccessSpecifier AS, | |
SmallVectorImpl<NamedDecl *> &Chaining) { | |
bool Invalid = false; | |
// Look every FieldDecl and IndirectFieldDecl with a name. | |
for (auto *D : AnonRecord->decls()) { | |
if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && | |
cast<NamedDecl>(D)->getDeclName()) { | |
ValueDecl *VD = cast<ValueDecl>(D); | |
if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), | |
VD->getLocation(), | |
AnonRecord->isUnion())) { | |
// C++ [class.union]p2: | |
// The names of the members of an anonymous union shall be | |
// distinct from the names of any other entity in the | |
// scope in which the anonymous union is declared. | |
Invalid = true; | |
} else { | |
// C++ [class.union]p2: | |
// For the purpose of name lookup, after the anonymous union | |
// definition, the members of the anonymous union are | |
// considered to have been defined in the scope in which the | |
// anonymous union is declared. | |
unsigned OldChainingSize = Chaining.size(); | |
if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) | |
Chaining.append(IF->chain_begin(), IF->chain_end()); | |
else | |
Chaining.push_back(VD); | |
assert(Chaining.size() >= 2); | |
NamedDecl **NamedChain = | |
new (SemaRef.Context)NamedDecl*[Chaining.size()]; | |
for (unsigned i = 0; i < Chaining.size(); i++) | |
NamedChain[i] = Chaining[i]; | |
IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( | |
SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), | |
VD->getType(), {NamedChain, Chaining.size()}); | |
for (const auto *Attr : VD->attrs()) | |
IndirectField->addAttr(Attr->clone(SemaRef.Context)); | |
IndirectField->setAccess(AS); | |
IndirectField->setImplicit(); | |
SemaRef.PushOnScopeChains(IndirectField, S); | |
// That includes picking up the appropriate access specifier. | |
if (AS != AS_none) IndirectField->setAccess(AS); | |
Chaining.resize(OldChainingSize); | |
} | |
} | |
} | |
return Invalid; | |
} | |
/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to | |
/// a VarDecl::StorageClass. Any error reporting is up to the caller: | |
/// illegal input values are mapped to SC_None. | |
static StorageClass | |
StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { | |
DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); | |
assert(StorageClassSpec != DeclSpec::SCS_typedef && | |
"Parser allowed 'typedef' as storage class VarDecl."); | |
switch (StorageClassSpec) { | |
case DeclSpec::SCS_unspecified: return SC_None; | |
case DeclSpec::SCS_extern: | |
if (DS.isExternInLinkageSpec()) | |
return SC_None; | |
return SC_Extern; | |
case DeclSpec::SCS_static: return SC_Static; | |
case DeclSpec::SCS_auto: return SC_Auto; | |
case DeclSpec::SCS_register: return SC_Register; | |
case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | |
// Illegal SCSs map to None: error reporting is up to the caller. | |
case DeclSpec::SCS_mutable: // Fall through. | |
case DeclSpec::SCS_typedef: return SC_None; | |
} | |
llvm_unreachable("unknown storage class specifier"); | |
} | |
static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { | |
assert(Record->hasInClassInitializer()); | |
for (const auto *I : Record->decls()) { | |
const auto *FD = dyn_cast<FieldDecl>(I); | |
if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | |
FD = IFD->getAnonField(); | |
if (FD && FD->hasInClassInitializer()) | |
return FD->getLocation(); | |
} | |
llvm_unreachable("couldn't find in-class initializer"); | |
} | |
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | |
SourceLocation DefaultInitLoc) { | |
if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | |
return; | |
S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); | |
S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; | |
} | |
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | |
CXXRecordDecl *AnonUnion) { | |
if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | |
return; | |
checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); | |
} | |
/// BuildAnonymousStructOrUnion - Handle the declaration of an | |
/// anonymous structure or union. Anonymous unions are a C++ feature | |
/// (C++ [class.union]) and a C11 feature; anonymous structures | |
/// are a C11 feature and GNU C++ extension. | |
Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | |
AccessSpecifier AS, | |
RecordDecl *Record, | |
const PrintingPolicy &Policy) { | |
DeclContext *Owner = Record->getDeclContext(); | |
// Diagnose whether this anonymous struct/union is an extension. | |
if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) | |
Diag(Record->getLocation(), diag::ext_anonymous_union); | |
else if (!Record->isUnion() && getLangOpts().CPlusPlus) | |
Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); | |
else if (!Record->isUnion() && !getLangOpts().C11) | |
Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); | |
// C and C++ require different kinds of checks for anonymous | |
// structs/unions. | |
bool Invalid = false; | |
if (getLangOpts().CPlusPlus) { | |
const char *PrevSpec = nullptr; | |
if (Record->isUnion()) { | |
// C++ [class.union]p6: | |
// C++17 [class.union.anon]p2: | |
// Anonymous unions declared in a named namespace or in the | |
// global namespace shall be declared static. | |
unsigned DiagID; | |
DeclContext *OwnerScope = Owner->getRedeclContext(); | |
if (DS.getStorageClassSpec() != DeclSpec::SCS_static && | |
(OwnerScope->isTranslationUnit() || | |
(OwnerScope->isNamespace() && | |
!cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { | |
Diag(Record->getLocation(), diag::err_anonymous_union_not_static) | |
<< FixItHint::CreateInsertion(Record->getLocation(), "static "); | |
// Recover by adding 'static'. | |
DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), | |
PrevSpec, DiagID, Policy); | |
} | |
// C++ [class.union]p6: | |
// A storage class is not allowed in a declaration of an | |
// anonymous union in a class scope. | |
else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && | |
isa<RecordDecl>(Owner)) { | |
Diag(DS.getStorageClassSpecLoc(), | |
diag::err_anonymous_union_with_storage_spec) | |
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |
// Recover by removing the storage specifier. | |
DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, | |
SourceLocation(), | |
PrevSpec, DiagID, Context.getPrintingPolicy()); | |
} | |
} | |
// Ignore const/volatile/restrict qualifiers. | |
if (DS.getTypeQualifiers()) { | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |
Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) | |
<< Record->isUnion() << "const" | |
<< FixItHint::CreateRemoval(DS.getConstSpecLoc()); | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |
Diag(DS.getVolatileSpecLoc(), | |
diag::ext_anonymous_struct_union_qualified) | |
<< Record->isUnion() << "volatile" | |
<< FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | |
Diag(DS.getRestrictSpecLoc(), | |
diag::ext_anonymous_struct_union_qualified) | |
<< Record->isUnion() << "restrict" | |
<< FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |
Diag(DS.getAtomicSpecLoc(), | |
diag::ext_anonymous_struct_union_qualified) | |
<< Record->isUnion() << "_Atomic" | |
<< FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); | |
if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |
Diag(DS.getUnalignedSpecLoc(), | |
diag::ext_anonymous_struct_union_qualified) | |
<< Record->isUnion() << "__unaligned" | |
<< FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); | |
DS.ClearTypeQualifiers(); | |
} | |
// C++ [class.union]p2: | |
// The member-specification of an anonymous union shall only | |
// define non-static data members. [Note: nested types and | |
// functions cannot be declared within an anonymous union. ] | |
for (auto *Mem : Record->decls()) { | |
// Ignore invalid declarations; we already diagnosed them. | |
if (Mem->isInvalidDecl()) | |
continue; | |
if (auto *FD = dyn_cast<FieldDecl>(Mem)) { | |
// C++ [class.union]p3: | |
// An anonymous union shall not have private or protected | |
// members (clause 11). | |
assert(FD->getAccess() != AS_none); | |
if (FD->getAccess() != AS_public) { | |
Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) | |
<< Record->isUnion() << (FD->getAccess() == AS_protected); | |
Invalid = true; | |
} | |
// C++ [class.union]p1 | |
// An object of a class with a non-trivial constructor, a non-trivial | |
// copy constructor, a non-trivial destructor, or a non-trivial copy | |
// assignment operator cannot be a member of a union, nor can an | |
// array of such objects. | |
if (CheckNontrivialField(FD)) | |
Invalid = true; | |
} else if (Mem->isImplicit()) { | |
// Any implicit members are fine. | |
} else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { | |
// This is a type that showed up in an | |
// elaborated-type-specifier inside the anonymous struct or | |
// union, but which actually declares a type outside of the | |
// anonymous struct or union. It's okay. | |
} else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { | |
if (!MemRecord->isAnonymousStructOrUnion() && | |
MemRecord->getDeclName()) { | |
// Visual C++ allows type definition in anonymous struct or union. | |
if (getLangOpts().MicrosoftExt) | |
Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) | |
<< Record->isUnion(); | |
else { | |
// This is a nested type declaration. | |
Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) | |
<< Record->isUnion(); | |
Invalid = true; | |
} | |
} else { | |
// This is an anonymous type definition within another anonymous type. | |
// This is a popular extension, provided by Plan9, MSVC and GCC, but | |
// not part of standard C++. | |
Diag(MemRecord->getLocation(), | |
diag::ext_anonymous_record_with_anonymous_type) | |
<< Record->isUnion(); | |
} | |
} else if (isa<AccessSpecDecl>(Mem)) { | |
// Any access specifier is fine. | |
} else if (isa<StaticAssertDecl>(Mem)) { | |
// In C++1z, static_assert declarations are also fine. | |
} else { | |
// We have something that isn't a non-static data | |
// member. Complain about it. | |
unsigned DK = diag::err_anonymous_record_bad_member; | |
if (isa<TypeDecl>(Mem)) | |
DK = diag::err_anonymous_record_with_type; | |
else if (isa<FunctionDecl>(Mem)) | |
DK = diag::err_anonymous_record_with_function; | |
else if (isa<VarDecl>(Mem)) | |
DK = diag::err_anonymous_record_with_static; | |
// Visual C++ allows type definition in anonymous struct or union. | |
if (getLangOpts().MicrosoftExt && | |
DK == diag::err_anonymous_record_with_type) | |
Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) | |
<< Record->isUnion(); | |
else { | |
Diag(Mem->getLocation(), DK) << Record->isUnion(); | |
Invalid = true; | |
} | |
} | |
} | |
// C++11 [class.union]p8 (DR1460): | |
// At most one variant member of a union may have a | |
// brace-or-equal-initializer. | |
if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && | |
Owner->isRecord()) | |
checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), | |
cast<CXXRecordDecl>(Record)); | |
} | |
if (!Record->isUnion() && !Owner->isRecord()) { | |
Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) | |
<< getLangOpts().CPlusPlus; | |
Invalid = true; | |
} | |
// C++ [dcl.dcl]p3: | |
// [If there are no declarators], and except for the declaration of an | |
// unnamed bit-field, the decl-specifier-seq shall introduce one or more | |
// names into the program | |
// C++ [class.mem]p2: | |
// each such member-declaration shall either declare at least one member | |
// name of the class or declare at least one unnamed bit-field | |
// | |
// For C this is an error even for a named struct, and is diagnosed elsewhere. | |
if (getLangOpts().CPlusPlus && Record->field_empty()) | |
Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); | |
// Mock up a declarator. | |
Declarator Dc(DS, DeclaratorContext::Member); | |
TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | |
assert(TInfo && "couldn't build declarator info for anonymous struct/union"); | |
// Create a declaration for this anonymous struct/union. | |
NamedDecl *Anon = nullptr; | |
if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { | |
Anon = FieldDecl::Create( | |
Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), | |
/*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, | |
/*BitWidth=*/nullptr, /*Mutable=*/false, | |
/*InitStyle=*/ICIS_NoInit); | |
Anon->setAccess(AS); | |
ProcessDeclAttributes(S, Anon, Dc); | |
if (getLangOpts().CPlusPlus) | |
FieldCollector->Add(cast<FieldDecl>(Anon)); | |
} else { | |
DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); | |
StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); | |
if (SCSpec == DeclSpec::SCS_mutable) { | |
// mutable can only appear on non-static class members, so it's always | |
// an error here | |
Diag(Record->getLocation(), diag::err_mutable_nonmember); | |
Invalid = true; | |
SC = SC_None; | |
} | |
assert(DS.getAttributes().empty() && "No attribute expected"); | |
Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), | |
Record->getLocation(), /*IdentifierInfo=*/nullptr, | |
Context.getTypeDeclType(Record), TInfo, SC); | |
// Default-initialize the implicit variable. This initialization will be | |
// trivial in almost all cases, except if a union member has an in-class | |
// initializer: | |
// union { int n = 0; }; | |
ActOnUninitializedDecl(Anon); | |
} | |
Anon->setImplicit(); | |
// Mark this as an anonymous struct/union type. | |
Record->setAnonymousStructOrUnion(true); | |
// Add the anonymous struct/union object to the current | |
// context. We'll be referencing this object when we refer to one of | |
// its members. | |
Owner->addDecl(Anon); | |
// Inject the members of the anonymous struct/union into the owning | |
// context and into the identifier resolver chain for name lookup | |
// purposes. | |
SmallVector<NamedDecl*, 2> Chain; | |
Chain.push_back(Anon); | |
if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) | |
Invalid = true; | |
if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { | |
if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { | |
MangleNumberingContext *MCtx; | |
Decl *ManglingContextDecl; | |
std::tie(MCtx, ManglingContextDecl) = | |
getCurrentMangleNumberContext(NewVD->getDeclContext()); | |
if (MCtx) { | |
Context.setManglingNumber( | |
NewVD, MCtx->getManglingNumber( | |
NewVD, getMSManglingNumber(getLangOpts(), S))); | |
Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); | |
} | |
} | |
} | |
if (Invalid) | |
Anon->setInvalidDecl(); | |
return Anon; | |
} | |
/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an | |
/// Microsoft C anonymous structure. | |
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx | |
/// Example: | |
/// | |
/// struct A { int a; }; | |
/// struct B { struct A; int b; }; | |
/// | |
/// void foo() { | |
/// B var; | |
/// var.a = 3; | |
/// } | |
/// | |
Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, | |
RecordDecl *Record) { | |
assert(Record && "expected a record!"); | |
// Mock up a declarator. | |
Declarator Dc(DS, DeclaratorContext::TypeName); | |
TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | |
assert(TInfo && "couldn't build declarator info for anonymous struct"); | |
auto *ParentDecl = cast<RecordDecl>(CurContext); | |
QualType RecTy = Context.getTypeDeclType(Record); | |
// Create a declaration for this anonymous struct. | |
NamedDecl *Anon = | |
FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), | |
/*IdentifierInfo=*/nullptr, RecTy, TInfo, | |
/*BitWidth=*/nullptr, /*Mutable=*/false, | |
/*InitStyle=*/ICIS_NoInit); | |
Anon->setImplicit(); | |
// Add the anonymous struct object to the current context. | |
CurContext->addDecl(Anon); | |
// Inject the members of the anonymous struct into the current | |
// context and into the identifier resolver chain for name lookup | |
// purposes. | |
SmallVector<NamedDecl*, 2> Chain; | |
Chain.push_back(Anon); | |
RecordDecl *RecordDef = Record->getDefinition(); | |
if (RequireCompleteSizedType(Anon->getLocation(), RecTy, | |
diag::err_field_incomplete_or_sizeless) || | |
InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, | |
AS_none, Chain)) { | |
Anon->setInvalidDecl(); | |
ParentDecl->setInvalidDecl(); | |
} | |
return Anon; | |
} | |
/// GetNameForDeclarator - Determine the full declaration name for the | |
/// given Declarator. | |
DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { | |
return GetNameFromUnqualifiedId(D.getName()); | |
} | |
/// Retrieves the declaration name from a parsed unqualified-id. | |
DeclarationNameInfo | |
Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { | |
DeclarationNameInfo NameInfo; | |
NameInfo.setLoc(Name.StartLocation); | |
switch (Name.getKind()) { | |
case UnqualifiedIdKind::IK_ImplicitSelfParam: | |
case UnqualifiedIdKind::IK_Identifier: | |
NameInfo.setName(Name.Identifier); | |
return NameInfo; | |
case UnqualifiedIdKind::IK_DeductionGuideName: { | |
// C++ [temp.deduct.guide]p3: | |
// The simple-template-id shall name a class template specialization. | |
// The template-name shall be the same identifier as the template-name | |
// of the simple-template-id. | |
// These together intend to imply that the template-name shall name a | |
// class template. | |
// FIXME: template<typename T> struct X {}; | |
// template<typename T> using Y = X<T>; | |
// Y(int) -> Y<int>; | |
// satisfies these rules but does not name a class template. | |
TemplateName TN = Name.TemplateName.get().get(); | |
auto *Template = TN.getAsTemplateDecl(); | |
if (!Template || !isa<ClassTemplateDecl>(Template)) { | |
Diag(Name.StartLocation, | |
diag::err_deduction_guide_name_not_class_template) | |
<< (int)getTemplateNameKindForDiagnostics(TN) << TN; | |
if (Template) | |
Diag(Template->getLocation(), diag::note_template_decl_here); | |
return DeclarationNameInfo(); | |
} | |
NameInfo.setName( | |
Context.DeclarationNames.getCXXDeductionGuideName(Template)); | |
return NameInfo; | |
} | |
case UnqualifiedIdKind::IK_OperatorFunctionId: | |
NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( | |
Name.OperatorFunctionId.Operator)); | |
NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc | |
= Name.OperatorFunctionId.SymbolLocations[0]; | |
NameInfo.getInfo().CXXOperatorName.EndOpNameLoc | |
= Name.EndLocation.getRawEncoding(); | |
return NameInfo; | |
case UnqualifiedIdKind::IK_LiteralOperatorId: | |
NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( | |
Name.Identifier)); | |
NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); | |
return NameInfo; | |
case UnqualifiedIdKind::IK_ConversionFunctionId: { | |
TypeSourceInfo *TInfo; | |
QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); | |
if (Ty.isNull()) | |
return DeclarationNameInfo(); | |
NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( | |
Context.getCanonicalType(Ty))); | |
NameInfo.setNamedTypeInfo(TInfo); | |
return NameInfo; | |
} | |
case UnqualifiedIdKind::IK_ConstructorName: { | |
TypeSourceInfo *TInfo; | |
QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); | |
if (Ty.isNull()) | |
return DeclarationNameInfo(); | |
NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | |
Context.getCanonicalType(Ty))); | |
NameInfo.setNamedTypeInfo(TInfo); | |
return NameInfo; | |
} | |
case UnqualifiedIdKind::IK_ConstructorTemplateId: { | |
// In well-formed code, we can only have a constructor | |
// template-id that refers to the current context, so go there | |
// to find the actual type being constructed. | |
CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); | |
if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) | |
return DeclarationNameInfo(); | |
// Determine the type of the class being constructed. | |
QualType CurClassType = Context.getTypeDeclType(CurClass); | |
// FIXME: Check two things: that the template-id names the same type as | |
// CurClassType, and that the template-id does not occur when the name | |
// was qualified. | |
NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | |
Context.getCanonicalType(CurClassType))); | |
// FIXME: should we retrieve TypeSourceInfo? | |
NameInfo.setNamedTypeInfo(nullptr); | |
return NameInfo; | |
} | |
case UnqualifiedIdKind::IK_DestructorName: { | |
TypeSourceInfo *TInfo; | |
QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); | |
if (Ty.isNull()) | |
return DeclarationNameInfo(); | |
NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( | |
Context.getCanonicalType(Ty))); | |
NameInfo.setNamedTypeInfo(TInfo); | |
return NameInfo; | |
} | |
case UnqualifiedIdKind::IK_TemplateId: { | |
TemplateName TName = Name.TemplateId->Template.get(); | |
SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; | |
return Context.getNameForTemplate(TName, TNameLoc); | |
} | |
} // switch (Name.getKind()) | |
llvm_unreachable("Unknown name kind"); | |
} | |
static QualType getCoreType(QualType Ty) { | |
do { | |
if (Ty->isPointerType() || Ty->isReferenceType()) | |
Ty = Ty->getPointeeType(); | |
else if (Ty->isArrayType()) | |
Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); | |
else | |
return Ty.withoutLocalFastQualifiers(); | |
} while (true); | |
} | |
/// hasSimilarParameters - Determine whether the C++ functions Declaration | |
/// and Definition have "nearly" matching parameters. This heuristic is | |
/// used to improve diagnostics in the case where an out-of-line function | |
/// definition doesn't match any declaration within the class or namespace. | |
/// Also sets Params to the list of indices to the parameters that differ | |
/// between the declaration and the definition. If hasSimilarParameters | |
/// returns true and Params is empty, then all of the parameters match. | |
static bool hasSimilarParameters(ASTContext &Context, | |
FunctionDecl *Declaration, | |
FunctionDecl *Definition, | |
SmallVectorImpl<unsigned> &Params) { | |
Params.clear(); | |
if (Declaration->param_size() != Definition->param_size()) | |
return false; | |
for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { | |
QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); | |
QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); | |
// The parameter types are identical | |
if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) | |
continue; | |
QualType DeclParamBaseTy = getCoreType(DeclParamTy); | |
QualType DefParamBaseTy = getCoreType(DefParamTy); | |
const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); | |
const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); | |
if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || | |
(DeclTyName && DeclTyName == DefTyName)) | |
Params.push_back(Idx); | |
else // The two parameters aren't even close | |
return false; | |
} | |
return true; | |
} | |
/// NeedsRebuildingInCurrentInstantiation - Checks whether the given | |
/// declarator needs to be rebuilt in the current instantiation. | |
/// Any bits of declarator which appear before the name are valid for | |
/// consideration here. That's specifically the type in the decl spec | |
/// and the base type in any member-pointer chunks. | |
static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, | |
DeclarationName Name) { | |
// The types we specifically need to rebuild are: | |
// - typenames, typeofs, and decltypes | |
// - types which will become injected class names | |
// Of course, we also need to rebuild any type referencing such a | |
// type. It's safest to just say "dependent", but we call out a | |
// few cases here. | |
DeclSpec &DS = D.getMutableDeclSpec(); | |
switch (DS.getTypeSpecType()) { | |
case DeclSpec::TST_typename: | |
case DeclSpec::TST_typeofType: | |
case DeclSpec::TST_underlyingType: | |
case DeclSpec::TST_atomic: { | |
// Grab the type from the parser. | |
TypeSourceInfo *TSI = nullptr; | |
QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); | |
if (T.isNull() || !T->isDependentType()) break; | |
// Make sure there's a type source info. This isn't really much | |
// of a waste; most dependent types should have type source info | |
// attached already. | |
if (!TSI) | |
TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); | |
// Rebuild the type in the current instantiation. | |
TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); | |
if (!TSI) return true; | |
// Store the new type back in the decl spec. | |
ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); | |
DS.UpdateTypeRep(LocType); | |
break; | |
} | |
case DeclSpec::TST_decltype: | |
case DeclSpec::TST_typeofExpr: { | |
Expr *E = DS.getRepAsExpr(); | |
ExprResult Result = S.RebuildExprInCurrentInstantiation(E); | |
if (Result.isInvalid()) return true; | |
DS.UpdateExprRep(Result.get()); | |
break; | |
} | |
default: | |
// Nothing to do for these decl specs. | |
break; | |
} | |
// It doesn't matter what order we do this in. | |
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | |
DeclaratorChunk &Chunk = D.getTypeObject(I); | |
// The only type information in the declarator which can come | |
// before the declaration name is the base type of a member | |
// pointer. | |
if (Chunk.Kind != DeclaratorChunk::MemberPointer) | |
continue; | |
// Rebuild the scope specifier in-place. | |
CXXScopeSpec &SS = Chunk.Mem.Scope(); | |
if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) | |
return true; | |
} | |
return false; | |
} | |
Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { | |
D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); | |
Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); | |
if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && | |
Dcl && Dcl->getDeclContext()->isFileContext()) | |
Dcl->setTopLevelDeclInObjCContainer(); | |
if (getLangOpts().OpenCL) | |
setCurrentOpenCLExtensionForDecl(Dcl); | |
return Dcl; | |
} | |
/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: | |
/// If T is the name of a class, then each of the following shall have a | |
/// name different from T: | |
/// - every static data member of class T; | |
/// - every member function of class T | |
/// - every member of class T that is itself a type; | |
/// \returns true if the declaration name violates these rules. | |
bool Sema::DiagnoseClassNameShadow(DeclContext *DC, | |
DeclarationNameInfo NameInfo) { | |
DeclarationName Name = NameInfo.getName(); | |
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); | |
while (Record && Record->isAnonymousStructOrUnion()) | |
Record = dyn_cast<CXXRecordDecl>(Record->getParent()); | |
if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { | |
Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; | |
return true; | |
} | |
return false; | |
} | |
/// Diagnose a declaration whose declarator-id has the given | |
/// nested-name-specifier. | |
/// | |
/// \param SS The nested-name-specifier of the declarator-id. | |
/// | |
/// \param DC The declaration context to which the nested-name-specifier | |
/// resolves. | |
/// | |
/// \param Name The name of the entity being declared. | |
/// | |
/// \param Loc The location of the name of the entity being declared. | |
/// | |
/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus | |
/// we're declaring an explicit / partial specialization / instantiation. | |
/// | |
/// \returns true if we cannot safely recover from this error, false otherwise. | |
bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, | |
DeclarationName Name, | |
SourceLocation Loc, bool IsTemplateId) { | |
DeclContext *Cur = CurContext; | |
while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) | |
Cur = Cur->getParent(); | |
// If the user provided a superfluous scope specifier that refers back to the | |
// class in which the entity is already declared, diagnose and ignore it. | |
// | |
// class X { | |
// void X::f(); | |
// }; | |
// | |
// Note, it was once ill-formed to give redundant qualification in all | |
// contexts, but that rule was removed by DR482. | |
if (Cur->Equals(DC)) { | |
if (Cur->isRecord()) { | |
Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification | |
: diag::err_member_extra_qualification) | |
<< Name << FixItHint::CreateRemoval(SS.getRange()); | |
SS.clear(); | |
} else { | |
Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; | |
} | |
return false; | |
} | |
// Check whether the qualifying scope encloses the scope of the original | |
// declaration. For a template-id, we perform the checks in | |
// CheckTemplateSpecializationScope. | |
if (!Cur->Encloses(DC) && !IsTemplateId) { | |
if (Cur->isRecord()) | |
Diag(Loc, diag::err_member_qualification) | |
<< Name << SS.getRange(); | |
else if (isa<TranslationUnitDecl>(DC)) | |
Diag(Loc, diag::err_invalid_declarator_global_scope) | |
<< Name << SS.getRange(); | |
else if (isa<FunctionDecl>(Cur)) | |
Diag(Loc, diag::err_invalid_declarator_in_function) | |
<< Name << SS.getRange(); | |
else if (isa<BlockDecl>(Cur)) | |
Diag(Loc, diag::err_invalid_declarator_in_block) | |
<< Name << SS.getRange(); | |
else | |
Diag(Loc, diag::err_invalid_declarator_scope) | |
<< Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); | |
return true; | |
} | |
if (Cur->isRecord()) { | |
// Cannot qualify members within a class. | |
Diag(Loc, diag::err_member_qualification) | |
<< Name << SS.getRange(); | |
SS.clear(); | |
// C++ constructors and destructors with incorrect scopes can break | |
// our AST invariants by having the wrong underlying types. If | |
// that's the case, then drop this declaration entirely. | |
if ((Name.getNameKind() == DeclarationName::CXXConstructorName || | |
Name.getNameKind() == DeclarationName::CXXDestructorName) && | |
!Context.hasSameType(Name.getCXXNameType(), | |
Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) | |
return true; | |
return false; | |
} | |
// C++11 [dcl.meaning]p1: | |
// [...] "The nested-name-specifier of the qualified declarator-id shall | |
// not begin with a decltype-specifer" | |
NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); | |
while (SpecLoc.getPrefix()) | |
SpecLoc = SpecLoc.getPrefix(); | |
if (dyn_cast_or_null<DecltypeType>( | |
SpecLoc.getNestedNameSpecifier()->getAsType())) | |
Diag(Loc, diag::err_decltype_in_declarator) | |
<< SpecLoc.getTypeLoc().getSourceRange(); | |
return false; | |
} | |
NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, | |
MultiTemplateParamsArg TemplateParamLists) { | |
// TODO: consider using NameInfo for diagnostic. | |
DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |
DeclarationName Name = NameInfo.getName(); | |
// All of these full declarators require an identifier. If it doesn't have | |
// one, the ParsedFreeStandingDeclSpec action should be used. | |
if (D.isDecompositionDeclarator()) { | |
return ActOnDecompositionDeclarator(S, D, TemplateParamLists); | |
} else if (!Name) { | |
if (!D.isInvalidType()) // Reject this if we think it is valid. | |
Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) | |
<< D.getDeclSpec().getSourceRange() << D.getSourceRange(); | |
return nullptr; | |
} else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) | |
return nullptr; | |
// The scope passed in may not be a decl scope. Zip up the scope tree until | |
// we find one that is. | |
while ((S->getFlags() & Scope::DeclScope) == 0 || | |
(S->getFlags() & Scope::TemplateParamScope) != 0) | |
S = S->getParent(); | |
DeclContext *DC = CurContext; | |
if (D.getCXXScopeSpec().isInvalid()) | |
D.setInvalidType(); | |
else if (D.getCXXScopeSpec().isSet()) { | |
if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), | |
UPPC_DeclarationQualifier)) | |
return nullptr; | |
bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); | |
DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); | |
if (!DC || isa<EnumDecl>(DC)) { | |
// If we could not compute the declaration context, it's because the | |
// declaration context is dependent but does not refer to a class, | |
// class template, or class template partial specialization. Complain | |
// and return early, to avoid the coming semantic disaster. | |
Diag(D.getIdentifierLoc(), | |
diag::err_template_qualified_declarator_no_match) | |
<< D.getCXXScopeSpec().getScopeRep() | |
<< D.getCXXScopeSpec().getRange(); | |
return nullptr; | |
} | |
bool IsDependentContext = DC->isDependentContext(); | |
if (!IsDependentContext && | |
RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) | |
return nullptr; | |
// If a class is incomplete, do not parse entities inside it. | |
if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { | |
Diag(D.getIdentifierLoc(), | |
diag::err_member_def_undefined_record) | |
<< Name << DC << D.getCXXScopeSpec().getRange(); | |
return nullptr; | |
} | |
if (!D.getDeclSpec().isFriendSpecified()) { | |
if (diagnoseQualifiedDeclaration( | |
D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), | |
D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { | |
if (DC->isRecord()) | |
return nullptr; | |
D.setInvalidType(); | |
} | |
} | |
// Check whether we need to rebuild the type of the given | |
// declaration in the current instantiation. | |
if (EnteringContext && IsDependentContext && | |
TemplateParamLists.size() != 0) { | |
ContextRAII SavedContext(*this, DC); | |
if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) | |
D.setInvalidType(); | |
} | |
} | |
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |
QualType R = TInfo->getType(); | |
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |
UPPC_DeclarationType)) | |
D.setInvalidType(); | |
LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |
forRedeclarationInCurContext()); | |
// See if this is a redefinition of a variable in the same scope. | |
if (!D.getCXXScopeSpec().isSet()) { | |
bool IsLinkageLookup = false; | |
bool CreateBuiltins = false; | |
// If the declaration we're planning to build will be a function | |
// or object with linkage, then look for another declaration with | |
// linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). | |
// | |
// If the declaration we're planning to build will be declared with | |
// external linkage in the translation unit, create any builtin with | |
// the same name. | |
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | |
/* Do nothing*/; | |
else if (CurContext->isFunctionOrMethod() && | |
(D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || | |
R->isFunctionType())) { | |
IsLinkageLookup = true; | |
CreateBuiltins = | |
CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); | |
} else if (CurContext->getRedeclContext()->isTranslationUnit() && | |
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | |
CreateBuiltins = true; | |
if (IsLinkageLookup) { | |
Previous.clear(LookupRedeclarationWithLinkage); | |
Previous.setRedeclarationKind(ForExternalRedeclaration); | |
} | |
LookupName(Previous, S, CreateBuiltins); | |
} else { // Something like "int foo::x;" | |
LookupQualifiedName(Previous, DC); | |
// C++ [dcl.meaning]p1: | |
// When the declarator-id is qualified, the declaration shall refer to a | |
// previously declared member of the class or namespace to which the | |
// qualifier refers (or, in the case of a namespace, of an element of the | |
// inline namespace set of that namespace (7.3.1)) or to a specialization | |
// thereof; [...] | |
// | |
// Note that we already checked the context above, and that we do not have | |
// enough information to make sure that Previous contains the declaration | |
// we want to match. For example, given: | |
// | |
// class X { | |
// void f(); | |
// void f(float); | |
// }; | |
// | |
// void X::f(int) { } // ill-formed | |
// | |
// In this case, Previous will point to the overload set | |
// containing the two f's declared in X, but neither of them | |
// matches. | |
// C++ [dcl.meaning]p1: | |
// [...] the member shall not merely have been introduced by a | |
// using-declaration in the scope of the class or namespace nominated by | |
// the nested-name-specifier of the declarator-id. | |
RemoveUsingDecls(Previous); | |
} | |
if (Previous.isSingleResult() && | |
Previous.getFoundDecl()->isTemplateParameter()) { | |
// Maybe we will complain about the shadowed template parameter. | |
if (!D.isInvalidType()) | |
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | |
Previous.getFoundDecl()); | |
// Just pretend that we didn't see the previous declaration. | |
Previous.clear(); | |
} | |
if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) | |
// Forget that the previous declaration is the injected-class-name. | |
Previous.clear(); | |
// In C++, the previous declaration we find might be a tag type | |
// (class or enum). In this case, the new declaration will hide the | |
// tag type. Note that this applies to functions, function templates, and | |
// variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. | |
if (Previous.isSingleTagDecl() && | |
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | |
(TemplateParamLists.size() == 0 || R->isFunctionType())) | |
Previous.clear(); | |
// Check that there are no default arguments other than in the parameters | |
// of a function declaration (C++ only). | |
if (getLangOpts().CPlusPlus) | |
CheckExtraCXXDefaultArguments(D); | |
NamedDecl *New; | |
bool AddToScope = true; | |
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { | |
if (TemplateParamLists.size()) { | |
Diag(D.getIdentifierLoc(), diag::err_template_typedef); | |
return nullptr; | |
} | |
New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); | |
} else if (R->isFunctionType()) { | |
New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, | |
TemplateParamLists, | |
AddToScope); | |
} else { | |
New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, | |
AddToScope); | |
} | |
if (!New) | |
return nullptr; | |
// If this has an identifier and is not a function template specialization, | |
// add it to the scope stack. | |
if (New->getDeclName() && AddToScope) | |
PushOnScopeChains(New, S); | |
if (isInOpenMPDeclareTargetContext()) | |
checkDeclIsAllowedInOpenMPTarget(nullptr, New); | |
return New; | |
} | |
/// Helper method to turn variable array types into constant array | |
/// types in certain situations which would otherwise be errors (for | |
/// GCC compatibility). | |
static QualType TryToFixInvalidVariablyModifiedType(QualType T, | |
ASTContext &Context, | |
bool &SizeIsNegative, | |
llvm::APSInt &Oversized) { | |
// This method tries to turn a variable array into a constant | |
// array even when the size isn't an ICE. This is necessary | |
// for compatibility with code that depends on gcc's buggy | |
// constant expression folding, like struct {char x[(int)(char*)2];} | |
SizeIsNegative = false; | |
Oversized = 0; | |
if (T->isDependentType()) | |
return QualType(); | |
QualifierCollector Qs; | |
const Type *Ty = Qs.strip(T); | |
if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { | |
QualType Pointee = PTy->getPointeeType(); | |
QualType FixedType = | |
TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, | |
Oversized); | |
if (FixedType.isNull()) return FixedType; | |
FixedType = Context.getPointerType(FixedType); | |
return Qs.apply(Context, FixedType); | |
} | |
if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { | |
QualType Inner = PTy->getInnerType(); | |
QualType FixedType = | |
TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, | |
Oversized); | |
if (FixedType.isNull()) return FixedType; | |
FixedType = Context.getParenType(FixedType); | |
return Qs.apply(Context, FixedType); | |
} | |
const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); | |
if (!VLATy) | |
return QualType(); | |
QualType ElemTy = VLATy->getElementType(); | |
if (ElemTy->isVariablyModifiedType()) { | |
ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context, | |
SizeIsNegative, Oversized); | |
if (ElemTy.isNull()) | |
return QualType(); | |
} | |
Expr::EvalResult Result; | |
if (!VLATy->getSizeExpr() || | |
!VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) | |
return QualType(); | |
llvm::APSInt Res = Result.Val.getInt(); | |
// Check whether the array size is negative. | |
if (Res.isSigned() && Res.isNegative()) { | |
SizeIsNegative = true; | |
return QualType(); | |
} | |
// Check whether the array is too large to be addressed. | |
unsigned ActiveSizeBits = | |
(!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() && | |
!ElemTy->isIncompleteType() && !ElemTy->isUndeducedType()) | |
? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res) | |
: Res.getActiveBits(); | |
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | |
Oversized = Res; | |
return QualType(); | |
} | |
return Context.getConstantArrayType(ElemTy, Res, VLATy->getSizeExpr(), | |
ArrayType::Normal, 0); | |
} | |
static void | |
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { | |
SrcTL = SrcTL.getUnqualifiedLoc(); | |
DstTL = DstTL.getUnqualifiedLoc(); | |
if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { | |
PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); | |
FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), | |
DstPTL.getPointeeLoc()); | |
DstPTL.setStarLoc(SrcPTL.getStarLoc()); | |
return; | |
} | |
if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { | |
ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); | |
FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), | |
DstPTL.getInnerLoc()); | |
DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); | |
DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); | |
return; | |
} | |
ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); | |
ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); | |
TypeLoc SrcElemTL = SrcATL.getElementLoc(); | |
TypeLoc DstElemTL = DstATL.getElementLoc(); | |
if (VariableArrayTypeLoc SrcElemATL = | |
SrcElemTL.getAs<VariableArrayTypeLoc>()) { | |
ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>(); | |
FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL); | |
} else { | |
DstElemTL.initializeFullCopy(SrcElemTL); | |
} | |
DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); | |
DstATL.setSizeExpr(SrcATL.getSizeExpr()); | |
DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); | |
} | |
/// Helper method to turn variable array types into constant array | |
/// types in certain situations which would otherwise be errors (for | |
/// GCC compatibility). | |
static TypeSourceInfo* | |
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, | |
ASTContext &Context, | |
bool &SizeIsNegative, | |
llvm::APSInt &Oversized) { | |
QualType FixedTy | |
= TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, | |
SizeIsNegative, Oversized); | |
if (FixedTy.isNull()) | |
return nullptr; | |
TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); | |
FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), | |
FixedTInfo->getTypeLoc()); | |
return FixedTInfo; | |
} | |
/// Register the given locally-scoped extern "C" declaration so | |
/// that it can be found later for redeclarations. We include any extern "C" | |
/// declaration that is not visible in the translation unit here, not just | |
/// function-scope declarations. | |
void | |
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { | |
if (!getLangOpts().CPlusPlus && | |
ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) | |
// Don't need to track declarations in the TU in C. | |
return; | |
// Note that we have a locally-scoped external with this name. | |
Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); | |
} | |
NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { | |
// FIXME: We can have multiple results via __attribute__((overloadable)). | |
auto Result = Context.getExternCContextDecl()->lookup(Name); | |
return Result.empty() ? nullptr : *Result.begin(); | |
} | |
/// Diagnose function specifiers on a declaration of an identifier that | |
/// does not identify a function. | |
void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { | |
// FIXME: We should probably indicate the identifier in question to avoid | |
// confusion for constructs like "virtual int a(), b;" | |
if (DS.isVirtualSpecified()) | |
Diag(DS.getVirtualSpecLoc(), | |
diag::err_virtual_non_function); | |
if (DS.hasExplicitSpecifier()) | |
Diag(DS.getExplicitSpecLoc(), | |
diag::err_explicit_non_function); | |
if (DS.isNoreturnSpecified()) | |
Diag(DS.getNoreturnSpecLoc(), | |
diag::err_noreturn_non_function); | |
} | |
NamedDecl* | |
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, | |
TypeSourceInfo *TInfo, LookupResult &Previous) { | |
// Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). | |
if (D.getCXXScopeSpec().isSet()) { | |
Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) | |
<< D.getCXXScopeSpec().getRange(); | |
D.setInvalidType(); | |
// Pretend we didn't see the scope specifier. | |
DC = CurContext; | |
Previous.clear(); | |
} | |
DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |
if (D.getDeclSpec().isInlineSpecified()) | |
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |
<< getLangOpts().CPlusPlus17; | |
if (D.getDeclSpec().hasConstexprSpecifier()) | |
Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) | |
<< 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); | |
if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { | |
if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) | |
Diag(D.getName().StartLocation, | |
diag::err_deduction_guide_invalid_specifier) | |
<< "typedef"; | |
else | |
Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) | |
<< D.getName().getSourceRange(); | |
return nullptr; | |
} | |
TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); | |
if (!NewTD) return nullptr; | |
// Handle attributes prior to checking for duplicates in MergeVarDecl | |
ProcessDeclAttributes(S, NewTD, D); | |
CheckTypedefForVariablyModifiedType(S, NewTD); | |
bool Redeclaration = D.isRedeclaration(); | |
NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); | |
D.setRedeclaration(Redeclaration); | |
return ND; | |
} | |
void | |
Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { | |
// C99 6.7.7p2: If a typedef name specifies a variably modified type | |
// then it shall have block scope. | |
// Note that variably modified types must be fixed before merging the decl so | |
// that redeclarations will match. | |
TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); | |
QualType T = TInfo->getType(); | |
if (T->isVariablyModifiedType()) { | |
setFunctionHasBranchProtectedScope(); | |
if (S->getFnParent() == nullptr) { | |
bool SizeIsNegative; | |
llvm::APSInt Oversized; | |
TypeSourceInfo *FixedTInfo = | |
TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, | |
SizeIsNegative, | |
Oversized); | |
if (FixedTInfo) { | |
Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant); | |
NewTD->setTypeSourceInfo(FixedTInfo); | |
} else { | |
if (SizeIsNegative) | |
Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); | |
else if (T->isVariableArrayType()) | |
Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); | |
else if (Oversized.getBoolValue()) | |
Diag(NewTD->getLocation(), diag::err_array_too_large) | |
<< Oversized.toString(10); | |
else | |
Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); | |
NewTD->setInvalidDecl(); | |
} | |
} | |
} | |
} | |
/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which | |
/// declares a typedef-name, either using the 'typedef' type specifier or via | |
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. | |
NamedDecl* | |
Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, | |
LookupResult &Previous, bool &Redeclaration) { | |
// Find the shadowed declaration before filtering for scope. | |
NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); | |
// Merge the decl with the existing one if appropriate. If the decl is | |
// in an outer scope, it isn't the same thing. | |
FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, | |
/*AllowInlineNamespace*/false); | |
filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); | |
if (!Previous.empty()) { | |
Redeclaration = true; | |
MergeTypedefNameDecl(S, NewTD, Previous); | |
} else { | |
inferGslPointerAttribute(NewTD); | |
} | |
if (ShadowedDecl && !Redeclaration) | |
CheckShadow(NewTD, ShadowedDecl, Previous); | |
// If this is the C FILE type, notify the AST context. | |
if (IdentifierInfo *II = NewTD->getIdentifier()) | |
if (!NewTD->isInvalidDecl() && | |
NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | |
if (II->isStr("FILE")) | |
Context.setFILEDecl(NewTD); | |
else if (II->isStr("jmp_buf")) | |
Context.setjmp_bufDecl(NewTD); | |
else if (II->isStr("sigjmp_buf")) | |
Context.setsigjmp_bufDecl(NewTD); | |
else if (II->isStr("ucontext_t")) | |
Context.setucontext_tDecl(NewTD); | |
} | |
return NewTD; | |
} | |
/// Determines whether the given declaration is an out-of-scope | |
/// previous declaration. | |
/// | |
/// This routine should be invoked when name lookup has found a | |
/// previous declaration (PrevDecl) that is not in the scope where a | |
/// new declaration by the same name is being introduced. If the new | |
/// declaration occurs in a local scope, previous declarations with | |
/// linkage may still be considered previous declarations (C99 | |
/// 6.2.2p4-5, C++ [basic.link]p6). | |
/// | |
/// \param PrevDecl the previous declaration found by name | |
/// lookup | |
/// | |
/// \param DC the context in which the new declaration is being | |
/// declared. | |
/// | |
/// \returns true if PrevDecl is an out-of-scope previous declaration | |
/// for a new delcaration with the same name. | |
static bool | |
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, | |
ASTContext &Context) { | |
if (!PrevDecl) | |
return false; | |
if (!PrevDecl->hasLinkage()) | |
return false; | |
if (Context.getLangOpts().CPlusPlus) { | |
// C++ [basic.link]p6: | |
// If there is a visible declaration of an entity with linkage | |
// having the same name and type, ignoring entities declared | |
// outside the innermost enclosing namespace scope, the block | |
// scope declaration declares that same entity and receives the | |
// linkage of the previous declaration. | |
DeclContext *OuterContext = DC->getRedeclContext(); | |
if (!OuterContext->isFunctionOrMethod()) | |
// This rule only applies to block-scope declarations. | |
return false; | |
DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); | |
if (PrevOuterContext->isRecord()) | |
// We found a member function: ignore it. | |
return false; | |
// Find the innermost enclosing namespace for the new and | |
// previous declarations. | |
OuterContext = OuterContext->getEnclosingNamespaceContext(); | |
PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); | |
// The previous declaration is in a different namespace, so it | |
// isn't the same function. | |
if (!OuterContext->Equals(PrevOuterContext)) | |
return false; | |
} | |
return true; | |
} | |
static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { | |
CXXScopeSpec &SS = D.getCXXScopeSpec(); | |
if (!SS.isSet()) return; | |
DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); | |
} | |
bool Sema::inferObjCARCLifetime(ValueDecl *decl) { | |
QualType type = decl->getType(); | |
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); | |
if (lifetime == Qualifiers::OCL_Autoreleasing) { | |
// Various kinds of declaration aren't allowed to be __autoreleasing. | |
unsigned kind = -1U; | |
if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | |
if (var->hasAttr<BlocksAttr>()) | |
kind = 0; // __block | |
else if (!var->hasLocalStorage()) | |
kind = 1; // global | |
} else if (isa<ObjCIvarDecl>(decl)) { | |
kind = 3; // ivar | |
} else if (isa<FieldDecl>(decl)) { | |
kind = 2; // field | |
} | |
if (kind != -1U) { | |
Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) | |
<< kind; | |
} | |
} else if (lifetime == Qualifiers::OCL_None) { | |
// Try to infer lifetime. | |
if (!type->isObjCLifetimeType()) | |
return false; | |
lifetime = type->getObjCARCImplicitLifetime(); | |
type = Context.getLifetimeQualifiedType(type, lifetime); | |
decl->setType(type); | |
} | |
if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | |
// Thread-local variables cannot have lifetime. | |
if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && | |
var->getTLSKind()) { | |
Diag(var->getLocation(), diag::err_arc_thread_ownership) | |
<< var->getType(); | |
return true; | |
} | |
} | |
return false; | |
} | |
void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { | |
if (Decl->getType().hasAddressSpace()) | |
return; | |
if (Decl->getType()->isDependentType()) | |
return; | |
if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { | |
QualType Type = Var->getType(); | |
if (Type->isSamplerT() || Type->isVoidType()) | |
return; | |
LangAS ImplAS = LangAS::opencl_private; | |
if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) && | |
Var->hasGlobalStorage()) | |
ImplAS = LangAS::opencl_global; | |
// If the original type from a decayed type is an array type and that array | |
// type has no address space yet, deduce it now. | |
if (auto DT = dyn_cast<DecayedType>(Type)) { | |
auto OrigTy = DT->getOriginalType(); | |
if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { | |
// Add the address space to the original array type and then propagate | |
// that to the element type through `getAsArrayType`. | |
OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); | |
OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); | |
// Re-generate the decayed type. | |
Type = Context.getDecayedType(OrigTy); | |
} | |
} | |
Type = Context.getAddrSpaceQualType(Type, ImplAS); | |
// Apply any qualifiers (including address space) from the array type to | |
// the element type. This implements C99 6.7.3p8: "If the specification of | |
// an array type includes any type qualifiers, the element type is so | |
// qualified, not the array type." | |
if (Type->isArrayType()) | |
Type = QualType(Context.getAsArrayType(Type), 0); | |
Decl->setType(Type); | |
} | |
} | |
static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { | |
// Ensure that an auto decl is deduced otherwise the checks below might cache | |
// the wrong linkage. | |
assert(S.ParsingInitForAutoVars.count(&ND) == 0); | |
// 'weak' only applies to declarations with external linkage. | |
if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { | |
if (!ND.isExternallyVisible()) { | |
S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); | |
ND.dropAttr<WeakAttr>(); | |
} | |
} | |
if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { | |
if (ND.isExternallyVisible()) { | |
S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); | |
ND.dropAttr<WeakRefAttr>(); | |
ND.dropAttr<AliasAttr>(); | |
} | |
} | |
if (auto *VD = dyn_cast<VarDecl>(&ND)) { | |
if (VD->hasInit()) { | |
if (const auto *Attr = VD->getAttr<AliasAttr>()) { | |
assert(VD->isThisDeclarationADefinition() && | |
!VD->isExternallyVisible() && "Broken AliasAttr handled late!"); | |
S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; | |
VD->dropAttr<AliasAttr>(); | |
} | |
} | |
} | |
// 'selectany' only applies to externally visible variable declarations. | |
// It does not apply to functions. | |
if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { | |
if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { | |
S.Diag(Attr->getLocation(), | |
diag::err_attribute_selectany_non_extern_data); | |
ND.dropAttr<SelectAnyAttr>(); | |
} | |
} | |
if (const InheritableAttr *Attr = getDLLAttr(&ND)) { | |
auto *VD = dyn_cast<VarDecl>(&ND); | |
bool IsAnonymousNS = false; | |
bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); | |
if (VD) { | |
const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); | |
while (NS && !IsAnonymousNS) { | |
IsAnonymousNS = NS->isAnonymousNamespace(); | |
NS = dyn_cast<NamespaceDecl>(NS->getParent()); | |
} | |
} | |
// dll attributes require external linkage. Static locals may have external | |
// linkage but still cannot be explicitly imported or exported. | |
// In Microsoft mode, a variable defined in anonymous namespace must have | |
// external linkage in order to be exported. | |
bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; | |
if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || | |
(!AnonNSInMicrosoftMode && | |
(!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { | |
S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) | |
<< &ND << Attr; | |
ND.setInvalidDecl(); | |
} | |
} | |
// Virtual functions cannot be marked as 'notail'. | |
if (auto *Attr = ND.getAttr<NotTailCalledAttr>()) | |
if (auto *MD = dyn_cast<CXXMethodDecl>(&ND)) | |
if (MD->isVirtual()) { | |
S.Diag(ND.getLocation(), | |
diag::err_invalid_attribute_on_virtual_function) | |
<< Attr; | |
ND.dropAttr<NotTailCalledAttr>(); | |
} | |
// Check the attributes on the function type, if any. | |
if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { | |
// Don't declare this variable in the second operand of the for-statement; | |
// GCC miscompiles that by ending its lifetime before evaluating the | |
// third operand. See gcc.gnu.org/PR86769. | |
AttributedTypeLoc ATL; | |
for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); | |
(ATL = TL.getAsAdjusted<AttributedTypeLoc>()); | |
TL = ATL.getModifiedLoc()) { | |
// The [[lifetimebound]] attribute can be applied to the implicit object | |
// parameter of a non-static member function (other than a ctor or dtor) | |
// by applying it to the function type. | |
if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { | |
const auto *MD = dyn_cast<CXXMethodDecl>(FD); | |
if (!MD || MD->isStatic()) { | |
S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) | |
<< !MD << A->getRange(); | |
} else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { | |
S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) | |
<< isa<CXXDestructorDecl>(MD) << A->getRange(); | |
} | |
} | |
} | |
} | |
} | |
static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, | |
NamedDecl *NewDecl, | |
bool IsSpecialization, | |
bool IsDefinition) { | |
if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) | |
return; | |
bool IsTemplate = false; | |
if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { | |
OldDecl = OldTD->getTemplatedDecl(); | |
IsTemplate = true; | |
if (!IsSpecialization) | |
IsDefinition = false; | |
} | |
if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { | |
NewDecl = NewTD->getTemplatedDecl(); | |
IsTemplate = true; | |
} | |
if (!OldDecl || !NewDecl) | |
return; | |
const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); | |
const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); | |
const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); | |
const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); | |
// dllimport and dllexport are inheritable attributes so we have to exclude | |
// inherited attribute instances. | |
bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || | |
(NewExportAttr && !NewExportAttr->isInherited()); | |
// A redeclaration is not allowed to add a dllimport or dllexport attribute, | |
// the only exception being explicit specializations. | |
// Implicitly generated declarations are also excluded for now because there | |
// is no other way to switch these to use dllimport or dllexport. | |
bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; | |
if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { | |
// Allow with a warning for free functions and global variables. | |
bool JustWarn = false; | |
if (!OldDecl->isCXXClassMember()) { | |
auto *VD = dyn_cast<VarDecl>(OldDecl); | |
if (VD && !VD->getDescribedVarTemplate()) | |
JustWarn = true; | |
auto *FD = dyn_cast<FunctionDecl>(OldDecl); | |
if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) | |
JustWarn = true; | |
} | |
// We cannot change a declaration that's been used because IR has already | |
// been emitted. Dllimported functions will still work though (modulo | |
// address equality) as they can use the thunk. | |
if (OldDecl->isUsed()) | |
if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) | |
JustWarn = false; | |
unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration | |
: diag::err_attribute_dll_redeclaration; | |
S.Diag(NewDecl->getLocation(), DiagID) | |
<< NewDecl | |
<< (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); | |
S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | |
if (!JustWarn) { | |
NewDecl->setInvalidDecl(); | |
return; | |
} | |
} | |
// A redeclaration is not allowed to drop a dllimport attribute, the only | |
// exceptions being inline function definitions (except for function | |
// templates), local extern declarations, qualified friend declarations or | |
// special MSVC extension: in the last case, the declaration is treated as if | |
// it were marked dllexport. | |
bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; | |
bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols(); | |
if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { | |
// Ignore static data because out-of-line definitions are diagnosed | |
// separately. | |
IsStaticDataMember = VD->isStaticDataMember(); | |
IsDefinition = VD->isThisDeclarationADefinition(S.Context) != | |
VarDecl::DeclarationOnly; | |
} else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { | |
IsInline = FD->isInlined(); | |
IsQualifiedFriend = FD->getQualifier() && | |
FD->getFriendObjectKind() == Decl::FOK_Declared; | |
} | |
if (OldImportAttr && !HasNewAttr && | |
(!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember && | |
!NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { | |
if (IsMicrosoftABI && IsDefinition) { | |
S.Diag(NewDecl->getLocation(), | |
diag::warn_redeclaration_without_import_attribute) | |
<< NewDecl; | |
S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | |
NewDecl->dropAttr<DLLImportAttr>(); | |
NewDecl->addAttr( | |
DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange())); | |
} else { | |
S.Diag(NewDecl->getLocation(), | |
diag::warn_redeclaration_without_attribute_prev_attribute_ignored) | |
<< NewDecl << OldImportAttr; | |
S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | |
S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); | |
OldDecl->dropAttr<DLLImportAttr>(); | |
NewDecl->dropAttr<DLLImportAttr>(); | |
} | |
} else if (IsInline && OldImportAttr && !IsMicrosoftABI) { | |
// In MinGW, seeing a function declared inline drops the dllimport | |
// attribute. | |
OldDecl->dropAttr<DLLImportAttr>(); | |
NewDecl->dropAttr<DLLImportAttr>(); | |
S.Diag(NewDecl->getLocation(), | |
diag::warn_dllimport_dropped_from_inline_function) | |
<< NewDecl << OldImportAttr; | |
} | |
// A specialization of a class template member function is processed here | |
// since it's a redeclaration. If the parent class is dllexport, the | |
// specialization inherits that attribute. This doesn't happen automatically | |
// since the parent class isn't instantiated until later. | |
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { | |
if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && | |
!NewImportAttr && !NewExportAttr) { | |
if (const DLLExportAttr *ParentExportAttr = | |
MD->getParent()->getAttr<DLLExportAttr>()) { | |
DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); | |
NewAttr->setInherited(true); | |
NewDecl->addAttr(NewAttr); | |
} | |
} | |
} | |
} | |
/// Given that we are within the definition of the given function, | |
/// will that definition behave like C99's 'inline', where the | |
/// definition is discarded except for optimization purposes? | |
static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { | |
// Try to avoid calling GetGVALinkageForFunction. | |
// All cases of this require the 'inline' keyword. | |
if (!FD->isInlined()) return false; | |
// This is only possible in C++ with the gnu_inline attribute. | |
if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) | |
return false; | |
// Okay, go ahead and call the relatively-more-expensive function. | |
return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; | |
} | |
/// Determine whether a variable is extern "C" prior to attaching | |
/// an initializer. We can't just call isExternC() here, because that | |
/// will also compute and cache whether the declaration is externally | |
/// visible, which might change when we attach the initializer. | |
/// | |
/// This can only be used if the declaration is known to not be a | |
/// redeclaration of an internal linkage declaration. | |
/// | |
/// For instance: | |
/// | |
/// auto x = []{}; | |
/// | |
/// Attaching the initializer here makes this declaration not externally | |
/// visible, because its type has internal linkage. | |
/// | |
/// FIXME: This is a hack. | |
template<typename T> | |
static bool isIncompleteDeclExternC(Sema &S, const T *D) { | |
if (S.getLangOpts().CPlusPlus) { | |
// In C++, the overloadable attribute negates the effects of extern "C". | |
if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) | |
return false; | |
// So do CUDA's host/device attributes. | |
if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || | |
D->template hasAttr<CUDAHostAttr>())) | |
return false; | |
} | |
return D->isExternC(); | |
} | |
static bool shouldConsiderLinkage(const VarDecl *VD) { | |
const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); | |
if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || | |
isa<OMPDeclareMapperDecl>(DC)) | |
return VD->hasExternalStorage(); | |
if (DC->isFileContext()) | |
return true; | |
if (DC->isRecord()) | |
return false; | |
if (isa<RequiresExprBodyDecl>(DC)) | |
return false; | |
llvm_unreachable("Unexpected context"); | |
} | |
static bool shouldConsiderLinkage(const FunctionDecl *FD) { | |
const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); | |
if (DC->isFileContext() || DC->isFunctionOrMethod() || | |
isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) | |
return true; | |
if (DC->isRecord()) | |
return false; | |
llvm_unreachable("Unexpected context"); | |
} | |
static bool hasParsedAttr(Scope *S, const Declarator &PD, | |
ParsedAttr::Kind Kind) { | |
// Check decl attributes on the DeclSpec. | |
if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) | |
return true; | |
// Walk the declarator structure, checking decl attributes that were in a type | |
// position to the decl itself. | |
for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { | |
if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) | |
return true; | |
} | |
// Finally, check attributes on the decl itself. | |
return PD.getAttributes().hasAttribute(Kind); | |
} | |
/// Adjust the \c DeclContext for a function or variable that might be a | |
/// function-local external declaration. | |
bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { | |
if (!DC->isFunctionOrMethod()) | |
return false; | |
// If this is a local extern function or variable declared within a function | |
// template, don't add it into the enclosing namespace scope until it is | |
// instantiated; it might have a dependent type right now. | |
if (DC->isDependentContext()) | |
return true; | |
// C++11 [basic.link]p7: | |
// When a block scope declaration of an entity with linkage is not found to | |
// refer to some other declaration, then that entity is a member of the | |
// innermost enclosing namespace. | |
// | |
// Per C++11 [namespace.def]p6, the innermost enclosing namespace is a | |
// semantically-enclosing namespace, not a lexically-enclosing one. | |
while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) | |
DC = DC->getParent(); | |
return true; | |
} | |
/// Returns true if given declaration has external C language linkage. | |
static bool isDeclExternC(const Decl *D) { | |
if (const auto *FD = dyn_cast<FunctionDecl>(D)) | |
return FD->isExternC(); | |
if (const auto *VD = dyn_cast<VarDecl>(D)) | |
return VD->isExternC(); | |
llvm_unreachable("Unknown type of decl!"); | |
} | |
/// Returns true if there hasn't been any invalid type diagnosed. | |
static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D, | |
DeclContext *DC, QualType R) { | |
// OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. | |
// OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function | |
// argument. | |
if (R->isImageType() || R->isPipeType()) { | |
Se.Diag(D.getIdentifierLoc(), | |
diag::err_opencl_type_can_only_be_used_as_function_parameter) | |
<< R; | |
D.setInvalidType(); | |
return false; | |
} | |
// OpenCL v1.2 s6.9.r: | |
// The event type cannot be used to declare a program scope variable. | |
// OpenCL v2.0 s6.9.q: | |
// The clk_event_t and reserve_id_t types cannot be declared in program | |
// scope. | |
if (NULL == S->getParent()) { | |
if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { | |
Se.Diag(D.getIdentifierLoc(), | |
diag::err_invalid_type_for_program_scope_var) | |
<< R; | |
D.setInvalidType(); | |
return false; | |
} | |
} | |
// OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. | |
QualType NR = R; | |
while (NR->isPointerType()) { | |
if (NR->isFunctionPointerType()) { | |
Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer); | |
D.setInvalidType(); | |
return false; | |
} | |
NR = NR->getPointeeType(); | |
} | |
if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) { | |
// OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and | |
// half array type (unless the cl_khr_fp16 extension is enabled). | |
if (Se.Context.getBaseElementType(R)->isHalfType()) { | |
Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; | |
D.setInvalidType(); | |
return false; | |
} | |
} | |
// OpenCL v1.2 s6.9.r: | |
// The event type cannot be used with the __local, __constant and __global | |
// address space qualifiers. | |
if (R->isEventT()) { | |
if (R.getAddressSpace() != LangAS::opencl_private) { | |
Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual); | |
D.setInvalidType(); | |
return false; | |
} | |
} | |
// C++ for OpenCL does not allow the thread_local storage qualifier. | |
// OpenCL C does not support thread_local either, and | |
// also reject all other thread storage class specifiers. | |
DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); | |
if (TSC != TSCS_unspecified) { | |
bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus; | |
Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |
diag::err_opencl_unknown_type_specifier) | |
<< IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString() | |
<< DeclSpec::getSpecifierName(TSC) << 1; | |
D.setInvalidType(); | |
return false; | |
} | |
if (R->isSamplerT()) { | |
// OpenCL v1.2 s6.9.b p4: | |
// The sampler type cannot be used with the __local and __global address | |
// space qualifiers. | |
if (R.getAddressSpace() == LangAS::opencl_local || | |
R.getAddressSpace() == LangAS::opencl_global) { | |
Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); | |
D.setInvalidType(); | |
} | |
// OpenCL v1.2 s6.12.14.1: | |
// A global sampler must be declared with either the constant address | |
// space qualifier or with the const qualifier. | |
if (DC->isTranslationUnit() && | |
!(R.getAddressSpace() == LangAS::opencl_constant || | |
R.isConstQualified())) { | |
Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler); | |
D.setInvalidType(); | |
} | |
if (D.isInvalidType()) | |
return false; | |
} | |
return true; | |
} | |
NamedDecl *Sema::ActOnVariableDeclarator( | |
Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, | |
LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, | |
bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { | |
QualType R = TInfo->getType(); | |
DeclarationName Name = GetNameForDeclarator(D).getName(); | |
IdentifierInfo *II = Name.getAsIdentifierInfo(); | |
if (D.isDecompositionDeclarator()) { | |
// Take the name of the first declarator as our name for diagnostic | |
// purposes. | |
auto &Decomp = D.getDecompositionDeclarator(); | |
if (!Decomp.bindings().empty()) { | |
II = Decomp.bindings()[0].Name; | |
Name = II; | |
} | |
} else if (!II) { | |
Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; | |
return nullptr; | |
} | |
DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); | |
StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); | |
// dllimport globals without explicit storage class are treated as extern. We | |
// have to change the storage class this early to get the right DeclContext. | |
if (SC == SC_None && !DC->isRecord() && | |
hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && | |
!hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) | |
SC = SC_Extern; | |
DeclContext *OriginalDC = DC; | |
bool IsLocalExternDecl = SC == SC_Extern && | |
adjustContextForLocalExternDecl(DC); | |
if (SCSpec == DeclSpec::SCS_mutable) { | |
// mutable can only appear on non-static class members, so it's always | |
// an error here | |
Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); | |
D.setInvalidType(); | |
SC = SC_None; | |
} | |
if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && | |
!D.getAsmLabel() && !getSourceManager().isInSystemMacro( | |
D.getDeclSpec().getStorageClassSpecLoc())) { | |
// In C++11, the 'register' storage class specifier is deprecated. | |
// Suppress the warning in system macros, it's used in macros in some | |
// popular C system headers, such as in glibc's htonl() macro. | |
Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class | |
: diag::warn_deprecated_register) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |
} | |
DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |
if (!DC->isRecord() && S->getFnParent() == nullptr) { | |
// C99 6.9p2: The storage-class specifiers auto and register shall not | |
// appear in the declaration specifiers in an external declaration. | |
// Global Register+Asm is a GNU extension we support. | |
if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { | |
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); | |
D.setInvalidType(); | |
} | |
} | |
bool IsMemberSpecialization = false; | |
bool IsVariableTemplateSpecialization = false; | |
bool IsPartialSpecialization = false; | |
bool IsVariableTemplate = false; | |
VarDecl *NewVD = nullptr; | |
VarTemplateDecl *NewTemplate = nullptr; | |
TemplateParameterList *TemplateParams = nullptr; | |
if (!getLangOpts().CPlusPlus) { | |
NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), | |
II, R, TInfo, SC); | |
if (R->getContainedDeducedType()) | |
ParsingInitForAutoVars.insert(NewVD); | |
if (D.isInvalidType()) | |
NewVD->setInvalidDecl(); | |
if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && | |
NewVD->hasLocalStorage()) | |
checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), | |
NTCUC_AutoVar, NTCUK_Destruct); | |
} else { | |
bool Invalid = false; | |
if (DC->isRecord() && !CurContext->isRecord()) { | |
// This is an out-of-line definition of a static data member. | |
switch (SC) { | |
case SC_None: | |
break; | |
case SC_Static: | |
Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
diag::err_static_out_of_line) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |
break; | |
case SC_Auto: | |
case SC_Register: | |
case SC_Extern: | |
// [dcl.stc] p2: The auto or register specifiers shall be applied only | |
// to names of variables declared in a block or to function parameters. | |
// [dcl.stc] p6: The extern specifier cannot be used in the declaration | |
// of class members | |
Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
diag::err_storage_class_for_static_member) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |
break; | |
case SC_PrivateExtern: | |
llvm_unreachable("C storage class in c++!"); | |
} | |
} | |
if (SC == SC_Static && CurContext->isRecord()) { | |
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { | |
// Walk up the enclosing DeclContexts to check for any that are | |
// incompatible with static data members. | |
const DeclContext *FunctionOrMethod = nullptr; | |
const CXXRecordDecl *AnonStruct = nullptr; | |
for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { | |
if (Ctxt->isFunctionOrMethod()) { | |
FunctionOrMethod = Ctxt; | |
break; | |
} | |
const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt); | |
if (ParentDecl && !ParentDecl->getDeclName()) { | |
AnonStruct = ParentDecl; | |
break; | |
} | |
} | |
if (FunctionOrMethod) { | |
// C++ [class.static.data]p5: A local class shall not have static data | |
// members. | |
Diag(D.getIdentifierLoc(), | |
diag::err_static_data_member_not_allowed_in_local_class) | |
<< Name << RD->getDeclName() << RD->getTagKind(); | |
} else if (AnonStruct) { | |
// C++ [class.static.data]p4: Unnamed classes and classes contained | |
// directly or indirectly within unnamed classes shall not contain | |
// static data members. | |
Diag(D.getIdentifierLoc(), | |
diag::err_static_data_member_not_allowed_in_anon_struct) | |
<< Name << AnonStruct->getTagKind(); | |
Invalid = true; | |
} else if (RD->isUnion()) { | |
// C++98 [class.union]p1: If a union contains a static data member, | |
// the program is ill-formed. C++11 drops this restriction. | |
Diag(D.getIdentifierLoc(), | |
getLangOpts().CPlusPlus11 | |
? diag::warn_cxx98_compat_static_data_member_in_union | |
: diag::ext_static_data_member_in_union) << Name; | |
} | |
} | |
} | |
// Match up the template parameter lists with the scope specifier, then | |
// determine whether we have a template or a template specialization. | |
bool InvalidScope = false; | |
TemplateParams = MatchTemplateParametersToScopeSpecifier( | |
D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), | |
D.getCXXScopeSpec(), | |
D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId | |
? D.getName().TemplateId | |
: nullptr, | |
TemplateParamLists, | |
/*never a friend*/ false, IsMemberSpecialization, InvalidScope); | |
Invalid |= InvalidScope; | |
if (TemplateParams) { | |
if (!TemplateParams->size() && | |
D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | |
// There is an extraneous 'template<>' for this variable. Complain | |
// about it, but allow the declaration of the variable. | |
Diag(TemplateParams->getTemplateLoc(), | |
diag::err_template_variable_noparams) | |
<< II | |
<< SourceRange(TemplateParams->getTemplateLoc(), | |
TemplateParams->getRAngleLoc()); | |
TemplateParams = nullptr; | |
} else { | |
// Check that we can declare a template here. | |
if (CheckTemplateDeclScope(S, TemplateParams)) | |
return nullptr; | |
if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | |
// This is an explicit specialization or a partial specialization. | |
IsVariableTemplateSpecialization = true; | |
IsPartialSpecialization = TemplateParams->size() > 0; | |
} else { // if (TemplateParams->size() > 0) | |
// This is a template declaration. | |
IsVariableTemplate = true; | |
// Only C++1y supports variable templates (N3651). | |
Diag(D.getIdentifierLoc(), | |
getLangOpts().CPlusPlus14 | |
? diag::warn_cxx11_compat_variable_template | |
: diag::ext_variable_template); | |
} | |
} | |
} else { | |
// Check that we can declare a member specialization here. | |
if (!TemplateParamLists.empty() && IsMemberSpecialization && | |
CheckTemplateDeclScope(S, TemplateParamLists.back())) | |
return nullptr; | |
assert((Invalid || | |
D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && | |
"should have a 'template<>' for this decl"); | |
} | |
if (IsVariableTemplateSpecialization) { | |
SourceLocation TemplateKWLoc = | |
TemplateParamLists.size() > 0 | |
? TemplateParamLists[0]->getTemplateLoc() | |
: SourceLocation(); | |
DeclResult Res = ActOnVarTemplateSpecialization( | |
S, D, TInfo, TemplateKWLoc, TemplateParams, SC, | |
IsPartialSpecialization); | |
if (Res.isInvalid()) | |
return nullptr; | |
NewVD = cast<VarDecl>(Res.get()); | |
AddToScope = false; | |
} else if (D.isDecompositionDeclarator()) { | |
NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), | |
D.getIdentifierLoc(), R, TInfo, SC, | |
Bindings); | |
} else | |
NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), | |
D.getIdentifierLoc(), II, R, TInfo, SC); | |
// If this is supposed to be a variable template, create it as such. | |
if (IsVariableTemplate) { | |
NewTemplate = | |
VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, | |
TemplateParams, NewVD); | |
NewVD->setDescribedVarTemplate(NewTemplate); | |
} | |
// If this decl has an auto type in need of deduction, make a note of the | |
// Decl so we can diagnose uses of it in its own initializer. | |
if (R->getContainedDeducedType()) | |
ParsingInitForAutoVars.insert(NewVD); | |
if (D.isInvalidType() || Invalid) { | |
NewVD->setInvalidDecl(); | |
if (NewTemplate) | |
NewTemplate->setInvalidDecl(); | |
} | |
SetNestedNameSpecifier(*this, NewVD, D); | |
// If we have any template parameter lists that don't directly belong to | |
// the variable (matching the scope specifier), store them. | |
unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; | |
if (TemplateParamLists.size() > VDTemplateParamLists) | |
NewVD->setTemplateParameterListsInfo( | |
Context, TemplateParamLists.drop_back(VDTemplateParamLists)); | |
} | |
if (D.getDeclSpec().isInlineSpecified()) { | |
if (!getLangOpts().CPlusPlus) { | |
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |
<< 0; | |
} else if (CurContext->isFunctionOrMethod()) { | |
// 'inline' is not allowed on block scope variable declaration. | |
Diag(D.getDeclSpec().getInlineSpecLoc(), | |
diag::err_inline_declaration_block_scope) << Name | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | |
} else { | |
Diag(D.getDeclSpec().getInlineSpecLoc(), | |
getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable | |
: diag::ext_inline_variable); | |
NewVD->setInlineSpecified(); | |
} | |
} | |
// Set the lexical context. If the declarator has a C++ scope specifier, the | |
// lexical context will be different from the semantic context. | |
NewVD->setLexicalDeclContext(CurContext); | |
if (NewTemplate) | |
NewTemplate->setLexicalDeclContext(CurContext); | |
if (IsLocalExternDecl) { | |
if (D.isDecompositionDeclarator()) | |
for (auto *B : Bindings) | |
B->setLocalExternDecl(); | |
else | |
NewVD->setLocalExternDecl(); | |
} | |
bool EmitTLSUnsupportedError = false; | |
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { | |
// C++11 [dcl.stc]p4: | |
// When thread_local is applied to a variable of block scope the | |
// storage-class-specifier static is implied if it does not appear | |
// explicitly. | |
// Core issue: 'static' is not implied if the variable is declared | |
// 'extern'. | |
if (NewVD->hasLocalStorage() && | |
(SCSpec != DeclSpec::SCS_unspecified || | |
TSCS != DeclSpec::TSCS_thread_local || | |
!DC->isFunctionOrMethod())) | |
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |
diag::err_thread_non_global) | |
<< DeclSpec::getSpecifierName(TSCS); | |
else if (!Context.getTargetInfo().isTLSSupported()) { | |
if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || | |
getLangOpts().SYCLIsDevice) { | |
// Postpone error emission until we've collected attributes required to | |
// figure out whether it's a host or device variable and whether the | |
// error should be ignored. | |
EmitTLSUnsupportedError = true; | |
// We still need to mark the variable as TLS so it shows up in AST with | |
// proper storage class for other tools to use even if we're not going | |
// to emit any code for it. | |
NewVD->setTSCSpec(TSCS); | |
} else | |
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |
diag::err_thread_unsupported); | |
} else | |
NewVD->setTSCSpec(TSCS); | |
} | |
switch (D.getDeclSpec().getConstexprSpecifier()) { | |
case ConstexprSpecKind::Unspecified: | |
break; | |
case ConstexprSpecKind::Consteval: | |
Diag(D.getDeclSpec().getConstexprSpecLoc(), | |
diag::err_constexpr_wrong_decl_kind) | |
<< static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); | |
LLVM_FALLTHROUGH; | |
case ConstexprSpecKind::Constexpr: | |
NewVD->setConstexpr(true); | |
MaybeAddCUDAConstantAttr(NewVD); | |
// C++1z [dcl.spec.constexpr]p1: | |
// A static data member declared with the constexpr specifier is | |
// implicitly an inline variable. | |
if (NewVD->isStaticDataMember() && | |
(getLangOpts().CPlusPlus17 || | |
Context.getTargetInfo().getCXXABI().isMicrosoft())) | |
NewVD->setImplicitlyInline(); | |
break; | |
case ConstexprSpecKind::Constinit: | |
if (!NewVD->hasGlobalStorage()) | |
Diag(D.getDeclSpec().getConstexprSpecLoc(), | |
diag::err_constinit_local_variable); | |
else | |
NewVD->addAttr(ConstInitAttr::Create( | |
Context, D.getDeclSpec().getConstexprSpecLoc(), | |
AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit)); | |
break; | |
} | |
// C99 6.7.4p3 | |
// An inline definition of a function with external linkage shall | |
// not contain a definition of a modifiable object with static or | |
// thread storage duration... | |
// We only apply this when the function is required to be defined | |
// elsewhere, i.e. when the function is not 'extern inline'. Note | |
// that a local variable with thread storage duration still has to | |
// be marked 'static'. Also note that it's possible to get these | |
// semantics in C++ using __attribute__((gnu_inline)). | |
if (SC == SC_Static && S->getFnParent() != nullptr && | |
!NewVD->getType().isConstQualified()) { | |
FunctionDecl *CurFD = getCurFunctionDecl(); | |
if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { | |
Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
diag::warn_static_local_in_extern_inline); | |
MaybeSuggestAddingStaticToDecl(CurFD); | |
} | |
} | |
if (D.getDeclSpec().isModulePrivateSpecified()) { | |
if (IsVariableTemplateSpecialization) | |
Diag(NewVD->getLocation(), diag::err_module_private_specialization) | |
<< (IsPartialSpecialization ? 1 : 0) | |
<< FixItHint::CreateRemoval( | |
D.getDeclSpec().getModulePrivateSpecLoc()); | |
else if (IsMemberSpecialization) | |
Diag(NewVD->getLocation(), diag::err_module_private_specialization) | |
<< 2 | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | |
else if (NewVD->hasLocalStorage()) | |
Diag(NewVD->getLocation(), diag::err_module_private_local) | |
<< 0 << NewVD | |
<< SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | |
<< FixItHint::CreateRemoval( | |
D.getDeclSpec().getModulePrivateSpecLoc()); | |
else { | |
NewVD->setModulePrivate(); | |
if (NewTemplate) | |
NewTemplate->setModulePrivate(); | |
for (auto *B : Bindings) | |
B->setModulePrivate(); | |
} | |
} | |
if (getLangOpts().OpenCL) { | |
deduceOpenCLAddressSpace(NewVD); | |
diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType()); | |
} | |
// Handle attributes prior to checking for duplicates in MergeVarDecl | |
ProcessDeclAttributes(S, NewVD, D); | |
if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || | |
getLangOpts().SYCLIsDevice) { | |
if (EmitTLSUnsupportedError && | |
((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || | |
(getLangOpts().OpenMPIsDevice && | |
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) | |
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |
diag::err_thread_unsupported); | |
if (EmitTLSUnsupportedError && | |
(LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))) | |
targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); | |
// CUDA B.2.5: "__shared__ and __constant__ variables have implied static | |
// storage [duration]." | |
if (SC == SC_None && S->getFnParent() != nullptr && | |
(NewVD->hasAttr<CUDASharedAttr>() || | |
NewVD->hasAttr<CUDAConstantAttr>())) { | |
NewVD->setStorageClass(SC_Static); | |
} | |
} | |
// Ensure that dllimport globals without explicit storage class are treated as | |
// extern. The storage class is set above using parsed attributes. Now we can | |
// check the VarDecl itself. | |
assert(!NewVD->hasAttr<DLLImportAttr>() || | |
NewVD->getAttr<DLLImportAttr>()->isInherited() || | |
NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); | |
// In auto-retain/release, infer strong retension for variables of | |
// retainable type. | |
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) | |
NewVD->setInvalidDecl(); | |
// Handle GNU asm-label extension (encoded as an attribute). | |
if (Expr *E = (Expr*)D.getAsmLabel()) { | |
// The parser guarantees this is a string. | |
StringLiteral *SE = cast<StringLiteral>(E); | |
StringRef Label = SE->getString(); | |
if (S->getFnParent() != nullptr) { | |
switch (SC) { | |
case SC_None: | |
case SC_Auto: | |
Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; | |
break; | |
case SC_Register: | |
// Local Named register | |
if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && | |
DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) | |
Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | |
break; | |
case SC_Static: | |
case SC_Extern: | |
case SC_PrivateExtern: | |
break; | |
} | |
} else if (SC == SC_Register) { | |
// Global Named register | |
if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { | |
const auto &TI = Context.getTargetInfo(); | |
bool HasSizeMismatch; | |
if (!TI.isValidGCCRegisterName(Label)) | |
Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | |
else if (!TI.validateGlobalRegisterVariable(Label, | |
Context.getTypeSize(R), | |
HasSizeMismatch)) | |
Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; | |
else if (HasSizeMismatch) | |
Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; | |
} | |
if (!R->isIntegralType(Context) && !R->isPointerType()) { | |
Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); | |
NewVD->setInvalidDecl(true); | |
} | |
} | |
NewVD->addAttr(AsmLabelAttr::Create(Context, Label, | |
/*IsLiteralLabel=*/true, | |
SE->getStrTokenLoc(0))); | |
} else if (!ExtnameUndeclaredIdentifiers.empty()) { | |
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = | |
ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); | |
if (I != ExtnameUndeclaredIdentifiers.end()) { | |
if (isDeclExternC(NewVD)) { | |
NewVD->addAttr(I->second); | |
ExtnameUndeclaredIdentifiers.erase(I); | |
} else | |
Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) | |
<< /*Variable*/1 << NewVD; | |
} | |
} | |
// Find the shadowed declaration before filtering for scope. | |
NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() | |
? getShadowedDeclaration(NewVD, Previous) | |
: nullptr; | |
// Don't consider existing declarations that are in a different | |
// scope and are out-of-semantic-context declarations (if the new | |
// declaration has linkage). | |
FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), | |
D.getCXXScopeSpec().isNotEmpty() || | |
IsMemberSpecialization || | |
IsVariableTemplateSpecialization); | |
// Check whether the previous declaration is in the same block scope. This | |
// affects whether we merge types with it, per C++11 [dcl.array]p3. | |
if (getLangOpts().CPlusPlus && | |
NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) | |
NewVD->setPreviousDeclInSameBlockScope( | |
Previous.isSingleResult() && !Previous.isShadowed() && | |
isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); | |
if (!getLangOpts().CPlusPlus) { | |
D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); | |
} else { | |
// If this is an explicit specialization of a static data member, check it. | |
if (IsMemberSpecialization && !NewVD->isInvalidDecl() && | |
CheckMemberSpecialization(NewVD, Previous)) | |
NewVD->setInvalidDecl(); | |
// Merge the decl with the existing one if appropriate. | |
if (!Previous.empty()) { | |
if (Previous.isSingleResult() && | |
isa<FieldDecl>(Previous.getFoundDecl()) && | |
D.getCXXScopeSpec().isSet()) { | |
// The user tried to define a non-static data member | |
// out-of-line (C++ [dcl.meaning]p1). | |
Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) | |
<< D.getCXXScopeSpec().getRange(); | |
Previous.clear(); | |
NewVD->setInvalidDecl(); | |
} | |
} else if (D.getCXXScopeSpec().isSet()) { | |
// No previous declaration in the qualifying scope. | |
Diag(D.getIdentifierLoc(), diag::err_no_member) | |
<< Name << computeDeclContext(D.getCXXScopeSpec(), true) | |
<< D.getCXXScopeSpec().getRange(); | |
NewVD->setInvalidDecl(); | |
} | |
if (!IsVariableTemplateSpecialization) | |
D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); | |
if (NewTemplate) { | |
VarTemplateDecl *PrevVarTemplate = | |
NewVD->getPreviousDecl() | |
? NewVD->getPreviousDecl()->getDescribedVarTemplate() | |
: nullptr; | |
// Check the template parameter list of this declaration, possibly | |
// merging in the template parameter list from the previous variable | |
// template declaration. | |
if (CheckTemplateParameterList( | |
TemplateParams, | |
PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() | |
: nullptr, | |
(D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && | |
DC->isDependentContext()) | |
? TPC_ClassTemplateMember | |
: TPC_VarTemplate)) | |
NewVD->setInvalidDecl(); | |
// If we are providing an explicit specialization of a static variable | |
// template, make a note of that. | |
if (PrevVarTemplate && | |
PrevVarTemplate->getInstantiatedFromMemberTemplate()) | |
PrevVarTemplate->setMemberSpecialization(); | |
} | |
} | |
// Diagnose shadowed variables iff this isn't a redeclaration. | |
if (ShadowedDecl && !D.isRedeclaration()) | |
CheckShadow(NewVD, ShadowedDecl, Previous); | |
ProcessPragmaWeak(S, NewVD); | |
// If this is the first declaration of an extern C variable, update | |
// the map of such variables. | |
if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && | |
isIncompleteDeclExternC(*this, NewVD)) | |
RegisterLocallyScopedExternCDecl(NewVD, S); | |
if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { | |
MangleNumberingContext *MCtx; | |
Decl *ManglingContextDecl; | |
std::tie(MCtx, ManglingContextDecl) = | |
getCurrentMangleNumberContext(NewVD->getDeclContext()); | |
if (MCtx) { | |
Context.setManglingNumber( | |
NewVD, MCtx->getManglingNumber( | |
NewVD, getMSManglingNumber(getLangOpts(), S))); | |
Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); | |
} | |
} | |
// Special handling of variable named 'main'. | |
if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && | |
NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && | |
!getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { | |
// C++ [basic.start.main]p3 | |
// A program that declares a variable main at global scope is ill-formed. | |
if (getLangOpts().CPlusPlus) | |
Diag(D.getBeginLoc(), diag::err_main_global_variable); | |
// In C, and external-linkage variable named main results in undefined | |
// behavior. | |
else if (NewVD->hasExternalFormalLinkage()) | |
Diag(D.getBeginLoc(), diag::warn_main_redefined); | |
} | |
if (D.isRedeclaration() && !Previous.empty()) { | |
NamedDecl *Prev = Previous.getRepresentativeDecl(); | |
checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, | |
D.isFunctionDefinition()); | |
} | |
if (NewTemplate) { | |
if (NewVD->isInvalidDecl()) | |
NewTemplate->setInvalidDecl(); | |
ActOnDocumentableDecl(NewTemplate); | |
return NewTemplate; | |
} | |
if (IsMemberSpecialization && !NewVD->isInvalidDecl()) | |
CompleteMemberSpecialization(NewVD, Previous); | |
return NewVD; | |
} | |
/// Enum describing the %select options in diag::warn_decl_shadow. | |
enum ShadowedDeclKind { | |
SDK_Local, | |
SDK_Global, | |
SDK_StaticMember, | |
SDK_Field, | |
SDK_Typedef, | |
SDK_Using | |
}; | |
/// Determine what kind of declaration we're shadowing. | |
static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, | |
const DeclContext *OldDC) { | |
if (isa<TypeAliasDecl>(ShadowedDecl)) | |
return SDK_Using; | |
else if (isa<TypedefDecl>(ShadowedDecl)) | |
return SDK_Typedef; | |
else if (isa<RecordDecl>(OldDC)) | |
return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; | |
return OldDC->isFileContext() ? SDK_Global : SDK_Local; | |
} | |
/// Return the location of the capture if the given lambda captures the given | |
/// variable \p VD, or an invalid source location otherwise. | |
static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, | |
const VarDecl *VD) { | |
for (const Capture &Capture : LSI->Captures) { | |
if (Capture.isVariableCapture() && Capture.getVariable() == VD) | |
return Capture.getLocation(); | |
} | |
return SourceLocation(); | |
} | |
static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, | |
const LookupResult &R) { | |
// Only diagnose if we're shadowing an unambiguous field or variable. | |
if (R.getResultKind() != LookupResult::Found) | |
return false; | |
// Return false if warning is ignored. | |
return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); | |
} | |
/// Return the declaration shadowed by the given variable \p D, or null | |
/// if it doesn't shadow any declaration or shadowing warnings are disabled. | |
NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, | |
const LookupResult &R) { | |
if (!shouldWarnIfShadowedDecl(Diags, R)) | |
return nullptr; | |
// Don't diagnose declarations at file scope. | |
if (D->hasGlobalStorage()) | |
return nullptr; | |
NamedDecl *ShadowedDecl = R.getFoundDecl(); | |
return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl) | |
? ShadowedDecl | |
: nullptr; | |
} | |
/// Return the declaration shadowed by the given typedef \p D, or null | |
/// if it doesn't shadow any declaration or shadowing warnings are disabled. | |
NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, | |
const LookupResult &R) { | |
// Don't warn if typedef declaration is part of a class | |
if (D->getDeclContext()->isRecord()) | |
return nullptr; | |
if (!shouldWarnIfShadowedDecl(Diags, R)) | |
return nullptr; | |
NamedDecl *ShadowedDecl = R.getFoundDecl(); | |
return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; | |
} | |
/// Diagnose variable or built-in function shadowing. Implements | |
/// -Wshadow. | |
/// | |
/// This method is called whenever a VarDecl is added to a "useful" | |
/// scope. | |
/// | |
/// \param ShadowedDecl the declaration that is shadowed by the given variable | |
/// \param R the lookup of the name | |
/// | |
void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, | |
const LookupResult &R) { | |
DeclContext *NewDC = D->getDeclContext(); | |
if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { | |
// Fields are not shadowed by variables in C++ static methods. | |
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) | |
if (MD->isStatic()) | |
return; | |
// Fields shadowed by constructor parameters are a special case. Usually | |
// the constructor initializes the field with the parameter. | |
if (isa<CXXConstructorDecl>(NewDC)) | |
if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { | |
// Remember that this was shadowed so we can either warn about its | |
// modification or its existence depending on warning settings. | |
ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); | |
return; | |
} | |
} | |
if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) | |
if (shadowedVar->isExternC()) { | |
// For shadowing external vars, make sure that we point to the global | |
// declaration, not a locally scoped extern declaration. | |
for (auto I : shadowedVar->redecls()) | |
if (I->isFileVarDecl()) { | |
ShadowedDecl = I; | |
break; | |
} | |
} | |
DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); | |
unsigned WarningDiag = diag::warn_decl_shadow; | |
SourceLocation CaptureLoc; | |
if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && | |
isa<CXXMethodDecl>(NewDC)) { | |
if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { | |
if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { | |
if (RD->getLambdaCaptureDefault() == LCD_None) { | |
// Try to avoid warnings for lambdas with an explicit capture list. | |
const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); | |
// Warn only when the lambda captures the shadowed decl explicitly. | |
CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); | |
if (CaptureLoc.isInvalid()) | |
WarningDiag = diag::warn_decl_shadow_uncaptured_local; | |
} else { | |
// Remember that this was shadowed so we can avoid the warning if the | |
// shadowed decl isn't captured and the warning settings allow it. | |
cast<LambdaScopeInfo>(getCurFunction()) | |
->ShadowingDecls.push_back( | |
{cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); | |
return; | |
} | |
} | |
if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { | |
// A variable can't shadow a local variable in an enclosing scope, if | |
// they are separated by a non-capturing declaration context. | |
for (DeclContext *ParentDC = NewDC; | |
ParentDC && !ParentDC->Equals(OldDC); | |
ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { | |
// Only block literals, captured statements, and lambda expressions | |
// can capture; other scopes don't. | |
if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && | |
!isLambdaCallOperator(ParentDC)) { | |
return; | |
} | |
} | |
} | |
} | |
} | |
// Only warn about certain kinds of shadowing for class members. | |
if (NewDC && NewDC->isRecord()) { | |
// In particular, don't warn about shadowing non-class members. | |
if (!OldDC->isRecord()) | |
return; | |
// TODO: should we warn about static data members shadowing | |
// static data members from base classes? | |
// TODO: don't diagnose for inaccessible shadowed members. | |
// This is hard to do perfectly because we might friend the | |
// shadowing context, but that's just a false negative. | |
} | |
DeclarationName Name = R.getLookupName(); | |
// Emit warning and note. | |
if (getSourceManager().isInSystemMacro(R.getNameLoc())) | |
return; | |
ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); | |
Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; | |
if (!CaptureLoc.isInvalid()) | |
Diag(CaptureLoc, diag::note_var_explicitly_captured_here) | |
<< Name << /*explicitly*/ 1; | |
Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | |
} | |
/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD | |
/// when these variables are captured by the lambda. | |
void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { | |
for (const auto &Shadow : LSI->ShadowingDecls) { | |
const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; | |
// Try to avoid the warning when the shadowed decl isn't captured. | |
SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); | |
const DeclContext *OldDC = ShadowedDecl->getDeclContext(); | |
Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() | |
? diag::warn_decl_shadow_uncaptured_local | |
: diag::warn_decl_shadow) | |
<< Shadow.VD->getDeclName() | |
<< computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; | |
if (!CaptureLoc.isInvalid()) | |
Diag(CaptureLoc, diag::note_var_explicitly_captured_here) | |
<< Shadow.VD->getDeclName() << /*explicitly*/ 0; | |
Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | |
} | |
} | |
/// Check -Wshadow without the advantage of a previous lookup. | |
void Sema::CheckShadow(Scope *S, VarDecl *D) { | |
if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) | |
return; | |
LookupResult R(*this, D->getDeclName(), D->getLocation(), | |
Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); | |
LookupName(R, S); | |
if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) | |
CheckShadow(D, ShadowedDecl, R); | |
} | |
/// Check if 'E', which is an expression that is about to be modified, refers | |
/// to a constructor parameter that shadows a field. | |
void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { | |
// Quickly ignore expressions that can't be shadowing ctor parameters. | |
if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) | |
return; | |
E = E->IgnoreParenImpCasts(); | |
auto *DRE = dyn_cast<DeclRefExpr>(E); | |
if (!DRE) | |
return; | |
const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); | |
auto I = ShadowingDecls.find(D); | |
if (I == ShadowingDecls.end()) | |
return; | |
const NamedDecl *ShadowedDecl = I->second; | |
const DeclContext *OldDC = ShadowedDecl->getDeclContext(); | |
Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; | |
Diag(D->getLocation(), diag::note_var_declared_here) << D; | |
Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | |
// Avoid issuing multiple warnings about the same decl. | |
ShadowingDecls.erase(I); | |
} | |
/// Check for conflict between this global or extern "C" declaration and | |
/// previous global or extern "C" declarations. This is only used in C++. | |
template<typename T> | |
static bool checkGlobalOrExternCConflict( | |
Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { | |
assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); | |
NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); | |
if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { | |
// The common case: this global doesn't conflict with any extern "C" | |
// declaration. | |
return false; | |
} | |
if (Prev) { | |
if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { | |
// Both the old and new declarations have C language linkage. This is a | |
// redeclaration. | |
Previous.clear(); | |
Previous.addDecl(Prev); | |
return true; | |
} | |
// This is a global, non-extern "C" declaration, and there is a previous | |
// non-global extern "C" declaration. Diagnose if this is a variable | |
// declaration. | |
if (!isa<VarDecl>(ND)) | |
return false; | |
} else { | |
// The declaration is extern "C". Check for any declaration in the | |
// translation unit which might conflict. | |
if (IsGlobal) { | |
// We have already performed the lookup into the translation unit. | |
IsGlobal = false; | |
for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | |
I != E; ++I) { | |
if (isa<VarDecl>(*I)) { | |
Prev = *I; | |
break; | |
} | |
} | |
} else { | |
DeclContext::lookup_result R = | |
S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); | |
for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); | |
I != E; ++I) { | |
if (isa<VarDecl>(*I)) { | |
Prev = *I; | |
break; | |
} | |
// FIXME: If we have any other entity with this name in global scope, | |
// the declaration is ill-formed, but that is a defect: it breaks the | |
// 'stat' hack, for instance. Only variables can have mangled name | |
// clashes with extern "C" declarations, so only they deserve a | |
// diagnostic. | |
} | |
} | |
if (!Prev) | |
return false; | |
} | |
// Use the first declaration's location to ensure we point at something which | |
// is lexically inside an extern "C" linkage-spec. | |
assert(Prev && "should have found a previous declaration to diagnose"); | |
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) | |
Prev = FD->getFirstDecl(); | |
else | |
Prev = cast<VarDecl>(Prev)->getFirstDecl(); | |
S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) | |
<< IsGlobal << ND; | |
S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) | |
<< IsGlobal; | |
return false; | |
} | |
/// Apply special rules for handling extern "C" declarations. Returns \c true | |
/// if we have found that this is a redeclaration of some prior entity. | |
/// | |
/// Per C++ [dcl.link]p6: | |
/// Two declarations [for a function or variable] with C language linkage | |
/// with the same name that appear in different scopes refer to the same | |
/// [entity]. An entity with C language linkage shall not be declared with | |
/// the same name as an entity in global scope. | |
template<typename T> | |
static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, | |
LookupResult &Previous) { | |
if (!S.getLangOpts().CPlusPlus) { | |
// In C, when declaring a global variable, look for a corresponding 'extern' | |
// variable declared in function scope. We don't need this in C++, because | |
// we find local extern decls in the surrounding file-scope DeclContext. | |
if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | |
if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { | |
Previous.clear(); | |
Previous.addDecl(Prev); | |
return true; | |
} | |
} | |
return false; | |
} | |
// A declaration in the translation unit can conflict with an extern "C" | |
// declaration. | |
if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) | |
return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); | |
// An extern "C" declaration can conflict with a declaration in the | |
// translation unit or can be a redeclaration of an extern "C" declaration | |
// in another scope. | |
if (isIncompleteDeclExternC(S,ND)) | |
return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); | |
// Neither global nor extern "C": nothing to do. | |
return false; | |
} | |
void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { | |
// If the decl is already known invalid, don't check it. | |
if (NewVD->isInvalidDecl()) | |
return; | |
QualType T = NewVD->getType(); | |
// Defer checking an 'auto' type until its initializer is attached. | |
if (T->isUndeducedType()) | |
return; | |
if (NewVD->hasAttrs()) | |
CheckAlignasUnderalignment(NewVD); | |
if (T->isObjCObjectType()) { | |
Diag(NewVD->getLocation(), diag::err_statically_allocated_object) | |
<< FixItHint::CreateInsertion(NewVD->getLocation(), "*"); | |
T = Context.getObjCObjectPointerType(T); | |
NewVD->setType(T); | |
} | |
// Emit an error if an address space was applied to decl with local storage. | |
// This includes arrays of objects with address space qualifiers, but not | |
// automatic variables that point to other address spaces. | |
// ISO/IEC TR 18037 S5.1.2 | |
if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && | |
T.getAddressSpace() != LangAS::Default) { | |
Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
// OpenCL v1.2 s6.8 - The static qualifier is valid only in program | |
// scope. | |
if (getLangOpts().OpenCLVersion == 120 && | |
!getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") && | |
NewVD->isStaticLocal()) { | |
Diag(NewVD->getLocation(), diag::err_static_function_scope); | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (getLangOpts().OpenCL) { | |
// OpenCL v2.0 s6.12.5 - The __block storage type is not supported. | |
if (NewVD->hasAttr<BlocksAttr>()) { | |
Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); | |
return; | |
} | |
if (T->isBlockPointerType()) { | |
// OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and | |
// can't use 'extern' storage class. | |
if (!T.isConstQualified()) { | |
Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) | |
<< 0 /*const*/; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (NewVD->hasExternalStorage()) { | |
Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
} | |
// OpenCL C v1.2 s6.5 - All program scope variables must be declared in the | |
// __constant address space. | |
// OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static | |
// variables inside a function can also be declared in the global | |
// address space. | |
// C++ for OpenCL inherits rule from OpenCL C v2.0. | |
// FIXME: Adding local AS in C++ for OpenCL might make sense. | |
if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || | |
NewVD->hasExternalStorage()) { | |
if (!T->isSamplerT() && | |
!T->isDependentType() && | |
!(T.getAddressSpace() == LangAS::opencl_constant || | |
(T.getAddressSpace() == LangAS::opencl_global && | |
(getLangOpts().OpenCLVersion == 200 || | |
getLangOpts().OpenCLCPlusPlus)))) { | |
int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; | |
if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus) | |
Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) | |
<< Scope << "global or constant"; | |
else | |
Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) | |
<< Scope << "constant"; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
} else { | |
if (T.getAddressSpace() == LangAS::opencl_global) { | |
Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | |
<< 1 /*is any function*/ << "global"; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (T.getAddressSpace() == LangAS::opencl_constant || | |
T.getAddressSpace() == LangAS::opencl_local) { | |
FunctionDecl *FD = getCurFunctionDecl(); | |
// OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables | |
// in functions. | |
if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { | |
if (T.getAddressSpace() == LangAS::opencl_constant) | |
Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | |
<< 0 /*non-kernel only*/ << "constant"; | |
else | |
Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | |
<< 0 /*non-kernel only*/ << "local"; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
// OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be | |
// in the outermost scope of a kernel function. | |
if (FD && FD->hasAttr<OpenCLKernelAttr>()) { | |
if (!getCurScope()->isFunctionScope()) { | |
if (T.getAddressSpace() == LangAS::opencl_constant) | |
Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) | |
<< "constant"; | |
else | |
Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) | |
<< "local"; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
} | |
} else if (T.getAddressSpace() != LangAS::opencl_private && | |
// If we are parsing a template we didn't deduce an addr | |
// space yet. | |
T.getAddressSpace() != LangAS::Default) { | |
// Do not allow other address spaces on automatic variable. | |
Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
} | |
} | |
if (NewVD->hasLocalStorage() && T.isObjCGCWeak() | |
&& !NewVD->hasAttr<BlocksAttr>()) { | |
if (getLangOpts().getGC() != LangOptions::NonGC) | |
Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); | |
else { | |
assert(!getLangOpts().ObjCAutoRefCount); | |
Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); | |
} | |
} | |
bool isVM = T->isVariablyModifiedType(); | |
if (isVM || NewVD->hasAttr<CleanupAttr>() || | |
NewVD->hasAttr<BlocksAttr>()) | |
setFunctionHasBranchProtectedScope(); | |
if ((isVM && NewVD->hasLinkage()) || | |
(T->isVariableArrayType() && NewVD->hasGlobalStorage())) { | |
bool SizeIsNegative; | |
llvm::APSInt Oversized; | |
TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( | |
NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); | |
QualType FixedT; | |
if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) | |
FixedT = FixedTInfo->getType(); | |
else if (FixedTInfo) { | |
// Type and type-as-written are canonically different. We need to fix up | |
// both types separately. | |
FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | |
Oversized); | |
} | |
if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { | |
const VariableArrayType *VAT = Context.getAsVariableArrayType(T); | |
// FIXME: This won't give the correct result for | |
// int a[10][n]; | |
SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); | |
if (NewVD->isFileVarDecl()) | |
Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) | |
<< SizeRange; | |
else if (NewVD->isStaticLocal()) | |
Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) | |
<< SizeRange; | |
else | |
Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) | |
<< SizeRange; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (!FixedTInfo) { | |
if (NewVD->isFileVarDecl()) | |
Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); | |
else | |
Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant); | |
NewVD->setType(FixedT); | |
NewVD->setTypeSourceInfo(FixedTInfo); | |
} | |
if (T->isVoidType()) { | |
// C++98 [dcl.stc]p5: The extern specifier can be applied only to the names | |
// of objects and functions. | |
if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { | |
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) | |
<< T; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
} | |
if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { | |
Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (!NewVD->hasLocalStorage() && T->isSizelessType()) { | |
Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (isVM && NewVD->hasAttr<BlocksAttr>()) { | |
Diag(NewVD->getLocation(), diag::err_block_on_vm); | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
if (NewVD->isConstexpr() && !T->isDependentType() && | |
RequireLiteralType(NewVD->getLocation(), T, | |
diag::err_constexpr_var_non_literal)) { | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
// PPC MMA non-pointer types are not allowed as non-local variable types. | |
if (Context.getTargetInfo().getTriple().isPPC64() && | |
!NewVD->isLocalVarDecl() && | |
CheckPPCMMAType(T, NewVD->getLocation())) { | |
NewVD->setInvalidDecl(); | |
return; | |
} | |
} | |
/// Perform semantic checking on a newly-created variable | |
/// declaration. | |
/// | |
/// This routine performs all of the type-checking required for a | |
/// variable declaration once it has been built. It is used both to | |
/// check variables after they have been parsed and their declarators | |
/// have been translated into a declaration, and to check variables | |
/// that have been instantiated from a template. | |
/// | |
/// Sets NewVD->isInvalidDecl() if an error was encountered. | |
/// | |
/// Returns true if the variable declaration is a redeclaration. | |
bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { | |
CheckVariableDeclarationType(NewVD); | |
// If the decl is already known invalid, don't check it. | |
if (NewVD->isInvalidDecl()) | |
return false; | |
// If we did not find anything by this name, look for a non-visible | |
// extern "C" declaration with the same name. | |
if (Previous.empty() && | |
checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) | |
Previous.setShadowed(); | |
if (!Previous.empty()) { | |
MergeVarDecl(NewVD, Previous); | |
return true; | |
} | |
return false; | |
} | |
namespace { | |
struct FindOverriddenMethod { | |
Sema *S; | |
CXXMethodDecl *Method; | |
/// Member lookup function that determines whether a given C++ | |
/// method overrides a method in a base class, to be used with | |
/// CXXRecordDecl::lookupInBases(). | |
bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { | |
RecordDecl *BaseRecord = | |
Specifier->getType()->castAs<RecordType>()->getDecl(); | |
DeclarationName Name = Method->getDeclName(); | |
// FIXME: Do we care about other names here too? | |
if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | |
// We really want to find the base class destructor here. | |
QualType T = S->Context.getTypeDeclType(BaseRecord); | |
CanQualType CT = S->Context.getCanonicalType(T); | |
Name = S->Context.DeclarationNames.getCXXDestructorName(CT); | |
} | |
for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); | |
Path.Decls = Path.Decls.slice(1)) { | |
NamedDecl *D = Path.Decls.front(); | |
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | |
if (MD->isVirtual() && | |
!S->IsOverload( | |
Method, MD, /*UseMemberUsingDeclRules=*/false, | |
/*ConsiderCudaAttrs=*/true, | |
// C++2a [class.virtual]p2 does not consider requires clauses | |
// when overriding. | |
/*ConsiderRequiresClauses=*/false)) | |
return true; | |
} | |
} | |
return false; | |
} | |
}; | |
} // end anonymous namespace | |
/// AddOverriddenMethods - See if a method overrides any in the base classes, | |
/// and if so, check that it's a valid override and remember it. | |
bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { | |
// Look for methods in base classes that this method might override. | |
CXXBasePaths Paths; | |
FindOverriddenMethod FOM; | |
FOM.Method = MD; | |
FOM.S = this; | |
bool AddedAny = false; | |
if (DC->lookupInBases(FOM, Paths)) { | |
for (auto *I : Paths.found_decls()) { | |
if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { | |
MD->addOverriddenMethod(OldMD->getCanonicalDecl()); | |
if (!CheckOverridingFunctionReturnType(MD, OldMD) && | |
!CheckOverridingFunctionAttributes(MD, OldMD) && | |
!CheckOverridingFunctionExceptionSpec(MD, OldMD) && | |
!CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { | |
AddedAny = true; | |
} | |
} | |
} | |
} | |
return AddedAny; | |
} | |
namespace { | |
// Struct for holding all of the extra arguments needed by | |
// DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. | |
struct ActOnFDArgs { | |
Scope *S; | |
Declarator &D; | |
MultiTemplateParamsArg TemplateParamLists; | |
bool AddToScope; | |
}; | |
} // end anonymous namespace | |
namespace { | |
// Callback to only accept typo corrections that have a non-zero edit distance. | |
// Also only accept corrections that have the same parent decl. | |
class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { | |
public: | |
DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, | |
CXXRecordDecl *Parent) | |
: Context(Context), OriginalFD(TypoFD), | |
ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} | |
bool ValidateCandidate(const TypoCorrection &candidate) override { | |
if (candidate.getEditDistance() == 0) | |
return false; | |
SmallVector<unsigned, 1> MismatchedParams; | |
for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), | |
CDeclEnd = candidate.end(); | |
CDecl != CDeclEnd; ++CDecl) { | |
FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | |
if (FD && !FD->hasBody() && | |
hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { | |
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | |
CXXRecordDecl *Parent = MD->getParent(); | |
if (Parent && Parent->getCanonicalDecl() == ExpectedParent) | |
return true; | |
} else if (!ExpectedParent) { | |
return true; | |
} | |
} | |
} | |
return false; | |
} | |
std::unique_ptr<CorrectionCandidateCallback> clone() override { | |
return std::make_unique<DifferentNameValidatorCCC>(*this); | |
} | |
private: | |
ASTContext &Context; | |
FunctionDecl *OriginalFD; | |
CXXRecordDecl *ExpectedParent; | |
}; | |
} // end anonymous namespace | |
void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { | |
TypoCorrectedFunctionDefinitions.insert(F); | |
} | |
/// Generate diagnostics for an invalid function redeclaration. | |
/// | |
/// This routine handles generating the diagnostic messages for an invalid | |
/// function redeclaration, including finding possible similar declarations | |
/// or performing typo correction if there are no previous declarations with | |
/// the same name. | |
/// | |
/// Returns a NamedDecl iff typo correction was performed and substituting in | |
/// the new declaration name does not cause new errors. | |
static NamedDecl *DiagnoseInvalidRedeclaration( | |
Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, | |
ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { | |
DeclarationName Name = NewFD->getDeclName(); | |
DeclContext *NewDC = NewFD->getDeclContext(); | |
SmallVector<unsigned, 1> MismatchedParams; | |
SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; | |
TypoCorrection Correction; | |
bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); | |
unsigned DiagMsg = | |
IsLocalFriend ? diag::err_no_matching_local_friend : | |
NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : | |
diag::err_member_decl_does_not_match; | |
LookupResult Prev(SemaRef, Name, NewFD->getLocation(), | |
IsLocalFriend ? Sema::LookupLocalFriendName | |
: Sema::LookupOrdinaryName, | |
Sema::ForVisibleRedeclaration); | |
NewFD->setInvalidDecl(); | |
if (IsLocalFriend) | |
SemaRef.LookupName(Prev, S); | |
else | |
SemaRef.LookupQualifiedName(Prev, NewDC); | |
assert(!Prev.isAmbiguous() && | |
"Cannot have an ambiguity in previous-declaration lookup"); | |
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | |
DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, | |
MD ? MD->getParent() : nullptr); | |
if (!Prev.empty()) { | |
for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); | |
Func != FuncEnd; ++Func) { | |
FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); | |
if (FD && | |
hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { | |
// Add 1 to the index so that 0 can mean the mismatch didn't | |
// involve a parameter | |
unsigned ParamNum = | |
MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; | |
NearMatches.push_back(std::make_pair(FD, ParamNum)); | |
} | |
} | |
// If the qualified name lookup yielded nothing, try typo correction | |
} else if ((Correction = SemaRef.CorrectTypo( | |
Prev.getLookupNameInfo(), Prev.getLookupKind(), S, | |
&ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, | |
IsLocalFriend ? nullptr : NewDC))) { | |
// Set up everything for the call to ActOnFunctionDeclarator | |
ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), | |
ExtraArgs.D.getIdentifierLoc()); | |
Previous.clear(); | |
Previous.setLookupName(Correction.getCorrection()); | |
for (TypoCorrection::decl_iterator CDecl = Correction.begin(), | |
CDeclEnd = Correction.end(); | |
CDecl != CDeclEnd; ++CDecl) { | |
FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | |
if (FD && !FD->hasBody() && | |
hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { | |
Previous.addDecl(FD); | |
} | |
} | |
bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); | |
NamedDecl *Result; | |
// Retry building the function declaration with the new previous | |
// declarations, and with errors suppressed. | |
{ | |
// Trap errors. | |
Sema::SFINAETrap Trap(SemaRef); | |
// TODO: Refactor ActOnFunctionDeclarator so that we can call only the | |
// pieces need to verify the typo-corrected C++ declaration and hopefully | |
// eliminate the need for the parameter pack ExtraArgs. | |
Result = SemaRef.ActOnFunctionDeclarator( | |
ExtraArgs.S, ExtraArgs.D, | |
Correction.getCorrectionDecl()->getDeclContext(), | |
NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, | |
ExtraArgs.AddToScope); | |
if (Trap.hasErrorOccurred()) | |
Result = nullptr; | |
} | |
if (Result) { | |
// Determine which correction we picked. | |
Decl *Canonical = Result->getCanonicalDecl(); | |
for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | |
I != E; ++I) | |
if ((*I)->getCanonicalDecl() == Canonical) | |
Correction.setCorrectionDecl(*I); | |
// Let Sema know about the correction. | |
SemaRef.MarkTypoCorrectedFunctionDefinition(Result); | |
SemaRef.diagnoseTypo( | |
Correction, | |
SemaRef.PDiag(IsLocalFriend | |
? diag::err_no_matching_local_friend_suggest | |
: diag::err_member_decl_does_not_match_suggest) | |
<< Name << NewDC << IsDefinition); | |
return Result; | |
} | |
// Pretend the typo correction never occurred | |
ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), | |
ExtraArgs.D.getIdentifierLoc()); | |
ExtraArgs.D.setRedeclaration(wasRedeclaration); | |
Previous.clear(); | |
Previous.setLookupName(Name); | |
} | |
SemaRef.Diag(NewFD->getLocation(), DiagMsg) | |
<< Name << NewDC << IsDefinition << NewFD->getLocation(); | |
bool NewFDisConst = false; | |
if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) | |
NewFDisConst = NewMD->isConst(); | |
for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator | |
NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); | |
NearMatch != NearMatchEnd; ++NearMatch) { | |
FunctionDecl *FD = NearMatch->first; | |
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); | |
bool FDisConst = MD && MD->isConst(); | |
bool IsMember = MD || !IsLocalFriend; | |
// FIXME: These notes are poorly worded for the local friend case. | |
if (unsigned Idx = NearMatch->second) { | |
ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); | |
SourceLocation Loc = FDParam->getTypeSpecStartLoc(); | |
if (Loc.isInvalid()) Loc = FD->getLocation(); | |
SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match | |
: diag::note_local_decl_close_param_match) | |
<< Idx << FDParam->getType() | |
<< NewFD->getParamDecl(Idx - 1)->getType(); | |
} else if (FDisConst != NewFDisConst) { | |
SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) | |
<< NewFDisConst << FD->getSourceRange().getEnd(); | |
} else | |
SemaRef.Diag(FD->getLocation(), | |
IsMember ? diag::note_member_def_close_match | |
: diag::note_local_decl_close_match); | |
} | |
return nullptr; | |
} | |
static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { | |
switch (D.getDeclSpec().getStorageClassSpec()) { | |
default: llvm_unreachable("Unknown storage class!"); | |
case DeclSpec::SCS_auto: | |
case DeclSpec::SCS_register: | |
case DeclSpec::SCS_mutable: | |
SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
diag::err_typecheck_sclass_func); | |
D.getMutableDeclSpec().ClearStorageClassSpecs(); | |
D.setInvalidType(); | |
break; | |
case DeclSpec::SCS_unspecified: break; | |
case DeclSpec::SCS_extern: | |
if (D.getDeclSpec().isExternInLinkageSpec()) | |
return SC_None; | |
return SC_Extern; | |
case DeclSpec::SCS_static: { | |
if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { | |
// C99 6.7.1p5: | |
// The declaration of an identifier for a function that has | |
// block scope shall have no explicit storage-class specifier | |
// other than extern | |
// See also (C++ [dcl.stc]p4). | |
SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
diag::err_static_block_func); | |
break; | |
} else | |
return SC_Static; | |
} | |
case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | |
} | |
// No explicit storage class has already been returned | |
return SC_None; | |
} | |
static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, | |
DeclContext *DC, QualType &R, | |
TypeSourceInfo *TInfo, | |
StorageClass SC, | |
bool &IsVirtualOkay) { | |
DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); | |
DeclarationName Name = NameInfo.getName(); | |
FunctionDecl *NewFD = nullptr; | |
bool isInline = D.getDeclSpec().isInlineSpecified(); | |
if (!SemaRef.getLangOpts().CPlusPlus) { | |
// Determine whether the function was written with a | |
// prototype. This true when: | |
// - there is a prototype in the declarator, or | |
// - the type R of the function is some kind of typedef or other non- | |
// attributed reference to a type name (which eventually refers to a | |
// function type). | |
bool HasPrototype = | |
(D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || | |
(!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); | |
NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, | |
R, TInfo, SC, isInline, HasPrototype, | |
ConstexprSpecKind::Unspecified, | |
/*TrailingRequiresClause=*/nullptr); | |
if (D.isInvalidType()) | |
NewFD->setInvalidDecl(); | |
return NewFD; | |
} | |
ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); | |
ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); | |
if (ConstexprKind == ConstexprSpecKind::Constinit) { | |
SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), | |
diag::err_constexpr_wrong_decl_kind) | |
<< static_cast<int>(ConstexprKind); | |
ConstexprKind = ConstexprSpecKind::Unspecified; | |
D.getMutableDeclSpec().ClearConstexprSpec(); | |
} | |
Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); | |
// Check that the return type is not an abstract class type. | |
// For record types, this is done by the AbstractClassUsageDiagnoser once | |
// the class has been completely parsed. | |
if (!DC->isRecord() && | |
SemaRef.RequireNonAbstractType( | |
D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(), | |
diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) | |
D.setInvalidType(); | |
if (Name.getNameKind() == DeclarationName::CXXConstructorName) { | |
// This is a C++ constructor declaration. | |
assert(DC->isRecord() && | |
"Constructors can only be declared in a member context"); | |
R = SemaRef.CheckConstructorDeclarator(D, R, SC); | |
return CXXConstructorDecl::Create( | |
SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | |
TInfo, ExplicitSpecifier, isInline, | |
/*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(), | |
TrailingRequiresClause); | |
} else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | |
// This is a C++ destructor declaration. | |
if (DC->isRecord()) { | |
R = SemaRef.CheckDestructorDeclarator(D, R, SC); | |
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | |
CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( | |
SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, | |
isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, | |
TrailingRequiresClause); | |
// If the destructor needs an implicit exception specification, set it | |
// now. FIXME: It'd be nice to be able to create the right type to start | |
// with, but the type needs to reference the destructor declaration. | |
if (SemaRef.getLangOpts().CPlusPlus11) | |
SemaRef.AdjustDestructorExceptionSpec(NewDD); | |
IsVirtualOkay = true; | |
return NewDD; | |
} else { | |
SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); | |
D.setInvalidType(); | |
// Create a FunctionDecl to satisfy the function definition parsing | |
// code path. | |
return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), | |
D.getIdentifierLoc(), Name, R, TInfo, SC, | |
isInline, | |
/*hasPrototype=*/true, ConstexprKind, | |
TrailingRequiresClause); | |
} | |
} else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | |
if (!DC->isRecord()) { | |
SemaRef.Diag(D.getIdentifierLoc(), | |
diag::err_conv_function_not_member); | |
return nullptr; | |
} | |
SemaRef.CheckConversionDeclarator(D, R, SC); | |
if (D.isInvalidType()) | |
return nullptr; | |
IsVirtualOkay = true; | |
return CXXConversionDecl::Create( | |
SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | |
TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(), | |
TrailingRequiresClause); | |
} else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { | |
if (TrailingRequiresClause) | |
SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), | |
diag::err_trailing_requires_clause_on_deduction_guide) | |
<< TrailingRequiresClause->getSourceRange(); | |
SemaRef.CheckDeductionGuideDeclarator(D, R, SC); | |
return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), | |
ExplicitSpecifier, NameInfo, R, TInfo, | |
D.getEndLoc()); | |
} else if (DC->isRecord()) { | |
// If the name of the function is the same as the name of the record, | |
// then this must be an invalid constructor that has a return type. | |
// (The parser checks for a return type and makes the declarator a | |
// constructor if it has no return type). | |
if (Name.getAsIdentifierInfo() && | |
Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ | |
SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) | |
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | |
<< SourceRange(D.getIdentifierLoc()); | |
return nullptr; | |
} | |
// This is a C++ method declaration. | |
CXXMethodDecl *Ret = CXXMethodDecl::Create( | |
SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | |
TInfo, SC, isInline, ConstexprKind, SourceLocation(), | |
TrailingRequiresClause); | |
IsVirtualOkay = !Ret->isStatic(); | |
return Ret; | |
} else { | |
bool isFriend = | |
SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); | |
if (!isFriend && SemaRef.CurContext->isRecord()) | |
return nullptr; | |
// Determine whether the function was written with a | |
// prototype. This true when: | |
// - we're in C++ (where every function has a prototype), | |
return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, | |
R, TInfo, SC, isInline, true /*HasPrototype*/, | |
ConstexprKind, TrailingRequiresClause); | |
} | |
} | |
enum OpenCLParamType { | |
ValidKernelParam, | |
PtrPtrKernelParam, | |
PtrKernelParam, | |
InvalidAddrSpacePtrKernelParam, | |
InvalidKernelParam, | |
RecordKernelParam | |
}; | |
static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { | |
// Size dependent types are just typedefs to normal integer types | |
// (e.g. unsigned long), so we cannot distinguish them from other typedefs to | |
// integers other than by their names. | |
StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; | |
// Remove typedefs one by one until we reach a typedef | |
// for a size dependent type. | |
QualType DesugaredTy = Ty; | |
do { | |
ArrayRef<StringRef> Names(SizeTypeNames); | |
auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); | |
if (Names.end() != Match) | |
return true; | |
Ty = DesugaredTy; | |
DesugaredTy = Ty.getSingleStepDesugaredType(C); | |
} while (DesugaredTy != Ty); | |
return false; | |
} | |
static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { | |
if (PT->isPointerType()) { | |
QualType PointeeType = PT->getPointeeType(); | |
if (PointeeType.getAddressSpace() == LangAS::opencl_generic || | |
PointeeType.getAddressSpace() == LangAS::opencl_private || | |
PointeeType.getAddressSpace() == LangAS::Default) | |
return InvalidAddrSpacePtrKernelParam; | |
if (PointeeType->isPointerType()) { | |
// This is a pointer to pointer parameter. | |
// Recursively check inner type. | |
OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType); | |
if (ParamKind == InvalidAddrSpacePtrKernelParam || | |
ParamKind == InvalidKernelParam) | |
return ParamKind; | |
return PtrPtrKernelParam; | |
} | |
return PtrKernelParam; | |
} | |
// OpenCL v1.2 s6.9.k: | |
// Arguments to kernel functions in a program cannot be declared with the | |
// built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and | |
// uintptr_t or a struct and/or union that contain fields declared to be one | |
// of these built-in scalar types. | |
if (isOpenCLSizeDependentType(S.getASTContext(), PT)) | |
return InvalidKernelParam; | |
if (PT->isImageType()) | |
return PtrKernelParam; | |
if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) | |
return InvalidKernelParam; | |
// OpenCL extension spec v1.2 s9.5: | |
// This extension adds support for half scalar and vector types as built-in | |
// types that can be used for arithmetic operations, conversions etc. | |
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType()) | |
return InvalidKernelParam; | |
if (PT->isRecordType()) | |
return RecordKernelParam; | |
// Look into an array argument to check if it has a forbidden type. | |
if (PT->isArrayType()) { | |
const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); | |
// Call ourself to check an underlying type of an array. Since the | |
// getPointeeOrArrayElementType returns an innermost type which is not an | |
// array, this recursive call only happens once. | |
return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); | |
} | |
return ValidKernelParam; | |
} | |
static void checkIsValidOpenCLKernelParameter( | |
Sema &S, | |
Declarator &D, | |
ParmVarDecl *Param, | |
llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { | |
QualType PT = Param->getType(); | |
// Cache the valid types we encounter to avoid rechecking structs that are | |
// used again | |
if (ValidTypes.count(PT.getTypePtr())) | |
return; | |
switch (getOpenCLKernelParameterType(S, PT)) { | |
case PtrPtrKernelParam: | |
// OpenCL v3.0 s6.11.a: | |
// A kernel function argument cannot be declared as a pointer to a pointer | |
// type. [...] This restriction only applies to OpenCL C 1.2 or below. | |
if (S.getLangOpts().OpenCLVersion < 120 && | |
!S.getLangOpts().OpenCLCPlusPlus) { | |
S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); | |
D.setInvalidType(); | |
return; | |
} | |
ValidTypes.insert(PT.getTypePtr()); | |
return; | |
case InvalidAddrSpacePtrKernelParam: | |
// OpenCL v1.0 s6.5: | |
// __kernel function arguments declared to be a pointer of a type can point | |
// to one of the following address spaces only : __global, __local or | |
// __constant. | |
S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); | |
D.setInvalidType(); | |
return; | |
// OpenCL v1.2 s6.9.k: | |
// Arguments to kernel functions in a program cannot be declared with the | |
// built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and | |
// uintptr_t or a struct and/or union that contain fields declared to be | |
// one of these built-in scalar types. | |
case InvalidKernelParam: | |
// OpenCL v1.2 s6.8 n: | |
// A kernel function argument cannot be declared | |
// of event_t type. | |
// Do not diagnose half type since it is diagnosed as invalid argument | |
// type for any function elsewhere. | |
if (!PT->isHalfType()) { | |
S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; | |
// Explain what typedefs are involved. | |
const TypedefType *Typedef = nullptr; | |
while ((Typedef = PT->getAs<TypedefType>())) { | |
SourceLocation Loc = Typedef->getDecl()->getLocation(); | |
// SourceLocation may be invalid for a built-in type. | |
if (Loc.isValid()) | |
S.Diag(Loc, diag::note_entity_declared_at) << PT; | |
PT = Typedef->desugar(); | |
} | |
} | |
D.setInvalidType(); | |
return; | |
case PtrKernelParam: | |
case ValidKernelParam: | |
ValidTypes.insert(PT.getTypePtr()); | |
return; | |
case RecordKernelParam: | |
break; | |
} | |
// Track nested structs we will inspect | |
SmallVector<const Decl *, 4> VisitStack; | |
// Track where we are in the nested structs. Items will migrate from | |
// VisitStack to HistoryStack as we do the DFS for bad field. | |
SmallVector<const FieldDecl *, 4> HistoryStack; | |
HistoryStack.push_back(nullptr); | |
// At this point we already handled everything except of a RecordType or | |
// an ArrayType of a RecordType. | |
assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); | |
const RecordType *RecTy = | |
PT->getPointeeOrArrayElementType()->getAs<RecordType>(); | |
const RecordDecl *OrigRecDecl = RecTy->getDecl(); | |
VisitStack.push_back(RecTy->getDecl()); | |
assert(VisitStack.back() && "First decl null?"); | |
do { | |
const Decl *Next = VisitStack.pop_back_val(); | |
if (!Next) { | |
assert(!HistoryStack.empty()); | |
// Found a marker, we have gone up a level | |
if (const FieldDecl *Hist = HistoryStack.pop_back_val()) | |
ValidTypes.insert(Hist->getType().getTypePtr()); | |
continue; | |
} | |
// Adds everything except the original parameter declaration (which is not a | |
// field itself) to the history stack. | |
const RecordDecl *RD; | |
if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { | |
HistoryStack.push_back(Field); | |
QualType FieldTy = Field->getType(); | |
// Other field types (known to be valid or invalid) are handled while we | |
// walk around RecordDecl::fields(). | |
assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && | |
"Unexpected type."); | |
const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); | |
RD = FieldRecTy->castAs<RecordType>()->getDecl(); | |
} else { | |
RD = cast<RecordDecl>(Next); | |
} | |
// Add a null marker so we know when we've gone back up a level | |
VisitStack.push_back(nullptr); | |
for (const auto *FD : RD->fields()) { | |
QualType QT = FD->getType(); | |
if (ValidTypes.count(QT.getTypePtr())) | |
continue; | |
OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); | |
if (ParamType == ValidKernelParam) | |
continue; | |
if (ParamType == RecordKernelParam) { | |
VisitStack.push_back(FD); | |
continue; | |
} | |
// OpenCL v1.2 s6.9.p: | |
// Arguments to kernel functions that are declared to be a struct or union | |
// do not allow OpenCL objects to be passed as elements of the struct or | |
// union. | |
if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || | |
ParamType == InvalidAddrSpacePtrKernelParam) { | |
S.Diag(Param->getLocation(), | |
diag::err_record_with_pointers_kernel_param) | |
<< PT->isUnionType() | |
<< PT; | |
} else { | |
S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; | |
} | |
S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) | |
<< OrigRecDecl->getDeclName(); | |
// We have an error, now let's go back up through history and show where | |
// the offending field came from | |
for (ArrayRef<const FieldDecl *>::const_iterator | |
I = HistoryStack.begin() + 1, | |
E = HistoryStack.end(); | |
I != E; ++I) { | |
const FieldDecl *OuterField = *I; | |
S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) | |
<< OuterField->getType(); | |
} | |
S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) | |
<< QT->isPointerType() | |
<< QT; | |
D.setInvalidType(); | |
return; | |
} | |
} while (!VisitStack.empty()); | |
} | |
/// Find the DeclContext in which a tag is implicitly declared if we see an | |
/// elaborated type specifier in the specified context, and lookup finds | |
/// nothing. | |
static DeclContext *getTagInjectionContext(DeclContext *DC) { | |
while (!DC->isFileContext() && !DC->isFunctionOrMethod()) | |
DC = DC->getParent(); | |
return DC; | |
} | |
/// Find the Scope in which a tag is implicitly declared if we see an | |
/// elaborated type specifier in the specified context, and lookup finds | |
/// nothing. | |
static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { | |
while (S->isClassScope() || | |
(LangOpts.CPlusPlus && | |
S->isFunctionPrototypeScope()) || | |
((S->getFlags() & Scope::DeclScope) == 0) || | |
(S->getEntity() && S->getEntity()->isTransparentContext())) | |
S = S->getParent(); | |
return S; | |
} | |
NamedDecl* | |
Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, | |
TypeSourceInfo *TInfo, LookupResult &Previous, | |
MultiTemplateParamsArg TemplateParamListsRef, | |
bool &AddToScope) { | |
QualType R = TInfo->getType(); | |
assert(R->isFunctionType()); | |
if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) | |
Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); | |
SmallVector<TemplateParameterList *, 4> TemplateParamLists; | |
for (TemplateParameterList *TPL : TemplateParamListsRef) | |
TemplateParamLists.push_back(TPL); | |
if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { | |
if (!TemplateParamLists.empty() && | |
Invented->getDepth() == TemplateParamLists.back()->getDepth()) | |
TemplateParamLists.back() = Invented; | |
else | |
TemplateParamLists.push_back(Invented); | |
} | |
// TODO: consider using NameInfo for diagnostic. | |
DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |
DeclarationName Name = NameInfo.getName(); | |
StorageClass SC = getFunctionStorageClass(*this, D); | |
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | |
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |
diag::err_invalid_thread) | |
<< DeclSpec::getSpecifierName(TSCS); | |
if (D.isFirstDeclarationOfMember()) | |
adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), | |
D.getIdentifierLoc()); | |
bool isFriend = false; | |
FunctionTemplateDecl *FunctionTemplate = nullptr; | |
bool isMemberSpecialization = false; | |
bool isFunctionTemplateSpecialization = false; | |
bool isDependentClassScopeExplicitSpecialization = false; | |
bool HasExplicitTemplateArgs = false; | |
TemplateArgumentListInfo TemplateArgs; | |
bool isVirtualOkay = false; | |
DeclContext *OriginalDC = DC; | |
bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); | |
FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, | |
isVirtualOkay); | |
if (!NewFD) return nullptr; | |
if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) | |
NewFD->setTopLevelDeclInObjCContainer(); | |
// Set the lexical context. If this is a function-scope declaration, or has a | |
// C++ scope specifier, or is the object of a friend declaration, the lexical | |
// context will be different from the semantic context. | |
NewFD->setLexicalDeclContext(CurContext); | |
if (IsLocalExternDecl) | |
NewFD->setLocalExternDecl(); | |
if (getLangOpts().CPlusPlus) { | |
bool isInline = D.getDeclSpec().isInlineSpecified(); | |
bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | |
bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); | |
isFriend = D.getDeclSpec().isFriendSpecified(); | |
if (isFriend && !isInline && D.isFunctionDefinition()) { | |
// C++ [class.friend]p5 | |
// A function can be defined in a friend declaration of a | |
// class . . . . Such a function is implicitly inline. | |
NewFD->setImplicitlyInline(); | |
} | |
// If this is a method defined in an __interface, and is not a constructor | |
// or an overloaded operator, then set the pure flag (isVirtual will already | |
// return true). | |
if (const CXXRecordDecl *Parent = | |
dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { | |
if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) | |
NewFD->setPure(true); | |
// C++ [class.union]p2 | |
// A union can have member functions, but not virtual functions. | |
if (isVirtual && Parent->isUnion()) | |
Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); | |
} | |
SetNestedNameSpecifier(*this, NewFD, D); | |
isMemberSpecialization = false; | |
isFunctionTemplateSpecialization = false; | |
if (D.isInvalidType()) | |
NewFD->setInvalidDecl(); | |
// Match up the template parameter lists with the scope specifier, then | |
// determine whether we have a template or a template specialization. | |
bool Invalid = false; | |
TemplateParameterList *TemplateParams = | |
MatchTemplateParametersToScopeSpecifier( | |
D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), | |
D.getCXXScopeSpec(), | |
D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId | |
? D.getName().TemplateId | |
: nullptr, | |
TemplateParamLists, isFriend, isMemberSpecialization, | |
Invalid); | |
if (TemplateParams) { | |
// Check that we can declare a template here. | |
if (CheckTemplateDeclScope(S, TemplateParams)) | |
NewFD->setInvalidDecl(); | |
if (TemplateParams->size() > 0) { | |
// This is a function template | |
// A destructor cannot be a template. | |
if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | |
Diag(NewFD->getLocation(), diag::err_destructor_template); | |
NewFD->setInvalidDecl(); | |
} | |
// If we're adding a template to a dependent context, we may need to | |
// rebuilding some of the types used within the template parameter list, | |
// now that we know what the current instantiation is. | |
if (DC->isDependentContext()) { | |
ContextRAII SavedContext(*this, DC); | |
if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) | |
Invalid = true; | |
} | |
FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, | |
NewFD->getLocation(), | |
Name, TemplateParams, | |
NewFD); | |
FunctionTemplate->setLexicalDeclContext(CurContext); | |
NewFD->setDescribedFunctionTemplate(FunctionTemplate); | |
// For source fidelity, store the other template param lists. | |
if (TemplateParamLists.size() > 1) { | |
NewFD->setTemplateParameterListsInfo(Context, | |
ArrayRef<TemplateParameterList *>(TemplateParamLists) | |
.drop_back(1)); | |
} | |
} else { | |
// This is a function template specialization. | |
isFunctionTemplateSpecialization = true; | |
// For source fidelity, store all the template param lists. | |
if (TemplateParamLists.size() > 0) | |
NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); | |
// C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". | |
if (isFriend) { | |
// We want to remove the "template<>", found here. | |
SourceRange RemoveRange = TemplateParams->getSourceRange(); | |
// If we remove the template<> and the name is not a | |
// template-id, we're actually silently creating a problem: | |
// the friend declaration will refer to an untemplated decl, | |
// and clearly the user wants a template specialization. So | |
// we need to insert '<>' after the name. | |
SourceLocation InsertLoc; | |
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | |
InsertLoc = D.getName().getSourceRange().getEnd(); | |
InsertLoc = getLocForEndOfToken(InsertLoc); | |
} | |
Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) | |
<< Name << RemoveRange | |
<< FixItHint::CreateRemoval(RemoveRange) | |
<< FixItHint::CreateInsertion(InsertLoc, "<>"); | |
} | |
} | |
} else { | |
// Check that we can declare a template here. | |
if (!TemplateParamLists.empty() && isMemberSpecialization && | |
CheckTemplateDeclScope(S, TemplateParamLists.back())) | |
NewFD->setInvalidDecl(); | |
// All template param lists were matched against the scope specifier: | |
// this is NOT (an explicit specialization of) a template. | |
if (TemplateParamLists.size() > 0) | |
// For source fidelity, store all the template param lists. | |
NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); | |
} | |
if (Invalid) { | |
NewFD->setInvalidDecl(); | |
if (FunctionTemplate) | |
FunctionTemplate->setInvalidDecl(); | |
} | |
// C++ [dcl.fct.spec]p5: | |
// The virtual specifier shall only be used in declarations of | |
// nonstatic class member functions that appear within a | |
// member-specification of a class declaration; see 10.3. | |
// | |
if (isVirtual && !NewFD->isInvalidDecl()) { | |
if (!isVirtualOkay) { | |
Diag(D.getDeclSpec().getVirtualSpecLoc(), | |
diag::err_virtual_non_function); | |
} else if (!CurContext->isRecord()) { | |
// 'virtual' was specified outside of the class. | |
Diag(D.getDeclSpec().getVirtualSpecLoc(), | |
diag::err_virtual_out_of_class) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | |
} else if (NewFD->getDescribedFunctionTemplate()) { | |
// C++ [temp.mem]p3: | |
// A member function template shall not be virtual. | |
Diag(D.getDeclSpec().getVirtualSpecLoc(), | |
diag::err_virtual_member_function_template) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | |
} else { | |
// Okay: Add virtual to the method. | |
NewFD->setVirtualAsWritten(true); | |
} | |
if (getLangOpts().CPlusPlus14 && | |
NewFD->getReturnType()->isUndeducedType()) | |
Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); | |
} | |
if (getLangOpts().CPlusPlus14 && | |
(NewFD->isDependentContext() || | |
(isFriend && CurContext->isDependentContext())) && | |
NewFD->getReturnType()->isUndeducedType()) { | |
// If the function template is referenced directly (for instance, as a | |
// member of the current instantiation), pretend it has a dependent type. | |
// This is not really justified by the standard, but is the only sane | |
// thing to do. | |
// FIXME: For a friend function, we have not marked the function as being | |
// a friend yet, so 'isDependentContext' on the FD doesn't work. | |
const FunctionProtoType *FPT = | |
NewFD->getType()->castAs<FunctionProtoType>(); | |
QualType Result = | |
SubstAutoType(FPT->getReturnType(), Context.DependentTy); | |
NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), | |
FPT->getExtProtoInfo())); | |
} | |
// C++ [dcl.fct.spec]p3: | |
// The inline specifier shall not appear on a block scope function | |
// declaration. | |
if (isInline && !NewFD->isInvalidDecl()) { | |
if (CurContext->isFunctionOrMethod()) { | |
// 'inline' is not allowed on block scope function declaration. | |
Diag(D.getDeclSpec().getInlineSpecLoc(), | |
diag::err_inline_declaration_block_scope) << Name | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | |
} | |
} | |
// C++ [dcl.fct.spec]p6: | |
// The explicit specifier shall be used only in the declaration of a | |
// constructor or conversion function within its class definition; | |
// see 12.3.1 and 12.3.2. | |
if (hasExplicit && !NewFD->isInvalidDecl() && | |
!isa<CXXDeductionGuideDecl>(NewFD)) { | |
if (!CurContext->isRecord()) { | |
// 'explicit' was specified outside of the class. | |
Diag(D.getDeclSpec().getExplicitSpecLoc(), | |
diag::err_explicit_out_of_class) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); | |
} else if (!isa<CXXConstructorDecl>(NewFD) && | |
!isa<CXXConversionDecl>(NewFD)) { | |
// 'explicit' was specified on a function that wasn't a constructor | |
// or conversion function. | |
Diag(D.getDeclSpec().getExplicitSpecLoc(), | |
diag::err_explicit_non_ctor_or_conv_function) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); | |
} | |
} | |
ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); | |
if (ConstexprKind != ConstexprSpecKind::Unspecified) { | |
// C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors | |
// are implicitly inline. | |
NewFD->setImplicitlyInline(); | |
// C++11 [dcl.constexpr]p3: functions declared constexpr are required to | |
// be either constructors or to return a literal type. Therefore, | |
// destructors cannot be declared constexpr. | |
if (isa<CXXDestructorDecl>(NewFD) && | |
(!getLangOpts().CPlusPlus20 || | |
ConstexprKind == ConstexprSpecKind::Consteval)) { | |
Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) | |
<< static_cast<int>(ConstexprKind); | |
NewFD->setConstexprKind(getLangOpts().CPlusPlus20 | |
? ConstexprSpecKind::Unspecified | |
: ConstexprSpecKind::Constexpr); | |
} | |
// C++20 [dcl.constexpr]p2: An allocation function, or a | |
// deallocation function shall not be declared with the consteval | |
// specifier. | |
if (ConstexprKind == ConstexprSpecKind::Consteval && | |
(NewFD->getOverloadedOperator() == OO_New || | |
NewFD->getOverloadedOperator() == OO_Array_New || | |
NewFD->getOverloadedOperator() == OO_Delete || | |
NewFD->getOverloadedOperator() == OO_Array_Delete)) { | |
Diag(D.getDeclSpec().getConstexprSpecLoc(), | |
diag::err_invalid_consteval_decl_kind) | |
<< NewFD; | |
NewFD->setConstexprKind(ConstexprSpecKind::Constexpr); | |
} | |
} | |
// If __module_private__ was specified, mark the function accordingly. | |
if (D.getDeclSpec().isModulePrivateSpecified()) { | |
if (isFunctionTemplateSpecialization) { | |
SourceLocation ModulePrivateLoc | |
= D.getDeclSpec().getModulePrivateSpecLoc(); | |
Diag(ModulePrivateLoc, diag::err_module_private_specialization) | |
<< 0 | |
<< FixItHint::CreateRemoval(ModulePrivateLoc); | |
} else { | |
NewFD->setModulePrivate(); | |
if (FunctionTemplate) | |
FunctionTemplate->setModulePrivate(); | |
} | |
} | |
if (isFriend) { | |
if (FunctionTemplate) { | |
FunctionTemplate->setObjectOfFriendDecl(); | |
FunctionTemplate->setAccess(AS_public); | |
} | |
NewFD->setObjectOfFriendDecl(); | |
NewFD->setAccess(AS_public); | |
} | |
// If a function is defined as defaulted or deleted, mark it as such now. | |
// We'll do the relevant checks on defaulted / deleted functions later. | |
switch (D.getFunctionDefinitionKind()) { | |
case FunctionDefinitionKind::Declaration: | |
case FunctionDefinitionKind::Definition: | |
break; | |
case FunctionDefinitionKind::Defaulted: | |
NewFD->setDefaulted(); | |
break; | |
case FunctionDefinitionKind::Deleted: | |
NewFD->setDeletedAsWritten(); | |
break; | |
} | |
if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && | |
D.isFunctionDefinition()) { | |
// C++ [class.mfct]p2: | |
// A member function may be defined (8.4) in its class definition, in | |
// which case it is an inline member function (7.1.2) | |
NewFD->setImplicitlyInline(); | |
} | |
if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && | |
!CurContext->isRecord()) { | |
// C++ [class.static]p1: | |
// A data or function member of a class may be declared static | |
// in a class definition, in which case it is a static member of | |
// the class. | |
// Complain about the 'static' specifier if it's on an out-of-line | |
// member function definition. | |
// MSVC permits the use of a 'static' storage specifier on an out-of-line | |
// member function template declaration and class member template | |
// declaration (MSVC versions before 2015), warn about this. | |
Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |
((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | |
cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || | |
(getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) | |
? diag::ext_static_out_of_line : diag::err_static_out_of_line) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |
} | |
// C++11 [except.spec]p15: | |
// A deallocation function with no exception-specification is treated | |
// as if it were specified with noexcept(true). | |
const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); | |
if ((Name.getCXXOverloadedOperator() == OO_Delete || | |
Name.getCXXOverloadedOperator() == OO_Array_Delete) && | |
getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) | |
NewFD->setType(Context.getFunctionType( | |
FPT->getReturnType(), FPT->getParamTypes(), | |
FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); | |
} | |
// Filter out previous declarations that don't match the scope. | |
FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), | |
D.getCXXScopeSpec().isNotEmpty() || | |
isMemberSpecialization || | |
isFunctionTemplateSpecialization); | |
// Handle GNU asm-label extension (encoded as an attribute). | |
if (Expr *E = (Expr*) D.getAsmLabel()) { | |
// The parser guarantees this is a string. | |
StringLiteral *SE = cast<StringLiteral>(E); | |
NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), | |
/*IsLiteralLabel=*/true, | |
SE->getStrTokenLoc(0))); | |
} else if (!ExtnameUndeclaredIdentifiers.empty()) { | |
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = | |
ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); | |
if (I != ExtnameUndeclaredIdentifiers.end()) { | |
if (isDeclExternC(NewFD)) { | |
NewFD->addAttr(I->second); | |
ExtnameUndeclaredIdentifiers.erase(I); | |
} else | |
Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) | |
<< /*Variable*/0 << NewFD; | |
} | |
} | |
// Copy the parameter declarations from the declarator D to the function | |
// declaration NewFD, if they are available. First scavenge them into Params. | |
SmallVector<ParmVarDecl*, 16> Params; | |
unsigned FTIIdx; | |
if (D.isFunctionDeclarator(FTIIdx)) { | |
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; | |
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs | |
// function that takes no arguments, not a function that takes a | |
// single void argument. | |
// We let through "const void" here because Sema::GetTypeForDeclarator | |
// already checks for that case. | |
if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { | |
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | |
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | |
assert(Param->getDeclContext() != NewFD && "Was set before ?"); | |
Param->setDeclContext(NewFD); | |
Params.push_back(Param); | |
if (Param->isInvalidDecl()) | |
NewFD->setInvalidDecl(); | |
} | |
} | |
if (!getLangOpts().CPlusPlus) { | |
// In C, find all the tag declarations from the prototype and move them | |
// into the function DeclContext. Remove them from the surrounding tag | |
// injection context of the function, which is typically but not always | |
// the TU. | |
DeclContext *PrototypeTagContext = | |
getTagInjectionContext(NewFD->getLexicalDeclContext()); | |
for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { | |
auto *TD = dyn_cast<TagDecl>(NonParmDecl); | |
// We don't want to reparent enumerators. Look at their parent enum | |
// instead. | |
if (!TD) { | |
if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) | |
TD = cast<EnumDecl>(ECD->getDeclContext()); | |
} | |
if (!TD) | |
continue; | |
DeclContext *TagDC = TD->getLexicalDeclContext(); | |
if (!TagDC->containsDecl(TD)) | |
continue; | |
TagDC->removeDecl(TD); | |
TD->setDeclContext(NewFD); | |
NewFD->addDecl(TD); | |
// Preserve the lexical DeclContext if it is not the surrounding tag | |
// injection context of the FD. In this example, the semantic context of | |
// E will be f and the lexical context will be S, while both the | |
// semantic and lexical contexts of S will be f: | |
// void f(struct S { enum E { a } f; } s); | |
if (TagDC != PrototypeTagContext) | |
TD->setLexicalDeclContext(TagDC); | |
} | |
} | |
} else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { | |
// When we're declaring a function with a typedef, typeof, etc as in the | |
// following example, we'll need to synthesize (unnamed) | |
// parameters for use in the declaration. | |
// | |
// @code | |
// typedef void fn(int); | |
// fn f; | |
// @endcode | |
// Synthesize a parameter for each argument type. | |
for (const auto &AI : FT->param_types()) { | |
ParmVarDecl *Param = | |
BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); | |
Param->setScopeInfo(0, Params.size()); | |
Params.push_back(Param); | |
} | |
} else { | |
assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && | |
"Should not need args for typedef of non-prototype fn"); | |
} | |
// Finally, we know we have the right number of parameters, install them. | |
NewFD->setParams(Params); | |
if (D.getDeclSpec().isNoreturnSpecified()) | |
NewFD->addAttr(C11NoReturnAttr::Create(Context, | |
D.getDeclSpec().getNoreturnSpecLoc(), | |
AttributeCommonInfo::AS_Keyword)); | |
// Functions returning a variably modified type violate C99 6.7.5.2p2 | |
// because all functions have linkage. | |
if (!NewFD->isInvalidDecl() && | |
NewFD->getReturnType()->isVariablyModifiedType()) { | |
Diag(NewFD->getLocation(), diag::err_vm_func_decl); | |
NewFD->setInvalidDecl(); | |
} | |
// Apply an implicit SectionAttr if '#pragma clang section text' is active | |
if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && | |
!NewFD->hasAttr<SectionAttr>()) | |
NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( | |
Context, PragmaClangTextSection.SectionName, | |
PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma)); | |
// Apply an implicit SectionAttr if #pragma code_seg is active. | |
if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && | |
!NewFD->hasAttr<SectionAttr>()) { | |
NewFD->addAttr(SectionAttr::CreateImplicit( | |
Context, CodeSegStack.CurrentValue->getString(), | |
CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, | |
SectionAttr::Declspec_allocate)); | |
if (UnifySection(CodeSegStack.CurrentValue->getString(), | |
ASTContext::PSF_Implicit | ASTContext::PSF_Execute | | |
ASTContext::PSF_Read, | |
NewFD)) | |
NewFD->dropAttr<SectionAttr>(); | |
} | |
// Apply an implicit CodeSegAttr from class declspec or | |
// apply an implicit SectionAttr from #pragma code_seg if active. | |
if (!NewFD->hasAttr<CodeSegAttr>()) { | |
if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, | |
D.isFunctionDefinition())) { | |
NewFD->addAttr(SAttr); | |
} | |
} | |
// Handle attributes. | |
ProcessDeclAttributes(S, NewFD, D); | |
if (getLangOpts().OpenCL) { | |
// OpenCL v1.1 s6.5: Using an address space qualifier in a function return | |
// type declaration will generate a compilation error. | |
LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); | |
if (AddressSpace != LangAS::Default) { | |
Diag(NewFD->getLocation(), | |
diag::err_opencl_return_value_with_address_space); | |
NewFD->setInvalidDecl(); | |
} | |
} | |
if (!getLangOpts().CPlusPlus) { | |
// Perform semantic checking on the function declaration. | |
if (!NewFD->isInvalidDecl() && NewFD->isMain()) | |
CheckMain(NewFD, D.getDeclSpec()); | |
if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) | |
CheckMSVCRTEntryPoint(NewFD); | |
if (!NewFD->isInvalidDecl()) | |
D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, | |
isMemberSpecialization)); | |
else if (!Previous.empty()) | |
// Recover gracefully from an invalid redeclaration. | |
D.setRedeclaration(true); | |
assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || | |
Previous.getResultKind() != LookupResult::FoundOverloaded) && | |
"previous declaration set still overloaded"); | |
// Diagnose no-prototype function declarations with calling conventions that | |
// don't support variadic calls. Only do this in C and do it after merging | |
// possibly prototyped redeclarations. | |
const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); | |
if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { | |
CallingConv CC = FT->getExtInfo().getCC(); | |
if (!supportsVariadicCall(CC)) { | |
// Windows system headers sometimes accidentally use stdcall without | |
// (void) parameters, so we relax this to a warning. | |
int DiagID = | |
CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; | |
Diag(NewFD->getLocation(), DiagID) | |
<< FunctionType::getNameForCallConv(CC); | |
} | |
} | |
if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || | |
NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) | |
checkNonTrivialCUnion(NewFD->getReturnType(), | |
NewFD->getReturnTypeSourceRange().getBegin(), | |
NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); | |
} else { | |
// C++11 [replacement.functions]p3: | |
// The program's definitions shall not be specified as inline. | |
// | |
// N.B. We diagnose declarations instead of definitions per LWG issue 2340. | |
// | |
// Suppress the diagnostic if the function is __attribute__((used)), since | |
// that forces an external definition to be emitted. | |
if (D.getDeclSpec().isInlineSpecified() && | |
NewFD->isReplaceableGlobalAllocationFunction() && | |
!NewFD->hasAttr<UsedAttr>()) | |
Diag(D.getDeclSpec().getInlineSpecLoc(), | |
diag::ext_operator_new_delete_declared_inline) | |
<< NewFD->getDeclName(); | |
// If the declarator is a template-id, translate the parser's template | |
// argument list into our AST format. | |
if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | |
TemplateIdAnnotation *TemplateId = D.getName().TemplateId; | |
TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); | |
TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); | |
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |
TemplateId->NumArgs); | |
translateTemplateArguments(TemplateArgsPtr, | |
TemplateArgs); | |
HasExplicitTemplateArgs = true; | |
if (NewFD->isInvalidDecl()) { | |
HasExplicitTemplateArgs = false; | |
} else if (FunctionTemplate) { | |
// Function template with explicit template arguments. | |
Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) | |
<< SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); | |
HasExplicitTemplateArgs = false; | |
} else { | |
assert((isFunctionTemplateSpecialization || | |
D.getDeclSpec().isFriendSpecified()) && | |
"should have a 'template<>' for this decl"); | |
// "friend void foo<>(int);" is an implicit specialization decl. | |
isFunctionTemplateSpecialization = true; | |
} | |
} else if (isFriend && isFunctionTemplateSpecialization) { | |
// This combination is only possible in a recovery case; the user | |
// wrote something like: | |
// template <> friend void foo(int); | |
// which we're recovering from as if the user had written: | |
// friend void foo<>(int); | |
// Go ahead and fake up a template id. | |
HasExplicitTemplateArgs = true; | |
TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); | |
TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); | |
} | |
// We do not add HD attributes to specializations here because | |
// they may have different constexpr-ness compared to their | |
// templates and, after maybeAddCUDAHostDeviceAttrs() is applied, | |
// may end up with different effective targets. Instead, a | |
// specialization inherits its target attributes from its template | |
// in the CheckFunctionTemplateSpecialization() call below. | |
if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) | |
maybeAddCUDAHostDeviceAttrs(NewFD, Previous); | |
// If it's a friend (and only if it's a friend), it's possible | |
// that either the specialized function type or the specialized | |
// template is dependent, and therefore matching will fail. In | |
// this case, don't check the specialization yet. | |
bool InstantiationDependent = false; | |
if (isFunctionTemplateSpecialization && isFriend && | |
(NewFD->getType()->isDependentType() || DC->isDependentContext() || | |
TemplateSpecializationType::anyDependentTemplateArguments( | |
TemplateArgs, | |
InstantiationDependent))) { | |
assert(HasExplicitTemplateArgs && | |
"friend function specialization without template args"); | |
if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, | |
Previous)) | |
NewFD->setInvalidDecl(); | |
} else if (isFunctionTemplateSpecialization) { | |
if (CurContext->isDependentContext() && CurContext->isRecord() | |
&& !isFriend) { | |
isDependentClassScopeExplicitSpecialization = true; | |
} else if (!NewFD->isInvalidDecl() && | |
CheckFunctionTemplateSpecialization( | |
NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), | |
Previous)) | |
NewFD->setInvalidDecl(); | |
// C++ [dcl.stc]p1: | |
// A storage-class-specifier shall not be specified in an explicit | |
// specialization (14.7.3) | |
FunctionTemplateSpecializationInfo *Info = | |
NewFD->getTemplateSpecializationInfo(); | |
if (Info && SC != SC_None) { | |
if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) | |
Diag(NewFD->getLocation(), | |
diag::err_explicit_specialization_inconsistent_storage_class) | |
<< SC | |
<< FixItHint::CreateRemoval( | |
D.getDeclSpec().getStorageClassSpecLoc()); | |
else | |
Diag(NewFD->getLocation(), | |
diag::ext_explicit_specialization_storage_class) | |
<< FixItHint::CreateRemoval( | |
D.getDeclSpec().getStorageClassSpecLoc()); | |
} | |
} else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { | |
if (CheckMemberSpecialization(NewFD, Previous)) | |
NewFD->setInvalidDecl(); | |
} | |
// Perform semantic checking on the function declaration. | |
if (!isDependentClassScopeExplicitSpecialization) { | |
if (!NewFD->isInvalidDecl() && NewFD->isMain()) | |
CheckMain(NewFD, D.getDeclSpec()); | |
if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) | |
CheckMSVCRTEntryPoint(NewFD); | |
if (!NewFD->isInvalidDecl()) | |
D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, | |
isMemberSpecialization)); | |
else if (!Previous.empty()) | |
// Recover gracefully from an invalid redeclaration. | |
D.setRedeclaration(true); | |
} | |
assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || | |
Previous.getResultKind() != LookupResult::FoundOverloaded) && | |
"previous declaration set still overloaded"); | |
NamedDecl *PrincipalDecl = (FunctionTemplate | |
? cast<NamedDecl>(FunctionTemplate) | |
: NewFD); | |
if (isFriend && NewFD->getPreviousDecl()) { | |
AccessSpecifier Access = AS_public; | |
if (!NewFD->isInvalidDecl()) | |
Access = NewFD->getPreviousDecl()->getAccess(); | |
NewFD->setAccess(Access); | |
if (FunctionTemplate) FunctionTemplate->setAccess(Access); | |
} | |
if (NewFD->isOverloadedOperator() && !DC->isRecord() && | |
PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) | |
PrincipalDecl->setNonMemberOperator(); | |
// If we have a function template, check the template parameter | |
// list. This will check and merge default template arguments. | |
if (FunctionTemplate) { | |
FunctionTemplateDecl *PrevTemplate = | |
FunctionTemplate->getPreviousDecl(); | |
CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), | |
PrevTemplate ? PrevTemplate->getTemplateParameters() | |
: nullptr, | |
D.getDeclSpec().isFriendSpecified() | |
? (D.isFunctionDefinition() | |
? TPC_FriendFunctionTemplateDefinition | |
: TPC_FriendFunctionTemplate) | |
: (D.getCXXScopeSpec().isSet() && | |
DC && DC->isRecord() && | |
DC->isDependentContext()) | |
? TPC_ClassTemplateMember | |
: TPC_FunctionTemplate); | |
} | |
if (NewFD->isInvalidDecl()) { | |
// Ignore all the rest of this. | |
} else if (!D.isRedeclaration()) { | |
struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, | |
AddToScope }; | |
// Fake up an access specifier if it's supposed to be a class member. | |
if (isa<CXXRecordDecl>(NewFD->getDeclContext())) | |
NewFD->setAccess(AS_public); | |
// Qualified decls generally require a previous declaration. | |
if (D.getCXXScopeSpec().isSet()) { | |
// ...with the major exception of templated-scope or | |
// dependent-scope friend declarations. | |
// TODO: we currently also suppress this check in dependent | |
// contexts because (1) the parameter depth will be off when | |
// matching friend templates and (2) we might actually be | |
// selecting a friend based on a dependent factor. But there | |
// are situations where these conditions don't apply and we | |
// can actually do this check immediately. | |
// | |
// Unless the scope is dependent, it's always an error if qualified | |
// redeclaration lookup found nothing at all. Diagnose that now; | |
// nothing will diagnose that error later. | |
if (isFriend && | |
(D.getCXXScopeSpec().getScopeRep()->isDependent() || | |
(!Previous.empty() && CurContext->isDependentContext()))) { | |
// ignore these | |
} else { | |
// The user tried to provide an out-of-line definition for a | |
// function that is a member of a class or namespace, but there | |
// was no such member function declared (C++ [class.mfct]p2, | |
// C++ [namespace.memdef]p2). For example: | |
// | |
// class X { | |
// void f() const; | |
// }; | |
// | |
// void X::f() { } // ill-formed | |
// | |
// Complain about this problem, and attempt to suggest close | |
// matches (e.g., those that differ only in cv-qualifiers and | |
// whether the parameter types are references). | |
if (NamedDecl *Result = DiagnoseInvalidRedeclaration( | |
*this, Previous, NewFD, ExtraArgs, false, nullptr)) { | |
AddToScope = ExtraArgs.AddToScope; | |
return Result; | |
} | |
} | |
// Unqualified local friend declarations are required to resolve | |
// to something. | |
} else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { | |
if (NamedDecl *Result = DiagnoseInvalidRedeclaration( | |
*this, Previous, NewFD, ExtraArgs, true, S)) { | |
AddToScope = ExtraArgs.AddToScope; | |
return Result; | |
} | |
} | |
} else if (!D.isFunctionDefinition() && | |
isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && | |
!isFriend && !isFunctionTemplateSpecialization && | |
!isMemberSpecialization) { | |
// An out-of-line member function declaration must also be a | |
// definition (C++ [class.mfct]p2). | |
// Note that this is not the case for explicit specializations of | |
// function templates or member functions of class templates, per | |
// C++ [temp.expl.spec]p2. We also allow these declarations as an | |
// extension for compatibility with old SWIG code which likes to | |
// generate them. | |
Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) | |
<< D.getCXXScopeSpec().getRange(); | |
} | |
} | |
// If this is the first declaration of a library builtin function, add | |
// attributes as appropriate. | |
if (!D.isRedeclaration() && | |
NewFD->getDeclContext()->getRedeclContext()->isFileContext()) { | |
if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { | |
if (unsigned BuiltinID = II->getBuiltinID()) { | |
if (NewFD->getLanguageLinkage() == CLanguageLinkage) { | |
// Validate the type matches unless this builtin is specified as | |
// matching regardless of its declared type. | |
if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) { | |
NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); | |
} else { | |
ASTContext::GetBuiltinTypeError Error; | |
LookupNecessaryTypesForBuiltin(S, BuiltinID); | |
QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error); | |
if (!Error && !BuiltinType.isNull() && | |
Context.hasSameFunctionTypeIgnoringExceptionSpec( | |
NewFD->getType(), BuiltinType)) | |
NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); | |
} | |
} else if (BuiltinID == Builtin::BI__GetExceptionInfo && | |
Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |
// FIXME: We should consider this a builtin only in the std namespace. | |
NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); | |
} | |
} | |
} | |
} | |
ProcessPragmaWeak(S, NewFD); | |
checkAttributesAfterMerging(*this, *NewFD); | |
AddKnownFunctionAttributes(NewFD); | |
if (NewFD->hasAttr<OverloadableAttr>() && | |
!NewFD->getType()->getAs<FunctionProtoType>()) { | |
Diag(NewFD->getLocation(), | |
diag::err_attribute_overloadable_no_prototype) | |
<< NewFD; | |
// Turn this into a variadic function with no parameters. | |
const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); | |
FunctionProtoType::ExtProtoInfo EPI( | |
Context.getDefaultCallingConvention(true, false)); | |
EPI.Variadic = true; | |
EPI.ExtInfo = FT->getExtInfo(); | |
QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); | |
NewFD->setType(R); | |
} | |
// If there's a #pragma GCC visibility in scope, and this isn't a class | |
// member, set the visibility of this function. | |
if (!DC->isRecord() && NewFD->isExternallyVisible()) | |
AddPushedVisibilityAttribute(NewFD); | |
// If there's a #pragma clang arc_cf_code_audited in scope, consider | |
// marking the function. | |
AddCFAuditedAttribute(NewFD); | |
// If this is a function definition, check if we have to apply optnone due to | |
// a pragma. | |
if(D.isFunctionDefinition()) | |
AddRangeBasedOptnone(NewFD); | |
// If this is the first declaration of an extern C variable, update | |
// the map of such variables. | |
if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && | |
isIncompleteDeclExternC(*this, NewFD)) | |
RegisterLocallyScopedExternCDecl(NewFD, S); | |
// Set this FunctionDecl's range up to the right paren. | |
NewFD->setRangeEnd(D.getSourceRange().getEnd()); | |
if (D.isRedeclaration() && !Previous.empty()) { | |
NamedDecl *Prev = Previous.getRepresentativeDecl(); | |
checkDLLAttributeRedeclaration(*this, Prev, NewFD, | |
isMemberSpecialization || | |
isFunctionTemplateSpecialization, | |
D.isFunctionDefinition()); | |
} | |
if (getLangOpts().CUDA) { | |
IdentifierInfo *II = NewFD->getIdentifier(); | |
if (II && II->isStr(getCudaConfigureFuncName()) && | |
!NewFD->isInvalidDecl() && | |
NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | |
if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) | |
Diag(NewFD->getLocation(), diag::err_config_scalar_return) | |
<< getCudaConfigureFuncName(); | |
Context.setcudaConfigureCallDecl(NewFD); | |
} | |
// Variadic functions, other than a *declaration* of printf, are not allowed | |
// in device-side CUDA code, unless someone passed | |
// -fcuda-allow-variadic-functions. | |
if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && | |
(NewFD->hasAttr<CUDADeviceAttr>() || | |
NewFD->hasAttr<CUDAGlobalAttr>()) && | |
!(II && II->isStr("printf") && NewFD->isExternC() && | |
!D.isFunctionDefinition())) { | |
Diag(NewFD->getLocation(), diag::err_variadic_device_fn); | |
} | |
} | |
MarkUnusedFileScopedDecl(NewFD); | |
if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { | |
// OpenCL v1.2 s6.8 static is invalid for kernel functions. | |
if ((getLangOpts().OpenCLVersion >= 120) | |
&& (SC == SC_Static)) { | |
Diag(D.getIdentifierLoc(), diag::err_static_kernel); | |
D.setInvalidType(); | |
} | |
// OpenCL v1.2, s6.9 -- Kernels can only have return type void. | |
if (!NewFD->getReturnType()->isVoidType()) { | |
SourceRange RTRange = NewFD->getReturnTypeSourceRange(); | |
Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) | |
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") | |
: FixItHint()); | |
D.setInvalidType(); | |
} | |
llvm::SmallPtrSet<const Type *, 16> ValidTypes; | |
for (auto Param : NewFD->parameters()) | |
checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); | |
if (getLangOpts().OpenCLCPlusPlus) { | |
if (DC->isRecord()) { | |
Diag(D.getIdentifierLoc(), diag::err_method_kernel); | |
D.setInvalidType(); | |
} | |
if (FunctionTemplate) { | |
Diag(D.getIdentifierLoc(), diag::err_template_kernel); | |
D.setInvalidType(); | |
} | |
} | |
} | |
if (getLangOpts().CPlusPlus) { | |
if (FunctionTemplate) { | |
if (NewFD->isInvalidDecl()) | |
FunctionTemplate->setInvalidDecl(); | |
return FunctionTemplate; | |
} | |
if (isMemberSpecialization && !NewFD->isInvalidDecl()) | |
CompleteMemberSpecialization(NewFD, Previous); | |
} | |
for (const ParmVarDecl *Param : NewFD->parameters()) { | |
QualType PT = Param->getType(); | |
// OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value | |
// types. | |
if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { | |
if(const PipeType *PipeTy = PT->getAs<PipeType>()) { | |
QualType ElemTy = PipeTy->getElementType(); | |
if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { | |
Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); | |
D.setInvalidType(); | |
} | |
} | |
} | |
} | |
// Here we have an function template explicit specialization at class scope. | |
// The actual specialization will be postponed to template instatiation | |
// time via the ClassScopeFunctionSpecializationDecl node. | |
if (isDependentClassScopeExplicitSpecialization) { | |
ClassScopeFunctionSpecializationDecl *NewSpec = | |
ClassScopeFunctionSpecializationDecl::Create( | |
Context, CurContext, NewFD->getLocation(), | |
cast<CXXMethodDecl>(NewFD), | |
HasExplicitTemplateArgs, TemplateArgs); | |
CurContext->addDecl(NewSpec); | |
AddToScope = false; | |
} | |
// Diagnose availability attributes. Availability cannot be used on functions | |
// that are run during load/unload. | |
if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { | |
if (NewFD->hasAttr<ConstructorAttr>()) { | |
Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) | |
<< 1; | |
NewFD->dropAttr<AvailabilityAttr>(); | |
} | |
if (NewFD->hasAttr<DestructorAttr>()) { | |
Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) | |
<< 2; | |
NewFD->dropAttr<AvailabilityAttr>(); | |
} | |
} | |
// Diagnose no_builtin attribute on function declaration that are not a | |
// definition. | |
// FIXME: We should really be doing this in | |
// SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to | |
// the FunctionDecl and at this point of the code | |
// FunctionDecl::isThisDeclarationADefinition() which always returns `false` | |
// because Sema::ActOnStartOfFunctionDef has not been called yet. | |
if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) | |
switch (D.getFunctionDefinitionKind()) { | |
case FunctionDefinitionKind::Defaulted: | |
case FunctionDefinitionKind::Deleted: | |
Diag(NBA->getLocation(), | |
diag::err_attribute_no_builtin_on_defaulted_deleted_function) | |
<< NBA->getSpelling(); | |
break; | |
case FunctionDefinitionKind::Declaration: | |
Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) | |
<< NBA->getSpelling(); | |
break; | |
case FunctionDefinitionKind::Definition: | |
break; | |
} | |
return NewFD; | |
} | |
/// Return a CodeSegAttr from a containing class. The Microsoft docs say | |
/// when __declspec(code_seg) "is applied to a class, all member functions of | |
/// the class and nested classes -- this includes compiler-generated special | |
/// member functions -- are put in the specified segment." | |
/// The actual behavior is a little more complicated. The Microsoft compiler | |
/// won't check outer classes if there is an active value from #pragma code_seg. | |
/// The CodeSeg is always applied from the direct parent but only from outer | |
/// classes when the #pragma code_seg stack is empty. See: | |
/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer | |
/// available since MS has removed the page. | |
static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { | |
const auto *Method = dyn_cast<CXXMethodDecl>(FD); | |
if (!Method) | |
return nullptr; | |
const CXXRecordDecl *Parent = Method->getParent(); | |
if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { | |
Attr *NewAttr = SAttr->clone(S.getASTContext()); | |
NewAttr->setImplicit(true); | |
return NewAttr; | |
} | |
// The Microsoft compiler won't check outer classes for the CodeSeg | |
// when the #pragma code_seg stack is active. | |
if (S.CodeSegStack.CurrentValue) | |
return nullptr; | |
while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { | |
if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { | |
Attr *NewAttr = SAttr->clone(S.getASTContext()); | |
NewAttr->setImplicit(true); | |
return NewAttr; | |
} | |
} | |
return nullptr; | |
} | |
/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a | |
/// containing class. Otherwise it will return implicit SectionAttr if the | |
/// function is a definition and there is an active value on CodeSegStack | |
/// (from the current #pragma code-seg value). | |
/// | |
/// \param FD Function being declared. | |
/// \param IsDefinition Whether it is a definition or just a declarartion. | |
/// \returns A CodeSegAttr or SectionAttr to apply to the function or | |
/// nullptr if no attribute should be added. | |
Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, | |
bool IsDefinition) { | |
if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) | |
return A; | |
if (!FD->hasAttr<SectionAttr>() && IsDefinition && | |
CodeSegStack.CurrentValue) | |
return SectionAttr::CreateImplicit( | |
getASTContext(), CodeSegStack.CurrentValue->getString(), | |
CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, | |
SectionAttr::Declspec_allocate); | |
return nullptr; | |
} | |
/// Determines if we can perform a correct type check for \p D as a | |
/// redeclaration of \p PrevDecl. If not, we can generally still perform a | |
/// best-effort check. | |
/// | |
/// \param NewD The new declaration. | |
/// \param OldD The old declaration. | |
/// \param NewT The portion of the type of the new declaration to check. | |
/// \param OldT The portion of the type of the old declaration to check. | |
bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, | |
QualType NewT, QualType OldT) { | |
if (!NewD->getLexicalDeclContext()->isDependentContext()) | |
return true; | |
// For dependently-typed local extern declarations and friends, we can't | |
// perform a correct type check in general until instantiation: | |
// | |
// int f(); | |
// template<typename T> void g() { T f(); } | |
// | |
// (valid if g() is only instantiated with T = int). | |
if (NewT->isDependentType() && | |
(NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) | |
return false; | |
// Similarly, if the previous declaration was a dependent local extern | |
// declaration, we don't really know its type yet. | |
if (OldT->isDependentType() && OldD->isLocalExternDecl()) | |
return false; | |
return true; | |
} | |
/// Checks if the new declaration declared in dependent context must be | |
/// put in the same redeclaration chain as the specified declaration. | |
/// | |
/// \param D Declaration that is checked. | |
/// \param PrevDecl Previous declaration found with proper lookup method for the | |
/// same declaration name. | |
/// \returns True if D must be added to the redeclaration chain which PrevDecl | |
/// belongs to. | |
/// | |
bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { | |
if (!D->getLexicalDeclContext()->isDependentContext()) | |
return true; | |
// Don't chain dependent friend function definitions until instantiation, to | |
// permit cases like | |
// | |
// void func(); | |
// template<typename T> class C1 { friend void func() {} }; | |
// template<typename T> class C2 { friend void func() {} }; | |
// | |
// ... which is valid if only one of C1 and C2 is ever instantiated. | |
// | |
// FIXME: This need only apply to function definitions. For now, we proxy | |
// this by checking for a file-scope function. We do not want this to apply | |
// to friend declarations nominating member functions, because that gets in | |
// the way of access checks. | |
if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) | |
return false; | |
auto *VD = dyn_cast<ValueDecl>(D); | |
auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); | |
return !VD || !PrevVD || | |
canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), | |
PrevVD->getType()); | |
} | |
/// Check the target attribute of the function for MultiVersion | |
/// validity. | |
/// | |
/// Returns true if there was an error, false otherwise. | |
static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { | |
const auto *TA = FD->getAttr<TargetAttr>(); | |
assert(TA && "MultiVersion Candidate requires a target attribute"); | |
ParsedTargetAttr ParseInfo = TA->parse(); | |
const TargetInfo &TargetInfo = S.Context.getTargetInfo(); | |
enum ErrType { Feature = 0, Architecture = 1 }; | |
if (!ParseInfo.Architecture.empty() && | |
!TargetInfo.validateCpuIs(ParseInfo.Architecture)) { | |
S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |
<< Architecture << ParseInfo.Architecture; | |
return true; | |
} | |
for (const auto &Feat : ParseInfo.Features) { | |
auto BareFeat = StringRef{Feat}.substr(1); | |
if (Feat[0] == '-') { | |
S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |
<< Feature << ("no-" + BareFeat).str(); | |
return true; | |
} | |
if (!TargetInfo.validateCpuSupports(BareFeat) || | |
!TargetInfo.isValidFeatureName(BareFeat)) { | |
S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |
<< Feature << BareFeat; | |
return true; | |
} | |
} | |
return false; | |
} | |
// Provide a white-list of attributes that are allowed to be combined with | |
// multiversion functions. | |
static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, | |
MultiVersionKind MVType) { | |
// Note: this list/diagnosis must match the list in | |
// checkMultiversionAttributesAllSame. | |
switch (Kind) { | |
default: | |
return false; | |
case attr::Used: | |
return MVType == MultiVersionKind::Target; | |
case attr::NonNull: | |
case attr::NoThrow: | |
return true; | |
} | |
} | |
static bool checkNonMultiVersionCompatAttributes(Sema &S, | |
const FunctionDecl *FD, | |
const FunctionDecl *CausedFD, | |
MultiVersionKind MVType) { | |
bool IsCPUSpecificCPUDispatchMVType = | |
MVType == MultiVersionKind::CPUDispatch || | |
MVType == MultiVersionKind::CPUSpecific; | |
const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType]( | |
Sema &S, const Attr *A) { | |
S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr) | |
<< IsCPUSpecificCPUDispatchMVType << A; | |
if (CausedFD) | |
S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here); | |
return true; | |
}; | |
for (const Attr *A : FD->attrs()) { | |
switch (A->getKind()) { | |
case attr::CPUDispatch: | |
case attr::CPUSpecific: | |
if (MVType != MultiVersionKind::CPUDispatch && | |
MVType != MultiVersionKind::CPUSpecific) | |
return Diagnose(S, A); | |
break; | |
case attr::Target: | |
if (MVType != MultiVersionKind::Target) | |
return Diagnose(S, A); | |
break; | |
default: | |
if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType)) | |
return Diagnose(S, A); | |
break; | |
} | |
} | |
return false; | |
} | |
bool Sema::areMultiversionVariantFunctionsCompatible( | |
const FunctionDecl *OldFD, const FunctionDecl *NewFD, | |
const PartialDiagnostic &NoProtoDiagID, | |
const PartialDiagnosticAt &NoteCausedDiagIDAt, | |
const PartialDiagnosticAt &NoSupportDiagIDAt, | |
const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, | |
bool ConstexprSupported, bool CLinkageMayDiffer) { | |
enum DoesntSupport { | |
FuncTemplates = 0, | |
VirtFuncs = 1, | |
DeducedReturn = 2, | |
Constructors = 3, | |
Destructors = 4, | |
DeletedFuncs = 5, | |
DefaultedFuncs = 6, | |
ConstexprFuncs = 7, | |
ConstevalFuncs = 8, | |
}; | |
enum Different { | |
CallingConv = 0, | |
ReturnType = 1, | |
ConstexprSpec = 2, | |
InlineSpec = 3, | |
StorageClass = 4, | |
Linkage = 5, | |
}; | |
if (NoProtoDiagID.getDiagID() != 0 && OldFD && | |
!OldFD->getType()->getAs<FunctionProtoType>()) { | |
Diag(OldFD->getLocation(), NoProtoDiagID); | |
Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); | |
return true; | |
} | |
if (NoProtoDiagID.getDiagID() != 0 && | |
!NewFD->getType()->getAs<FunctionProtoType>()) | |
return Diag(NewFD->getLocation(), NoProtoDiagID); | |
if (!TemplatesSupported && | |
NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< FuncTemplates; | |
if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { | |
if (NewCXXFD->isVirtual()) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< VirtFuncs; | |
if (isa<CXXConstructorDecl>(NewCXXFD)) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< Constructors; | |
if (isa<CXXDestructorDecl>(NewCXXFD)) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< Destructors; | |
} | |
if (NewFD->isDeleted()) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< DeletedFuncs; | |
if (NewFD->isDefaulted()) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< DefaultedFuncs; | |
if (!ConstexprSupported && NewFD->isConstexpr()) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); | |
QualType NewQType = Context.getCanonicalType(NewFD->getType()); | |
const auto *NewType = cast<FunctionType>(NewQType); | |
QualType NewReturnType = NewType->getReturnType(); | |
if (NewReturnType->isUndeducedType()) | |
return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |
<< DeducedReturn; | |
// Ensure the return type is identical. | |
if (OldFD) { | |
QualType OldQType = Context.getCanonicalType(OldFD->getType()); | |
const auto *OldType = cast<FunctionType>(OldQType); | |
FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | |
FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | |
if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) | |
return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; | |
QualType OldReturnType = OldType->getReturnType(); | |
if (OldReturnType != NewReturnType) | |
return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; | |
if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) | |
return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; | |
if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) | |
return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; | |
if (OldFD->getStorageClass() != NewFD->getStorageClass()) | |
return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass; | |
if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) | |
return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; | |
if (CheckEquivalentExceptionSpec( | |
OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), | |
NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) | |
return true; | |
} | |
return false; | |
} | |
static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, | |
const FunctionDecl *NewFD, | |
bool CausesMV, | |
MultiVersionKind MVType) { | |
if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); | |
if (OldFD) | |
S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |
return true; | |
} | |
bool IsCPUSpecificCPUDispatchMVType = | |
MVType == MultiVersionKind::CPUDispatch || | |
MVType == MultiVersionKind::CPUSpecific; | |
if (CausesMV && OldFD && | |
checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType)) | |
return true; | |
if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType)) | |
return true; | |
// Only allow transition to MultiVersion if it hasn't been used. | |
if (OldFD && CausesMV && OldFD->isUsed(false)) | |
return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); | |
return S.areMultiversionVariantFunctionsCompatible( | |
OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), | |
PartialDiagnosticAt(NewFD->getLocation(), | |
S.PDiag(diag::note_multiversioning_caused_here)), | |
PartialDiagnosticAt(NewFD->getLocation(), | |
S.PDiag(diag::err_multiversion_doesnt_support) | |
<< IsCPUSpecificCPUDispatchMVType), | |
PartialDiagnosticAt(NewFD->getLocation(), | |
S.PDiag(diag::err_multiversion_diff)), | |
/*TemplatesSupported=*/false, | |
/*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType, | |
/*CLinkageMayDiffer=*/false); | |
} | |
/// Check the validity of a multiversion function declaration that is the | |
/// first of its kind. Also sets the multiversion'ness' of the function itself. | |
/// | |
/// This sets NewFD->isInvalidDecl() to true if there was an error. | |
/// | |
/// Returns true if there was an error, false otherwise. | |
static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, | |
MultiVersionKind MVType, | |
const TargetAttr *TA) { | |
assert(MVType != MultiVersionKind::None && | |
"Function lacks multiversion attribute"); | |
// Target only causes MV if it is default, otherwise this is a normal | |
// function. | |
if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) | |
return false; | |
if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { | |
FD->setInvalidDecl(); | |
return true; | |
} | |
if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { | |
FD->setInvalidDecl(); | |
return true; | |
} | |
FD->setIsMultiVersion(); | |
return false; | |
} | |
static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { | |
for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { | |
if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) | |
return true; | |
} | |
return false; | |
} | |
static bool CheckTargetCausesMultiVersioning( | |
Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, | |
bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, | |
LookupResult &Previous) { | |
const auto *OldTA = OldFD->getAttr<TargetAttr>(); | |
ParsedTargetAttr NewParsed = NewTA->parse(); | |
// Sort order doesn't matter, it just needs to be consistent. | |
llvm::sort(NewParsed.Features); | |
// If the old decl is NOT MultiVersioned yet, and we don't cause that | |
// to change, this is a simple redeclaration. | |
if (!NewTA->isDefaultVersion() && | |
(!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) | |
return false; | |
// Otherwise, this decl causes MultiVersioning. | |
if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); | |
S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, | |
MultiVersionKind::Target)) { | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
if (CheckMultiVersionValue(S, NewFD)) { | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
// If this is 'default', permit the forward declaration. | |
if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { | |
Redeclaration = true; | |
OldDecl = OldFD; | |
OldFD->setIsMultiVersion(); | |
NewFD->setIsMultiVersion(); | |
return false; | |
} | |
if (CheckMultiVersionValue(S, OldFD)) { | |
S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>()); | |
if (OldParsed == NewParsed) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | |
S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
for (const auto *FD : OldFD->redecls()) { | |
const auto *CurTA = FD->getAttr<TargetAttr>(); | |
// We allow forward declarations before ANY multiversioning attributes, but | |
// nothing after the fact. | |
if (PreviousDeclsHaveMultiVersionAttribute(FD) && | |
(!CurTA || CurTA->isInherited())) { | |
S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) | |
<< 0; | |
S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
} | |
OldFD->setIsMultiVersion(); | |
NewFD->setIsMultiVersion(); | |
Redeclaration = false; | |
MergeTypeWithPrevious = false; | |
OldDecl = nullptr; | |
Previous.clear(); | |
return false; | |
} | |
/// Check the validity of a new function declaration being added to an existing | |
/// multiversioned declaration collection. | |
static bool CheckMultiVersionAdditionalDecl( | |
Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, | |
MultiVersionKind NewMVType, const TargetAttr *NewTA, | |
const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, | |
bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, | |
LookupResult &Previous) { | |
MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); | |
// Disallow mixing of multiversioning types. | |
if ((OldMVType == MultiVersionKind::Target && | |
NewMVType != MultiVersionKind::Target) || | |
(NewMVType == MultiVersionKind::Target && | |
OldMVType != MultiVersionKind::Target)) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); | |
S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
ParsedTargetAttr NewParsed; | |
if (NewTA) { | |
NewParsed = NewTA->parse(); | |
llvm::sort(NewParsed.Features); | |
} | |
bool UseMemberUsingDeclRules = | |
S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); | |
// Next, check ALL non-overloads to see if this is a redeclaration of a | |
// previous member of the MultiVersion set. | |
for (NamedDecl *ND : Previous) { | |
FunctionDecl *CurFD = ND->getAsFunction(); | |
if (!CurFD) | |
continue; | |
if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) | |
continue; | |
if (NewMVType == MultiVersionKind::Target) { | |
const auto *CurTA = CurFD->getAttr<TargetAttr>(); | |
if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { | |
NewFD->setIsMultiVersion(); | |
Redeclaration = true; | |
OldDecl = ND; | |
return false; | |
} | |
ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>()); | |
if (CurParsed == NewParsed) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | |
S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
} else { | |
const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); | |
const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); | |
// Handle CPUDispatch/CPUSpecific versions. | |
// Only 1 CPUDispatch function is allowed, this will make it go through | |
// the redeclaration errors. | |
if (NewMVType == MultiVersionKind::CPUDispatch && | |
CurFD->hasAttr<CPUDispatchAttr>()) { | |
if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && | |
std::equal( | |
CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), | |
NewCPUDisp->cpus_begin(), | |
[](const IdentifierInfo *Cur, const IdentifierInfo *New) { | |
return Cur->getName() == New->getName(); | |
})) { | |
NewFD->setIsMultiVersion(); | |
Redeclaration = true; | |
OldDecl = ND; | |
return false; | |
} | |
// If the declarations don't match, this is an error condition. | |
S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); | |
S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { | |
if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && | |
std::equal( | |
CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), | |
NewCPUSpec->cpus_begin(), | |
[](const IdentifierInfo *Cur, const IdentifierInfo *New) { | |
return Cur->getName() == New->getName(); | |
})) { | |
NewFD->setIsMultiVersion(); | |
Redeclaration = true; | |
OldDecl = ND; | |
return false; | |
} | |
// Only 1 version of CPUSpecific is allowed for each CPU. | |
for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { | |
for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { | |
if (CurII == NewII) { | |
S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) | |
<< NewII; | |
S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
} | |
} | |
} | |
// If the two decls aren't the same MVType, there is no possible error | |
// condition. | |
} | |
} | |
// Else, this is simply a non-redecl case. Checking the 'value' is only | |
// necessary in the Target case, since The CPUSpecific/Dispatch cases are | |
// handled in the attribute adding step. | |
if (NewMVType == MultiVersionKind::Target && | |
CheckMultiVersionValue(S, NewFD)) { | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, | |
!OldFD->isMultiVersion(), NewMVType)) { | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
// Permit forward declarations in the case where these two are compatible. | |
if (!OldFD->isMultiVersion()) { | |
OldFD->setIsMultiVersion(); | |
NewFD->setIsMultiVersion(); | |
Redeclaration = true; | |
OldDecl = OldFD; | |
return false; | |
} | |
NewFD->setIsMultiVersion(); | |
Redeclaration = false; | |
MergeTypeWithPrevious = false; | |
OldDecl = nullptr; | |
Previous.clear(); | |
return false; | |
} | |
/// Check the validity of a mulitversion function declaration. | |
/// Also sets the multiversion'ness' of the function itself. | |
/// | |
/// This sets NewFD->isInvalidDecl() to true if there was an error. | |
/// | |
/// Returns true if there was an error, false otherwise. | |
static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, | |
bool &Redeclaration, NamedDecl *&OldDecl, | |
bool &MergeTypeWithPrevious, | |
LookupResult &Previous) { | |
const auto *NewTA = NewFD->getAttr<TargetAttr>(); | |
const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); | |
const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); | |
// Mixing Multiversioning types is prohibited. | |
if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || | |
(NewCPUDisp && NewCPUSpec)) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
MultiVersionKind MVType = NewFD->getMultiVersionKind(); | |
// Main isn't allowed to become a multiversion function, however it IS | |
// permitted to have 'main' be marked with the 'target' optimization hint. | |
if (NewFD->isMain()) { | |
if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) || | |
MVType == MultiVersionKind::CPUDispatch || | |
MVType == MultiVersionKind::CPUSpecific) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
return false; | |
} | |
if (!OldDecl || !OldDecl->getAsFunction() || | |
OldDecl->getDeclContext()->getRedeclContext() != | |
NewFD->getDeclContext()->getRedeclContext()) { | |
// If there's no previous declaration, AND this isn't attempting to cause | |
// multiversioning, this isn't an error condition. | |
if (MVType == MultiVersionKind::None) | |
return false; | |
return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); | |
} | |
FunctionDecl *OldFD = OldDecl->getAsFunction(); | |
if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) | |
return false; | |
if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) { | |
S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) | |
<< (OldFD->getMultiVersionKind() != MultiVersionKind::Target); | |
NewFD->setInvalidDecl(); | |
return true; | |
} | |
// Handle the target potentially causes multiversioning case. | |
if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) | |
return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, | |
Redeclaration, OldDecl, | |
MergeTypeWithPrevious, Previous); | |
// At this point, we have a multiversion function decl (in OldFD) AND an | |
// appropriate attribute in the current function decl. Resolve that these are | |
// still compatible with previous declarations. | |
return CheckMultiVersionAdditionalDecl( | |
S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, | |
OldDecl, MergeTypeWithPrevious, Previous); | |
} | |
/// Perform semantic checking of a new function declaration. | |
/// | |
/// Performs semantic analysis of the new function declaration | |
/// NewFD. This routine performs all semantic checking that does not | |
/// require the actual declarator involved in the declaration, and is | |
/// used both for the declaration of functions as they are parsed | |
/// (called via ActOnDeclarator) and for the declaration of functions | |
/// that have been instantiated via C++ template instantiation (called | |
/// via InstantiateDecl). | |
/// | |
/// \param IsMemberSpecialization whether this new function declaration is | |
/// a member specialization (that replaces any definition provided by the | |
/// previous declaration). | |
/// | |
/// This sets NewFD->isInvalidDecl() to true if there was an error. | |
/// | |
/// \returns true if the function declaration is a redeclaration. | |
bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, | |
LookupResult &Previous, | |
bool IsMemberSpecialization) { | |
assert(!NewFD->getReturnType()->isVariablyModifiedType() && | |
"Variably modified return types are not handled here"); | |
// Determine whether the type of this function should be merged with | |
// a previous visible declaration. This never happens for functions in C++, | |
// and always happens in C if the previous declaration was visible. | |
bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && | |
!Previous.isShadowed(); | |
bool Redeclaration = false; | |
NamedDecl *OldDecl = nullptr; | |
bool MayNeedOverloadableChecks = false; | |
// Merge or overload the declaration with an existing declaration of | |
// the same name, if appropriate. | |
if (!Previous.empty()) { | |
// Determine whether NewFD is an overload of PrevDecl or | |
// a declaration that requires merging. If it's an overload, | |
// there's no more work to do here; we'll just add the new | |
// function to the scope. | |
if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { | |
NamedDecl *Candidate = Previous.getRepresentativeDecl(); | |
if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { | |
Redeclaration = true; | |
OldDecl = Candidate; | |
} | |
} else { | |
MayNeedOverloadableChecks = true; | |
switch (CheckOverload(S, NewFD, Previous, OldDecl, | |
/*NewIsUsingDecl*/ false)) { | |
case Ovl_Match: | |
Redeclaration = true; | |
break; | |
case Ovl_NonFunction: | |
Redeclaration = true; | |
break; | |
case Ovl_Overload: | |
Redeclaration = false; | |
break; | |
} | |
} | |
} | |
// Check for a previous extern "C" declaration with this name. | |
if (!Redeclaration && | |
checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { | |
if (!Previous.empty()) { | |
// This is an extern "C" declaration with the same name as a previous | |
// declaration, and thus redeclares that entity... | |
Redeclaration = true; | |
OldDecl = Previous.getFoundDecl(); | |
MergeTypeWithPrevious = false; | |
// ... except in the presence of __attribute__((overloadable)). | |
if (OldDecl->hasAttr<OverloadableAttr>() || | |
NewFD->hasAttr<OverloadableAttr>()) { | |
if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { | |
MayNeedOverloadableChecks = true; | |
Redeclaration = false; | |
OldDecl = nullptr; | |
} | |
} | |
} | |
} | |
if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, | |
MergeTypeWithPrevious, Previous)) | |
return Redeclaration; | |
// PPC MMA non-pointer types are not allowed as function return types. | |
if (Context.getTargetInfo().getTriple().isPPC64() && | |
CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) { | |
NewFD->setInvalidDecl(); | |
} | |
// C++11 [dcl.constexpr]p8: | |
// A constexpr specifier for a non-static member function that is not | |
// a constructor declares that member function to be const. | |
// | |
// This needs to be delayed until we know whether this is an out-of-line | |
// definition of a static member function. | |
// | |
// This rule is not present in C++1y, so we produce a backwards | |
// compatibility warning whenever it happens in C++11. | |
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | |
if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && | |
!MD->isStatic() && !isa<CXXConstructorDecl>(MD) && | |
!isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { | |
CXXMethodDecl *OldMD = nullptr; | |
if (OldDecl) | |
OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); | |
if (!OldMD || !OldMD->isStatic()) { | |
const FunctionProtoType *FPT = | |
MD->getType()->castAs<FunctionProtoType>(); | |
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |
EPI.TypeQuals.addConst(); | |
MD->setType(Context.getFunctionType(FPT->getReturnType(), | |
FPT->getParamTypes(), EPI)); | |
// Warn that we did this, if we're not performing template instantiation. | |
// In that case, we'll have warned already when the template was defined. | |
if (!inTemplateInstantiation()) { | |
SourceLocation AddConstLoc; | |
if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() | |
.IgnoreParens().getAs<FunctionTypeLoc>()) | |
AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); | |
Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) | |
<< FixItHint::CreateInsertion(AddConstLoc, " const"); | |
} | |
} | |
} | |
if (Redeclaration) { | |
// NewFD and OldDecl represent declarations that need to be | |
// merged. | |
if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { | |
NewFD->setInvalidDecl(); | |
return Redeclaration; | |
} | |
Previous.clear(); | |
Previous.addDecl(OldDecl); | |
if (FunctionTemplateDecl *OldTemplateDecl = | |
dyn_cast<FunctionTemplateDecl>(OldDecl)) { | |
auto *OldFD = OldTemplateDecl->getTemplatedDecl(); | |
FunctionTemplateDecl *NewTemplateDecl | |
= NewFD->getDescribedFunctionTemplate(); | |
assert(NewTemplateDecl && "Template/non-template mismatch"); | |
// The call to MergeFunctionDecl above may have created some state in | |
// NewTemplateDecl that needs to be merged with OldTemplateDecl before we | |
// can add it as a redeclaration. | |
NewTemplateDecl->mergePrevDecl(OldTemplateDecl); | |
NewFD->setPreviousDeclaration(OldFD); | |
adjustDeclContextForDeclaratorDecl(NewFD, OldFD); | |
if (NewFD->isCXXClassMember()) { | |
NewFD->setAccess(OldTemplateDecl->getAccess()); | |
NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); | |
} | |
// If this is an explicit specialization of a member that is a function | |
// template, mark it as a member specialization. | |
if (IsMemberSpecialization && | |
NewTemplateDecl->getInstantiatedFromMemberTemplate()) { | |
NewTemplateDecl->setMemberSpecialization(); | |
assert(OldTemplateDecl->isMemberSpecialization()); | |
// Explicit specializations of a member template do not inherit deleted | |
// status from the parent member template that they are specializing. | |
if (OldFD->isDeleted()) { | |
// FIXME: This assert will not hold in the presence of modules. | |
assert(OldFD->getCanonicalDecl() == OldFD); | |
// FIXME: We need an update record for this AST mutation. | |
OldFD->setDeletedAsWritten(false); | |
} | |
} | |
} else { | |
if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { | |
auto *OldFD = cast<FunctionDecl>(OldDecl); | |
// This needs to happen first so that 'inline' propagates. | |
NewFD->setPreviousDeclaration(OldFD); | |
adjustDeclContextForDeclaratorDecl(NewFD, OldFD); | |
if (NewFD->isCXXClassMember()) | |
NewFD->setAccess(OldFD->getAccess()); | |
} | |
} | |
} else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && | |
!NewFD->getAttr<OverloadableAttr>()) { | |
assert((Previous.empty() || | |
llvm::any_of(Previous, | |
[](const NamedDecl *ND) { | |
return ND->hasAttr<OverloadableAttr>(); | |
})) && | |
"Non-redecls shouldn't happen without overloadable present"); | |
auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { | |
const auto *FD = dyn_cast<FunctionDecl>(ND); | |
return FD && !FD->hasAttr<OverloadableAttr>(); | |
}); | |
if (OtherUnmarkedIter != Previous.end()) { | |
Diag(NewFD->getLocation(), | |
diag::err_attribute_overloadable_multiple_unmarked_overloads); | |
Diag((*OtherUnmarkedIter)->getLocation(), | |
diag::note_attribute_overloadable_prev_overload) | |
<< false; | |
NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); | |
} | |
} | |
// Semantic checking for this function declaration (in isolation). | |
if (getLangOpts().CPlusPlus) { | |
// C++-specific checks. | |
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { | |
CheckConstructor(Constructor); | |
} else if (CXXDestructorDecl *Destructor = | |
dyn_cast<CXXDestructorDecl>(NewFD)) { | |
CXXRecordDecl *Record = Destructor->getParent(); | |
QualType ClassType = Context.getTypeDeclType(Record); | |
// FIXME: Shouldn't we be able to perform this check even when the class | |
// type is dependent? Both gcc and edg can handle that. | |
if (!ClassType->isDependentType()) { | |
DeclarationName Name | |
= Context.DeclarationNames.getCXXDestructorName( | |
Context.getCanonicalType(ClassType)); | |
if (NewFD->getDeclName() != Name) { | |
Diag(NewFD->getLocation(), diag::err_destructor_name); | |
NewFD->setInvalidDecl(); | |
return Redeclaration; | |
} | |
} | |
} else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { | |
if (auto *TD = Guide->getDescribedFunctionTemplate()) | |
CheckDeductionGuideTemplate(TD); | |
// A deduction guide is not on the list of entities that can be | |
// explicitly specialized. | |
if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) | |
Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) | |
<< /*explicit specialization*/ 1; | |
} | |
// Find any virtual functions that this function overrides. | |
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { | |
if (!Method->isFunctionTemplateSpecialization() && | |
!Method->getDescribedFunctionTemplate() && | |
Method->isCanonicalDecl()) { | |
AddOverriddenMethods(Method->getParent(), Method); | |
} | |
if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) | |
// C++2a [class.virtual]p6 | |
// A virtual method shall not have a requires-clause. | |
Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), | |
diag::err_constrained_virtual_method); | |
if (Method->isStatic()) | |
checkThisInStaticMemberFunctionType(Method); | |
} | |
if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) | |
ActOnConversionDeclarator(Conversion); | |
// Extra checking for C++ overloaded operators (C++ [over.oper]). | |
if (NewFD->isOverloadedOperator() && | |
CheckOverloadedOperatorDeclaration(NewFD)) { | |
NewFD->setInvalidDecl(); | |
return Redeclaration; | |
} | |
// Extra checking for C++0x literal operators (C++0x [over.literal]). | |
if (NewFD->getLiteralIdentifier() && | |
CheckLiteralOperatorDeclaration(NewFD)) { | |
NewFD->setInvalidDecl(); | |
return Redeclaration; | |
} | |
// In C++, check default arguments now that we have merged decls. Unless | |
// the lexical context is the class, because in this case this is done | |
// during delayed parsing anyway. | |
if (!CurContext->isRecord()) | |
CheckCXXDefaultArguments(NewFD); | |
// If this function declares a builtin function, check the type of this | |
// declaration against the expected type for the builtin. | |
if (unsigned BuiltinID = NewFD->getBuiltinID()) { | |
ASTContext::GetBuiltinTypeError Error; | |
LookupNecessaryTypesForBuiltin(S, BuiltinID); | |
QualType T = Context.GetBuiltinType(BuiltinID, Error); | |
// If the type of the builtin differs only in its exception | |
// specification, that's OK. | |
// FIXME: If the types do differ in this way, it would be better to | |
// retain the 'noexcept' form of the type. | |
if (!T.isNull() && | |
!Context.hasSameFunctionTypeIgnoringExceptionSpec(T, | |
NewFD->getType())) | |
// The type of this function differs from the type of the builtin, | |
// so forget about the builtin entirely. | |
Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents); | |
} | |
// If this function is declared as being extern "C", then check to see if | |
// the function returns a UDT (class, struct, or union type) that is not C | |
// compatible, and if it does, warn the user. | |
// But, issue any diagnostic on the first declaration only. | |
if (Previous.empty() && NewFD->isExternC()) { | |
QualType R = NewFD->getReturnType(); | |
if (R->isIncompleteType() && !R->isVoidType()) | |
Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) | |
<< NewFD << R; | |
else if (!R.isPODType(Context) && !R->isVoidType() && | |
!R->isObjCObjectPointerType()) | |
Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; | |
} | |
// C++1z [dcl.fct]p6: | |
// [...] whether the function has a non-throwing exception-specification | |
// [is] part of the function type | |
// | |
// This results in an ABI break between C++14 and C++17 for functions whose | |
// declared type includes an exception-specification in a parameter or | |
// return type. (Exception specifications on the function itself are OK in | |
// most cases, and exception specifications are not permitted in most other | |
// contexts where they could make it into a mangling.) | |
if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { | |
auto HasNoexcept = [&](QualType T) -> bool { | |
// Strip off declarator chunks that could be between us and a function | |
// type. We don't need to look far, exception specifications are very | |
// restricted prior to C++17. | |
if (auto *RT = T->getAs<ReferenceType>()) | |
T = RT->getPointeeType(); | |
else if (T->isAnyPointerType()) | |
T = T->getPointeeType(); | |
else if (auto *MPT = T->getAs<MemberPointerType>()) | |
T = MPT->getPointeeType(); | |
if (auto *FPT = T->getAs<FunctionProtoType>()) | |
if (FPT->isNothrow()) | |
return true; | |
return false; | |
}; | |
auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); | |
bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); | |
for (QualType T : FPT->param_types()) | |
AnyNoexcept |= HasNoexcept(T); | |
if (AnyNoexcept) | |
Diag(NewFD->getLocation(), | |
diag::warn_cxx17_compat_exception_spec_in_signature) | |
<< NewFD; | |
} | |
if (!Redeclaration && LangOpts.CUDA) | |
checkCUDATargetOverload(NewFD, Previous); | |
} | |
return Redeclaration; | |
} | |
void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { | |
// C++11 [basic.start.main]p3: | |
// A program that [...] declares main to be inline, static or | |
// constexpr is ill-formed. | |
// C11 6.7.4p4: In a hosted environment, no function specifier(s) shall | |
// appear in a declaration of main. | |
// static main is not an error under C99, but we should warn about it. | |
// We accept _Noreturn main as an extension. | |
if (FD->getStorageClass() == SC_Static) | |
Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus | |
? diag::err_static_main : diag::warn_static_main) | |
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |
if (FD->isInlineSpecified()) | |
Diag(DS.getInlineSpecLoc(), diag::err_inline_main) | |
<< FixItHint::CreateRemoval(DS.getInlineSpecLoc()); | |
if (DS.isNoreturnSpecified()) { | |
SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); | |
SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); | |
Diag(NoreturnLoc, diag::ext_noreturn_main); | |
Diag(NoreturnLoc, diag::note_main_remove_noreturn) | |
<< FixItHint::CreateRemoval(NoreturnRange); | |
} | |
if (FD->isConstexpr()) { | |
Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) | |
<< FD->isConsteval() | |
<< FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); | |
FD->setConstexprKind(ConstexprSpecKind::Unspecified); | |
} | |
if (getLangOpts().OpenCL) { | |
Diag(FD->getLocation(), diag::err_opencl_no_main) | |
<< FD->hasAttr<OpenCLKernelAttr>(); | |
FD->setInvalidDecl(); | |
return; | |
} | |
QualType T = FD->getType(); | |
assert(T->isFunctionType() && "function decl is not of function type"); | |
const FunctionType* FT = T->castAs<FunctionType>(); | |
// Set default calling convention for main() | |
if (FT->getCallConv() != CC_C) { | |
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); | |
FD->setType(QualType(FT, 0)); | |
T = Context.getCanonicalType(FD->getType()); | |
} | |
if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { | |
// In C with GNU extensions we allow main() to have non-integer return | |
// type, but we should warn about the extension, and we disable the | |
// implicit-return-zero rule. | |
// GCC in C mode accepts qualified 'int'. | |
if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) | |
FD->setHasImplicitReturnZero(true); | |
else { | |
Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); | |
SourceRange RTRange = FD->getReturnTypeSourceRange(); | |
if (RTRange.isValid()) | |
Diag(RTRange.getBegin(), diag::note_main_change_return_type) | |
<< FixItHint::CreateReplacement(RTRange, "int"); | |
} | |
} else { | |
// In C and C++, main magically returns 0 if you fall off the end; | |
// set the flag which tells us that. | |
// This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. | |
// All the standards say that main() should return 'int'. | |
if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) | |
FD->setHasImplicitReturnZero(true); | |
else { | |
// Otherwise, this is just a flat-out error. | |
SourceRange RTRange = FD->getReturnTypeSourceRange(); | |
Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) | |
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") | |
: FixItHint()); | |
FD->setInvalidDecl(true); | |
} | |
} | |
// Treat protoless main() as nullary. | |
if (isa<FunctionNoProtoType>(FT)) return; | |
const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); | |
unsigned nparams = FTP->getNumParams(); | |
assert(FD->getNumParams() == nparams); | |
bool HasExtraParameters = (nparams > 3); | |
if (FTP->isVariadic()) { | |
Diag(FD->getLocation(), diag::ext_variadic_main); | |
// FIXME: if we had information about the location of the ellipsis, we | |
// could add a FixIt hint to remove it as a parameter. | |
} | |
// Darwin passes an undocumented fourth argument of type char**. If | |
// other platforms start sprouting these, the logic below will start | |
// getting shifty. | |
if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) | |
HasExtraParameters = false; | |
if (HasExtraParameters) { | |
Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; | |
FD->setInvalidDecl(true); | |
nparams = 3; | |
} | |
// FIXME: a lot of the following diagnostics would be improved | |
// if we had some location information about types. | |
QualType CharPP = | |
Context.getPointerType(Context.getPointerType(Context.CharTy)); | |
QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; | |
for (unsigned i = 0; i < nparams; ++i) { | |
QualType AT = FTP->getParamType(i); | |
bool mismatch = true; | |
if (Context.hasSameUnqualifiedType(AT, Expected[i])) | |
mismatch = false; | |
else if (Expected[i] == CharPP) { | |
// As an extension, the following forms are okay: | |
// char const ** | |
// char const * const * | |
// char * const * | |
QualifierCollector qs; | |
const PointerType* PT; | |
if ((PT = qs.strip(AT)->getAs<PointerType>()) && | |
(PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && | |
Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), | |
Context.CharTy)) { | |
qs.removeConst(); | |
mismatch = !qs.empty(); | |
} | |
} | |
if (mismatch) { | |
Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; | |
// TODO: suggest replacing given type with expected type | |
FD->setInvalidDecl(true); | |
} | |
} | |
if (nparams == 1 && !FD->isInvalidDecl()) { | |
Diag(FD->getLocation(), diag::warn_main_one_arg); | |
} | |
if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | |
Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; | |
FD->setInvalidDecl(); | |
} | |
} | |
void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { | |
QualType T = FD->getType(); | |
assert(T->isFunctionType() && "function decl is not of function type"); | |
const FunctionType *FT = T->castAs<FunctionType>(); | |
// Set an implicit return of 'zero' if the function can return some integral, | |
// enumeration, pointer or nullptr type. | |
if (FT->getReturnType()->isIntegralOrEnumerationType() || | |
FT->getReturnType()->isAnyPointerType() || | |
FT->getReturnType()->isNullPtrType()) | |
// DllMain is exempt because a return value of zero means it failed. | |
if (FD->getName() != "DllMain") | |
FD->setHasImplicitReturnZero(true); | |
if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | |
Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; | |
FD->setInvalidDecl(); | |
} | |
} | |
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { | |
// FIXME: Need strict checking. In C89, we need to check for | |
// any assignment, increment, decrement, function-calls, or | |
// commas outside of a sizeof. In C99, it's the same list, | |
// except that the aforementioned are allowed in unevaluated | |
// expressions. Everything else falls under the | |
// "may accept other forms of constant expressions" exception. | |
// | |
// Regular C++ code will not end up here (exceptions: language extensions, | |
// OpenCL C++ etc), so the constant expression rules there don't matter. | |
if (Init->isValueDependent()) { | |
assert(Init->containsErrors() && | |
"Dependent code should only occur in error-recovery path."); | |
return true; | |
} | |
const Expr *Culprit; | |
if (Init->isConstantInitializer(Context, false, &Culprit)) | |
return false; | |
Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) | |
<< Culprit->getSourceRange(); | |
return true; | |
} | |
namespace { | |
// Visits an initialization expression to see if OrigDecl is evaluated in | |
// its own initialization and throws a warning if it does. | |
class SelfReferenceChecker | |
: public EvaluatedExprVisitor<SelfReferenceChecker> { | |
Sema &S; | |
Decl *OrigDecl; | |
bool isRecordType; | |
bool isPODType; | |
bool isReferenceType; | |
bool isInitList; | |
llvm::SmallVector<unsigned, 4> InitFieldIndex; | |
public: | |
typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; | |
SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), | |
S(S), OrigDecl(OrigDecl) { | |
isPODType = false; | |
isRecordType = false; | |
isReferenceType = false; | |
isInitList = false; | |
if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { | |
isPODType = VD->getType().isPODType(S.Context); | |
isRecordType = VD->getType()->isRecordType(); | |
isReferenceType = VD->getType()->isReferenceType(); | |
} | |
} | |
// For most expressions, just call the visitor. For initializer lists, | |
// track the index of the field being initialized since fields are | |
// initialized in order allowing use of previously initialized fields. | |
void CheckExpr(Expr *E) { | |
InitListExpr *InitList = dyn_cast<InitListExpr>(E); | |
if (!InitList) { | |
Visit(E); | |
return; | |
} | |
// Track and increment the index here. | |
isInitList = true; | |
InitFieldIndex.push_back(0); | |
for (auto Child : InitList->children()) { | |
CheckExpr(cast<Expr>(Child)); | |
++InitFieldIndex.back(); | |
} | |
InitFieldIndex.pop_back(); | |
} | |
// Returns true if MemberExpr is checked and no further checking is needed. | |
// Returns false if additional checking is required. | |
bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { | |
llvm::SmallVector<FieldDecl*, 4> Fields; | |
Expr *Base = E; | |
bool ReferenceField = false; | |
// Get the field members used. | |
while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | |
FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | |
if (!FD) | |
return false; | |
Fields.push_back(FD); | |
if (FD->getType()->isReferenceType()) | |
ReferenceField = true; | |
Base = ME->getBase()->IgnoreParenImpCasts(); | |
} | |
// Keep checking only if the base Decl is the same. | |
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); | |
if (!DRE || DRE->getDecl() != OrigDecl) | |
return false; | |
// A reference field can be bound to an unininitialized field. | |
if (CheckReference && !ReferenceField) | |
return true; | |
// Convert FieldDecls to their index number. | |
llvm::SmallVector<unsigned, 4> UsedFieldIndex; | |
for (const FieldDecl *I : llvm::reverse(Fields)) | |
UsedFieldIndex.push_back(I->getFieldIndex()); | |
// See if a warning is needed by checking the first difference in index | |
// numbers. If field being used has index less than the field being | |
// initialized, then the use is safe. | |
for (auto UsedIter = UsedFieldIndex.begin(), | |
UsedEnd = UsedFieldIndex.end(), | |
OrigIter = InitFieldIndex.begin(), | |
OrigEnd = InitFieldIndex.end(); | |
UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { | |
if (*UsedIter < *OrigIter) | |
return true; | |
if (*UsedIter > *OrigIter) | |
break; | |
} | |
// TODO: Add a different warning which will print the field names. | |
HandleDeclRefExpr(DRE); | |
return true; | |
} | |
// For most expressions, the cast is directly above the DeclRefExpr. | |
// For conditional operators, the cast can be outside the conditional | |
// operator if both expressions are DeclRefExpr's. | |
void HandleValue(Expr *E) { | |
E = E->IgnoreParens(); | |
if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { | |
HandleDeclRefExpr(DRE); | |
return; | |
} | |
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | |
Visit(CO->getCond()); | |
HandleValue(CO->getTrueExpr()); | |
HandleValue(CO->getFalseExpr()); | |
return; | |
} | |
if (BinaryConditionalOperator *BCO = | |
dyn_cast<BinaryConditionalOperator>(E)) { | |
Visit(BCO->getCond()); | |
HandleValue(BCO->getFalseExpr()); | |
return; | |
} | |
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | |
HandleValue(OVE->getSourceExpr()); | |
return; | |
} | |
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | |
if (BO->getOpcode() == BO_Comma) { | |
Visit(BO->getLHS()); | |
HandleValue(BO->getRHS()); | |
return; | |
} | |
} | |
if (isa<MemberExpr>(E)) { | |
if (isInitList) { | |
if (CheckInitListMemberExpr(cast<MemberExpr>(E), | |
false /*CheckReference*/)) | |
return; | |
} | |
Expr *Base = E->IgnoreParenImpCasts(); | |
while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | |
// Check for static member variables and don't warn on them. | |
if (!isa<FieldDecl>(ME->getMemberDecl())) | |
return; | |
Base = ME->getBase()->IgnoreParenImpCasts(); | |
} | |
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) | |
HandleDeclRefExpr(DRE); | |
return; | |
} | |
Visit(E); | |
} | |
// Reference types not handled in HandleValue are handled here since all | |
// uses of references are bad, not just r-value uses. | |
void VisitDeclRefExpr(DeclRefExpr *E) { | |
if (isReferenceType) | |
HandleDeclRefExpr(E); | |
} | |
void VisitImplicitCastExpr(ImplicitCastExpr *E) { | |
if (E->getCastKind() == CK_LValueToRValue) { | |
HandleValue(E->getSubExpr()); | |
return; | |
} | |
Inherited::VisitImplicitCastExpr(E); | |
} | |
void VisitMemberExpr(MemberExpr *E) { | |
if (isInitList) { | |
if (CheckInitListMemberExpr(E, true /*CheckReference*/)) | |
return; | |
} | |
// Don't warn on arrays since they can be treated as pointers. | |
if (E->getType()->canDecayToPointerType()) return; | |
// Warn when a non-static method call is followed by non-static member | |
// field accesses, which is followed by a DeclRefExpr. | |
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); | |
bool Warn = (MD && !MD->isStatic()); | |
Expr *Base = E->getBase()->IgnoreParenImpCasts(); | |
while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | |
if (!isa<FieldDecl>(ME->getMemberDecl())) | |
Warn = false; | |
Base = ME->getBase()->IgnoreParenImpCasts(); | |
} | |
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { | |
if (Warn) | |
HandleDeclRefExpr(DRE); | |
return; | |
} | |
// The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. | |
// Visit that expression. | |
Visit(Base); | |
} | |
void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | |
Expr *Callee = E->getCallee(); | |
if (isa<UnresolvedLookupExpr>(Callee)) | |
return Inherited::VisitCXXOperatorCallExpr(E); | |
Visit(Callee); | |
for (auto Arg: E->arguments()) | |
HandleValue(Arg->IgnoreParenImpCasts()); | |
} | |
void VisitUnaryOperator(UnaryOperator *E) { | |
// For POD record types, addresses of its own members are well-defined. | |
if (E->getOpcode() == UO_AddrOf && isRecordType && | |
isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { | |
if (!isPODType) | |
HandleValue(E->getSubExpr()); | |
return; | |
} | |
if (E->isIncrementDecrementOp()) { | |
HandleValue(E->getSubExpr()); | |
return; | |
} | |
Inherited::VisitUnaryOperator(E); | |
} | |
void VisitObjCMessageExpr(ObjCMessageExpr *E) {} | |
void VisitCXXConstructExpr(CXXConstructExpr *E) { | |
if (E->getConstructor()->isCopyConstructor()) { | |
Expr *ArgExpr = E->getArg(0); | |
if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) | |
if (ILE->getNumInits() == 1) | |
ArgExpr = ILE->getInit(0); | |
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | |
if (ICE->getCastKind() == CK_NoOp) | |
ArgExpr = ICE->getSubExpr(); | |
HandleValue(ArgExpr); | |
return; | |
} | |
Inherited::VisitCXXConstructExpr(E); | |
} | |
void VisitCallExpr(CallExpr *E) { | |
// Treat std::move as a use. | |
if (E->isCallToStdMove()) { | |
HandleValue(E->getArg(0)); | |
return; | |
} | |
Inherited::VisitCallExpr(E); | |
} | |
void VisitBinaryOperator(BinaryOperator *E) { | |
if (E->isCompoundAssignmentOp()) { | |
HandleValue(E->getLHS()); | |
Visit(E->getRHS()); | |
return; | |
} | |
Inherited::VisitBinaryOperator(E); | |
} | |
// A custom visitor for BinaryConditionalOperator is needed because the | |
// regular visitor would check the condition and true expression separately | |
// but both point to the same place giving duplicate diagnostics. | |
void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { | |
Visit(E->getCond()); | |
Visit(E->getFalseExpr()); | |
} | |
void HandleDeclRefExpr(DeclRefExpr *DRE) { | |
Decl* ReferenceDecl = DRE->getDecl(); | |
if (OrigDecl != ReferenceDecl) return; | |
unsigned diag; | |
if (isReferenceType) { | |
diag = diag::warn_uninit_self_reference_in_reference_init; | |
} else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { | |
diag = diag::warn_static_self_reference_in_init; | |
} else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || | |
isa<NamespaceDecl>(OrigDecl->getDeclContext()) || | |
DRE->getDecl()->getType()->isRecordType()) { | |
diag = diag::warn_uninit_self_reference_in_init; | |
} else { | |
// Local variables will be handled by the CFG analysis. | |
return; | |
} | |
S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, | |
S.PDiag(diag) | |
<< DRE->getDecl() << OrigDecl->getLocation() | |
<< DRE->getSourceRange()); | |
} | |
}; | |
/// CheckSelfReference - Warns if OrigDecl is used in expression E. | |
static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, | |
bool DirectInit) { | |
// Parameters arguments are occassionially constructed with itself, | |
// for instance, in recursive functions. Skip them. | |
if (isa<ParmVarDecl>(OrigDecl)) | |
return; | |
E = E->IgnoreParens(); | |
// Skip checking T a = a where T is not a record or reference type. | |
// Doing so is a way to silence uninitialized warnings. | |
if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) | |
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | |
if (ICE->getCastKind() == CK_LValueToRValue) | |
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) | |
if (DRE->getDecl() == OrigDecl) | |
return; | |
SelfReferenceChecker(S, OrigDecl).CheckExpr(E); | |
} | |
} // end anonymous namespace | |
namespace { | |
// Simple wrapper to add the name of a variable or (if no variable is | |
// available) a DeclarationName into a diagnostic. | |
struct VarDeclOrName { | |
VarDecl *VDecl; | |
DeclarationName Name; | |
friend const Sema::SemaDiagnosticBuilder & | |
operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { | |
return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; | |
} | |
}; | |
} // end anonymous namespace | |
QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, | |
DeclarationName Name, QualType Type, | |
TypeSourceInfo *TSI, | |
SourceRange Range, bool DirectInit, | |
Expr *Init) { | |
bool IsInitCapture = !VDecl; | |
assert((!VDecl || !VDecl->isInitCapture()) && | |
"init captures are expected to be deduced prior to initialization"); | |
VarDeclOrName VN{VDecl, Name}; | |
DeducedType *Deduced = Type->getContainedDeducedType(); | |
assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); | |
// C++11 [dcl.spec.auto]p3 | |
if (!Init) { | |
assert(VDecl && "no init for init capture deduction?"); | |
// Except for class argument deduction, and then for an initializing | |
// declaration only, i.e. no static at class scope or extern. | |
if (!isa<DeducedTemplateSpecializationType>(Deduced) || | |
VDecl->hasExternalStorage() || | |
VDecl->isStaticDataMember()) { | |
Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) | |
<< VDecl->getDeclName() << Type; | |
return QualType(); | |
} | |
} | |
ArrayRef<Expr*> DeduceInits; | |
if (Init) | |
DeduceInits = Init; | |
if (DirectInit) { | |
if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) | |
DeduceInits = PL->exprs(); | |
} | |
if (isa<DeducedTemplateSpecializationType>(Deduced)) { | |
assert(VDecl && "non-auto type for init capture deduction?"); | |
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | |
InitializationKind Kind = InitializationKind::CreateForInit( | |
VDecl->getLocation(), DirectInit, Init); | |
// FIXME: Initialization should not be taking a mutable list of inits. | |
SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); | |
return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, | |
InitsCopy); | |
} | |
if (DirectInit) { | |
if (auto *IL = dyn_cast<InitListExpr>(Init)) | |
DeduceInits = IL->inits(); | |
} | |
// Deduction only works if we have exactly one source expression. | |
if (DeduceInits.empty()) { | |
// It isn't possible to write this directly, but it is possible to | |
// end up in this situation with "auto x(some_pack...);" | |
Diag(Init->getBeginLoc(), IsInitCapture | |
? diag::err_init_capture_no_expression | |
: diag::err_auto_var_init_no_expression) | |
<< VN << Type << Range; | |
return QualType(); | |
} | |
if (DeduceInits.size() > 1) { | |
Diag(DeduceInits[1]->getBeginLoc(), | |
IsInitCapture ? diag::err_init_capture_multiple_expressions | |
: diag::err_auto_var_init_multiple_expressions) | |
<< VN << Type << Range; | |
return QualType(); | |
} | |
Expr *DeduceInit = DeduceInits[0]; | |
if (DirectInit && isa<InitListExpr>(DeduceInit)) { | |
Diag(Init->getBeginLoc(), IsInitCapture | |
? diag::err_init_capture_paren_braces | |
: diag::err_auto_var_init_paren_braces) | |
<< isa<InitListExpr>(Init) << VN << Type << Range; | |
return QualType(); | |
} | |
// Expressions default to 'id' when we're in a debugger. | |
bool DefaultedAnyToId = false; | |
if (getLangOpts().DebuggerCastResultToId && | |
Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { | |
ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); | |
if (Result.isInvalid()) { | |
return QualType(); | |
} | |
Init = Result.get(); | |
DefaultedAnyToId = true; | |
} | |
// C++ [dcl.decomp]p1: | |
// If the assignment-expression [...] has array type A and no ref-qualifier | |
// is present, e has type cv A | |
if (VDecl && isa<DecompositionDecl>(VDecl) && | |
Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && | |
DeduceInit->getType()->isConstantArrayType()) | |
return Context.getQualifiedType(DeduceInit->getType(), | |
Type.getQualifiers()); | |
QualType DeducedType; | |
if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { | |
if (!IsInitCapture) | |
DiagnoseAutoDeductionFailure(VDecl, DeduceInit); | |
else if (isa<InitListExpr>(Init)) | |
Diag(Range.getBegin(), | |
diag::err_init_capture_deduction_failure_from_init_list) | |
<< VN | |
<< (DeduceInit->getType().isNull() ? TSI->getType() | |
: DeduceInit->getType()) | |
<< DeduceInit->getSourceRange(); | |
else | |
Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) | |
<< VN << TSI->getType() | |
<< (DeduceInit->getType().isNull() ? TSI->getType() | |
: DeduceInit->getType()) | |
<< DeduceInit->getSourceRange(); | |
} | |
// Warn if we deduced 'id'. 'auto' usually implies type-safety, but using | |
// 'id' instead of a specific object type prevents most of our usual | |
// checks. | |
// We only want to warn outside of template instantiations, though: | |
// inside a template, the 'id' could have come from a parameter. | |
if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && | |
!DeducedType.isNull() && DeducedType->isObjCIdType()) { | |
SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); | |
Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; | |
} | |
return DeducedType; | |
} | |
bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, | |
Expr *Init) { | |
assert(!Init || !Init->containsErrors()); | |
QualType DeducedType = deduceVarTypeFromInitializer( | |
VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), | |
VDecl->getSourceRange(), DirectInit, Init); | |
if (DeducedType.isNull()) { | |
VDecl->setInvalidDecl(); | |
return true; | |
} | |
VDecl->setType(DeducedType); | |
assert(VDecl->isLinkageValid()); | |
// In ARC, infer lifetime. | |
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) | |
VDecl->setInvalidDecl(); | |
if (getLangOpts().OpenCL) | |
deduceOpenCLAddressSpace(VDecl); | |
// If this is a redeclaration, check that the type we just deduced matches | |
// the previously declared type. | |
if (VarDecl *Old = VDecl->getPreviousDecl()) { | |
// We never need to merge the type, because we cannot form an incomplete | |
// array of auto, nor deduce such a type. | |
MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); | |
} | |
// Check the deduced type is valid for a variable declaration. | |
CheckVariableDeclarationType(VDecl); | |
return VDecl->isInvalidDecl(); | |
} | |
void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, | |
SourceLocation Loc) { | |
if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) | |
Init = EWC->getSubExpr(); | |
if (auto *CE = dyn_cast<ConstantExpr>(Init)) | |
Init = CE->getSubExpr(); | |
QualType InitType = Init->getType(); | |
assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |
InitType.hasNonTrivialToPrimitiveCopyCUnion()) && | |
"shouldn't be called if type doesn't have a non-trivial C struct"); | |
if (auto *ILE = dyn_cast<InitListExpr>(Init)) { | |
for (auto I : ILE->inits()) { | |
if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && | |
!I->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |
continue; | |
SourceLocation SL = I->getExprLoc(); | |
checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); | |
} | |
return; | |
} | |
if (isa<ImplicitValueInitExpr>(Init)) { | |
if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | |
checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, | |
NTCUK_Init); | |
} else { | |
// Assume all other explicit initializers involving copying some existing | |
// object. | |
// TODO: ignore any explicit initializers where we can guarantee | |
// copy-elision. | |
if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) | |
checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); | |
} | |
} | |
namespace { | |
bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { | |
// Ignore unavailable fields. A field can be marked as unavailable explicitly | |
// in the source code or implicitly by the compiler if it is in a union | |
// defined in a system header and has non-trivial ObjC ownership | |
// qualifications. We don't want those fields to participate in determining | |
// whether the containing union is non-trivial. | |
return FD->hasAttr<UnavailableAttr>(); | |
} | |
struct DiagNonTrivalCUnionDefaultInitializeVisitor | |
: DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, | |
void> { | |
using Super = | |
DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, | |
void>; | |
DiagNonTrivalCUnionDefaultInitializeVisitor( | |
QualType OrigTy, SourceLocation OrigLoc, | |
Sema::NonTrivialCUnionContext UseContext, Sema &S) | |
: OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | |
void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, | |
const FieldDecl *FD, bool InNonTrivialUnion) { | |
if (const auto *AT = S.Context.getAsArrayType(QT)) | |
return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | |
InNonTrivialUnion); | |
return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); | |
} | |
void visitARCStrong(QualType QT, const FieldDecl *FD, | |
bool InNonTrivialUnion) { | |
if (InNonTrivialUnion) | |
S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |
<< 1 << 0 << QT << FD->getName(); | |
} | |
void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |
if (InNonTrivialUnion) | |
S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |
<< 1 << 0 << QT << FD->getName(); | |
} | |
void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |
const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | |
if (RD->isUnion()) { | |
if (OrigLoc.isValid()) { | |
bool IsUnion = false; | |
if (auto *OrigRD = OrigTy->getAsRecordDecl()) | |
IsUnion = OrigRD->isUnion(); | |
S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | |
<< 0 << OrigTy << IsUnion << UseContext; | |
// Reset OrigLoc so that this diagnostic is emitted only once. | |
OrigLoc = SourceLocation(); | |
} | |
InNonTrivialUnion = true; | |
} | |
if (InNonTrivialUnion) | |
S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | |
<< 0 << 0 << QT.getUnqualifiedType() << ""; | |
for (const FieldDecl *FD : RD->fields()) | |
if (!shouldIgnoreForRecordTriviality(FD)) | |
asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | |
} | |
void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | |
// The non-trivial C union type or the struct/union type that contains a | |
// non-trivial C union. | |
QualType OrigTy; | |
SourceLocation OrigLoc; | |
Sema::NonTrivialCUnionContext UseContext; | |
Sema &S; | |
}; | |
struct DiagNonTrivalCUnionDestructedTypeVisitor | |
: DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { | |
using Super = | |
DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; | |
DiagNonTrivalCUnionDestructedTypeVisitor( | |
QualType OrigTy, SourceLocation OrigLoc, | |
Sema::NonTrivialCUnionContext UseContext, Sema &S) | |
: OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | |
void visitWithKind(QualType::DestructionKind DK, QualType QT, | |
const FieldDecl *FD, bool InNonTrivialUnion) { | |
if (const auto *AT = S.Context.getAsArrayType(QT)) | |
return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | |
InNonTrivialUnion); | |
return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); | |
} | |
void visitARCStrong(QualType QT, const FieldDecl *FD, | |
bool InNonTrivialUnion) { | |
if (InNonTrivialUnion) | |
S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |
<< 1 << 1 << QT << FD->getName(); | |
} | |
void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |
if (InNonTrivialUnion) | |
S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |
<< 1 << 1 << QT << FD->getName(); | |
} | |
void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |
const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | |
if (RD->isUnion()) { | |
if (OrigLoc.isValid()) { | |
bool IsUnion = false; | |
if (auto *OrigRD = OrigTy->getAsRecordDecl()) | |
IsUnion = OrigRD->isUnion(); | |
S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | |
<< 1 << OrigTy << IsUnion << UseContext; | |
// Reset OrigLoc so that this diagnostic is emitted only once. | |
OrigLoc = SourceLocation(); | |
} | |
InNonTrivialUnion = true; | |
} | |
if (InNonTrivialUnion) | |
S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | |
<< 0 << 1 << QT.getUnqualifiedType() << ""; | |
for (const FieldDecl *FD : RD->fields()) | |
if (!shouldIgnoreForRecordTriviality(FD)) | |
asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | |
} | |
void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | |
void visitCXXDestructor(QualType QT, const FieldDecl *FD, | |
bool InNonTrivialUnion) {} | |
// The non-trivial C union type or the struct/union type that contains a | |
// non-trivial C union. | |
QualType OrigTy; | |
SourceLocation OrigLoc; | |
Sema::NonTrivialCUnionContext UseContext; | |
Sema &S; | |
}; | |
struct DiagNonTrivalCUnionCopyVisitor | |
: CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { | |
using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; | |
DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, | |
Sema::NonTrivialCUnionContext UseContext, | |
Sema &S) | |
: OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | |
void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, | |
const FieldDecl *FD, bool InNonTrivialUnion) { | |
if (const auto *AT = S.Context.getAsArrayType(QT)) | |
return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | |
InNonTrivialUnion); | |
return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); | |
} | |
void visitARCStrong(QualType QT, const FieldDecl *FD, | |
bool InNonTrivialUnion) { | |
if (InNonTrivialUnion) | |
S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |
<< 1 << 2 << QT << FD->getName(); | |
} | |
void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |
if (InNonTrivialUnion) | |
S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |
<< 1 << 2 << QT << FD->getName(); | |
} | |
void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |
const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | |
if (RD->isUnion()) { | |
if (OrigLoc.isValid()) { | |
bool IsUnion = false; | |
if (auto *OrigRD = OrigTy->getAsRecordDecl()) | |
IsUnion = OrigRD->isUnion(); | |
S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | |
<< 2 << OrigTy << IsUnion << UseContext; | |
// Reset OrigLoc so that this diagnostic is emitted only once. | |
OrigLoc = SourceLocation(); | |
} | |
InNonTrivialUnion = true; | |
} | |
if (InNonTrivialUnion) | |
S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | |
<< 0 << 2 << QT.getUnqualifiedType() << ""; | |
for (const FieldDecl *FD : RD->fields()) | |
if (!shouldIgnoreForRecordTriviality(FD)) | |
asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | |
} | |
void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, | |
const FieldDecl *FD, bool InNonTrivialUnion) {} | |
void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | |
void visitVolatileTrivial(QualType QT, const FieldDecl *FD, | |
bool InNonTrivialUnion) {} | |
// The non-trivial C union type or the struct/union type that contains a | |
// non-trivial C union. | |
QualType OrigTy; | |
SourceLocation OrigLoc; | |
Sema::NonTrivialCUnionContext UseContext; | |
Sema &S; | |
}; | |
} // namespace | |
void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, | |
NonTrivialCUnionContext UseContext, | |
unsigned NonTrivialKind) { | |
assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |
QT.hasNonTrivialToPrimitiveDestructCUnion() || | |
QT.hasNonTrivialToPrimitiveCopyCUnion()) && | |
"shouldn't be called if type doesn't have a non-trivial C union"); | |
if ((NonTrivialKind & NTCUK_Init) && | |
QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | |
DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) | |
.visit(QT, nullptr, false); | |
if ((NonTrivialKind & NTCUK_Destruct) && | |
QT.hasNonTrivialToPrimitiveDestructCUnion()) | |
DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) | |
.visit(QT, nullptr, false); | |
if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) | |
DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) | |
.visit(QT, nullptr, false); | |
} | |
/// AddInitializerToDecl - Adds the initializer Init to the | |
/// declaration dcl. If DirectInit is true, this is C++ direct | |
/// initialization rather than copy initialization. | |
void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { | |
// If there is no declaration, there was an error parsing it. Just ignore | |
// the initializer. | |
if (!RealDecl || RealDecl->isInvalidDecl()) { | |
CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); | |
return; | |
} | |
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { | |
// Pure-specifiers are handled in ActOnPureSpecifier. | |
Diag(Method->getLocation(), diag::err_member_function_initialization) | |
<< Method->getDeclName() << Init->getSourceRange(); | |
Method->setInvalidDecl(); | |
return; | |
} | |
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | |
if (!VDecl) { | |
assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); | |
Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | |
RealDecl->setInvalidDecl(); | |
return; | |
} | |
// C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. | |
if (VDecl->getType()->isUndeducedType()) { | |
// Attempt typo correction early so that the type of the init expression can | |
// be deduced based on the chosen correction if the original init contains a | |
// TypoExpr. | |
ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); | |
if (!Res.isUsable()) { | |
// There are unresolved typos in Init, just drop them. | |
// FIXME: improve the recovery strategy to preserve the Init. | |
RealDecl->setInvalidDecl(); | |
return; | |
} | |
if (Res.get()->containsErrors()) { | |
// Invalidate the decl as we don't know the type for recovery-expr yet. | |
RealDecl->setInvalidDecl(); | |
VDecl->setInit(Res.get()); | |
return; | |
} | |
Init = Res.get(); | |
if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) | |
return; | |
} | |
// dllimport cannot be used on variable definitions. | |
if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { | |
Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { | |
// C99 6.7.8p5. C++ has no such restriction, but that is a defect. | |
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
if (!VDecl->getType()->isDependentType()) { | |
// A definition must end up with a complete type, which means it must be | |
// complete with the restriction that an array type might be completed by | |
// the initializer; note that later code assumes this restriction. | |
QualType BaseDeclType = VDecl->getType(); | |
if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) | |
BaseDeclType = Array->getElementType(); | |
if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, | |
diag::err_typecheck_decl_incomplete_type)) { | |
RealDecl->setInvalidDecl(); | |
return; | |
} | |
// The variable can not have an abstract class type. | |
if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | |
diag::err_abstract_type_in_decl, | |
AbstractVariableType)) | |
VDecl->setInvalidDecl(); | |
} | |
// If adding the initializer will turn this declaration into a definition, | |
// and we already have a definition for this variable, diagnose or otherwise | |
// handle the situation. | |
VarDecl *Def; | |
if ((Def = VDecl->getDefinition()) && Def != VDecl && | |
(!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && | |
!VDecl->isThisDeclarationADemotedDefinition() && | |
checkVarDeclRedefinition(Def, VDecl)) | |
return; | |
if (getLangOpts().CPlusPlus) { | |
// C++ [class.static.data]p4 | |
// If a static data member is of const integral or const | |
// enumeration type, its declaration in the class definition can | |
// specify a constant-initializer which shall be an integral | |
// constant expression (5.19). In that case, the member can appear | |
// in integral constant expressions. The member shall still be | |
// defined in a namespace scope if it is used in the program and the | |
// namespace scope definition shall not contain an initializer. | |
// | |
// We already performed a redefinition check above, but for static | |
// data members we also need to check whether there was an in-class | |
// declaration with an initializer. | |
if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { | |
Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) | |
<< VDecl->getDeclName(); | |
Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), | |
diag::note_previous_initializer) | |
<< 0; | |
return; | |
} | |
if (VDecl->hasLocalStorage()) | |
setFunctionHasBranchProtectedScope(); | |
if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
} | |
// OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside | |
// a kernel function cannot be initialized." | |
if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { | |
Diag(VDecl->getLocation(), diag::err_local_cant_init); | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
// The LoaderUninitialized attribute acts as a definition (of undef). | |
if (VDecl->hasAttr<LoaderUninitializedAttr>()) { | |
Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
// Get the decls type and save a reference for later, since | |
// CheckInitializerTypes may change it. | |
QualType DclT = VDecl->getType(), SavT = DclT; | |
// Expressions default to 'id' when we're in a debugger | |
// and we are assigning it to a variable of Objective-C pointer type. | |
if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && | |
Init->getType() == Context.UnknownAnyTy) { | |
ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); | |
if (Result.isInvalid()) { | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
Init = Result.get(); | |
} | |
// Perform the initialization. | |
ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); | |
if (!VDecl->isInvalidDecl()) { | |
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | |
InitializationKind Kind = InitializationKind::CreateForInit( | |
VDecl->getLocation(), DirectInit, Init); | |
MultiExprArg Args = Init; | |
if (CXXDirectInit) | |
Args = MultiExprArg(CXXDirectInit->getExprs(), | |
CXXDirectInit->getNumExprs()); | |
// Try to correct any TypoExprs in the initialization arguments. | |
for (size_t Idx = 0; Idx < Args.size(); ++Idx) { | |
ExprResult Res = CorrectDelayedTyposInExpr( | |
Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true, | |
[this, Entity, Kind](Expr *E) { | |
InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); | |
return Init.Failed() ? ExprError() : E; | |
}); | |
if (Res.isInvalid()) { | |
VDecl->setInvalidDecl(); | |
} else if (Res.get() != Args[Idx]) { | |
Args[Idx] = Res.get(); | |
} | |
} | |
if (VDecl->isInvalidDecl()) | |
return; | |
InitializationSequence InitSeq(*this, Entity, Kind, Args, | |
/*TopLevelOfInitList=*/false, | |
/*TreatUnavailableAsInvalid=*/false); | |
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); | |
if (Result.isInvalid()) { | |
// If the provied initializer fails to initialize the var decl, | |
// we attach a recovery expr for better recovery. | |
auto RecoveryExpr = | |
CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); | |
if (RecoveryExpr.get()) | |
VDecl->setInit(RecoveryExpr.get()); | |
return; | |
} | |
Init = Result.getAs<Expr>(); | |
} | |
// Check for self-references within variable initializers. | |
// Variables declared within a function/method body (except for references) | |
// are handled by a dataflow analysis. | |
// This is undefined behavior in C++, but valid in C. | |
if (getLangOpts().CPlusPlus) { | |
if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || | |
VDecl->getType()->isReferenceType()) { | |
CheckSelfReference(*this, RealDecl, Init, DirectInit); | |
} | |
} | |
// If the type changed, it means we had an incomplete type that was | |
// completed by the initializer. For example: | |
// int ary[] = { 1, 3, 5 }; | |
// "ary" transitions from an IncompleteArrayType to a ConstantArrayType. | |
if (!VDecl->isInvalidDecl() && (DclT != SavT)) | |
VDecl->setType(DclT); | |
if (!VDecl->isInvalidDecl()) { | |
checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); | |
if (VDecl->hasAttr<BlocksAttr>()) | |
checkRetainCycles(VDecl, Init); | |
// It is safe to assign a weak reference into a strong variable. | |
// Although this code can still have problems: | |
// id x = self.weakProp; | |
// id y = self.weakProp; | |
// we do not warn to warn spuriously when 'x' and 'y' are on separate | |
// paths through the function. This should be revisited if | |
// -Wrepeated-use-of-weak is made flow-sensitive. | |
if (FunctionScopeInfo *FSI = getCurFunction()) | |
if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || | |
VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && | |
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, | |
Init->getBeginLoc())) | |
FSI->markSafeWeakUse(Init); | |
} | |
// The initialization is usually a full-expression. | |
// | |
// FIXME: If this is a braced initialization of an aggregate, it is not | |
// an expression, and each individual field initializer is a separate | |
// full-expression. For instance, in: | |
// | |
// struct Temp { ~Temp(); }; | |
// struct S { S(Temp); }; | |
// struct T { S a, b; } t = { Temp(), Temp() } | |
// | |
// we should destroy the first Temp before constructing the second. | |
ExprResult Result = | |
ActOnFinishFullExpr(Init, VDecl->getLocation(), | |
/*DiscardedValue*/ false, VDecl->isConstexpr()); | |
if (Result.isInvalid()) { | |
VDecl->setInvalidDecl(); | |
return; | |
} | |
Init = Result.get(); | |
// Attach the initializer to the decl. | |
VDecl->setInit(Init); | |
if (VDecl->isLocalVarDecl()) { | |
// Don't check the initializer if the declaration is malformed. | |
if (VDecl->isInvalidDecl()) { | |
// do nothing | |
// OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. | |
// This is true even in C++ for OpenCL. | |
} else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { | |
CheckForConstantInitializer(Init, DclT); | |
// Otherwise, C++ does not restrict the initializer. | |
} else if (getLangOpts().CPlusPlus) { | |
// do nothing | |
// C99 6.7.8p4: All the expressions in an initializer for an object that has | |
// static storage duration shall be constant expressions or string literals. | |
} else if (VDecl->getStorageClass() == SC_Static) { | |
CheckForConstantInitializer(Init, DclT); | |
// C89 is stricter than C99 for aggregate initializers. | |
// C89 6.5.7p3: All the expressions [...] in an initializer list | |
// for an object that has aggregate or union type shall be | |
// constant expressions. | |
} else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && | |
isa<InitListExpr>(Init)) { | |
const Expr *Culprit; | |
if (!Init->isConstantInitializer(Context, false, &Culprit)) { | |
Diag(Culprit->getExprLoc(), | |
diag::ext_aggregate_init_not_constant) | |
<< Culprit->getSourceRange(); | |
} | |
} | |
if (auto *E = dyn_cast<ExprWithCleanups>(Init)) | |
if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) | |
if (VDecl->hasLocalStorage()) | |
BE->getBlockDecl()->setCanAvoidCopyToHeap(); | |
} else if (VDecl->isStaticDataMember() && !VDecl->isInline() && | |
VDecl->getLexicalDeclContext()->isRecord()) { | |
// This is an in-class initialization for a static data member, e.g., | |
// | |
// struct S { | |
// static const int value = 17; | |
// }; | |
// C++ [class.mem]p4: | |
// A member-declarator can contain a constant-initializer only | |
// if it declares a static member (9.4) of const integral or | |
// const enumeration type, see 9.4.2. | |
// | |
// C++11 [class.static.data]p3: | |
// If a non-volatile non-inline const static data member is of integral | |
// or enumeration type, its declaration in the class definition can | |
// specify a brace-or-equal-initializer in which every initializer-clause | |
// that is an assignment-expression is a constant expression. A static | |
// data member of literal type can be declared in the class definition | |
// with the constexpr specifier; if so, its declaration shall specify a | |
// brace-or-equal-initializer in which every initializer-clause that is | |
// an assignment-expression is a constant expression. | |
// Do nothing on dependent types. | |
if (DclT->isDependentType()) { | |
// Allow any 'static constexpr' members, whether or not they are of literal | |
// type. We separately check that every constexpr variable is of literal | |
// type. | |
} else if (VDecl->isConstexpr()) { | |
// Require constness. | |
} else if (!DclT.isConstQualified()) { | |
Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) | |
<< Init->getSourceRange(); | |
VDecl->setInvalidDecl(); | |
// We allow integer constant expressions in all cases. | |
} else if (DclT->isIntegralOrEnumerationType()) { | |
// Check whether the expression is a constant expression. | |
SourceLocation Loc; | |
if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) | |
// In C++11, a non-constexpr const static data member with an | |
// in-class initializer cannot be volatile. | |
Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); | |
else if (Init->isValueDependent()) | |
; // Nothing to check. | |
else if (Init->isIntegerConstantExpr(Context, &Loc)) | |
; // Ok, it's an ICE! | |
else if (Init->getType()->isScopedEnumeralType() && | |
Init->isCXX11ConstantExpr(Context)) | |
; // Ok, it is a scoped-enum constant expression. | |
else if (Init->isEvaluatable(Context)) { | |
// If we can constant fold the initializer through heroics, accept it, | |
// but report this as a use of an extension for -pedantic. | |
Diag(Loc, diag::ext_in_class_initializer_non_constant) | |
<< Init->getSourceRange(); | |
} else { | |
// Otherwise, this is some crazy unknown case. Report the issue at the | |
// location provided by the isIntegerConstantExpr failed check. | |
Diag(Loc, diag::err_in_class_initializer_non_constant) | |
<< Init->getSourceRange(); | |
VDecl->setInvalidDecl(); | |
} | |
// We allow foldable floating-point constants as an extension. | |
} else if (DclT->isFloatingType()) { // also permits complex, which is ok | |
// In C++98, this is a GNU extension. In C++11, it is not, but we support | |
// it anyway and provide a fixit to add the 'constexpr'. | |
if (getLangOpts().CPlusPlus11) { | |
Diag(VDecl->getLocation(), | |
diag::ext_in_class_initializer_float_type_cxx11) | |
<< DclT << Init->getSourceRange(); | |
Diag(VDecl->getBeginLoc(), | |
diag::note_in_class_initializer_float_type_cxx11) | |
<< FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); | |
} else { | |
Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) | |
<< DclT << Init->getSourceRange(); | |
if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { | |
Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) | |
<< Init->getSourceRange(); | |
VDecl->setInvalidDecl(); | |
} | |
} | |
// Suggest adding 'constexpr' in C++11 for literal types. | |
} else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { | |
Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) | |
<< DclT << Init->getSourceRange() | |
<< FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); | |
VDecl->setConstexpr(true); | |
} else { | |
Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) | |
<< DclT << Init->getSourceRange(); | |
VDecl->setInvalidDecl(); | |
} | |
} else if (VDecl->isFileVarDecl()) { | |
// In C, extern is typically used to avoid tentative definitions when | |
// declaring variables in headers, but adding an intializer makes it a | |
// definition. This is somewhat confusing, so GCC and Clang both warn on it. | |
// In C++, extern is often used to give implictly static const variables | |
// external linkage, so don't warn in that case. If selectany is present, | |
// this might be header code intended for C and C++ inclusion, so apply the | |
// C++ rules. | |
if (VDecl->getStorageClass() == SC_Extern && | |
((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || | |
!Context.getBaseElementType(VDecl->getType()).isConstQualified()) && | |
!(getLangOpts().CPlusPlus && VDecl->isExternC()) && | |
!isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) | |
Diag(VDecl->getLocation(), diag::warn_extern_init); | |
// In Microsoft C++ mode, a const variable defined in namespace scope has | |
// external linkage by default if the variable is declared with | |
// __declspec(dllexport). | |
if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | |
getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && | |
VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) | |
VDecl->setStorageClass(SC_Extern); | |
// C99 6.7.8p4. All file scoped initializers need to be constant. | |
if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) | |
CheckForConstantInitializer(Init, DclT); | |
} | |
QualType InitType = Init->getType(); | |
if (!InitType.isNull() && | |
(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |
InitType.hasNonTrivialToPrimitiveCopyCUnion())) | |
checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); | |
// We will represent direct-initialization similarly to copy-initialization: | |
// int x(1); -as-> int x = 1; | |
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | |
// | |
// Clients that want to distinguish between the two forms, can check for | |
// direct initializer using VarDecl::getInitStyle(). | |
// A major benefit is that clients that don't particularly care about which | |
// exactly form was it (like the CodeGen) can handle both cases without | |
// special case code. | |
// C++ 8.5p11: | |
// The form of initialization (using parentheses or '=') is generally | |
// insignificant, but does matter when the entity being initialized has a | |
// class type. | |
if (CXXDirectInit) { | |
assert(DirectInit && "Call-style initializer must be direct init."); | |
VDecl->setInitStyle(VarDecl::CallInit); | |
} else if (DirectInit) { | |
// This must be list-initialization. No other way is direct-initialization. | |
VDecl->setInitStyle(VarDecl::ListInit); | |
} | |
if (LangOpts.OpenMP && VDecl->isFileVarDecl()) | |
DeclsToCheckForDeferredDiags.push_back(VDecl); | |
CheckCompleteVariableDeclaration(VDecl); | |
} | |
/// ActOnInitializerError - Given that there was an error parsing an | |
/// initializer for the given declaration, try to return to some form | |
/// of sanity. | |
void Sema::ActOnInitializerError(Decl *D) { | |
// Our main concern here is re-establishing invariants like "a | |
// variable's type is either dependent or complete". | |
if (!D || D->isInvalidDecl()) return; | |
VarDecl *VD = dyn_cast<VarDecl>(D); | |
if (!VD) return; | |
// Bindings are not usable if we can't make sense of the initializer. | |
if (auto *DD = dyn_cast<DecompositionDecl>(D)) | |
for (auto *BD : DD->bindings()) | |
BD->setInvalidDecl(); | |
// Auto types are meaningless if we can't make sense of the initializer. | |
if (VD->getType()->isUndeducedType()) { | |
D->setInvalidDecl(); | |
return; | |
} | |
QualType Ty = VD->getType(); | |
if (Ty->isDependentType()) return; | |
// Require a complete type. | |
if (RequireCompleteType(VD->getLocation(), | |
Context.getBaseElementType(Ty), | |
diag::err_typecheck_decl_incomplete_type)) { | |
VD->setInvalidDecl(); | |
return; | |
} | |
// Require a non-abstract type. | |
if (RequireNonAbstractType(VD->getLocation(), Ty, | |
diag::err_abstract_type_in_decl, | |
AbstractVariableType)) { | |
VD->setInvalidDecl(); | |
return; | |
} | |
// Don't bother complaining about constructors or destructors, | |
// though. | |
} | |
void Sema::ActOnUninitializedDecl(Decl *RealDecl) { | |
// If there is no declaration, there was an error parsing it. Just ignore it. | |
if (!RealDecl) | |
return; | |
if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { | |
QualType Type = Var->getType(); | |
// C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. | |
if (isa<DecompositionDecl>(RealDecl)) { | |
Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; | |
Var->setInvalidDecl(); | |
return; | |
} | |
if (Type->isUndeducedType() && | |
DeduceVariableDeclarationType(Var, false, nullptr)) | |
return; | |
// C++11 [class.static.data]p3: A static data member can be declared with | |
// the constexpr specifier; if so, its declaration shall specify | |
// a brace-or-equal-initializer. | |
// C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to | |
// the definition of a variable [...] or the declaration of a static data | |
// member. | |
if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && | |
!Var->isThisDeclarationADemotedDefinition()) { | |
if (Var->isStaticDataMember()) { | |
// C++1z removes the relevant rule; the in-class declaration is always | |
// a definition there. | |
if (!getLangOpts().CPlusPlus17 && | |
!Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |
Diag(Var->getLocation(), | |
diag::err_constexpr_static_mem_var_requires_init) | |
<< Var; | |
Var->setInvalidDecl(); | |
return; | |
} | |
} else { | |
Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); | |
Var->setInvalidDecl(); | |
return; | |
} | |
} | |
// OpenCL v1.1 s6.5.3: variables declared in the constant address space must | |
// be initialized. | |
if (!Var->isInvalidDecl() && | |
Var->getType().getAddressSpace() == LangAS::opencl_constant && | |
Var->getStorageClass() != SC_Extern && !Var->getInit()) { | |
Diag(Var->getLocation(), diag::err_opencl_constant_no_init); | |
Var->setInvalidDecl(); | |
return; | |
} | |
if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { | |
if (Var->getStorageClass() == SC_Extern) { | |
Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) | |
<< Var; | |
Var->setInvalidDecl(); | |
return; | |
} | |
if (RequireCompleteType(Var->getLocation(), Var->getType(), | |
diag::err_typecheck_decl_incomplete_type)) { | |
Var->setInvalidDecl(); | |
return; | |
} | |
if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { | |
if (!RD->hasTrivialDefaultConstructor()) { | |
Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); | |
Var->setInvalidDecl(); | |
return; | |
} | |
} | |
} | |
VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); | |
if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && | |
Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | |
checkNonTrivialCUnion(Var->getType(), Var->getLocation(), | |
NTCUC_DefaultInitializedObject, NTCUK_Init); | |
switch (DefKind) { | |
case VarDecl::Definition: | |
if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) | |
break; | |
// We have an out-of-line definition of a static data member | |
// that has an in-class initializer, so we type-check this like | |
// a declaration. | |
// | |
LLVM_FALLTHROUGH; | |
case VarDecl::DeclarationOnly: | |
// It's only a declaration. | |
// Block scope. C99 6.7p7: If an identifier for an object is | |
// declared with no linkage (C99 6.2.2p6), the type for the | |
// object shall be complete. | |
if (!Type->isDependentType() && Var->isLocalVarDecl() && | |
!Var->hasLinkage() && !Var->isInvalidDecl() && | |
RequireCompleteType(Var->getLocation(), Type, | |
diag::err_typecheck_decl_incomplete_type)) | |
Var->setInvalidDecl(); | |
// Make sure that the type is not abstract. | |
if (!Type->isDependentType() && !Var->isInvalidDecl() && | |
RequireNonAbstractType(Var->getLocation(), Type, | |
diag::err_abstract_type_in_decl, | |
AbstractVariableType)) | |
Var->setInvalidDecl(); | |
if (!Type->isDependentType() && !Var->isInvalidDecl() && | |
Var->getStorageClass() == SC_PrivateExtern) { | |
Diag(Var->getLocation(), diag::warn_private_extern); | |
Diag(Var->getLocation(), diag::note_private_extern); | |
} | |
if (Context.getTargetInfo().allowDebugInfoForExternalVar() && | |
!Var->isInvalidDecl() && !getLangOpts().CPlusPlus) | |
ExternalDeclarations.push_back(Var); | |
return; | |
case VarDecl::TentativeDefinition: | |
// File scope. C99 6.9.2p2: A declaration of an identifier for an | |
// object that has file scope without an initializer, and without a | |
// storage-class specifier or with the storage-class specifier "static", | |
// constitutes a tentative definition. Note: A tentative definition with | |
// external linkage is valid (C99 6.2.2p5). | |
if (!Var->isInvalidDecl()) { | |
if (const IncompleteArrayType *ArrayT | |
= Context.getAsIncompleteArrayType(Type)) { | |
if (RequireCompleteSizedType( | |
Var->getLocation(), ArrayT->getElementType(), | |
diag::err_array_incomplete_or_sizeless_type)) | |
Var->setInvalidDecl(); | |
} else if (Var->getStorageClass() == SC_Static) { | |
// C99 6.9.2p3: If the declaration of an identifier for an object is | |
// a tentative definition and has internal linkage (C99 6.2.2p3), the | |
// declared type shall not be an incomplete type. | |
// NOTE: code such as the following | |
// static struct s; | |
// struct s { int a; }; | |
// is accepted by gcc. Hence here we issue a warning instead of | |
// an error and we do not invalidate the static declaration. | |
// NOTE: to avoid multiple warnings, only check the first declaration. | |
if (Var->isFirstDecl()) | |
RequireCompleteType(Var->getLocation(), Type, | |
diag::ext_typecheck_decl_incomplete_type); | |
} | |
} | |
// Record the tentative definition; we're done. | |
if (!Var->isInvalidDecl()) | |
TentativeDefinitions.push_back(Var); | |
return; | |
} | |
// Provide a specific diagnostic for uninitialized variable | |
// definitions with incomplete array type. | |
if (Type->isIncompleteArrayType()) { | |
Diag(Var->getLocation(), | |
diag::err_typecheck_incomplete_array_needs_initializer); | |
Var->setInvalidDecl(); | |
return; | |
} | |
// Provide a specific diagnostic for uninitialized variable | |
// definitions with reference type. | |
if (Type->isReferenceType()) { | |
Diag(Var->getLocation(), diag::err_reference_var_requires_init) | |
<< Var << SourceRange(Var->getLocation(), Var->getLocation()); | |
Var->setInvalidDecl(); | |
return; | |
} | |
// Do not attempt to type-check the default initializer for a | |
// variable with dependent type. | |
if (Type->isDependentType()) | |
return; | |
if (Var->isInvalidDecl()) | |
return; | |
if (!Var->hasAttr<AliasAttr>()) { | |
if (RequireCompleteType(Var->getLocation(), | |
Context.getBaseElementType(Type), | |
diag::err_typecheck_decl_incomplete_type)) { | |
Var->setInvalidDecl(); | |
return; | |
} | |
} else { | |
return; | |
} | |
// The variable can not have an abstract class type. | |
if (RequireNonAbstractType(Var->getLocation(), Type, | |
diag::err_abstract_type_in_decl, | |
AbstractVariableType)) { | |
Var->setInvalidDecl(); | |
return; | |
} | |
// Check for jumps past the implicit initializer. C++0x | |
// clarifies that this applies to a "variable with automatic | |
// storage duration", not a "local variable". | |
// C++11 [stmt.dcl]p3 | |
// A program that jumps from a point where a variable with automatic | |
// storage duration is not in scope to a point where it is in scope is | |
// ill-formed unless the variable has scalar type, class type with a | |
// trivial default constructor and a trivial destructor, a cv-qualified | |
// version of one of these types, or an array of one of the preceding | |
// types and is declared without an initializer. | |
if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { | |
if (const RecordType *Record | |
= Context.getBaseElementType(Type)->getAs<RecordType>()) { | |
CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); | |
// Mark the function (if we're in one) for further checking even if the | |
// looser rules of C++11 do not require such checks, so that we can | |
// diagnose incompatibilities with C++98. | |
if (!CXXRecord->isPOD()) | |
setFunctionHasBranchProtectedScope(); | |
} | |
} | |
// In OpenCL, we can't initialize objects in the __local address space, | |
// even implicitly, so don't synthesize an implicit initializer. | |
if (getLangOpts().OpenCL && | |
Var->getType().getAddressSpace() == LangAS::opencl_local) | |
return; | |
// C++03 [dcl.init]p9: | |
// If no initializer is specified for an object, and the | |
// object is of (possibly cv-qualified) non-POD class type (or | |
// array thereof), the object shall be default-initialized; if | |
// the object is of const-qualified type, the underlying class | |
// type shall have a user-declared default | |
// constructor. Otherwise, if no initializer is specified for | |
// a non- static object, the object and its subobjects, if | |
// any, have an indeterminate initial value); if the object | |
// or any of its subobjects are of const-qualified type, the | |
// program is ill-formed. | |
// C++0x [dcl.init]p11: | |
// If no initializer is specified for an object, the object is | |
// default-initialized; [...]. | |
InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); | |
InitializationKind Kind | |
= InitializationKind::CreateDefault(Var->getLocation()); | |
InitializationSequence InitSeq(*this, Entity, Kind, None); | |
ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); | |
if (Init.get()) { | |
Var->setInit(MaybeCreateExprWithCleanups(Init.get())); | |
// This is important for template substitution. | |
Var->setInitStyle(VarDecl::CallInit); | |
} else if (Init.isInvalid()) { | |
// If default-init fails, attach a recovery-expr initializer to track | |
// that initialization was attempted and failed. | |
auto RecoveryExpr = | |
CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); | |
if (RecoveryExpr.get()) | |
Var->setInit(RecoveryExpr.get()); | |
} | |
CheckCompleteVariableDeclaration(Var); | |
} | |
} | |
void Sema::ActOnCXXForRangeDecl(Decl *D) { | |
// If there is no declaration, there was an error parsing it. Ignore it. | |
if (!D) | |
return; | |
VarDecl *VD = dyn_cast<VarDecl>(D); | |
if (!VD) { | |
Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); | |
D->setInvalidDecl(); | |
return; | |
} | |
VD->setCXXForRangeDecl(true); | |
// for-range-declaration cannot be given a storage class specifier. | |
int Error = -1; | |
switch (VD->getStorageClass()) { | |
case SC_None: | |
break; | |
case SC_Extern: | |
Error = 0; | |
break; | |
case SC_Static: | |
Error = 1; | |
break; | |
case SC_PrivateExtern: | |
Error = 2; | |
break; | |
case SC_Auto: | |
Error = 3; | |
break; | |
case SC_Register: | |
Error = 4; | |
break; | |
} | |
if (Error != -1) { | |
Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) | |
<< VD << Error; | |
D->setInvalidDecl(); | |
} | |
} | |
StmtResult | |
Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, | |
IdentifierInfo *Ident, | |
ParsedAttributes &Attrs, | |
SourceLocation AttrEnd) { | |
// C++1y [stmt.iter]p1: | |
// A range-based for statement of the form | |
// for ( for-range-identifier : for-range-initializer ) statement | |
// is equivalent to | |
// for ( auto&& for-range-identifier : for-range-initializer ) statement | |
DeclSpec DS(Attrs.getPool().getFactory()); | |
const char *PrevSpec; | |
unsigned DiagID; | |
DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, | |
getPrintingPolicy()); | |
Declarator D(DS, DeclaratorContext::ForInit); | |
D.SetIdentifier(Ident, IdentLoc); | |
D.takeAttributes(Attrs, AttrEnd); | |
D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), | |
IdentLoc); | |
Decl *Var = ActOnDeclarator(S, D); | |
cast<VarDecl>(Var)->setCXXForRangeDecl(true); | |
FinalizeDeclaration(Var); | |
return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, | |
AttrEnd.isValid() ? AttrEnd : IdentLoc); | |
} | |
void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { | |
if (var->isInvalidDecl()) return; | |
if (getLangOpts().OpenCL) { | |
// OpenCL v2.0 s6.12.5 - Every block variable declaration must have an | |
// initialiser | |
if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && | |
!var->hasInit()) { | |
Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) | |
<< 1 /*Init*/; | |
var->setInvalidDecl(); | |
return; | |
} | |
} | |
// In Objective-C, don't allow jumps past the implicit initialization of a | |
// local retaining variable. | |
if (getLangOpts().ObjC && | |
var->hasLocalStorage()) { | |
switch (var->getType().getObjCLifetime()) { | |
case Qualifiers::OCL_None: | |
case Qualifiers::OCL_ExplicitNone: | |
case Qualifiers::OCL_Autoreleasing: | |
break; | |
case Qualifiers::OCL_Weak: | |
case Qualifiers::OCL_Strong: | |
setFunctionHasBranchProtectedScope(); | |
break; | |
} | |
} | |
if (var->hasLocalStorage() && | |
var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | |
setFunctionHasBranchProtectedScope(); | |
// Warn about externally-visible variables being defined without a | |
// prior declaration. We only want to do this for global | |
// declarations, but we also specifically need to avoid doing it for | |
// class members because the linkage of an anonymous class can | |
// change if it's later given a typedef name. | |
if (var->isThisDeclarationADefinition() && | |
var->getDeclContext()->getRedeclContext()->isFileContext() && | |
var->isExternallyVisible() && var->hasLinkage() && | |
!var->isInline() && !var->getDescribedVarTemplate() && | |
!isa<VarTemplatePartialSpecializationDecl>(var) && | |
!isTemplateInstantiation(var->getTemplateSpecializationKind()) && | |
!getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, | |
var->getLocation())) { | |
// Find a previous declaration that's not a definition. | |
VarDecl *prev = var->getPreviousDecl(); | |
while (prev && prev->isThisDeclarationADefinition()) | |
prev = prev->getPreviousDecl(); | |
if (!prev) { | |
Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; | |
Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) | |
<< /* variable */ 0; | |
} | |
} | |
// Cache the result of checking for constant initialization. | |
Optional<bool> CacheHasConstInit; | |
const Expr *CacheCulprit = nullptr; | |
auto checkConstInit = [&]() mutable { | |
if (!CacheHasConstInit) | |
CacheHasConstInit = var->getInit()->isConstantInitializer( | |
Context, var->getType()->isReferenceType(), &CacheCulprit); | |
return *CacheHasConstInit; | |
}; | |
if (var->getTLSKind() == VarDecl::TLS_Static) { | |
if (var->getType().isDestructedType()) { | |
// GNU C++98 edits for __thread, [basic.start.term]p3: | |
// The type of an object with thread storage duration shall not | |
// have a non-trivial destructor. | |
Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); | |
if (getLangOpts().CPlusPlus11) | |
Diag(var->getLocation(), diag::note_use_thread_local); | |
} else if (getLangOpts().CPlusPlus && var->hasInit()) { | |
if (!checkConstInit()) { | |
// GNU C++98 edits for __thread, [basic.start.init]p4: | |
// An object of thread storage duration shall not require dynamic | |
// initialization. | |
// FIXME: Need strict checking here. | |
Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) | |
<< CacheCulprit->getSourceRange(); | |
if (getLangOpts().CPlusPlus11) | |
Diag(var->getLocation(), diag::note_use_thread_local); | |
} | |
} | |
} | |
// Apply section attributes and pragmas to global variables. | |
bool GlobalStorage = var->hasGlobalStorage(); | |
if (GlobalStorage && var->isThisDeclarationADefinition() && | |
!inTemplateInstantiation()) { | |
PragmaStack<StringLiteral *> *Stack = nullptr; | |
int SectionFlags = ASTContext::PSF_Read; | |
if (var->getType().isConstQualified()) | |
Stack = &ConstSegStack; | |
else if (!var->getInit()) { | |
Stack = &BSSSegStack; | |
SectionFlags |= ASTContext::PSF_Write; | |
} else { | |
Stack = &DataSegStack; | |
SectionFlags |= ASTContext::PSF_Write; | |
} | |
if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { | |
if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) | |
SectionFlags |= ASTContext::PSF_Implicit; | |
UnifySection(SA->getName(), SectionFlags, var); | |
} else if (Stack->CurrentValue) { | |
SectionFlags |= ASTContext::PSF_Implicit; | |
auto SectionName = Stack->CurrentValue->getString(); | |
var->addAttr(SectionAttr::CreateImplicit( | |
Context, SectionName, Stack->CurrentPragmaLocation, | |
AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate)); | |
if (UnifySection(SectionName, SectionFlags, var)) | |
var->dropAttr<SectionAttr>(); | |
} | |
// Apply the init_seg attribute if this has an initializer. If the | |
// initializer turns out to not be dynamic, we'll end up ignoring this | |
// attribute. | |
if (CurInitSeg && var->getInit()) | |
var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), | |
CurInitSegLoc, | |
AttributeCommonInfo::AS_Pragma)); | |
} | |
if (!var->getType()->isStructureType() && var->hasInit() && | |
isa<InitListExpr>(var->getInit())) { | |
const auto *ILE = cast<InitListExpr>(var->getInit()); | |
unsigned NumInits = ILE->getNumInits(); | |
if (NumInits > 2) | |
for (unsigned I = 0; I < NumInits; ++I) { | |
const auto *Init = ILE->getInit(I); | |
if (!Init) | |
break; | |
const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); | |
if (!SL) | |
break; | |
unsigned NumConcat = SL->getNumConcatenated(); | |
// Diagnose missing comma in string array initialization. | |
// Do not warn when all the elements in the initializer are concatenated | |
// together. Do not warn for macros too. | |
if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) { | |
bool OnlyOneMissingComma = true; | |
for (unsigned J = I + 1; J < NumInits; ++J) { | |
const auto *Init = ILE->getInit(J); | |
if (!Init) | |
break; | |
const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); | |
if (!SLJ || SLJ->getNumConcatenated() > 1) { | |
OnlyOneMissingComma = false; | |
break; | |
} | |
} | |
if (OnlyOneMissingComma) { | |
SmallVector<FixItHint, 1> Hints; | |
for (unsigned i = 0; i < NumConcat - 1; ++i) | |
Hints.push_back(FixItHint::CreateInsertion( | |
PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ",")); | |
Diag(SL->getStrTokenLoc(1), | |
diag::warn_concatenated_literal_array_init) | |
<< Hints; | |
Diag(SL->getBeginLoc(), | |
diag::note_concatenated_string_literal_silence); | |
} | |
// In any case, stop now. | |
break; | |
} | |
} | |
} | |
// All the following checks are C++ only. | |
if (!getLangOpts().CPlusPlus) { | |
// If this variable must be emitted, add it as an initializer for the | |
// current module. | |
if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) | |
Context.addModuleInitializer(ModuleScopes.back().Module, var); | |
return; | |
} | |
QualType type = var->getType(); | |
if (var->hasAttr<BlocksAttr>()) | |
getCurFunction()->addByrefBlockVar(var); | |
Expr *Init = var->getInit(); | |
bool IsGlobal = GlobalStorage && !var->isStaticLocal(); | |
QualType baseType = Context.getBaseElementType(type); | |
// Check whether the initializer is sufficiently constant. | |
if (!type->isDependentType() && Init && !Init->isValueDependent() && | |
(GlobalStorage || var->isConstexpr() || | |
var->mightBeUsableInConstantExpressions(Context))) { | |
// If this variable might have a constant initializer or might be usable in | |
// constant expressions, check whether or not it actually is now. We can't | |
// do this lazily, because the result might depend on things that change | |
// later, such as which constexpr functions happen to be defined. | |
SmallVector<PartialDiagnosticAt, 8> Notes; | |
bool HasConstInit; | |
if (!getLangOpts().CPlusPlus11) { | |
// Prior to C++11, in contexts where a constant initializer is required, | |
// the set of valid constant initializers is described by syntactic rules | |
// in [expr.const]p2-6. | |
// FIXME: Stricter checking for these rules would be useful for constinit / | |
// -Wglobal-constructors. | |
HasConstInit = checkConstInit(); | |
// Compute and cache the constant value, and remember that we have a | |
// constant initializer. | |
if (HasConstInit) { | |
(void)var->checkForConstantInitialization(Notes); | |
Notes.clear(); | |
} else if (CacheCulprit) { | |
Notes.emplace_back(CacheCulprit->getExprLoc(), | |
PDiag(diag::note_invalid_subexpr_in_const_expr)); | |
Notes.back().second << CacheCulprit->getSourceRange(); | |
} | |
} else { | |
// Evaluate the initializer to see if it's a constant initializer. | |
HasConstInit = var->checkForConstantInitialization(Notes); | |
} | |
if (HasConstInit) { | |
// FIXME: Consider replacing the initializer with a ConstantExpr. | |
} else if (var->isConstexpr()) { | |
SourceLocation DiagLoc = var->getLocation(); | |
// If the note doesn't add any useful information other than a source | |
// location, fold it into the primary diagnostic. | |
if (Notes.size() == 1 && Notes[0].second.getDiagID() == | |
diag::note_invalid_subexpr_in_const_expr) { | |
DiagLoc = Notes[0].first; | |
Notes.clear(); | |
} | |
Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) | |
<< var << Init->getSourceRange(); | |
for (unsigned I = 0, N = Notes.size(); I != N; ++I) | |
Diag(Notes[I].first, Notes[I].second); | |
} else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) { | |
auto *Attr = var->getAttr<ConstInitAttr>(); | |
Diag(var->getLocation(), diag::err_require_constant_init_failed) | |
<< Init->getSourceRange(); | |
Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here) | |
<< Attr->getRange() << Attr->isConstinit(); | |
for (auto &it : Notes) | |
Diag(it.first, it.second); | |
} else if (IsGlobal && | |
!getDiagnostics().isIgnored(diag::warn_global_constructor, | |
var->getLocation())) { | |
// Warn about globals which don't have a constant initializer. Don't | |
// warn about globals with a non-trivial destructor because we already | |
// warned about them. | |
CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); | |
if (!(RD && !RD->hasTrivialDestructor())) { | |
// checkConstInit() here permits trivial default initialization even in | |
// C++11 onwards, where such an initializer is not a constant initializer | |
// but nonetheless doesn't require a global constructor. | |
if (!checkConstInit()) | |
Diag(var->getLocation(), diag::warn_global_constructor) | |
<< Init->getSourceRange(); | |
} | |
} | |
} | |
// Require the destructor. | |
if (!type->isDependentType()) | |
if (const RecordType *recordType = baseType->getAs<RecordType>()) | |
FinalizeVarWithDestructor(var, recordType); | |
// If this variable must be emitted, add it as an initializer for the current | |
// module. | |
if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) | |
Context.addModuleInitializer(ModuleScopes.back().Module, var); | |
// Build the bindings if this is a structured binding declaration. | |
if (auto *DD = dyn_cast<DecompositionDecl>(var)) | |
CheckCompleteDecompositionDeclaration(DD); | |
} | |
/// Determines if a variable's alignment is dependent. | |
static bool hasDependentAlignment(VarDecl *VD) { | |
if (VD->getType()->isDependentType()) | |
return true; | |
for (auto *I : VD->specific_attrs<AlignedAttr>()) | |
if (I->isAlignmentDependent()) | |
return true; | |
return false; | |
} | |
/// Check if VD needs to be dllexport/dllimport due to being in a | |
/// dllexport/import function. | |
void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { | |
assert(VD->isStaticLocal()); | |
auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); | |
// Find outermost function when VD is in lambda function. | |
while (FD && !getDLLAttr(FD) && | |
!FD->hasAttr<DLLExportStaticLocalAttr>() && | |
!FD->hasAttr<DLLImportStaticLocalAttr>()) { | |
FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); | |
} | |
if (!FD) | |
return; | |
// Static locals inherit dll attributes from their function. | |
if (Attr *A = getDLLAttr(FD)) { | |
auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); | |
NewAttr->setInherited(true); | |
VD->addAttr(NewAttr); | |
} else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { | |
auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); | |
NewAttr->setInherited(true); | |
VD->addAttr(NewAttr); | |
// Export this function to enforce exporting this static variable even | |
// if it is not used in this compilation unit. | |
if (!FD->hasAttr<DLLExportAttr>()) | |
FD->addAttr(NewAttr); | |
} else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { | |
auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); | |
NewAttr->setInherited(true); | |
VD->addAttr(NewAttr); | |
} | |
} | |
/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform | |
/// any semantic actions necessary after any initializer has been attached. | |
void Sema::FinalizeDeclaration(Decl *ThisDecl) { | |
// Note that we are no longer parsing the initializer for this declaration. | |
ParsingInitForAutoVars.erase(ThisDecl); | |
VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); | |
if (!VD) | |
return; | |
// Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active | |
if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && | |
!inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { | |
if (PragmaClangBSSSection.Valid) | |
VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( | |
Context, PragmaClangBSSSection.SectionName, | |
PragmaClangBSSSection.PragmaLocation, | |
AttributeCommonInfo::AS_Pragma)); | |
if (PragmaClangDataSection.Valid) | |
VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( | |
Context, PragmaClangDataSection.SectionName, | |
PragmaClangDataSection.PragmaLocation, | |
AttributeCommonInfo::AS_Pragma)); | |
if (PragmaClangRodataSection.Valid) | |
VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( | |
Context, PragmaClangRodataSection.SectionName, | |
PragmaClangRodataSection.PragmaLocation, | |
AttributeCommonInfo::AS_Pragma)); | |
if (PragmaClangRelroSection.Valid) | |
VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( | |
Context, PragmaClangRelroSection.SectionName, | |
PragmaClangRelroSection.PragmaLocation, | |
AttributeCommonInfo::AS_Pragma)); | |
} | |
if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { | |
for (auto *BD : DD->bindings()) { | |
FinalizeDeclaration(BD); | |
} | |
} | |
checkAttributesAfterMerging(*this, *VD); | |
// Perform TLS alignment check here after attributes attached to the variable | |
// which may affect the alignment have been processed. Only perform the check | |
// if the target has a maximum TLS alignment (zero means no constraints). | |
if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { | |
// Protect the check so that it's not performed on dependent types and | |
// dependent alignments (we can't determine the alignment in that case). | |
if (VD->getTLSKind() && !hasDependentAlignment(VD) && | |
!VD->isInvalidDecl()) { | |
CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); | |
if (Context.getDeclAlign(VD) > MaxAlignChars) { | |
Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) | |
<< (unsigned)Context.getDeclAlign(VD).getQuantity() << VD | |
<< (unsigned)MaxAlignChars.getQuantity(); | |
} | |
} | |
} | |
if (VD->isStaticLocal()) | |
CheckStaticLocalForDllExport(VD); | |
// Perform check for initializers of device-side global variables. | |
// CUDA allows empty constructors as initializers (see E.2.3.1, CUDA | |
// 7.5). We must also apply the same checks to all __shared__ | |
// variables whether they are local or not. CUDA also allows | |
// constant initializers for __constant__ and __device__ variables. | |
if (getLangOpts().CUDA) | |
checkAllowedCUDAInitializer(VD); | |
// Grab the dllimport or dllexport attribute off of the VarDecl. | |
const InheritableAttr *DLLAttr = getDLLAttr(VD); | |
// Imported static data members cannot be defined out-of-line. | |
if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { | |
if (VD->isStaticDataMember() && VD->isOutOfLine() && | |
VD->isThisDeclarationADefinition()) { | |
// We allow definitions of dllimport class template static data members | |
// with a warning. | |
CXXRecordDecl *Context = | |
cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); | |
bool IsClassTemplateMember = | |
isa<ClassTemplatePartialSpecializationDecl>(Context) || | |
Context->getDescribedClassTemplate(); | |
Diag(VD->getLocation(), | |
IsClassTemplateMember | |
? diag::warn_attribute_dllimport_static_field_definition | |
: diag::err_attribute_dllimport_static_field_definition); | |
Diag(IA->getLocation(), diag::note_attribute); | |
if (!IsClassTemplateMember) | |
VD->setInvalidDecl(); | |
} | |
} | |
// dllimport/dllexport variables cannot be thread local, their TLS index | |
// isn't exported with the variable. | |
if (DLLAttr && VD->getTLSKind()) { | |
auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); | |
if (F && getDLLAttr(F)) { | |
assert(VD->isStaticLocal()); | |
// But if this is a static local in a dlimport/dllexport function, the | |
// function will never be inlined, which means the var would never be | |
// imported, so having it marked import/export is safe. | |
} else { | |
Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD | |
<< DLLAttr; | |
VD->setInvalidDecl(); | |
} | |
} | |
if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { | |
if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { | |
Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; | |
VD->dropAttr<UsedAttr>(); | |
} | |
} | |
const DeclContext *DC = VD->getDeclContext(); | |
// If there's a #pragma GCC visibility in scope, and this isn't a class | |
// member, set the visibility of this variable. | |
if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) | |
AddPushedVisibilityAttribute(VD); | |
// FIXME: Warn on unused var template partial specializations. | |
if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) | |
MarkUnusedFileScopedDecl(VD); | |
// Now we have parsed the initializer and can update the table of magic | |
// tag values. | |
if (!VD->hasAttr<TypeTagForDatatypeAttr>() || | |
!VD->getType()->isIntegralOrEnumerationType()) | |
return; | |
for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { | |
const Expr *MagicValueExpr = VD->getInit(); | |
if (!MagicValueExpr) { | |
continue; | |
} | |
Optional<llvm::APSInt> MagicValueInt; | |
if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) { | |
Diag(I->getRange().getBegin(), | |
diag::err_type_tag_for_datatype_not_ice) | |
<< LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); | |
continue; | |
} | |
if (MagicValueInt->getActiveBits() > 64) { | |
Diag(I->getRange().getBegin(), | |
diag::err_type_tag_for_datatype_too_large) | |
<< LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); | |
continue; | |
} | |
uint64_t MagicValue = MagicValueInt->getZExtValue(); | |
RegisterTypeTagForDatatype(I->getArgumentKind(), | |
MagicValue, | |
I->getMatchingCType(), | |
I->getLayoutCompatible(), | |
I->getMustBeNull()); | |
} | |
} | |
static bool hasDeducedAuto(DeclaratorDecl *DD) { | |
auto *VD = dyn_cast<VarDecl>(DD); | |
return VD && !VD->getType()->hasAutoForTrailingReturnType(); | |
} | |
Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, | |
ArrayRef<Decl *> Group) { | |
SmallVector<Decl*, 8> Decls; | |
if (DS.isTypeSpecOwned()) | |
Decls.push_back(DS.getRepAsDecl()); | |
DeclaratorDecl *FirstDeclaratorInGroup = nullptr; | |
DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; | |
bool DiagnosedMultipleDecomps = false; | |
DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; | |
bool DiagnosedNonDeducedAuto = false; | |
for (unsigned i = 0, e = Group.size(); i != e; ++i) { | |
if (Decl *D = Group[i]) { | |
// For declarators, there are some additional syntactic-ish checks we need | |
// to perform. | |
if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { | |
if (!FirstDeclaratorInGroup) | |
FirstDeclaratorInGroup = DD; | |
if (!FirstDecompDeclaratorInGroup) | |
FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); | |
if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && | |
!hasDeducedAuto(DD)) | |
FirstNonDeducedAutoInGroup = DD; | |
if (FirstDeclaratorInGroup != DD) { | |
// A decomposition declaration cannot be combined with any other | |
// declaration in the same group. | |
if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { | |
Diag(FirstDecompDeclaratorInGroup->getLocation(), | |
diag::err_decomp_decl_not_alone) | |
<< FirstDeclaratorInGroup->getSourceRange() | |
<< DD->getSourceRange(); | |
DiagnosedMultipleDecomps = true; | |
} | |
// A declarator that uses 'auto' in any way other than to declare a | |
// variable with a deduced type cannot be combined with any other | |
// declarator in the same group. | |
if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { | |
Diag(FirstNonDeducedAutoInGroup->getLocation(), | |
diag::err_auto_non_deduced_not_alone) | |
<< FirstNonDeducedAutoInGroup->getType() | |
->hasAutoForTrailingReturnType() | |
<< FirstDeclaratorInGroup->getSourceRange() | |
<< DD->getSourceRange(); | |
DiagnosedNonDeducedAuto = true; | |
} | |
} | |
} | |
Decls.push_back(D); | |
} | |
} | |
if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { | |
if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { | |
handleTagNumbering(Tag, S); | |
if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && | |
getLangOpts().CPlusPlus) | |
Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); | |
} | |
} | |
return BuildDeclaratorGroup(Decls); | |
} | |
/// BuildDeclaratorGroup - convert a list of declarations into a declaration | |
/// group, performing any necessary semantic checking. | |
Sema::DeclGroupPtrTy | |
Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { | |
// C++14 [dcl.spec.auto]p7: (DR1347) | |
// If the type that replaces the placeholder type is not the same in each | |
// deduction, the program is ill-formed. | |
if (Group.size() > 1) { | |
QualType Deduced; | |
VarDecl *DeducedDecl = nullptr; | |
for (unsigned i = 0, e = Group.size(); i != e; ++i) { | |
VarDecl *D = dyn_cast<VarDecl>(Group[i]); | |
if (!D || D->isInvalidDecl()) | |
break; | |
DeducedType *DT = D->getType()->getContainedDeducedType(); | |
if (!DT || DT->getDeducedType().isNull()) | |
continue; | |
if (Deduced.isNull()) { | |
Deduced = DT->getDeducedType(); | |
DeducedDecl = D; | |
} else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { | |
auto *AT = dyn_cast<AutoType>(DT); | |
auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), | |
diag::err_auto_different_deductions) | |
<< (AT ? (unsigned)AT->getKeyword() : 3) << Deduced | |
<< DeducedDecl->getDeclName() << DT->getDeducedType() | |
<< D->getDeclName(); | |
if (DeducedDecl->hasInit()) | |
Dia << DeducedDecl->getInit()->getSourceRange(); | |
if (D->getInit()) | |
Dia << D->getInit()->getSourceRange(); | |
D->setInvalidDecl(); | |
break; | |
} | |
} | |
} | |
ActOnDocumentableDecls(Group); | |
return DeclGroupPtrTy::make( | |
DeclGroupRef::Create(Context, Group.data(), Group.size())); | |
} | |
void Sema::ActOnDocumentableDecl(Decl *D) { | |
ActOnDocumentableDecls(D); | |
} | |
void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { | |
// Don't parse the comment if Doxygen diagnostics are ignored. | |
if (Group.empty() || !Group[0]) | |
return; | |
if (Diags.isIgnored(diag::warn_doc_param_not_found, | |
Group[0]->getLocation()) && | |
Diags.isIgnored(diag::warn_unknown_comment_command_name, | |
Group[0]->getLocation())) | |
return; | |
if (Group.size() >= 2) { | |
// This is a decl group. Normally it will contain only declarations | |
// produced from declarator list. But in case we have any definitions or | |
// additional declaration references: | |
// 'typedef struct S {} S;' | |
// 'typedef struct S *S;' | |
// 'struct S *pS;' | |
// FinalizeDeclaratorGroup adds these as separate declarations. | |
Decl *MaybeTagDecl = Group[0]; | |
if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { | |
Group = Group.slice(1); | |
} | |
} | |
// FIMXE: We assume every Decl in the group is in the same file. | |
// This is false when preprocessor constructs the group from decls in | |
// different files (e. g. macros or #include). | |
Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); | |
} | |
/// Common checks for a parameter-declaration that should apply to both function | |
/// parameters and non-type template parameters. | |
void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { | |
// Check that there are no default arguments inside the type of this | |
// parameter. | |
if (getLangOpts().CPlusPlus) | |
CheckExtraCXXDefaultArguments(D); | |
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). | |
if (D.getCXXScopeSpec().isSet()) { | |
Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) | |
<< D.getCXXScopeSpec().getRange(); | |
} | |
// [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a | |
// simple identifier except [...irrelevant cases...]. | |
switch (D.getName().getKind()) { | |
case UnqualifiedIdKind::IK_Identifier: | |
break; | |
case UnqualifiedIdKind::IK_OperatorFunctionId: | |
case UnqualifiedIdKind::IK_ConversionFunctionId: | |
case UnqualifiedIdKind::IK_LiteralOperatorId: | |
case UnqualifiedIdKind::IK_ConstructorName: | |
case UnqualifiedIdKind::IK_DestructorName: | |
case UnqualifiedIdKind::IK_ImplicitSelfParam: | |
case UnqualifiedIdKind::IK_DeductionGuideName: | |
Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) | |
<< GetNameForDeclarator(D).getName(); | |
break; | |
case UnqualifiedIdKind::IK_TemplateId: | |
case UnqualifiedIdKind::IK_ConstructorTemplateId: | |
// GetNameForDeclarator would not produce a useful name in this case. | |
Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); | |
break; | |
} | |
} | |
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() | |
/// to introduce parameters into function prototype scope. | |
Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { | |
const DeclSpec &DS = D.getDeclSpec(); | |
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. | |
// C++03 [dcl.stc]p2 also permits 'auto'. | |
StorageClass SC = SC_None; | |
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { | |
SC = SC_Register; | |
// In C++11, the 'register' storage class specifier is deprecated. | |
// In C++17, it is not allowed, but we tolerate it as an extension. | |
if (getLangOpts().CPlusPlus11) { | |
Diag(DS.getStorageClassSpecLoc(), | |
getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class | |
: diag::warn_deprecated_register) | |
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |
} | |
} else if (getLangOpts().CPlusPlus && | |
DS.getStorageClassSpec() == DeclSpec::SCS_auto) { | |
SC = SC_Auto; | |
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { | |
Diag(DS.getStorageClassSpecLoc(), | |
diag::err_invalid_storage_class_in_func_decl); | |
D.getMutableDeclSpec().ClearStorageClassSpecs(); | |
} | |
if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | |
Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) | |
<< DeclSpec::getSpecifierName(TSCS); | |
if (DS.isInlineSpecified()) | |
Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | |
<< getLangOpts().CPlusPlus17; | |
if (DS.hasConstexprSpecifier()) | |
Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) | |
<< 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); | |
DiagnoseFunctionSpecifiers(DS); | |
CheckFunctionOrTemplateParamDeclarator(S, D); | |
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |
QualType parmDeclType = TInfo->getType(); | |
// Check for redeclaration of parameters, e.g. int foo(int x, int x); | |
IdentifierInfo *II = D.getIdentifier(); | |
if (II) { | |
LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, | |
ForVisibleRedeclaration); | |
LookupName(R, S); | |
if (R.isSingleResult()) { | |
NamedDecl *PrevDecl = R.getFoundDecl(); | |
if (PrevDecl->isTemplateParameter()) { | |
// Maybe we will complain about the shadowed template parameter. | |
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | |
// Just pretend that we didn't see the previous declaration. | |
PrevDecl = nullptr; | |
} else if (S->isDeclScope(PrevDecl)) { | |
Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; | |
Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |
// Recover by removing the name | |
II = nullptr; | |
D.SetIdentifier(nullptr, D.getIdentifierLoc()); | |
D.setInvalidType(true); | |
} | |
} | |
} | |
// Temporarily put parameter variables in the translation unit, not | |
// the enclosing context. This prevents them from accidentally | |
// looking like class members in C++. | |
ParmVarDecl *New = | |
CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), | |
D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); | |
if (D.isInvalidType()) | |
New->setInvalidDecl(); | |
assert(S->isFunctionPrototypeScope()); | |
assert(S->getFunctionPrototypeDepth() >= 1); | |
New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, | |
S->getNextFunctionPrototypeIndex()); | |
// Add the parameter declaration into this scope. | |
S->AddDecl(New); | |
if (II) | |
IdResolver.AddDecl(New); | |
ProcessDeclAttributes(S, New, D); | |
if (D.getDeclSpec().isModulePrivateSpecified()) | |
Diag(New->getLocation(), diag::err_module_private_local) | |
<< 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | |
<< FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | |
if (New->hasAttr<BlocksAttr>()) { | |
Diag(New->getLocation(), diag::err_block_on_nonlocal); | |
} | |
if (getLangOpts().OpenCL) | |
deduceOpenCLAddressSpace(New); | |
return New; | |
} | |
/// Synthesizes a variable for a parameter arising from a | |
/// typedef. | |
ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, | |
SourceLocation Loc, | |
QualType T) { | |
/* FIXME: setting StartLoc == Loc. | |
Would it be worth to modify callers so as to provide proper source | |
location for the unnamed parameters, embedding the parameter's type? */ | |
ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, | |
T, Context.getTrivialTypeSourceInfo(T, Loc), | |
SC_None, nullptr); | |
Param->setImplicit(); | |
return Param; | |
} | |
void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { | |
// Don't diagnose unused-parameter errors in template instantiations; we | |
// will already have done so in the template itself. | |
if (inTemplateInstantiation()) | |
return; | |
for (const ParmVarDecl *Parameter : Parameters) { | |
if (!Parameter->isReferenced() && Parameter->getDeclName() && | |
!Parameter->hasAttr<UnusedAttr>()) { | |
Diag(Parameter->getLocation(), diag::warn_unused_parameter) | |
<< Parameter->getDeclName(); | |
} | |
} | |
} | |
void Sema::DiagnoseSizeOfParametersAndReturnValue( | |
ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { | |
if (LangOpts.NumLargeByValueCopy == 0) // No check. | |
return; | |
// Warn if the return value is pass-by-value and larger than the specified | |
// threshold. | |
if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { | |
unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); | |
if (Size > LangOpts.NumLargeByValueCopy) | |
Diag(D->getLocation(), diag::warn_return_value_size) << D << Size; | |
} | |
// Warn if any parameter is pass-by-value and larger than the specified | |
// threshold. | |
for (const ParmVarDecl *Parameter : Parameters) { | |
QualType T = Parameter->getType(); | |
if (T->isDependentType() || !T.isPODType(Context)) | |
continue; | |
unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); | |
if (Size > LangOpts.NumLargeByValueCopy) | |
Diag(Parameter->getLocation(), diag::warn_parameter_size) | |
<< Parameter << Size; | |
} | |
} | |
ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, | |
SourceLocation NameLoc, IdentifierInfo *Name, | |
QualType T, TypeSourceInfo *TSInfo, | |
StorageClass SC) { | |
// In ARC, infer a lifetime qualifier for appropriate parameter types. | |
if (getLangOpts().ObjCAutoRefCount && | |
T.getObjCLifetime() == Qualifiers::OCL_None && | |
T->isObjCLifetimeType()) { | |
Qualifiers::ObjCLifetime lifetime; | |
// Special cases for arrays: | |
// - if it's const, use __unsafe_unretained | |
// - otherwise, it's an error | |
if (T->isArrayType()) { | |
if (!T.isConstQualified()) { | |
if (DelayedDiagnostics.shouldDelayDiagnostics()) | |
DelayedDiagnostics.add( | |
sema::DelayedDiagnostic::makeForbiddenType( | |
NameLoc, diag::err_arc_array_param_no_ownership, T, false)); | |
else | |
Diag(NameLoc, diag::err_arc_array_param_no_ownership) | |
<< TSInfo->getTypeLoc().getSourceRange(); | |
} | |
lifetime = Qualifiers::OCL_ExplicitNone; | |
} else { | |
lifetime = T->getObjCARCImplicitLifetime(); | |
} | |
T = Context.getLifetimeQualifiedType(T, lifetime); | |
} | |
ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, | |
Context.getAdjustedParameterType(T), | |
TSInfo, SC, nullptr); | |
// Make a note if we created a new pack in the scope of a lambda, so that | |
// we know that references to that pack must also be expanded within the | |
// lambda scope. | |
if (New->isParameterPack()) | |
if (auto *LSI = getEnclosingLambda()) | |
LSI->LocalPacks.push_back(New); | |
if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || | |
New->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |
checkNonTrivialCUnion(New->getType(), New->getLocation(), | |
NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); | |
// Parameters can not be abstract class types. | |
// For record types, this is done by the AbstractClassUsageDiagnoser once | |
// the class has been completely parsed. | |
if (!CurContext->isRecord() && | |
RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, | |
AbstractParamType)) | |
New->setInvalidDecl(); | |
// Parameter declarators cannot be interface types. All ObjC objects are | |
// passed by reference. | |
if (T->isObjCObjectType()) { | |
SourceLocation TypeEndLoc = | |
getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); | |
Diag(NameLoc, | |
diag::err_object_cannot_be_passed_returned_by_value) << 1 << T | |
<< FixItHint::CreateInsertion(TypeEndLoc, "*"); | |
T = Context.getObjCObjectPointerType(T); | |
New->setType(T); | |
} | |
// ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage | |
// duration shall not be qualified by an address-space qualifier." | |
// Since all parameters have automatic store duration, they can not have | |
// an address space. | |
if (T.getAddressSpace() != LangAS::Default && | |
// OpenCL allows function arguments declared to be an array of a type | |
// to be qualified with an address space. | |
!(getLangOpts().OpenCL && | |
(T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { | |
Diag(NameLoc, diag::err_arg_with_address_space); | |
New->setInvalidDecl(); | |
} | |
// PPC MMA non-pointer types are not allowed as function argument types. | |
if (Context.getTargetInfo().getTriple().isPPC64() && | |
CheckPPCMMAType(New->getOriginalType(), New->getLocation())) { | |
New->setInvalidDecl(); | |
} | |
return New; | |
} | |
void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, | |
SourceLocation LocAfterDecls) { | |
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | |
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' | |
// for a K&R function. | |
if (!FTI.hasPrototype) { | |
for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { | |
--i; | |
if (FTI.Params[i].Param == nullptr) { | |
SmallString<256> Code; | |
llvm::raw_svector_ostream(Code) | |
<< " int " << FTI.Params[i].Ident->getName() << ";\n"; | |
Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) | |
<< FTI.Params[i].Ident | |
<< FixItHint::CreateInsertion(LocAfterDecls, Code); | |
// Implicitly declare the argument as type 'int' for lack of a better | |
// type. | |
AttributeFactory attrs; | |
DeclSpec DS(attrs); | |
const char* PrevSpec; // unused | |
unsigned DiagID; // unused | |
DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, | |
DiagID, Context.getPrintingPolicy()); | |
// Use the identifier location for the type source range. | |
DS.SetRangeStart(FTI.Params[i].IdentLoc); | |
DS.SetRangeEnd(FTI.Params[i].IdentLoc); | |
Declarator ParamD(DS, DeclaratorContext::KNRTypeList); | |
ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); | |
FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); | |
} | |
} | |
} | |
} | |
Decl * | |
Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, | |
MultiTemplateParamsArg TemplateParameterLists, | |
SkipBodyInfo *SkipBody) { | |
assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); | |
assert(D.isFunctionDeclarator() && "Not a function declarator!"); | |
Scope *ParentScope = FnBodyScope->getParent(); | |
// Check if we are in an `omp begin/end declare variant` scope. If we are, and | |
// we define a non-templated function definition, we will create a declaration | |
// instead (=BaseFD), and emit the definition with a mangled name afterwards. | |
// The base function declaration will have the equivalent of an `omp declare | |
// variant` annotation which specifies the mangled definition as a | |
// specialization function under the OpenMP context defined as part of the | |
// `omp begin declare variant`. | |
SmallVector<FunctionDecl *, 4> Bases; | |
if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) | |
ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( | |
ParentScope, D, TemplateParameterLists, Bases); | |
D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); | |
Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); | |
Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); | |
if (!Bases.empty()) | |
ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); | |
return Dcl; | |
} | |
void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { | |
Consumer.HandleInlineFunctionDefinition(D); | |
} | |
static bool | |
ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, | |
const FunctionDecl *&PossiblePrototype) { | |
// Don't warn about invalid declarations. | |
if (FD->isInvalidDecl()) | |
return false; | |
// Or declarations that aren't global. | |
if (!FD->isGlobal()) | |
return false; | |
// Don't warn about C++ member functions. | |
if (isa<CXXMethodDecl>(FD)) | |
return false; | |
// Don't warn about 'main'. | |
if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) | |
if (IdentifierInfo *II = FD->getIdentifier()) | |
if (II->isStr("main")) | |
return false; | |
// Don't warn about inline functions. | |
if (FD->isInlined()) | |
return false; | |
// Don't warn about function templates. | |
if (FD->getDescribedFunctionTemplate()) | |
return false; | |
// Don't warn about function template specializations. | |
if (FD->isFunctionTemplateSpecialization()) | |
return false; | |
// Don't warn for OpenCL kernels. | |
if (FD->hasAttr<OpenCLKernelAttr>()) | |
return false; | |
// Don't warn on explicitly deleted functions. | |
if (FD->isDeleted()) | |
return false; | |
for (const FunctionDecl *Prev = FD->getPreviousDecl(); | |
Prev; Prev = Prev->getPreviousDecl()) { | |
// Ignore any declarations that occur in function or method | |
// scope, because they aren't visible from the header. | |
if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) | |
continue; | |
PossiblePrototype = Prev; | |
return Prev->getType()->isFunctionNoProtoType(); | |
} | |
return true; | |
} | |
void | |
Sema::CheckForFunctionRedefinition(FunctionDecl *FD, | |
const FunctionDecl *EffectiveDefinition, | |
SkipBodyInfo *SkipBody) { | |
const FunctionDecl *Definition = EffectiveDefinition; | |
if (!Definition && | |
!FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true)) | |
return; | |
if (Definition->getFriendObjectKind() != Decl::FOK_None) { | |
if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) { | |
if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { | |
// A merged copy of the same function, instantiated as a member of | |
// the same class, is OK. | |
if (declaresSameEntity(OrigFD, OrigDef) && | |
declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()), | |
cast<Decl>(FD->getLexicalDeclContext()))) | |
return; | |
} | |
} | |
} | |
if (canRedefineFunction(Definition, getLangOpts())) | |
return; | |
// Don't emit an error when this is redefinition of a typo-corrected | |
// definition. | |
if (TypoCorrectedFunctionDefinitions.count(Definition)) | |
return; | |
// If we don't have a visible definition of the function, and it's inline or | |
// a template, skip the new definition. | |
if (SkipBody && !hasVisibleDefinition(Definition) && | |
(Definition->getFormalLinkage() == InternalLinkage || | |
Definition->isInlined() || | |
Definition->getDescribedFunctionTemplate() || | |
Definition->getNumTemplateParameterLists())) { | |
SkipBody->ShouldSkip = true; | |
SkipBody->Previous = const_cast<FunctionDecl*>(Definition); | |
if (auto *TD = Definition->getDescribedFunctionTemplate()) | |
makeMergedDefinitionVisible(TD); | |
makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); | |
return; | |
} | |
if (getLangOpts().GNUMode && Definition->isInlineSpecified() && | |
Definition->getStorageClass() == SC_Extern) | |
Diag(FD->getLocation(), diag::err_redefinition_extern_inline) | |
<< FD << getLangOpts().CPlusPlus; | |
else | |
Diag(FD->getLocation(), diag::err_redefinition) << FD; | |
Diag(Definition->getLocation(), diag::note_previous_definition); | |
FD->setInvalidDecl(); | |
} | |
static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, | |
Sema &S) { | |
CXXRecordDecl *const LambdaClass = CallOperator->getParent(); | |
LambdaScopeInfo *LSI = S.PushLambdaScope(); | |
LSI->CallOperator = CallOperator; | |
LSI->Lambda = LambdaClass; | |
LSI->ReturnType = CallOperator->getReturnType(); | |
const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); | |
if (LCD == LCD_None) | |
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; | |
else if (LCD == LCD_ByCopy) | |
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; | |
else if (LCD == LCD_ByRef) | |
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; | |
DeclarationNameInfo DNI = CallOperator->getNameInfo(); | |
LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); | |
LSI->Mutable = !CallOperator->isConst(); | |
// Add the captures to the LSI so they can be noted as already | |
// captured within tryCaptureVar. | |
auto I = LambdaClass->field_begin(); | |
for (const auto &C : LambdaClass->captures()) { | |
if (C.capturesVariable()) { | |
VarDecl *VD = C.getCapturedVar(); | |
if (VD->isInitCapture()) | |
S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); | |
const bool ByRef = C.getCaptureKind() == LCK_ByRef; | |
LSI->addCapture(VD, /*IsBlock*/false, ByRef, | |
/*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), | |
/*EllipsisLoc*/C.isPackExpansion() | |
? C.getEllipsisLoc() : SourceLocation(), | |
I->getType(), /*Invalid*/false); | |
} else if (C.capturesThis()) { | |
LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), | |
C.getCaptureKind() == LCK_StarThis); | |
} else { | |
LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), | |
I->getType()); | |
} | |
++I; | |
} | |
} | |
Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, | |
SkipBodyInfo *SkipBody) { | |
if (!D) { | |
// Parsing the function declaration failed in some way. Push on a fake scope | |
// anyway so we can try to parse the function body. | |
PushFunctionScope(); | |
PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | |
return D; | |
} | |
FunctionDecl *FD = nullptr; | |
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) | |
FD = FunTmpl->getTemplatedDecl(); | |
else | |
FD = cast<FunctionDecl>(D); | |
// Do not push if it is a lambda because one is already pushed when building | |
// the lambda in ActOnStartOfLambdaDefinition(). | |
if (!isLambdaCallOperator(FD)) | |
PushExpressionEvaluationContext( | |
FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated | |
: ExprEvalContexts.back().Context); | |
// Check for defining attributes before the check for redefinition. | |
if (const auto *Attr = FD->getAttr<AliasAttr>()) { | |
Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; | |
FD->dropAttr<AliasAttr>(); | |
FD->setInvalidDecl(); | |
} | |
if (const auto *Attr = FD->getAttr<IFuncAttr>()) { | |
Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; | |
FD->dropAttr<IFuncAttr>(); | |
FD->setInvalidDecl(); | |
} | |
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { | |
if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |
Ctor->isDefaultConstructor() && | |
Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |
// If this is an MS ABI dllexport default constructor, instantiate any | |
// default arguments. | |
InstantiateDefaultCtorDefaultArgs(Ctor); | |
} | |
} | |
// See if this is a redefinition. If 'will have body' (or similar) is already | |
// set, then these checks were already performed when it was set. | |
if (!FD->willHaveBody() && !FD->isLateTemplateParsed() && | |
!FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { | |
CheckForFunctionRedefinition(FD, nullptr, SkipBody); | |
// If we're skipping the body, we're done. Don't enter the scope. | |
if (SkipBody && SkipBody->ShouldSkip) | |
return D; | |
} | |
// Mark this function as "will have a body eventually". This lets users to | |
// call e.g. isInlineDefinitionExternallyVisible while we're still parsing | |
// this function. | |
FD->setWillHaveBody(); | |
// If we are instantiating a generic lambda call operator, push | |
// a LambdaScopeInfo onto the function stack. But use the information | |
// that's already been calculated (ActOnLambdaExpr) to prime the current | |
// LambdaScopeInfo. | |
// When the template operator is being specialized, the LambdaScopeInfo, | |
// has to be properly restored so that tryCaptureVariable doesn't try | |
// and capture any new variables. In addition when calculating potential | |
// captures during transformation of nested lambdas, it is necessary to | |
// have the LSI properly restored. | |
if (isGenericLambdaCallOperatorSpecialization(FD)) { | |
assert(inTemplateInstantiation() && | |
"There should be an active template instantiation on the stack " | |
"when instantiating a generic lambda!"); | |
RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); | |
} else { | |
// Enter a new function scope | |
PushFunctionScope(); | |
} | |
// Builtin functions cannot be defined. | |
if (unsigned BuiltinID = FD->getBuiltinID()) { | |
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && | |
!Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { | |
Diag(FD->getLocation(), diag::err_builtin_definition) << FD; | |
FD->setInvalidDecl(); | |
} | |
} | |
// The return type of a function definition must be complete | |
// (C99 6.9.1p3, C++ [dcl.fct]p6). | |
QualType ResultType = FD->getReturnType(); | |
if (!ResultType->isDependentType() && !ResultType->isVoidType() && | |
!FD->isInvalidDecl() && | |
RequireCompleteType(FD->getLocation(), ResultType, | |
diag::err_func_def_incomplete_result)) | |
FD->setInvalidDecl(); | |
if (FnBodyScope) | |
PushDeclContext(FnBodyScope, FD); | |
// Check the validity of our function parameters | |
CheckParmsForFunctionDef(FD->parameters(), | |
/*CheckParameterNames=*/true); | |
// Add non-parameter declarations already in the function to the current | |
// scope. | |
if (FnBodyScope) { | |
for (Decl *NPD : FD->decls()) { | |
auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); | |
if (!NonParmDecl) | |
continue; | |
assert(!isa<ParmVarDecl>(NonParmDecl) && | |
"parameters should not be in newly created FD yet"); | |
// If the decl has a name, make it accessible in the current scope. | |
if (NonParmDecl->getDeclName()) | |
PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); | |
// Similarly, dive into enums and fish their constants out, making them | |
// accessible in this scope. | |
if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { | |
for (auto *EI : ED->enumerators()) | |
PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); | |
} | |
} | |
} | |
// Introduce our parameters into the function scope | |
for (auto Param : FD->parameters()) { | |
Param->setOwningFunction(FD); | |
// If this has an identifier, add it to the scope stack. | |
if (Param->getIdentifier() && FnBodyScope) { | |
CheckShadow(FnBodyScope, Param); | |
PushOnScopeChains(Param, FnBodyScope); | |
} | |
} | |
// Ensure that the function's exception specification is instantiated. | |
if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) | |
ResolveExceptionSpec(D->getLocation(), FPT); | |
// dllimport cannot be applied to non-inline function definitions. | |
if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && | |
!FD->isTemplateInstantiation()) { | |
assert(!FD->hasAttr<DLLExportAttr>()); | |
Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); | |
FD->setInvalidDecl(); | |
return D; | |
} | |
// We want to attach documentation to original Decl (which might be | |
// a function template). | |
ActOnDocumentableDecl(D); | |
if (getCurLexicalContext()->isObjCContainer() && | |
getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && | |
getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) | |
Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); | |
return D; | |
} | |
/// Given the set of return statements within a function body, | |
/// compute the variables that are subject to the named return value | |
/// optimization. | |
/// | |
/// Each of the variables that is subject to the named return value | |
/// optimization will be marked as NRVO variables in the AST, and any | |
/// return statement that has a marked NRVO variable as its NRVO candidate can | |
/// use the named return value optimization. | |
/// | |
/// This function applies a very simplistic algorithm for NRVO: if every return | |
/// statement in the scope of a variable has the same NRVO candidate, that | |
/// candidate is an NRVO variable. | |
void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { | |
ReturnStmt **Returns = Scope->Returns.data(); | |
for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { | |
if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { | |
if (!NRVOCandidate->isNRVOVariable()) | |
Returns[I]->setNRVOCandidate(nullptr); | |
} | |
} | |
} | |
bool Sema::canDelayFunctionBody(const Declarator &D) { | |
// We can't delay parsing the body of a constexpr function template (yet). | |
if (D.getDeclSpec().hasConstexprSpecifier()) | |
return false; | |
// We can't delay parsing the body of a function template with a deduced | |
// return type (yet). | |
if (D.getDeclSpec().hasAutoTypeSpec()) { | |
// If the placeholder introduces a non-deduced trailing return type, | |
// we can still delay parsing it. | |
if (D.getNumTypeObjects()) { | |
const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); | |
if (Outer.Kind == DeclaratorChunk::Function && | |
Outer.Fun.hasTrailingReturnType()) { | |
QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); | |
return Ty.isNull() || !Ty->isUndeducedType(); | |
} | |
} | |
return false; | |
} | |
return true; | |
} | |
bool Sema::canSkipFunctionBody(Decl *D) { | |
// We cannot skip the body of a function (or function template) which is | |
// constexpr, since we may need to evaluate its body in order to parse the | |
// rest of the file. | |
// We cannot skip the body of a function with an undeduced return type, | |
// because any callers of that function need to know the type. | |
if (const FunctionDecl *FD = D->getAsFunction()) { | |
if (FD->isConstexpr()) | |
return false; | |
// We can't simply call Type::isUndeducedType here, because inside template | |
// auto can be deduced to a dependent type, which is not considered | |
// "undeduced". | |
if (FD->getReturnType()->getContainedDeducedType()) | |
return false; | |
} | |
return Consumer.shouldSkipFunctionBody(D); | |
} | |
Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { | |
if (!Decl) | |
return nullptr; | |
if (FunctionDecl *FD = Decl->getAsFunction()) | |
FD->setHasSkippedBody(); | |
else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) | |
MD->setHasSkippedBody(); | |
return Decl; | |
} | |
Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { | |
return ActOnFinishFunctionBody(D, BodyArg, false); | |
} | |
/// RAII object that pops an ExpressionEvaluationContext when exiting a function | |
/// body. | |
class ExitFunctionBodyRAII { | |
public: | |
ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} | |
~ExitFunctionBodyRAII() { | |
if (!IsLambda) | |
S.PopExpressionEvaluationContext(); | |
} | |
private: | |
Sema &S; | |
bool IsLambda = false; | |
}; | |
static void diagnoseImplicitlyRetainedSelf(Sema &S) { | |
llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; | |
auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { | |
if (EscapeInfo.count(BD)) | |
return EscapeInfo[BD]; | |
bool R = false; | |
const BlockDecl *CurBD = BD; | |
do { | |
R = !CurBD->doesNotEscape(); | |
if (R) | |
break; | |
CurBD = CurBD->getParent()->getInnermostBlockDecl(); | |
} while (CurBD); | |
return EscapeInfo[BD] = R; | |
}; | |
// If the location where 'self' is implicitly retained is inside a escaping | |
// block, emit a diagnostic. | |
for (const std::pair<SourceLocation, const BlockDecl *> &P : | |
S.ImplicitlyRetainedSelfLocs) | |
if (IsOrNestedInEscapingBlock(P.second)) | |
S.Diag(P.first, diag::warn_implicitly_retains_self) | |
<< FixItHint::CreateInsertion(P.first, "self->"); | |
} | |
Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, | |
bool IsInstantiation) { | |
FunctionScopeInfo *FSI = getCurFunction(); | |
FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; | |
if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>()) | |
FD->addAttr(StrictFPAttr::CreateImplicit(Context)); | |
sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | |
sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; | |
if (getLangOpts().Coroutines && FSI->isCoroutine()) | |
CheckCompletedCoroutineBody(FD, Body); | |
// Do not call PopExpressionEvaluationContext() if it is a lambda because one | |
// is already popped when finishing the lambda in BuildLambdaExpr(). This is | |
// meant to pop the context added in ActOnStartOfFunctionDef(). | |
ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); | |
if (FD) { | |
FD->setBody(Body); | |
FD->setWillHaveBody(false); | |
if (getLangOpts().CPlusPlus14) { | |
if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && | |
FD->getReturnType()->isUndeducedType()) { | |
// If the function has a deduced result type but contains no 'return' | |
// statements, the result type as written must be exactly 'auto', and | |
// the deduced result type is 'void'. | |
if (!FD->getReturnType()->getAs<AutoType>()) { | |
Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) | |
<< FD->getReturnType(); | |
FD->setInvalidDecl(); | |
} else { | |
// Substitute 'void' for the 'auto' in the type. | |
TypeLoc ResultType = getReturnTypeLoc(FD); | |
Context.adjustDeducedFunctionResultType( | |
FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); | |
} | |
} | |
} else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { | |
// In C++11, we don't use 'auto' deduction rules for lambda call | |
// operators because we don't support return type deduction. | |
auto *LSI = getCurLambda(); | |
if (LSI->HasImplicitReturnType) { | |
deduceClosureReturnType(*LSI); | |
// C++11 [expr.prim.lambda]p4: | |
// [...] if there are no return statements in the compound-statement | |
// [the deduced type is] the type void | |
QualType RetType = | |
LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; | |
// Update the return type to the deduced type. | |
const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); | |
FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), | |
Proto->getExtProtoInfo())); | |
} | |
} | |
// If the function implicitly returns zero (like 'main') or is naked, | |
// don't complain about missing return statements. | |
if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) | |
WP.disableCheckFallThrough(); | |
// MSVC permits the use of pure specifier (=0) on function definition, | |
// defined at class scope, warn about this non-standard construct. | |
if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) | |
Diag(FD->getLocation(), diag::ext_pure_function_definition); | |
if (!FD->isInvalidDecl()) { | |
// Don't diagnose unused parameters of defaulted or deleted functions. | |
if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) | |
DiagnoseUnusedParameters(FD->parameters()); | |
DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), | |
FD->getReturnType(), FD); | |
// If this is a structor, we need a vtable. | |
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) | |
MarkVTableUsed(FD->getLocation(), Constructor->getParent()); | |
else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) | |
MarkVTableUsed(FD->getLocation(), Destructor->getParent()); | |
// Try to apply the named return value optimization. We have to check | |
// if we can do this here because lambdas keep return statements around | |
// to deduce an implicit return type. | |
if (FD->getReturnType()->isRecordType() && | |
(!getLangOpts().CPlusPlus || !FD->isDependentContext())) | |
computeNRVO(Body, FSI); | |
} | |
// GNU warning -Wmissing-prototypes: | |
// Warn if a global function is defined without a previous | |
// prototype declaration. This warning is issued even if the | |
// definition itself provides a prototype. The aim is to detect | |
// global functions that fail to be declared in header files. | |
const FunctionDecl *PossiblePrototype = nullptr; | |
if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { | |
Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; | |
if (PossiblePrototype) { | |
// We found a declaration that is not a prototype, | |
// but that could be a zero-parameter prototype | |
if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { | |
TypeLoc TL = TI->getTypeLoc(); | |
if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) | |
Diag(PossiblePrototype->getLocation(), | |
diag::note_declaration_not_a_prototype) | |
<< (FD->getNumParams() != 0) | |
<< (FD->getNumParams() == 0 | |
? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void") | |
: FixItHint{}); | |
} | |
} else { | |
// Returns true if the token beginning at this Loc is `const`. | |
auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, | |
const LangOptions &LangOpts) { | |
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); | |
if (LocInfo.first.isInvalid()) | |
return false; | |
bool Invalid = false; | |
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); | |
if (Invalid) | |
return false; | |
if (LocInfo.second > Buffer.size()) | |
return false; | |
const char *LexStart = Buffer.data() + LocInfo.second; | |
StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); | |
return StartTok.consume_front("const") && | |
(StartTok.empty() || isWhitespace(StartTok[0]) || | |
StartTok.startswith("/*") || StartTok.startswith("//")); | |
}; | |
auto findBeginLoc = [&]() { | |
// If the return type has `const` qualifier, we want to insert | |
// `static` before `const` (and not before the typename). | |
if ((FD->getReturnType()->isAnyPointerType() && | |
FD->getReturnType()->getPointeeType().isConstQualified()) || | |
FD->getReturnType().isConstQualified()) { | |
// But only do this if we can determine where the `const` is. | |
if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), | |
getLangOpts())) | |
return FD->getBeginLoc(); | |
} | |
return FD->getTypeSpecStartLoc(); | |
}; | |
Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) | |
<< /* function */ 1 | |
<< (FD->getStorageClass() == SC_None | |
? FixItHint::CreateInsertion(findBeginLoc(), "static ") | |
: FixItHint{}); | |
} | |
// GNU warning -Wstrict-prototypes | |
// Warn if K&R function is defined without a previous declaration. | |
// This warning is issued only if the definition itself does not provide | |
// a prototype. Only K&R definitions do not provide a prototype. | |
if (!FD->hasWrittenPrototype()) { | |
TypeSourceInfo *TI = FD->getTypeSourceInfo(); | |
TypeLoc TL = TI->getTypeLoc(); | |
FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); | |
Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; | |
} | |
} | |
// Warn on CPUDispatch with an actual body. | |
if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) | |
if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) | |
if (!CmpndBody->body_empty()) | |
Diag(CmpndBody->body_front()->getBeginLoc(), | |
diag::warn_dispatch_body_ignored); | |
if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | |
const CXXMethodDecl *KeyFunction; | |
if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && | |
MD->isVirtual() && | |
(KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && | |
MD == KeyFunction->getCanonicalDecl()) { | |
// Update the key-function state if necessary for this ABI. | |
if (FD->isInlined() && | |
!Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | |
Context.setNonKeyFunction(MD); | |
// If the newly-chosen key function is already defined, then we | |
// need to mark the vtable as used retroactively. | |
KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); | |
const FunctionDecl *Definition; | |
if (KeyFunction && KeyFunction->isDefined(Definition)) | |
MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); | |
} else { | |
// We just defined they key function; mark the vtable as used. | |
MarkVTableUsed(FD->getLocation(), MD->getParent(), true); | |
} | |
} | |
} | |
assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && | |
"Function parsing confused"); | |
} else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { | |
assert(MD == getCurMethodDecl() && "Method parsing confused"); | |
MD->setBody(Body); | |
if (!MD->isInvalidDecl()) { | |
DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), | |
MD->getReturnType(), MD); | |
if (Body) | |
computeNRVO(Body, FSI); | |
} | |
if (FSI->ObjCShouldCallSuper) { | |
Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) | |
<< MD->getSelector().getAsString(); | |
FSI->ObjCShouldCallSuper = false; | |
} | |
if (FSI->ObjCWarnForNoDesignatedInitChain) { | |
const ObjCMethodDecl *InitMethod = nullptr; | |
bool isDesignated = | |
MD->isDesignatedInitializerForTheInterface(&InitMethod); | |
assert(isDesignated && InitMethod); | |
(void)isDesignated; | |
auto superIsNSObject = [&](const ObjCMethodDecl *MD) { | |
auto IFace = MD->getClassInterface(); | |
if (!IFace) | |
return false; | |
auto SuperD = IFace->getSuperClass(); | |
if (!SuperD) | |
return false; | |
return SuperD->getIdentifier() == | |
NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); | |
}; | |
// Don't issue this warning for unavailable inits or direct subclasses | |
// of NSObject. | |
if (!MD->isUnavailable() && !superIsNSObject(MD)) { | |
Diag(MD->getLocation(), | |
diag::warn_objc_designated_init_missing_super_call); | |
Diag(InitMethod->getLocation(), | |
diag::note_objc_designated_init_marked_here); | |
} | |
FSI->ObjCWarnForNoDesignatedInitChain = false; | |
} | |
if (FSI->ObjCWarnForNoInitDelegation) { | |
// Don't issue this warning for unavaialable inits. | |
if (!MD->isUnavailable()) | |
Diag(MD->getLocation(), | |
diag::warn_objc_secondary_init_missing_init_call); | |
FSI->ObjCWarnForNoInitDelegation = false; | |
} | |
diagnoseImplicitlyRetainedSelf(*this); | |
} else { | |
// Parsing the function declaration failed in some way. Pop the fake scope | |
// we pushed on. | |
PopFunctionScopeInfo(ActivePolicy, dcl); | |
return nullptr; | |
} | |
if (Body && FSI->HasPotentialAvailabilityViolations) | |
DiagnoseUnguardedAvailabilityViolations(dcl); | |
assert(!FSI->ObjCShouldCallSuper && | |
"This should only be set for ObjC methods, which should have been " | |
"handled in the block above."); | |
// Verify and clean out per-function state. | |
if (Body && (!FD || !FD->isDefaulted())) { | |
// C++ constructors that have function-try-blocks can't have return | |
// statements in the handlers of that block. (C++ [except.handle]p14) | |
// Verify this. | |
if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) | |
DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); | |
// Verify that gotos and switch cases don't jump into scopes illegally. | |
if (FSI->NeedsScopeChecking() && | |
!PP.isCodeCompletionEnabled()) | |
DiagnoseInvalidJumps(Body); | |
if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { | |
if (!Destructor->getParent()->isDependentType()) | |
CheckDestructor(Destructor); | |
MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | |
Destructor->getParent()); | |
} | |
// If any errors have occurred, clear out any temporaries that may have | |
// been leftover. This ensures that these temporaries won't be picked up for | |
// deletion in some later function. | |
if (hasUncompilableErrorOccurred() || | |
getDiagnostics().getSuppressAllDiagnostics()) { | |
DiscardCleanupsInEvaluationContext(); | |
} | |
if (!hasUncompilableErrorOccurred() && | |
!isa<FunctionTemplateDecl>(dcl)) { | |
// Since the body is valid, issue any analysis-based warnings that are | |
// enabled. | |
ActivePolicy = &WP; | |
} | |
if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && | |
!CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) | |
FD->setInvalidDecl(); | |
if (FD && FD->hasAttr<NakedAttr>()) { | |
for (const Stmt *S : Body->children()) { | |
// Allow local register variables without initializer as they don't | |
// require prologue. | |
bool RegisterVariables = false; | |
if (auto *DS = dyn_cast<DeclStmt>(S)) { | |
for (const auto *Decl : DS->decls()) { | |
if (const auto *Var = dyn_cast<VarDecl>(Decl)) { | |
RegisterVariables = | |
Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); | |
if (!RegisterVariables) | |
break; | |
} | |
} | |
} | |
if (RegisterVariables) | |
continue; | |
if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { | |
Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); | |
Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); | |
FD->setInvalidDecl(); | |
break; | |
} | |
} | |
} | |
assert(ExprCleanupObjects.size() == | |
ExprEvalContexts.back().NumCleanupObjects && | |
"Leftover temporaries in function"); | |
assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); | |
assert(MaybeODRUseExprs.empty() && | |
"Leftover expressions for odr-use checking"); | |
} | |
if (!IsInstantiation) | |
PopDeclContext(); | |
PopFunctionScopeInfo(ActivePolicy, dcl); | |
// If any errors have occurred, clear out any temporaries that may have | |
// been leftover. This ensures that these temporaries won't be picked up for | |
// deletion in some later function. | |
if (hasUncompilableErrorOccurred()) { | |
DiscardCleanupsInEvaluationContext(); | |
} | |
if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) { | |
auto ES = getEmissionStatus(FD); | |
if (ES == Sema::FunctionEmissionStatus::Emitted || | |
ES == Sema::FunctionEmissionStatus::Unknown) | |
DeclsToCheckForDeferredDiags.push_back(FD); | |
} | |
return dcl; | |
} | |
/// When we finish delayed parsing of an attribute, we must attach it to the | |
/// relevant Decl. | |
void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, | |
ParsedAttributes &Attrs) { | |
// Always attach attributes to the underlying decl. | |
if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | |
D = TD->getTemplatedDecl(); | |
ProcessDeclAttributeList(S, D, Attrs); | |
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) | |
if (Method->isStatic()) | |
checkThisInStaticMemberFunctionAttributes(Method); | |
} | |
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function | |
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2). | |
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, | |
IdentifierInfo &II, Scope *S) { | |
// Find the scope in which the identifier is injected and the corresponding | |
// DeclContext. | |
// FIXME: C89 does not say what happens if there is no enclosing block scope. | |
// In that case, we inject the declaration into the translation unit scope | |
// instead. | |
Scope *BlockScope = S; | |
while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) | |
BlockScope = BlockScope->getParent(); | |
Scope *ContextScope = BlockScope; | |
while (!ContextScope->getEntity()) | |
ContextScope = ContextScope->getParent(); | |
ContextRAII SavedContext(*this, ContextScope->getEntity()); | |
// Before we produce a declaration for an implicitly defined | |
// function, see whether there was a locally-scoped declaration of | |
// this name as a function or variable. If so, use that | |
// (non-visible) declaration, and complain about it. | |
NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); | |
if (ExternCPrev) { | |
// We still need to inject the function into the enclosing block scope so | |
// that later (non-call) uses can see it. | |
PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); | |
// C89 footnote 38: | |
// If in fact it is not defined as having type "function returning int", | |
// the behavior is undefined. | |
if (!isa<FunctionDecl>(ExternCPrev) || | |
!Context.typesAreCompatible( | |
cast<FunctionDecl>(ExternCPrev)->getType(), | |
Context.getFunctionNoProtoType(Context.IntTy))) { | |
Diag(Loc, diag::ext_use_out_of_scope_declaration) | |
<< ExternCPrev << !getLangOpts().C99; | |
Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); | |
return ExternCPrev; | |
} | |
} | |
// Extension in C99. Legal in C90, but warn about it. | |
unsigned diag_id; | |
if (II.getName().startswith("__builtin_")) | |
diag_id = diag::warn_builtin_unknown; | |
// OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. | |
else if (getLangOpts().OpenCL) | |
diag_id = diag::err_opencl_implicit_function_decl; | |
else if (getLangOpts().C99) | |
diag_id = diag::ext_implicit_function_decl; | |
else | |
diag_id = diag::warn_implicit_function_decl; | |
Diag(Loc, diag_id) << &II; | |
// If we found a prior declaration of this function, don't bother building | |
// another one. We've already pushed that one into scope, so there's nothing | |
// more to do. | |
if (ExternCPrev) | |
return ExternCPrev; | |
// Because typo correction is expensive, only do it if the implicit | |
// function declaration is going to be treated as an error. | |
if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { | |
TypoCorrection Corrected; | |
DeclFilterCCC<FunctionDecl> CCC{}; | |
if (S && (Corrected = | |
CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, | |
S, nullptr, CCC, CTK_NonError))) | |
diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), | |
/*ErrorRecovery*/false); | |
} | |
// Set a Declarator for the implicit definition: int foo(); | |
const char *Dummy; | |
AttributeFactory attrFactory; | |
DeclSpec DS(attrFactory); | |
unsigned DiagID; | |
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, | |
Context.getPrintingPolicy()); | |
(void)Error; // Silence warning. | |
assert(!Error && "Error setting up implicit decl!"); | |
SourceLocation NoLoc; | |
Declarator D(DS, DeclaratorContext::Block); | |
D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, | |
/*IsAmbiguous=*/false, | |
/*LParenLoc=*/NoLoc, | |
/*Params=*/nullptr, | |
/*NumParams=*/0, | |
/*EllipsisLoc=*/NoLoc, | |
/*RParenLoc=*/NoLoc, | |
/*RefQualifierIsLvalueRef=*/true, | |
/*RefQualifierLoc=*/NoLoc, | |
/*MutableLoc=*/NoLoc, EST_None, | |
/*ESpecRange=*/SourceRange(), | |
/*Exceptions=*/nullptr, | |
/*ExceptionRanges=*/nullptr, | |
/*NumExceptions=*/0, | |
/*NoexceptExpr=*/nullptr, | |
/*ExceptionSpecTokens=*/nullptr, | |
/*DeclsInPrototype=*/None, Loc, | |
Loc, D), | |
std::move(DS.getAttributes()), SourceLocation()); | |
D.SetIdentifier(&II, Loc); | |
// Insert this function into the enclosing block scope. | |
FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); | |
FD->setImplicit(); | |
AddKnownFunctionAttributes(FD); | |
return FD; | |
} | |
/// If this function is a C++ replaceable global allocation function | |
/// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), | |
/// adds any function attributes that we know a priori based on the standard. | |
/// | |
/// We need to check for duplicate attributes both here and where user-written | |
/// attributes are applied to declarations. | |
void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( | |
FunctionDecl *FD) { | |
if (FD->isInvalidDecl()) | |
return; | |
if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && | |
FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) | |
return; | |
Optional<unsigned> AlignmentParam; | |
bool IsNothrow = false; | |
if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) | |
return; | |
// C++2a [basic.stc.dynamic.allocation]p4: | |
// An allocation function that has a non-throwing exception specification | |
// indicates failure by returning a null pointer value. Any other allocation | |
// function never returns a null pointer value and indicates failure only by | |
// throwing an exception [...] | |
if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>()) | |
FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); | |
// C++2a [basic.stc.dynamic.allocation]p2: | |
// An allocation function attempts to allocate the requested amount of | |
// storage. [...] If the request succeeds, the value returned by a | |
// replaceable allocation function is a [...] pointer value p0 different | |
// from any previously returned value p1 [...] | |
// | |
// However, this particular information is being added in codegen, | |
// because there is an opt-out switch for it (-fno-assume-sane-operator-new) | |
// C++2a [basic.stc.dynamic.allocation]p2: | |
// An allocation function attempts to allocate the requested amount of | |
// storage. If it is successful, it returns the address of the start of a | |
// block of storage whose length in bytes is at least as large as the | |
// requested size. | |
if (!FD->hasAttr<AllocSizeAttr>()) { | |
FD->addAttr(AllocSizeAttr::CreateImplicit( | |
Context, /*ElemSizeParam=*/ParamIdx(1, FD), | |
/*NumElemsParam=*/ParamIdx(), FD->getLocation())); | |
} | |
// C++2a [basic.stc.dynamic.allocation]p3: | |
// For an allocation function [...], the pointer returned on a successful | |
// call shall represent the address of storage that is aligned as follows: | |
// (3.1) If the allocation function takes an argument of type | |
// std​::​align_Âval_Ât, the storage will have the alignment | |
// specified by the value of this argument. | |
if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) { | |
FD->addAttr(AllocAlignAttr::CreateImplicit( | |
Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation())); | |
} | |
// FIXME: | |
// C++2a [basic.stc.dynamic.allocation]p3: | |
// For an allocation function [...], the pointer returned on a successful | |
// call shall represent the address of storage that is aligned as follows: | |
// (3.2) Otherwise, if the allocation function is named operator new[], | |
// the storage is aligned for any object that does not have | |
// new-extended alignment ([basic.align]) and is no larger than the | |
// requested size. | |
// (3.3) Otherwise, the storage is aligned for any object that does not | |
// have new-extended alignment and is of the requested size. | |
} | |
/// Adds any function attributes that we know a priori based on | |
/// the declaration of this function. | |
/// | |
/// These attributes can apply both to implicitly-declared builtins | |
/// (like __builtin___printf_chk) or to library-declared functions | |
/// like NSLog or printf. | |
/// | |
/// We need to check for duplicate attributes both here and where user-written | |
/// attributes are applied to declarations. | |
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { | |
if (FD->isInvalidDecl()) | |
return; | |
// If this is a built-in function, map its builtin attributes to | |
// actual attributes. | |
if (unsigned BuiltinID = FD->getBuiltinID()) { | |
// Handle printf-formatting attributes. | |
unsigned FormatIdx; | |
bool HasVAListArg; | |
if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { | |
if (!FD->hasAttr<FormatAttr>()) { | |
const char *fmt = "printf"; | |
unsigned int NumParams = FD->getNumParams(); | |
if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) | |
FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) | |
fmt = "NSString"; | |
FD->addAttr(FormatAttr::CreateImplicit(Context, | |
&Context.Idents.get(fmt), | |
FormatIdx+1, | |
HasVAListArg ? 0 : FormatIdx+2, | |
FD->getLocation())); | |
} | |
} | |
if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, | |
HasVAListArg)) { | |
if (!FD->hasAttr<FormatAttr>()) | |
FD->addAttr(FormatAttr::CreateImplicit(Context, | |
&Context.Idents.get("scanf"), | |
FormatIdx+1, | |
HasVAListArg ? 0 : FormatIdx+2, | |
FD->getLocation())); | |
} | |
// Handle automatically recognized callbacks. | |
SmallVector<int, 4> Encoding; | |
if (!FD->hasAttr<CallbackAttr>() && | |
Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) | |
FD->addAttr(CallbackAttr::CreateImplicit( | |
Context, Encoding.data(), Encoding.size(), FD->getLocation())); | |
// Mark const if we don't care about errno and that is the only thing | |
// preventing the function from being const. This allows IRgen to use LLVM | |
// intrinsics for such functions. | |
if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && | |
Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) | |
FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | |
// We make "fma" on some platforms const because we know it does not set | |
// errno in those environments even though it could set errno based on the | |
// C standard. | |
const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); | |
if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && | |
!FD->hasAttr<ConstAttr>()) { | |
switch (BuiltinID) { | |
case Builtin::BI__builtin_fma: | |
case Builtin::BI__builtin_fmaf: | |
case Builtin::BI__builtin_fmal: | |
case Builtin::BIfma: | |
case Builtin::BIfmaf: | |
case Builtin::BIfmal: | |
FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | |
break; | |
default: | |
break; | |
} | |
} | |
if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && | |
!FD->hasAttr<ReturnsTwiceAttr>()) | |
FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, | |
FD->getLocation())); | |
if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) | |
FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); | |
if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) | |
FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); | |
if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) | |
FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | |
if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && | |
!FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { | |
// Add the appropriate attribute, depending on the CUDA compilation mode | |
// and which target the builtin belongs to. For example, during host | |
// compilation, aux builtins are __device__, while the rest are __host__. | |
if (getLangOpts().CUDAIsDevice != | |
Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) | |
FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); | |
else | |
FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); | |
} | |
} | |
AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); | |
// If C++ exceptions are enabled but we are told extern "C" functions cannot | |
// throw, add an implicit nothrow attribute to any extern "C" function we come | |
// across. | |
if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && | |
FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { | |
const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); | |
if (!FPT || FPT->getExceptionSpecType() == EST_None) | |
FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); | |
} | |
IdentifierInfo *Name = FD->getIdentifier(); | |
if (!Name) | |
return; | |
if ((!getLangOpts().CPlusPlus && | |
FD->getDeclContext()->isTranslationUnit()) || | |
(isa<LinkageSpecDecl>(FD->getDeclContext()) && | |
cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == | |
LinkageSpecDecl::lang_c)) { | |
// Okay: this could be a libc/libm/Objective-C function we know | |
// about. | |
} else | |
return; | |
if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { | |
// FIXME: asprintf and vasprintf aren't C99 functions. Should they be | |
// target-specific builtins, perhaps? | |
if (!FD->hasAttr<FormatAttr>()) | |
FD->addAttr(FormatAttr::CreateImplicit(Context, | |
&Context.Idents.get("printf"), 2, | |
Name->isStr("vasprintf") ? 0 : 3, | |
FD->getLocation())); | |
} | |
if (Name->isStr("__CFStringMakeConstantString")) { | |
// We already have a __builtin___CFStringMakeConstantString, | |
// but builds that use -fno-constant-cfstrings don't go through that. | |
if (!FD->hasAttr<FormatArgAttr>()) | |
FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), | |
FD->getLocation())); | |
} | |
} | |
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, | |
TypeSourceInfo *TInfo) { | |
assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); | |
assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); | |
if (!TInfo) { | |
assert(D.isInvalidType() && "no declarator info for valid type"); | |
TInfo = Context.getTrivialTypeSourceInfo(T); | |
} | |
// Scope manipulation handled by caller. | |
TypedefDecl *NewTD = | |
TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), | |
D.getIdentifierLoc(), D.getIdentifier(), TInfo); | |
// Bail out immediately if we have an invalid declaration. | |
if (D.isInvalidType()) { | |
NewTD->setInvalidDecl(); | |
return NewTD; | |
} | |
if (D.getDeclSpec().isModulePrivateSpecified()) { | |
if (CurContext->isFunctionOrMethod()) | |
Diag(NewTD->getLocation(), diag::err_module_private_local) | |
<< 2 << NewTD | |
<< SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | |
<< FixItHint::CreateRemoval( | |
D.getDeclSpec().getModulePrivateSpecLoc()); | |
else | |
NewTD->setModulePrivate(); | |
} | |
// C++ [dcl.typedef]p8: | |
// If the typedef declaration defines an unnamed class (or | |
// enum), the first typedef-name declared by the declaration | |
// to be that class type (or enum type) is used to denote the | |
// class type (or enum type) for linkage purposes only. | |
// We need to check whether the type was declared in the declaration. | |
switch (D.getDeclSpec().getTypeSpecType()) { | |
case TST_enum: | |
case TST_struct: | |
case TST_interface: | |
case TST_union: | |
case TST_class: { | |
TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | |
setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); | |
break; | |
} | |
default: | |
break; | |
} | |
return NewTD; | |
} | |
/// Check that this is a valid underlying type for an enum declaration. | |
bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { | |
SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | |
QualType T = TI->getType(); | |
if (T->isDependentType()) | |
return false; | |
// This doesn't use 'isIntegralType' despite the error message mentioning | |
// integral type because isIntegralType would also allow enum types in C. | |
if (const BuiltinType *BT = T->getAs<BuiltinType>()) | |
if (BT->isInteger()) | |
return false; | |
if (T->isExtIntType()) | |
return false; | |
return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; | |
} | |
/// Check whether this is a valid redeclaration of a previous enumeration. | |
/// \return true if the redeclaration was invalid. | |
bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, | |
QualType EnumUnderlyingTy, bool IsFixed, | |
const EnumDecl *Prev) { | |
if (IsScoped != Prev->isScoped()) { | |
Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) | |
<< Prev->isScoped(); | |
Diag(Prev->getLocation(), diag::note_previous_declaration); | |
return true; | |
} | |
if (IsFixed && Prev->isFixed()) { | |
if (!EnumUnderlyingTy->isDependentType() && | |
!Prev->getIntegerType()->isDependentType() && | |
!Context.hasSameUnqualifiedType(EnumUnderlyingTy, | |
Prev->getIntegerType())) { | |
// TODO: Highlight the underlying type of the redeclaration. | |
Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) | |
<< EnumUnderlyingTy << Prev->getIntegerType(); | |
Diag(Prev->getLocation(), diag::note_previous_declaration) | |
<< Prev->getIntegerTypeRange(); | |
return true; | |
} | |
} else if (IsFixed != Prev->isFixed()) { | |
Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) | |
<< Prev->isFixed(); | |
Diag(Prev->getLocation(), diag::note_previous_declaration); | |
return true; | |
} | |
return false; | |
} | |
/// Get diagnostic %select index for tag kind for | |
/// redeclaration diagnostic message. | |
/// WARNING: Indexes apply to particular diagnostics only! | |
/// | |
/// \returns diagnostic %select index. | |
static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { | |
switch (Tag) { | |
case TTK_Struct: return 0; | |
case TTK_Interface: return 1; | |
case TTK_Class: return 2; | |
default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); | |
} | |
} | |
/// Determine if tag kind is a class-key compatible with | |
/// class for redeclaration (class, struct, or __interface). | |
/// | |
/// \returns true iff the tag kind is compatible. | |
static bool isClassCompatTagKind(TagTypeKind Tag) | |
{ | |
return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; | |
} | |
Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, | |
TagTypeKind TTK) { | |
if (isa<TypedefDecl>(PrevDecl)) | |
return NTK_Typedef; | |
else if (isa<TypeAliasDecl>(PrevDecl)) | |
return NTK_TypeAlias; | |
else if (isa<ClassTemplateDecl>(PrevDecl)) | |
return NTK_Template; | |
else if (isa<TypeAliasTemplateDecl>(PrevDecl)) | |
return NTK_TypeAliasTemplate; | |
else if (isa<TemplateTemplateParmDecl>(PrevDecl)) | |
return NTK_TemplateTemplateArgument; | |
switch (TTK) { | |
case TTK_Struct: | |
case TTK_Interface: | |
case TTK_Class: | |
return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; | |
case TTK_Union: | |
return NTK_NonUnion; | |
case TTK_Enum: | |
return NTK_NonEnum; | |
} | |
llvm_unreachable("invalid TTK"); | |
} | |
/// Determine whether a tag with a given kind is acceptable | |
/// as a redeclaration of the given tag declaration. | |
/// | |
/// \returns true if the new tag kind is acceptable, false otherwise. | |
bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, | |
TagTypeKind NewTag, bool isDefinition, | |
SourceLocation NewTagLoc, | |
const IdentifierInfo *Name) { | |
// C++ [dcl.type.elab]p3: | |
// The class-key or enum keyword present in the | |
// elaborated-type-specifier shall agree in kind with the | |
// declaration to which the name in the elaborated-type-specifier | |
// refers. This rule also applies to the form of | |
// elaborated-type-specifier that declares a class-name or | |
// friend class since it can be construed as referring to the | |
// definition of the class. Thus, in any | |
// elaborated-type-specifier, the enum keyword shall be used to | |
// refer to an enumeration (7.2), the union class-key shall be | |
// used to refer to a union (clause 9), and either the class or | |
// struct class-key shall be used to refer to a class (clause 9) | |
// declared using the class or struct class-key. | |
TagTypeKind OldTag = Previous->getTagKind(); | |
if (OldTag != NewTag && | |
!(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) | |
return false; | |
// Tags are compatible, but we might still want to warn on mismatched tags. | |
// Non-class tags can't be mismatched at this point. | |
if (!isClassCompatTagKind(NewTag)) | |
return true; | |
// Declarations for which -Wmismatched-tags is disabled are entirely ignored | |
// by our warning analysis. We don't want to warn about mismatches with (eg) | |
// declarations in system headers that are designed to be specialized, but if | |
// a user asks us to warn, we should warn if their code contains mismatched | |
// declarations. | |
auto IsIgnoredLoc = [&](SourceLocation Loc) { | |
return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, | |
Loc); | |
}; | |
if (IsIgnoredLoc(NewTagLoc)) | |
return true; | |
auto IsIgnored = [&](const TagDecl *Tag) { | |
return IsIgnoredLoc(Tag->getLocation()); | |
}; | |
while (IsIgnored(Previous)) { | |
Previous = Previous->getPreviousDecl(); | |
if (!Previous) | |
return true; | |
OldTag = Previous->getTagKind(); | |
} | |
bool isTemplate = false; | |
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) | |
isTemplate = Record->getDescribedClassTemplate(); | |
if (inTemplateInstantiation()) { | |
if (OldTag != NewTag) { | |
// In a template instantiation, do not offer fix-its for tag mismatches | |
// since they usually mess up the template instead of fixing the problem. | |
Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | |
<< getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | |
<< getRedeclDiagFromTagKind(OldTag); | |
// FIXME: Note previous location? | |
} | |
return true; | |
} | |
if (isDefinition) { | |
// On definitions, check all previous tags and issue a fix-it for each | |
// one that doesn't match the current tag. | |
if (Previous->getDefinition()) { | |
// Don't suggest fix-its for redefinitions. | |
return true; | |
} | |
bool previousMismatch = false; | |
for (const TagDecl *I : Previous->redecls()) { | |
if (I->getTagKind() != NewTag) { | |
// Ignore previous declarations for which the warning was disabled. | |
if (IsIgnored(I)) | |
continue; | |
if (!previousMismatch) { | |
previousMismatch = true; | |
Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) | |
<< getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | |
<< getRedeclDiagFromTagKind(I->getTagKind()); | |
} | |
Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) | |
<< getRedeclDiagFromTagKind(NewTag) | |
<< FixItHint::CreateReplacement(I->getInnerLocStart(), | |
TypeWithKeyword::getTagTypeKindName(NewTag)); | |
} | |
} | |
return true; | |
} | |
// Identify the prevailing tag kind: this is the kind of the definition (if | |
// there is a non-ignored definition), or otherwise the kind of the prior | |
// (non-ignored) declaration. | |
const TagDecl *PrevDef = Previous->getDefinition(); | |
if (PrevDef && IsIgnored(PrevDef)) | |
PrevDef = nullptr; | |
const TagDecl *Redecl = PrevDef ? PrevDef : Previous; | |
if (Redecl->getTagKind() != NewTag) { | |
Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | |
<< getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | |
<< getRedeclDiagFromTagKind(OldTag); | |
Diag(Redecl->getLocation(), diag::note_previous_use); | |
// If there is a previous definition, suggest a fix-it. | |
if (PrevDef) { | |
Diag(NewTagLoc, diag::note_struct_class_suggestion) | |
<< getRedeclDiagFromTagKind(Redecl->getTagKind()) | |
<< FixItHint::CreateReplacement(SourceRange(NewTagLoc), | |
TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); | |
} | |
} | |
return true; | |
} | |
/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name | |
/// from an outer enclosing namespace or file scope inside a friend declaration. | |
/// This should provide the commented out code in the following snippet: | |
/// namespace N { | |
/// struct X; | |
/// namespace M { | |
/// struct Y { friend struct /*N::*/ X; }; | |
/// } | |
/// } | |
static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, | |
SourceLocation NameLoc) { | |
// While the decl is in a namespace, do repeated lookup of that name and see | |
// if we get the same namespace back. If we do not, continue until | |
// translation unit scope, at which point we have a fully qualified NNS. | |
SmallVector<IdentifierInfo *, 4> Namespaces; | |
DeclContext *DC = ND->getDeclContext()->getRedeclContext(); | |
for (; !DC->isTranslationUnit(); DC = DC->getParent()) { | |
// This tag should be declared in a namespace, which can only be enclosed by | |
// other namespaces. Bail if there's an anonymous namespace in the chain. | |
NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); | |
if (!Namespace || Namespace->isAnonymousNamespace()) | |
return FixItHint(); | |
IdentifierInfo *II = Namespace->getIdentifier(); | |
Namespaces.push_back(II); | |
NamedDecl *Lookup = SemaRef.LookupSingleName( | |
S, II, NameLoc, Sema::LookupNestedNameSpecifierName); | |
if (Lookup == Namespace) | |
break; | |
} | |
// Once we have all the namespaces, reverse them to go outermost first, and | |
// build an NNS. | |
SmallString<64> Insertion; | |
llvm::raw_svector_ostream OS(Insertion); | |
if (DC->isTranslationUnit()) | |
OS << "::"; | |
std::reverse(Namespaces.begin(), Namespaces.end()); | |
for (auto *II : Namespaces) | |
OS << II->getName() << "::"; | |
return FixItHint::CreateInsertion(NameLoc, Insertion); | |
} | |
/// Determine whether a tag originally declared in context \p OldDC can | |
/// be redeclared with an unqualified name in \p NewDC (assuming name lookup | |
/// found a declaration in \p OldDC as a previous decl, perhaps through a | |
/// using-declaration). | |
static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, | |
DeclContext *NewDC) { | |
OldDC = OldDC->getRedeclContext(); | |
NewDC = NewDC->getRedeclContext(); | |
if (OldDC->Equals(NewDC)) | |
return true; | |
// In MSVC mode, we allow a redeclaration if the contexts are related (either | |
// encloses the other). | |
if (S.getLangOpts().MSVCCompat && | |
(OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) | |
return true; | |
return false; | |
} | |
/// This is invoked when we see 'struct foo' or 'struct {'. In the | |
/// former case, Name will be non-null. In the later case, Name will be null. | |
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a | |
/// reference/declaration/definition of a tag. | |
/// | |
/// \param IsTypeSpecifier \c true if this is a type-specifier (or | |
/// trailing-type-specifier) other than one in an alias-declaration. | |
/// | |
/// \param SkipBody If non-null, will be set to indicate if the caller should | |
/// skip the definition of this tag and treat it as if it were a declaration. | |
Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, | |
SourceLocation KWLoc, CXXScopeSpec &SS, | |
IdentifierInfo *Name, SourceLocation NameLoc, | |
const ParsedAttributesView &Attrs, AccessSpecifier AS, | |
SourceLocation ModulePrivateLoc, | |
MultiTemplateParamsArg TemplateParameterLists, | |
bool &OwnedDecl, bool &IsDependent, | |
SourceLocation ScopedEnumKWLoc, | |
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, | |
bool IsTypeSpecifier, bool IsTemplateParamOrArg, | |
SkipBodyInfo *SkipBody) { | |
// If this is not a definition, it must have a name. | |
IdentifierInfo *OrigName = Name; | |
assert((Name != nullptr || TUK == TUK_Definition) && | |
"Nameless record must be a definition!"); | |
assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); | |
OwnedDecl = false; | |
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | |
bool ScopedEnum = ScopedEnumKWLoc.isValid(); | |
// FIXME: Check member specializations more carefully. | |
bool isMemberSpecialization = false; | |
bool Invalid = false; | |
// We only need to do this matching if we have template parameters | |
// or a scope specifier, which also conveniently avoids this work | |
// for non-C++ cases. | |
if (TemplateParameterLists.size() > 0 || | |
(SS.isNotEmpty() && TUK != TUK_Reference)) { | |
if (TemplateParameterList *TemplateParams = | |
MatchTemplateParametersToScopeSpecifier( | |
KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, | |
TUK == TUK_Friend, isMemberSpecialization, Invalid)) { | |
if (Kind == TTK_Enum) { | |
Diag(KWLoc, diag::err_enum_template); | |
return nullptr; | |
} | |
if (TemplateParams->size() > 0) { | |
// This is a declaration or definition of a class template (which may | |
// be a member of another template). | |
if (Invalid) | |
return nullptr; | |
OwnedDecl = false; | |
DeclResult Result = CheckClassTemplate( | |
S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, | |
AS, ModulePrivateLoc, | |
/*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, | |
TemplateParameterLists.data(), SkipBody); | |
return Result.get(); | |
} else { | |
// The "template<>" header is extraneous. | |
Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | |
<< TypeWithKeyword::getTagTypeKindName(Kind) << Name; | |
isMemberSpecialization = true; | |
} | |
} | |
if (!TemplateParameterLists.empty() && isMemberSpecialization && | |
CheckTemplateDeclScope(S, TemplateParameterLists.back())) | |
return nullptr; | |
} | |
// Figure out the underlying type if this a enum declaration. We need to do | |
// this early, because it's needed to detect if this is an incompatible | |
// redeclaration. | |
llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; | |
bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; | |
if (Kind == TTK_Enum) { | |
if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { | |
// No underlying type explicitly specified, or we failed to parse the | |
// type, default to int. | |
EnumUnderlying = Context.IntTy.getTypePtr(); | |
} else if (UnderlyingType.get()) { | |
// C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an | |
// integral type; any cv-qualification is ignored. | |
TypeSourceInfo *TI = nullptr; | |
GetTypeFromParser(UnderlyingType.get(), &TI); | |
EnumUnderlying = TI; | |
if (CheckEnumUnderlyingType(TI)) | |
// Recover by falling back to int. | |
EnumUnderlying = Context.IntTy.getTypePtr(); | |
if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, | |
UPPC_FixedUnderlyingType)) | |
EnumUnderlying = Context.IntTy.getTypePtr(); | |
} else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { | |
// For MSVC ABI compatibility, unfixed enums must use an underlying type | |
// of 'int'. However, if this is an unfixed forward declaration, don't set | |
// the underlying type unless the user enables -fms-compatibility. This | |
// makes unfixed forward declared enums incomplete and is more conforming. | |
if (TUK == TUK_Definition || getLangOpts().MSVCCompat) | |
EnumUnderlying = Context.IntTy.getTypePtr(); | |
} | |
} | |
DeclContext *SearchDC = CurContext; | |
DeclContext *DC = CurContext; | |
bool isStdBadAlloc = false; | |
bool isStdAlignValT = false; | |
RedeclarationKind Redecl = forRedeclarationInCurContext(); | |
if (TUK == TUK_Friend || TUK == TUK_Reference) | |
Redecl = NotForRedeclaration; | |
/// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C | |
/// implemented asks for structural equivalence checking, the returned decl | |
/// here is passed back to the parser, allowing the tag body to be parsed. | |
auto createTagFromNewDecl = [&]() -> TagDecl * { | |
assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); | |
// If there is an identifier, use the location of the identifier as the | |
// location of the decl, otherwise use the location of the struct/union | |
// keyword. | |
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | |
TagDecl *New = nullptr; | |
if (Kind == TTK_Enum) { | |
New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, | |
ScopedEnum, ScopedEnumUsesClassTag, IsFixed); | |
// If this is an undefined enum, bail. | |
if (TUK != TUK_Definition && !Invalid) | |
return nullptr; | |
if (EnumUnderlying) { | |
EnumDecl *ED = cast<EnumDecl>(New); | |
if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) | |
ED->setIntegerTypeSourceInfo(TI); | |
else | |
ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); | |
ED->setPromotionType(ED->getIntegerType()); | |
} | |
} else { // struct/union | |
New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | |
nullptr); | |
} | |
if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | |
// Add alignment attributes if necessary; these attributes are checked | |
// when the ASTContext lays out the structure. | |
// | |
// It is important for implementing the correct semantics that this | |
// happen here (in ActOnTag). The #pragma pack stack is | |
// maintained as a result of parser callbacks which can occur at | |
// many points during the parsing of a struct declaration (because | |
// the #pragma tokens are effectively skipped over during the | |
// parsing of the struct). | |
if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { | |
AddAlignmentAttributesForRecord(RD); | |
AddMsStructLayoutForRecord(RD); | |
} | |
} | |
New->setLexicalDeclContext(CurContext); | |
return New; | |
}; | |
LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); | |
if (Name && SS.isNotEmpty()) { | |
// We have a nested-name tag ('struct foo::bar'). | |
// Check for invalid 'foo::'. | |
if (SS.isInvalid()) { | |
Name = nullptr; | |
goto CreateNewDecl; | |
} | |
// If this is a friend or a reference to a class in a dependent | |
// context, don't try to make a decl for it. | |
if (TUK == TUK_Friend || TUK == TUK_Reference) { | |
DC = computeDeclContext(SS, false); | |
if (!DC) { | |
IsDependent = true; | |
return nullptr; | |
} | |
} else { | |
DC = computeDeclContext(SS, true); | |
if (!DC) { | |
Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) | |
<< SS.getRange(); | |
return nullptr; | |
} | |
} | |
if (RequireCompleteDeclContext(SS, DC)) | |
return nullptr; | |
SearchDC = DC; | |
// Look-up name inside 'foo::'. | |
LookupQualifiedName(Previous, DC); | |
if (Previous.isAmbiguous()) | |
return nullptr; | |
if (Previous.empty()) { | |
// Name lookup did not find anything. However, if the | |
// nested-name-specifier refers to the current instantiation, | |
// and that current instantiation has any dependent base | |
// classes, we might find something at instantiation time: treat | |
// this as a dependent elaborated-type-specifier. | |
// But this only makes any sense for reference-like lookups. | |
if (Previous.wasNotFoundInCurrentInstantiation() && | |
(TUK == TUK_Reference || TUK == TUK_Friend)) { | |
IsDependent = true; | |
return nullptr; | |
} | |
// A tag 'foo::bar' must already exist. | |
Diag(NameLoc, diag::err_not_tag_in_scope) | |
<< Kind << Name << DC << SS.getRange(); | |
Name = nullptr; | |
Invalid = true; | |
goto CreateNewDecl; | |
} | |
} else if (Name) { | |
// C++14 [class.mem]p14: | |
// If T is the name of a class, then each of the following shall have a | |
// name different from T: | |
// -- every member of class T that is itself a type | |
if (TUK != TUK_Reference && TUK != TUK_Friend && | |
DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) | |
return nullptr; | |
// If this is a named struct, check to see if there was a previous forward | |
// declaration or definition. | |
// FIXME: We're looking into outer scopes here, even when we | |
// shouldn't be. Doing so can result in ambiguities that we | |
// shouldn't be diagnosing. | |
LookupName(Previous, S); | |
// When declaring or defining a tag, ignore ambiguities introduced | |
// by types using'ed into this scope. | |
if (Previous.isAmbiguous() && | |
(TUK == TUK_Definition || TUK == TUK_Declaration)) { | |
LookupResult::Filter F = Previous.makeFilter(); | |
while (F.hasNext()) { | |
NamedDecl *ND = F.next(); | |
if (!ND->getDeclContext()->getRedeclContext()->Equals( | |
SearchDC->getRedeclContext())) | |
F.erase(); | |
} | |
F.done(); | |
} | |
// C++11 [namespace.memdef]p3: | |
// If the name in a friend declaration is neither qualified nor | |
// a template-id and the declaration is a function or an | |
// elaborated-type-specifier, the lookup to determine whether | |
// the entity has been previously declared shall not consider | |
// any scopes outside the innermost enclosing namespace. | |
// | |
// MSVC doesn't implement the above rule for types, so a friend tag | |
// declaration may be a redeclaration of a type declared in an enclosing | |
// scope. They do implement this rule for friend functions. | |
// | |
// Does it matter that this should be by scope instead of by | |
// semantic context? | |
if (!Previous.empty() && TUK == TUK_Friend) { | |
DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); | |
LookupResult::Filter F = Previous.makeFilter(); | |
bool FriendSawTagOutsideEnclosingNamespace = false; | |
while (F.hasNext()) { | |
NamedDecl *ND = F.next(); | |
DeclContext *DC = ND->getDeclContext()->getRedeclContext(); | |
if (DC->isFileContext() && | |
!EnclosingNS->Encloses(ND->getDeclContext())) { | |
if (getLangOpts().MSVCCompat) | |
FriendSawTagOutsideEnclosingNamespace = true; | |
else | |
F.erase(); | |
} | |
} | |
F.done(); | |
// Diagnose this MSVC extension in the easy case where lookup would have | |
// unambiguously found something outside the enclosing namespace. | |
if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { | |
NamedDecl *ND = Previous.getFoundDecl(); | |
Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) | |
<< createFriendTagNNSFixIt(*this, ND, S, NameLoc); | |
} | |
} | |
// Note: there used to be some attempt at recovery here. | |
if (Previous.isAmbiguous()) | |
return nullptr; | |
if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { | |
// FIXME: This makes sure that we ignore the contexts associated | |
// with C structs, unions, and enums when looking for a matching | |
// tag declaration or definition. See the similar lookup tweak | |
// in Sema::LookupName; is there a better way to deal with this? | |
while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) | |
SearchDC = SearchDC->getParent(); | |
} | |
} | |
if (Previous.isSingleResult() && | |
Previous.getFoundDecl()->isTemplateParameter()) { | |
// Maybe we will complain about the shadowed template parameter. | |
DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); | |
// Just pretend that we didn't see the previous declaration. | |
Previous.clear(); | |
} | |
if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && | |
DC->Equals(getStdNamespace())) { | |
if (Name->isStr("bad_alloc")) { | |
// This is a declaration of or a reference to "std::bad_alloc". | |
isStdBadAlloc = true; | |
// If std::bad_alloc has been implicitly declared (but made invisible to | |
// name lookup), fill in this implicit declaration as the previous | |
// declaration, so that the declarations get chained appropriately. | |
if (Previous.empty() && StdBadAlloc) | |
Previous.addDecl(getStdBadAlloc()); | |
} else if (Name->isStr("align_val_t")) { | |
isStdAlignValT = true; | |
if (Previous.empty() && StdAlignValT) | |
Previous.addDecl(getStdAlignValT()); | |
} | |
} | |
// If we didn't find a previous declaration, and this is a reference | |
// (or friend reference), move to the correct scope. In C++, we | |
// also need to do a redeclaration lookup there, just in case | |
// there's a shadow friend decl. | |
if (Name && Previous.empty() && | |
(TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { | |
if (Invalid) goto CreateNewDecl; | |
assert(SS.isEmpty()); | |
if (TUK == TUK_Reference || IsTemplateParamOrArg) { | |
// C++ [basic.scope.pdecl]p5: | |
// -- for an elaborated-type-specifier of the form | |
// | |
// class-key identifier | |
// | |
// if the elaborated-type-specifier is used in the | |
// decl-specifier-seq or parameter-declaration-clause of a | |
// function defined in namespace scope, the identifier is | |
// declared as a class-name in the namespace that contains | |
// the declaration; otherwise, except as a friend | |
// declaration, the identifier is declared in the smallest | |
// non-class, non-function-prototype scope that contains the | |
// declaration. | |
// | |
// C99 6.7.2.3p8 has a similar (but not identical!) provision for | |
// C structs and unions. | |
// | |
// It is an error in C++ to declare (rather than define) an enum | |
// type, including via an elaborated type specifier. We'll | |
// diagnose that later; for now, declare the enum in the same | |
// scope as we would have picked for any other tag type. | |
// | |
// GNU C also supports this behavior as part of its incomplete | |
// enum types extension, while GNU C++ does not. | |
// | |
// Find the context where we'll be declaring the tag. | |
// FIXME: We would like to maintain the current DeclContext as the | |
// lexical context, | |
SearchDC = getTagInjectionContext(SearchDC); | |
// Find the scope where we'll be declaring the tag. | |
S = getTagInjectionScope(S, getLangOpts()); | |
} else { | |
assert(TUK == TUK_Friend); | |
// C++ [namespace.memdef]p3: | |
// If a friend declaration in a non-local class first declares a | |
// class or function, the friend class or function is a member of | |
// the innermost enclosing namespace. | |
SearchDC = SearchDC->getEnclosingNamespaceContext(); | |
} | |
// In C++, we need to do a redeclaration lookup to properly | |
// diagnose some problems. | |
// FIXME: redeclaration lookup is also used (with and without C++) to find a | |
// hidden declaration so that we don't get ambiguity errors when using a | |
// type declared by an elaborated-type-specifier. In C that is not correct | |
// and we should instead merge compatible types found by lookup. | |
if (getLangOpts().CPlusPlus) { | |
// FIXME: This can perform qualified lookups into function contexts, | |
// which are meaningless. | |
Previous.setRedeclarationKind(forRedeclarationInCurContext()); | |
LookupQualifiedName(Previous, SearchDC); | |
} else { | |
Previous.setRedeclarationKind(forRedeclarationInCurContext()); | |
LookupName(Previous, S); | |
} | |
} | |
// If we have a known previous declaration to use, then use it. | |
if (Previous.empty() && SkipBody && SkipBody->Previous) | |
Previous.addDecl(SkipBody->Previous); | |
if (!Previous.empty()) { | |
NamedDecl *PrevDecl = Previous.getFoundDecl(); | |
NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); | |
// It's okay to have a tag decl in the same scope as a typedef | |
// which hides a tag decl in the same scope. Finding this | |
// insanity with a redeclaration lookup can only actually happen | |
// in C++. | |
// | |
// This is also okay for elaborated-type-specifiers, which is | |
// technically forbidden by the current standard but which is | |
// okay according to the likely resolution of an open issue; | |
// see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 | |
if (getLangOpts().CPlusPlus) { | |
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { | |
if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { | |
TagDecl *Tag = TT->getDecl(); | |
if (Tag->getDeclName() == Name && | |
Tag->getDeclContext()->getRedeclContext() | |
->Equals(TD->getDeclContext()->getRedeclContext())) { | |
PrevDecl = Tag; | |
Previous.clear(); | |
Previous.addDecl(Tag); | |
Previous.resolveKind(); | |
} | |
} | |
} | |
} | |
// If this is a redeclaration of a using shadow declaration, it must | |
// declare a tag in the same context. In MSVC mode, we allow a | |
// redefinition if either context is within the other. | |
if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { | |
auto *OldTag = dyn_cast<TagDecl>(PrevDecl); | |
if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && | |
isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && | |
!(OldTag && isAcceptableTagRedeclContext( | |
*this, OldTag->getDeclContext(), SearchDC))) { | |
Diag(KWLoc, diag::err_using_decl_conflict_reverse); | |
Diag(Shadow->getTargetDecl()->getLocation(), | |
diag::note_using_decl_target); | |
Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) | |
<< 0; | |
// Recover by ignoring the old declaration. | |
Previous.clear(); | |
goto CreateNewDecl; | |
} | |
} | |
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { | |
// If this is a use of a previous tag, or if the tag is already declared | |
// in the same scope (so that the definition/declaration completes or | |
// rementions the tag), reuse the decl. | |
if (TUK == TUK_Reference || TUK == TUK_Friend || | |
isDeclInScope(DirectPrevDecl, SearchDC, S, | |
SS.isNotEmpty() || isMemberSpecialization)) { | |
// Make sure that this wasn't declared as an enum and now used as a | |
// struct or something similar. | |
if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, | |
TUK == TUK_Definition, KWLoc, | |
Name)) { | |
bool SafeToContinue | |
= (PrevTagDecl->getTagKind() != TTK_Enum && | |
Kind != TTK_Enum); | |
if (SafeToContinue) | |
Diag(KWLoc, diag::err_use_with_wrong_tag) | |
<< Name | |
<< FixItHint::CreateReplacement(SourceRange(KWLoc), | |
PrevTagDecl->getKindName()); | |
else | |
Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; | |
Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | |
if (SafeToContinue) | |
Kind = PrevTagDecl->getTagKind(); | |
else { | |
// Recover by making this an anonymous redefinition. | |
Name = nullptr; | |
Previous.clear(); | |
Invalid = true; | |
} | |
} | |
if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { | |
const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); | |
if (TUK == TUK_Reference || TUK == TUK_Friend) | |
return PrevTagDecl; | |
QualType EnumUnderlyingTy; | |
if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | |
EnumUnderlyingTy = TI->getType().getUnqualifiedType(); | |
else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) | |
EnumUnderlyingTy = QualType(T, 0); | |
// All conflicts with previous declarations are recovered by | |
// returning the previous declaration, unless this is a definition, | |
// in which case we want the caller to bail out. | |
if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, | |
ScopedEnum, EnumUnderlyingTy, | |
IsFixed, PrevEnum)) | |
return TUK == TUK_Declaration ? PrevTagDecl : nullptr; | |
} | |
// C++11 [class.mem]p1: | |
// A member shall not be declared twice in the member-specification, | |
// except that a nested class or member class template can be declared | |
// and then later defined. | |
if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && | |
S->isDeclScope(PrevDecl)) { | |
Diag(NameLoc, diag::ext_member_redeclared); | |
Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); | |
} | |
if (!Invalid) { | |
// If this is a use, just return the declaration we found, unless | |
// we have attributes. | |
if (TUK == TUK_Reference || TUK == TUK_Friend) { | |
if (!Attrs.empty()) { | |
// FIXME: Diagnose these attributes. For now, we create a new | |
// declaration to hold them. | |
} else if (TUK == TUK_Reference && | |
(PrevTagDecl->getFriendObjectKind() == | |
Decl::FOK_Undeclared || | |
PrevDecl->getOwningModule() != getCurrentModule()) && | |
SS.isEmpty()) { | |
// This declaration is a reference to an existing entity, but | |
// has different visibility from that entity: it either makes | |
// a friend visible or it makes a type visible in a new module. | |
// In either case, create a new declaration. We only do this if | |
// the declaration would have meant the same thing if no prior | |
// declaration were found, that is, if it was found in the same | |
// scope where we would have injected a declaration. | |
if (!getTagInjectionContext(CurContext)->getRedeclContext() | |
->Equals(PrevDecl->getDeclContext()->getRedeclContext())) | |
return PrevTagDecl; | |
// This is in the injected scope, create a new declaration in | |
// that scope. | |
S = getTagInjectionScope(S, getLangOpts()); | |
} else { | |
return PrevTagDecl; | |
} | |
} | |
// Diagnose attempts to redefine a tag. | |
if (TUK == TUK_Definition) { | |
if (NamedDecl *Def = PrevTagDecl->getDefinition()) { | |
// If we're defining a specialization and the previous definition | |
// is from an implicit instantiation, don't emit an error | |
// here; we'll catch this in the general case below. | |
bool IsExplicitSpecializationAfterInstantiation = false; | |
if (isMemberSpecialization) { | |
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) | |
IsExplicitSpecializationAfterInstantiation = | |
RD->getTemplateSpecializationKind() != | |
TSK_ExplicitSpecialization; | |
else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) | |
IsExplicitSpecializationAfterInstantiation = | |
ED->getTemplateSpecializationKind() != | |
TSK_ExplicitSpecialization; | |
} | |
// Note that clang allows ODR-like semantics for ObjC/C, i.e., do | |
// not keep more that one definition around (merge them). However, | |
// ensure the decl passes the structural compatibility check in | |
// C11 6.2.7/1 (or 6.1.2.6/1 in C89). | |
NamedDecl *Hidden = nullptr; | |
if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { | |
// There is a definition of this tag, but it is not visible. We | |
// explicitly make use of C++'s one definition rule here, and | |
// assume that this definition is identical to the hidden one | |
// we already have. Make the existing definition visible and | |
// use it in place of this one. | |
if (!getLangOpts().CPlusPlus) { | |
// Postpone making the old definition visible until after we | |
// complete parsing the new one and do the structural | |
// comparison. | |
SkipBody->CheckSameAsPrevious = true; | |
SkipBody->New = createTagFromNewDecl(); | |
SkipBody->Previous = Def; | |
return Def; | |
} else { | |
SkipBody->ShouldSkip = true; | |
SkipBody->Previous = Def; | |
makeMergedDefinitionVisible(Hidden); | |
// Carry on and handle it like a normal definition. We'll | |
// skip starting the definitiion later. | |
} | |
} else if (!IsExplicitSpecializationAfterInstantiation) { | |
// A redeclaration in function prototype scope in C isn't | |
// visible elsewhere, so merely issue a warning. | |
if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) | |
Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; | |
else | |
Diag(NameLoc, diag::err_redefinition) << Name; | |
notePreviousDefinition(Def, | |
NameLoc.isValid() ? NameLoc : KWLoc); | |
// If this is a redefinition, recover by making this | |
// struct be anonymous, which will make any later | |
// references get the previous definition. | |
Name = nullptr; | |
Previous.clear(); | |
Invalid = true; | |
} | |
} else { | |
// If the type is currently being defined, complain | |
// about a nested redefinition. | |
auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); | |
if (TD->isBeingDefined()) { | |
Diag(NameLoc, diag::err_nested_redefinition) << Name; | |
Diag(PrevTagDecl->getLocation(), | |
diag::note_previous_definition); | |
Name = nullptr; | |
Previous.clear(); | |
Invalid = true; | |
} | |
} | |
// Okay, this is definition of a previously declared or referenced | |
// tag. We're going to create a new Decl for it. | |
} | |
// Okay, we're going to make a redeclaration. If this is some kind | |
// of reference, make sure we build the redeclaration in the same DC | |
// as the original, and ignore the current access specifier. | |
if (TUK == TUK_Friend || TUK == TUK_Reference) { | |
SearchDC = PrevTagDecl->getDeclContext(); | |
AS = AS_none; | |
} | |
} | |
// If we get here we have (another) forward declaration or we | |
// have a definition. Just create a new decl. | |
} else { | |
// If we get here, this is a definition of a new tag type in a nested | |
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a | |
// new decl/type. We set PrevDecl to NULL so that the entities | |
// have distinct types. | |
Previous.clear(); | |
} | |
// If we get here, we're going to create a new Decl. If PrevDecl | |
// is non-NULL, it's a definition of the tag declared by | |
// PrevDecl. If it's NULL, we have a new definition. | |
// Otherwise, PrevDecl is not a tag, but was found with tag | |
// lookup. This is only actually possible in C++, where a few | |
// things like templates still live in the tag namespace. | |
} else { | |
// Use a better diagnostic if an elaborated-type-specifier | |
// found the wrong kind of type on the first | |
// (non-redeclaration) lookup. | |
if ((TUK == TUK_Reference || TUK == TUK_Friend) && | |
!Previous.isForRedeclaration()) { | |
NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); | |
Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK | |
<< Kind; | |
Diag(PrevDecl->getLocation(), diag::note_declared_at); | |
Invalid = true; | |
// Otherwise, only diagnose if the declaration is in scope. | |
} else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, | |
SS.isNotEmpty() || isMemberSpecialization)) { | |
// do nothing | |
// Diagnose implicit declarations introduced by elaborated types. | |
} else if (TUK == TUK_Reference || TUK == TUK_Friend) { | |
NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); | |
Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; | |
Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | |
Invalid = true; | |
// Otherwise it's a declaration. Call out a particularly common | |
// case here. | |
} else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { | |
unsigned Kind = 0; | |
if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; | |
Diag(NameLoc, diag::err_tag_definition_of_typedef) | |
<< Name << Kind << TND->getUnderlyingType(); | |
Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | |
Invalid = true; | |
// Otherwise, diagnose. | |
} else { | |
// The tag name clashes with something else in the target scope, | |
// issue an error and recover by making this tag be anonymous. | |
Diag(NameLoc, diag::err_redefinition_different_kind) << Name; | |
notePreviousDefinition(PrevDecl, NameLoc); | |
Name = nullptr; | |
Invalid = true; | |
} | |
// The existing declaration isn't relevant to us; we're in a | |
// new scope, so clear out the previous declaration. | |
Previous.clear(); | |
} | |
} | |
CreateNewDecl: | |
TagDecl *PrevDecl = nullptr; | |
if (Previous.isSingleResult()) | |
PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); | |
// If there is an identifier, use the location of the identifier as the | |
// location of the decl, otherwise use the location of the struct/union | |
// keyword. | |
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | |
// Otherwise, create a new declaration. If there is a previous | |
// declaration of the same entity, the two will be linked via | |
// PrevDecl. | |
TagDecl *New; | |
if (Kind == TTK_Enum) { | |
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | |
// enum X { A, B, C } D; D should chain to X. | |
New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, | |
cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, | |
ScopedEnumUsesClassTag, IsFixed); | |
if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) | |
StdAlignValT = cast<EnumDecl>(New); | |
// If this is an undefined enum, warn. | |
if (TUK != TUK_Definition && !Invalid) { | |
TagDecl *Def; | |
if (IsFixed && cast<EnumDecl>(New)->isFixed()) { | |
// C++0x: 7.2p2: opaque-enum-declaration. | |
// Conflicts are diagnosed above. Do nothing. | |
} | |
else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { | |
Diag(Loc, diag::ext_forward_ref_enum_def) | |
<< New; | |
Diag(Def->getLocation(), diag::note_previous_definition); | |
} else { | |
unsigned DiagID = diag::ext_forward_ref_enum; | |
if (getLangOpts().MSVCCompat) | |
DiagID = diag::ext_ms_forward_ref_enum; | |
else if (getLangOpts().CPlusPlus) | |
DiagID = diag::err_forward_ref_enum; | |
Diag(Loc, DiagID); | |
} | |
} | |
if (EnumUnderlying) { | |
EnumDecl *ED = cast<EnumDecl>(New); | |
if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | |
ED->setIntegerTypeSourceInfo(TI); | |
else | |
ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); | |
ED->setPromotionType(ED->getIntegerType()); | |
assert(ED->isComplete() && "enum with type should be complete"); | |
} | |
} else { | |
// struct/union/class | |
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | |
// struct X { int A; } D; D should chain to X. | |
if (getLangOpts().CPlusPlus) { | |
// FIXME: Look for a way to use RecordDecl for simple structs. | |
New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | |
cast_or_null<CXXRecordDecl>(PrevDecl)); | |
if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) | |
StdBadAlloc = cast<CXXRecordDecl>(New); | |
} else | |
New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | |
cast_or_null<RecordDecl>(PrevDecl)); | |
} | |
// C++11 [dcl.type]p3: | |
// A type-specifier-seq shall not define a class or enumeration [...]. | |
if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && | |
TUK == TUK_Definition) { | |
Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) | |
<< Context.getTagDeclType(New); | |
Invalid = true; | |
} | |
if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && | |
DC->getDeclKind() == Decl::Enum) { | |
Diag(New->getLocation(), diag::err_type_defined_in_enum) | |
<< Context.getTagDeclType(New); | |
Invalid = true; | |
} | |
// Maybe add qualifier info. | |
if (SS.isNotEmpty()) { | |
if (SS.isSet()) { | |
// If this is either a declaration or a definition, check the | |
// nested-name-specifier against the current context. | |
if ((TUK == TUK_Definition || TUK == TUK_Declaration) && | |
diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, | |
isMemberSpecialization)) | |
Invalid = true; | |
New->setQualifierInfo(SS.getWithLocInContext(Context)); | |
if (TemplateParameterLists.size() > 0) { | |
New->setTemplateParameterListsInfo(Context, TemplateParameterLists); | |
} | |
} | |
else | |
Invalid = true; | |
} | |
if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | |
// Add alignment attributes if necessary; these attributes are checked when | |
// the ASTContext lays out the structure. | |
// | |
// It is important for implementing the correct semantics that this | |
// happen here (in ActOnTag). The #pragma pack stack is | |
// maintained as a result of parser callbacks which can occur at | |
// many points during the parsing of a struct declaration (because | |
// the #pragma tokens are effectively skipped over during the | |
// parsing of the struct). | |
if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { | |
AddAlignmentAttributesForRecord(RD); | |
AddMsStructLayoutForRecord(RD); | |
} | |
} | |
if (ModulePrivateLoc.isValid()) { | |
if (isMemberSpecialization) | |
Diag(New->getLocation(), diag::err_module_private_specialization) | |
<< 2 | |
<< FixItHint::CreateRemoval(ModulePrivateLoc); | |
// __module_private__ does not apply to local classes. However, we only | |
// diagnose this as an error when the declaration specifiers are | |
// freestanding. Here, we just ignore the __module_private__. | |
else if (!SearchDC->isFunctionOrMethod()) | |
New->setModulePrivate(); | |
} | |
// If this is a specialization of a member class (of a class template), | |
// check the specialization. | |
if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) | |
Invalid = true; | |
// If we're declaring or defining a tag in function prototype scope in C, | |
// note that this type can only be used within the function and add it to | |
// the list of decls to inject into the function definition scope. | |
if ((Name || Kind == TTK_Enum) && | |
getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { | |
if (getLangOpts().CPlusPlus) { | |
// C++ [dcl.fct]p6: | |
// Types shall not be defined in return or parameter types. | |
if (TUK == TUK_Definition && !IsTypeSpecifier) { | |
Diag(Loc, diag::err_type_defined_in_param_type) | |
<< Name; | |
Invalid = true; | |
} | |
} else if (!PrevDecl) { | |
Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); | |
} | |
} | |
if (Invalid) | |
New->setInvalidDecl(); | |
// Set the lexical context. If the tag has a C++ scope specifier, the | |
// lexical context will be different from the semantic context. | |
New->setLexicalDeclContext(CurContext); | |
// Mark this as a friend decl if applicable. | |
// In Microsoft mode, a friend declaration also acts as a forward | |
// declaration so we always pass true to setObjectOfFriendDecl to make | |
// the tag name visible. | |
if (TUK == TUK_Friend) | |
New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); | |
// Set the access specifier. | |
if (!Invalid && SearchDC->isRecord()) | |
SetMemberAccessSpecifier(New, PrevDecl, AS); | |
if (PrevDecl) | |
CheckRedeclarationModuleOwnership(New, PrevDecl); | |
if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) | |
New->startDefinition(); | |
ProcessDeclAttributeList(S, New, Attrs); | |
AddPragmaAttributes(S, New); | |
// If this has an identifier, add it to the scope stack. | |
if (TUK == TUK_Friend) { | |
// We might be replacing an existing declaration in the lookup tables; | |
// if so, borrow its access specifier. | |
if (PrevDecl) | |
New->setAccess(PrevDecl->getAccess()); | |
DeclContext *DC = New->getDeclContext()->getRedeclContext(); | |
DC->makeDeclVisibleInContext(New); | |
if (Name) // can be null along some error paths | |
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | |
PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); | |
} else if (Name) { | |
S = getNonFieldDeclScope(S); | |
PushOnScopeChains(New, S, true); | |
} else { | |
CurContext->addDecl(New); | |
} | |
// If this is the C FILE type, notify the AST context. | |
if (IdentifierInfo *II = New->getIdentifier()) | |
if (!New->isInvalidDecl() && | |
New->getDeclContext()->getRedeclContext()->isTranslationUnit() && | |
II->isStr("FILE")) | |
Context.setFILEDecl(New); | |
if (PrevDecl) | |
mergeDeclAttributes(New, PrevDecl); | |
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) | |
inferGslOwnerPointerAttribute(CXXRD); | |
// If there's a #pragma GCC visibility in scope, set the visibility of this | |
// record. | |
AddPushedVisibilityAttribute(New); | |
if (isMemberSpecialization && !New->isInvalidDecl()) | |
CompleteMemberSpecialization(New, Previous); | |
OwnedDecl = true; | |
// In C++, don't return an invalid declaration. We can't recover well from | |
// the cases where we make the type anonymous. | |
if (Invalid && getLangOpts().CPlusPlus) { | |
if (New->isBeingDefined()) | |
if (auto RD = dyn_cast<RecordDecl>(New)) | |
RD->completeDefinition(); | |
return nullptr; | |
} else if (SkipBody && SkipBody->ShouldSkip) { | |
return SkipBody->Previous; | |
} else { | |
return New; | |
} | |
} | |
void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { | |
AdjustDeclIfTemplate(TagD); | |
TagDecl *Tag = cast<TagDecl>(TagD); | |
// Enter the tag context. | |
PushDeclContext(S, Tag); | |
ActOnDocumentableDecl(TagD); | |
// If there's a #pragma GCC visibility in scope, set the visibility of this | |
// record. | |
AddPushedVisibilityAttribute(Tag); | |
} | |
bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, | |
SkipBodyInfo &SkipBody) { | |
if (!hasStructuralCompatLayout(Prev, SkipBody.New)) | |
return false; | |
// Make the previous decl visible. | |
makeMergedDefinitionVisible(SkipBody.Previous); | |
return true; | |
} | |
Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { | |
assert(isa<ObjCContainerDecl>(IDecl) && | |
"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); | |
DeclContext *OCD = cast<DeclContext>(IDecl); | |
assert(OCD->getLexicalParent() == CurContext && | |
"The next DeclContext should be lexically contained in the current one."); | |
CurContext = OCD; | |
return IDecl; | |
} | |
void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, | |
SourceLocation FinalLoc, | |
bool IsFinalSpelledSealed, | |
SourceLocation LBraceLoc) { | |
AdjustDeclIfTemplate(TagD); | |
CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); | |
FieldCollector->StartClass(); | |
if (!Record->getIdentifier()) | |
return; | |
if (FinalLoc.isValid()) | |
Record->addAttr(FinalAttr::Create( | |
Context, FinalLoc, AttributeCommonInfo::AS_Keyword, | |
static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed))); | |
// C++ [class]p2: | |
// [...] The class-name is also inserted into the scope of the | |
// class itself; this is known as the injected-class-name. For | |
// purposes of access checking, the injected-class-name is treated | |
// as if it were a public member name. | |
CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( | |
Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), | |
Record->getLocation(), Record->getIdentifier(), | |
/*PrevDecl=*/nullptr, | |
/*DelayTypeCreation=*/true); | |
Context.getTypeDeclType(InjectedClassName, Record); | |
InjectedClassName->setImplicit(); | |
InjectedClassName->setAccess(AS_public); | |
if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) | |
InjectedClassName->setDescribedClassTemplate(Template); | |
PushOnScopeChains(InjectedClassName, S); | |
assert(InjectedClassName->isInjectedClassName() && | |
"Broken injected-class-name"); | |
} | |
void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, | |
SourceRange BraceRange) { | |
AdjustDeclIfTemplate(TagD); | |
TagDecl *Tag = cast<TagDecl>(TagD); | |
Tag->setBraceRange(BraceRange); | |
// Make sure we "complete" the definition even it is invalid. | |
if (Tag->isBeingDefined()) { | |
assert(Tag->isInvalidDecl() && "We should already have completed it"); | |
if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) | |
RD->completeDefinition(); | |
} | |
if (isa<CXXRecordDecl>(Tag)) { | |
FieldCollector->FinishClass(); | |
} | |
// Exit this scope of this tag's definition. | |
PopDeclContext(); | |
if (getCurLexicalContext()->isObjCContainer() && | |
Tag->getDeclContext()->isFileContext()) | |
Tag->setTopLevelDeclInObjCContainer(); | |
// Notify the consumer that we've defined a tag. | |
if (!Tag->isInvalidDecl()) | |
Consumer.HandleTagDeclDefinition(Tag); | |
} | |
void Sema::ActOnObjCContainerFinishDefinition() { | |
// Exit this scope of this interface definition. | |
PopDeclContext(); | |
} | |
void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { | |
assert(DC == CurContext && "Mismatch of container contexts"); | |
OriginalLexicalContext = DC; | |
ActOnObjCContainerFinishDefinition(); | |
} | |
void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { | |
ActOnObjCContainerStartDefinition(cast<Decl>(DC)); | |
OriginalLexicalContext = nullptr; | |
} | |
void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { | |
AdjustDeclIfTemplate(TagD); | |
TagDecl *Tag = cast<TagDecl>(TagD); | |
Tag->setInvalidDecl(); | |
// Make sure we "complete" the definition even it is invalid. | |
if (Tag->isBeingDefined()) { | |
if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) | |
RD->completeDefinition(); | |
} | |
// We're undoing ActOnTagStartDefinition here, not | |
// ActOnStartCXXMemberDeclarations, so we don't have to mess with | |
// the FieldCollector. | |
PopDeclContext(); | |
} | |
// Note that FieldName may be null for anonymous bitfields. | |
ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, | |
IdentifierInfo *FieldName, | |
QualType FieldTy, bool IsMsStruct, | |
Expr *BitWidth, bool *ZeroWidth) { | |
assert(BitWidth); | |
if (BitWidth->containsErrors()) | |
return ExprError(); | |
// Default to true; that shouldn't confuse checks for emptiness | |
if (ZeroWidth) | |
*ZeroWidth = true; | |
// C99 6.7.2.1p4 - verify the field type. | |
// C++ 9.6p3: A bit-field shall have integral or enumeration type. | |
if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { | |
// Handle incomplete and sizeless types with a specific error. | |
if (RequireCompleteSizedType(FieldLoc, FieldTy, | |
diag::err_field_incomplete_or_sizeless)) | |
return ExprError(); | |
if (FieldName) | |
return Diag(FieldLoc, diag::err_not_integral_type_bitfield) | |
<< FieldName << FieldTy << BitWidth->getSourceRange(); | |
return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) | |
<< FieldTy << BitWidth->getSourceRange(); | |
} else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), | |
UPPC_BitFieldWidth)) | |
return ExprError(); | |
// If the bit-width is type- or value-dependent, don't try to check | |
// it now. | |
if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) | |
return BitWidth; | |
llvm::APSInt Value; | |
ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold); | |
if (ICE.isInvalid()) | |
return ICE; | |
BitWidth = ICE.get(); | |
if (Value != 0 && ZeroWidth) | |
*ZeroWidth = false; | |
// Zero-width bitfield is ok for anonymous field. | |
if (Value == 0 && FieldName) | |
return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; | |
if (Value.isSigned() && Value.isNegative()) { | |
if (FieldName) | |
return Diag(FieldLoc, diag::err_bitfield_has_negative_width) | |
<< FieldName << Value.toString(10); | |
return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) | |
<< Value.toString(10); | |
} | |
// The size of the bit-field must not exceed our maximum permitted object | |
// size. | |
if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) { | |
return Diag(FieldLoc, diag::err_bitfield_too_wide) | |
<< !FieldName << FieldName << Value.toString(10); | |
} | |
if (!FieldTy->isDependentType()) { | |
uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); | |
uint64_t TypeWidth = Context.getIntWidth(FieldTy); | |
bool BitfieldIsOverwide = Value.ugt(TypeWidth); | |
// Over-wide bitfields are an error in C or when using the MSVC bitfield | |
// ABI. | |
bool CStdConstraintViolation = | |
BitfieldIsOverwide && !getLangOpts().CPlusPlus; | |
bool MSBitfieldViolation = | |
Value.ugt(TypeStorageSize) && | |
(IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); | |
if (CStdConstraintViolation || MSBitfieldViolation) { | |
unsigned DiagWidth = | |
CStdConstraintViolation ? TypeWidth : TypeStorageSize; | |
if (FieldName) | |
return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) | |
<< FieldName << Value.toString(10) | |
<< !CStdConstraintViolation << DiagWidth; | |
return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width) | |
<< Value.toString(10) << !CStdConstraintViolation | |
<< DiagWidth; | |
} | |
// Warn on types where the user might conceivably expect to get all | |
// specified bits as value bits: that's all integral types other than | |
// 'bool'. | |
if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) { | |
Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) | |
<< FieldName << Value.toString(10) | |
<< (unsigned)TypeWidth; | |
} | |
} | |
return BitWidth; | |
} | |
/// ActOnField - Each field of a C struct/union is passed into this in order | |
/// to create a FieldDecl object for it. | |
Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, | |
Declarator &D, Expr *BitfieldWidth) { | |
FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), | |
DeclStart, D, static_cast<Expr*>(BitfieldWidth), | |
/*InitStyle=*/ICIS_NoInit, AS_public); | |
return Res; | |
} | |
/// HandleField - Analyze a field of a C struct or a C++ data member. | |
/// | |
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, | |
SourceLocation DeclStart, | |
Declarator &D, Expr *BitWidth, | |
InClassInitStyle InitStyle, | |
AccessSpecifier AS) { | |
if (D.isDecompositionDeclarator()) { | |
const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); | |
Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) | |
<< Decomp.getSourceRange(); | |
return nullptr; | |
} | |
IdentifierInfo *II = D.getIdentifier(); | |
SourceLocation Loc = DeclStart; | |
if (II) Loc = D.getIdentifierLoc(); | |
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |
QualType T = TInfo->getType(); | |
if (getLangOpts().CPlusPlus) { | |
CheckExtraCXXDefaultArguments(D); | |
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |
UPPC_DataMemberType)) { | |
D.setInvalidType(); | |
T = Context.IntTy; | |
TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | |
} | |
} | |
DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |
if (D.getDeclSpec().isInlineSpecified()) | |
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |
<< getLangOpts().CPlusPlus17; | |
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | |
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |
diag::err_invalid_thread) | |
<< DeclSpec::getSpecifierName(TSCS); | |
// Check to see if this name was declared as a member previously | |
NamedDecl *PrevDecl = nullptr; | |
LookupResult Previous(*this, II, Loc, LookupMemberName, | |
ForVisibleRedeclaration); | |
LookupName(Previous, S); | |
switch (Previous.getResultKind()) { | |
case LookupResult::Found: | |
case LookupResult::FoundUnresolvedValue: | |
PrevDecl = Previous.getAsSingle<NamedDecl>(); | |
break; | |
case LookupResult::FoundOverloaded: | |
PrevDecl = Previous.getRepresentativeDecl(); | |
break; | |
case LookupResult::NotFound: | |
case LookupResult::NotFoundInCurrentInstantiation: | |
case LookupResult::Ambiguous: | |
break; | |
} | |
Previous.suppressDiagnostics(); | |
if (PrevDecl && PrevDecl->isTemplateParameter()) { | |
// Maybe we will complain about the shadowed template parameter. | |
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | |
// Just pretend that we didn't see the previous declaration. | |
PrevDecl = nullptr; | |
} | |
if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | |
PrevDecl = nullptr; | |
bool Mutable | |
= (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); | |
SourceLocation TSSL = D.getBeginLoc(); | |
FieldDecl *NewFD | |
= CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, | |
TSSL, AS, PrevDecl, &D); | |
if (NewFD->isInvalidDecl()) | |
Record->setInvalidDecl(); | |
if (D.getDeclSpec().isModulePrivateSpecified()) | |
NewFD->setModulePrivate(); | |
if (NewFD->isInvalidDecl() && PrevDecl) { | |
// Don't introduce NewFD into scope; there's already something | |
// with the same name in the same scope. | |
} else if (II) { | |
PushOnScopeChains(NewFD, S); | |
} else | |
Record->addDecl(NewFD); | |
return NewFD; | |
} | |
/// Build a new FieldDecl and check its well-formedness. | |
/// | |
/// This routine builds a new FieldDecl given the fields name, type, | |
/// record, etc. \p PrevDecl should refer to any previous declaration | |
/// with the same name and in the same scope as the field to be | |
/// created. | |
/// | |
/// \returns a new FieldDecl. | |
/// | |
/// \todo The Declarator argument is a hack. It will be removed once | |
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, | |
TypeSourceInfo *TInfo, | |
RecordDecl *Record, SourceLocation Loc, | |
bool Mutable, Expr *BitWidth, | |
InClassInitStyle InitStyle, | |
SourceLocation TSSL, | |
AccessSpecifier AS, NamedDecl *PrevDecl, | |
Declarator *D) { | |
IdentifierInfo *II = Name.getAsIdentifierInfo(); | |
bool InvalidDecl = false; | |
if (D) InvalidDecl = D->isInvalidType(); | |
// If we receive a broken type, recover by assuming 'int' and | |
// marking this declaration as invalid. | |
if (T.isNull() || T->containsErrors()) { | |
InvalidDecl = true; | |
T = Context.IntTy; | |
} | |
QualType EltTy = Context.getBaseElementType(T); | |
if (!EltTy->isDependentType() && !EltTy->containsErrors()) { | |
if (RequireCompleteSizedType(Loc, EltTy, | |
diag::err_field_incomplete_or_sizeless)) { | |
// Fields of incomplete type force their record to be invalid. | |
Record->setInvalidDecl(); | |
InvalidDecl = true; | |
} else { | |
NamedDecl *Def; | |
EltTy->isIncompleteType(&Def); | |
if (Def && Def->isInvalidDecl()) { | |
Record->setInvalidDecl(); | |
InvalidDecl = true; | |
} | |
} | |
} | |
// TR 18037 does not allow fields to be declared with address space | |
if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || | |
T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { | |
Diag(Loc, diag::err_field_with_address_space); | |
Record->setInvalidDecl(); | |
InvalidDecl = true; | |
} | |
if (LangOpts.OpenCL) { | |
// OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be | |
// used as structure or union field: image, sampler, event or block types. | |
if (T->isEventT() || T->isImageType() || T->isSamplerT() || | |
T->isBlockPointerType()) { | |
Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; | |
Record->setInvalidDecl(); | |
InvalidDecl = true; | |
} | |
// OpenCL v1.2 s6.9.c: bitfields are not supported. | |
if (BitWidth) { | |
Diag(Loc, diag::err_opencl_bitfields); | |
InvalidDecl = true; | |
} | |
} | |
// Anonymous bit-fields cannot be cv-qualified (CWG 2229). | |
if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && | |
T.hasQualifiers()) { | |
InvalidDecl = true; | |
Diag(Loc, diag::err_anon_bitfield_qualifiers); | |
} | |
// C99 6.7.2.1p8: A member of a structure or union may have any type other | |
// than a variably modified type. | |
if (!InvalidDecl && T->isVariablyModifiedType()) { | |
bool SizeIsNegative; | |
llvm::APSInt Oversized; | |
TypeSourceInfo *FixedTInfo = | |
TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, | |
SizeIsNegative, | |
Oversized); | |
if (FixedTInfo) { | |
Diag(Loc, diag::ext_vla_folded_to_constant); | |
TInfo = FixedTInfo; | |
T = FixedTInfo->getType(); | |
} else { | |
if (SizeIsNegative) | |
Diag(Loc, diag::err_typecheck_negative_array_size); | |
else if (Oversized.getBoolValue()) | |
Diag(Loc, diag::err_array_too_large) | |
<< Oversized.toString(10); | |
else | |
Diag(Loc, diag::err_typecheck_field_variable_size); | |
InvalidDecl = true; | |
} | |
} | |
// Fields can not have abstract class types | |
if (!InvalidDecl && RequireNonAbstractType(Loc, T, | |
diag::err_abstract_type_in_decl, | |
AbstractFieldType)) | |
InvalidDecl = true; | |
bool ZeroWidth = false; | |
if (InvalidDecl) | |
BitWidth = nullptr; | |
// If this is declared as a bit-field, check the bit-field. | |
if (BitWidth) { | |
BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, | |
&ZeroWidth).get(); | |
if (!BitWidth) { | |
InvalidDecl = true; | |
BitWidth = nullptr; | |
ZeroWidth = false; | |
} | |
} | |
// Check that 'mutable' is consistent with the type of the declaration. | |
if (!InvalidDecl && Mutable) { | |
unsigned DiagID = 0; | |
if (T->isReferenceType()) | |
DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference | |
: diag::err_mutable_reference; | |
else if (T.isConstQualified()) | |
DiagID = diag::err_mutable_const; | |
if (DiagID) { | |
SourceLocation ErrLoc = Loc; | |
if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) | |
ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); | |
Diag(ErrLoc, DiagID); | |
if (DiagID != diag::ext_mutable_reference) { | |
Mutable = false; | |
InvalidDecl = true; | |
} | |
} | |
} | |
// C++11 [class.union]p8 (DR1460): | |
// At most one variant member of a union may have a | |
// brace-or-equal-initializer. | |
if (InitStyle != ICIS_NoInit) | |
checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); | |
FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, | |
BitWidth, Mutable, InitStyle); | |
if (InvalidDecl) | |
NewFD->setInvalidDecl(); | |
if (PrevDecl && !isa<TagDecl>(PrevDecl)) { | |
Diag(Loc, diag::err_duplicate_member) << II; | |
Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |
NewFD->setInvalidDecl(); | |
} | |
if (!InvalidDecl && getLangOpts().CPlusPlus) { | |
if (Record->isUnion()) { | |
if (const RecordType *RT = EltTy->getAs<RecordType>()) { | |
CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | |
if (RDecl->getDefinition()) { | |
// C++ [class.union]p1: An object of a class with a non-trivial | |
// constructor, a non-trivial copy constructor, a non-trivial | |
// destructor, or a non-trivial copy assignment operator | |
// cannot be a member of a union, nor can an array of such | |
// objects. | |
if (CheckNontrivialField(NewFD)) | |
NewFD->setInvalidDecl(); | |
} | |
} | |
// C++ [class.union]p1: If a union contains a member of reference type, | |
// the program is ill-formed, except when compiling with MSVC extensions | |
// enabled. | |
if (EltTy->isReferenceType()) { | |
Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? | |
diag::ext_union_member_of_reference_type : | |
diag::err_union_member_of_reference_type) | |
<< NewFD->getDeclName() << EltTy; | |
if (!getLangOpts().MicrosoftExt) | |
NewFD->setInvalidDecl(); | |
} | |
} | |
} | |
// FIXME: We need to pass in the attributes given an AST | |
// representation, not a parser representation. | |
if (D) { | |
// FIXME: The current scope is almost... but not entirely... correct here. | |
ProcessDeclAttributes(getCurScope(), NewFD, *D); | |
if (NewFD->hasAttrs()) | |
CheckAlignasUnderalignment(NewFD); | |
} | |
// In auto-retain/release, infer strong retension for fields of | |
// retainable type. | |
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) | |
NewFD->setInvalidDecl(); | |
if (T.isObjCGCWeak()) | |
Diag(Loc, diag::warn_attribute_weak_on_field); | |
// PPC MMA non-pointer types are not allowed as field types. | |
if (Context.getTargetInfo().getTriple().isPPC64() && | |
CheckPPCMMAType(T, NewFD->getLocation())) | |
NewFD->setInvalidDecl(); | |
NewFD->setAccess(AS); | |
return NewFD; | |
} | |
bool Sema::CheckNontrivialField(FieldDecl *FD) { | |
assert(FD); | |
assert(getLangOpts().CPlusPlus && "valid check only for C++"); | |
if (FD->isInvalidDecl() || FD->getType()->isDependentType()) | |
return false; | |
QualType EltTy = Context.getBaseElementType(FD->getType()); | |
if (const RecordType *RT = EltTy->getAs<RecordType>()) { | |
CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); | |
if (RDecl->getDefinition()) { | |
// We check for copy constructors before constructors | |
// because otherwise we'll never get complaints about | |
// copy constructors. | |
CXXSpecialMember member = CXXInvalid; | |
// We're required to check for any non-trivial constructors. Since the | |
// implicit default constructor is suppressed if there are any | |
// user-declared constructors, we just need to check that there is a | |
// trivial default constructor and a trivial copy constructor. (We don't | |
// worry about move constructors here, since this is a C++98 check.) | |
if (RDecl->hasNonTrivialCopyConstructor()) | |
member = CXXCopyConstructor; | |
else if (!RDecl->hasTrivialDefaultConstructor()) | |
member = CXXDefaultConstructor; | |
else if (RDecl->hasNonTrivialCopyAssignment()) | |
member = CXXCopyAssignment; | |
else if (RDecl->hasNonTrivialDestructor()) | |
member = CXXDestructor; | |
if (member != CXXInvalid) { | |
if (!getLangOpts().CPlusPlus11 && | |
getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { | |
// Objective-C++ ARC: it is an error to have a non-trivial field of | |
// a union. However, system headers in Objective-C programs | |
// occasionally have Objective-C lifetime objects within unions, | |
// and rather than cause the program to fail, we make those | |
// members unavailable. | |
SourceLocation Loc = FD->getLocation(); | |
if (getSourceManager().isInSystemHeader(Loc)) { | |
if (!FD->hasAttr<UnavailableAttr>()) | |
FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", | |
UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); | |
return false; | |
} | |
} | |
Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? | |
diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : | |
diag::err_illegal_union_or_anon_struct_member) | |
<< FD->getParent()->isUnion() << FD->getDeclName() << member; | |
DiagnoseNontrivial(RDecl, member); | |
return !getLangOpts().CPlusPlus11; | |
} | |
} | |
} | |
return false; | |
} | |
/// TranslateIvarVisibility - Translate visibility from a token ID to an | |
/// AST enum value. | |
static ObjCIvarDecl::AccessControl | |
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { | |
switch (ivarVisibility) { | |
default: llvm_unreachable("Unknown visitibility kind"); | |
case tok::objc_private: return ObjCIvarDecl::Private; | |
case tok::objc_public: return ObjCIvarDecl::Public; | |
case tok::objc_protected: return ObjCIvarDecl::Protected; | |
case tok::objc_package: return ObjCIvarDecl::Package; | |
} | |
} | |
/// ActOnIvar - Each ivar field of an objective-c class is passed into this | |
/// in order to create an IvarDecl object for it. | |
Decl *Sema::ActOnIvar(Scope *S, | |
SourceLocation DeclStart, | |
Declarator &D, Expr *BitfieldWidth, | |
tok::ObjCKeywordKind Visibility) { | |
IdentifierInfo *II = D.getIdentifier(); | |
Expr *BitWidth = (Expr*)BitfieldWidth; | |
SourceLocation Loc = DeclStart; | |
if (II) Loc = D.getIdentifierLoc(); | |
// FIXME: Unnamed fields can be handled in various different ways, for | |
// example, unnamed unions inject all members into the struct namespace! | |
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |
QualType T = TInfo->getType(); | |
if (BitWidth) { | |
// 6.7.2.1p3, 6.7.2.1p4 | |
BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); | |
if (!BitWidth) | |
D.setInvalidType(); | |
} else { | |
// Not a bitfield. | |
// validate II. | |
} | |
if (T->isReferenceType()) { | |
Diag(Loc, diag::err_ivar_reference_type); | |
D.setInvalidType(); | |
} | |
// C99 6.7.2.1p8: A member of a structure or union may have any type other | |
// than a variably modified type. | |
else if (T->isVariablyModifiedType()) { | |
Diag(Loc, diag::err_typecheck_ivar_variable_size); | |
D.setInvalidType(); | |
} | |
// Get the visibility (access control) for this ivar. | |
ObjCIvarDecl::AccessControl ac = | |
Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) | |
: ObjCIvarDecl::None; | |
// Must set ivar's DeclContext to its enclosing interface. | |
ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); | |
if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) | |
return nullptr; | |
ObjCContainerDecl *EnclosingContext; | |
if (ObjCImplementationDecl *IMPDecl = | |
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | |
if (LangOpts.ObjCRuntime.isFragile()) { | |
// Case of ivar declared in an implementation. Context is that of its class. | |
EnclosingContext = IMPDecl->getClassInterface(); | |
assert(EnclosingContext && "Implementation has no class interface!"); | |
} | |
else | |
EnclosingContext = EnclosingDecl; | |
} else { | |
if (ObjCCategoryDecl *CDecl = | |
dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | |
if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { | |
Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); | |
return nullptr; | |
} | |
} | |
EnclosingContext = EnclosingDecl; | |
} | |
// Construct the decl. | |
ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, | |
DeclStart, Loc, II, T, | |
TInfo, ac, (Expr *)BitfieldWidth); | |
if (II) { | |
NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, | |
ForVisibleRedeclaration); | |
if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) | |
&& !isa<TagDecl>(PrevDecl)) { | |
Diag(Loc, diag::err_duplicate_member) << II; | |
Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |
NewID->setInvalidDecl(); | |
} | |
} | |
// Process attributes attached to the ivar. | |
ProcessDeclAttributes(S, NewID, D); | |
if (D.isInvalidType()) | |
NewID->setInvalidDecl(); | |
// In ARC, infer 'retaining' for ivars of retainable type. | |
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) | |
NewID->setInvalidDecl(); | |
if (D.getDeclSpec().isModulePrivateSpecified()) | |
NewID->setModulePrivate(); | |
if (II) { | |
// FIXME: When interfaces are DeclContexts, we'll need to add | |
// these to the interface. | |
S->AddDecl(NewID); | |
IdResolver.AddDecl(NewID); | |
} | |
if (LangOpts.ObjCRuntime.isNonFragile() && | |
!NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) | |
Diag(Loc, diag::warn_ivars_in_interface); | |
return NewID; | |
} | |
/// ActOnLastBitfield - This routine handles synthesized bitfields rules for | |
/// class and class extensions. For every class \@interface and class | |
/// extension \@interface, if the last ivar is a bitfield of any type, | |
/// then add an implicit `char :0` ivar to the end of that interface. | |
void Sema::ActOnLastBitfield(SourceLocation DeclLoc, | |
SmallVectorImpl<Decl *> &AllIvarDecls) { | |
if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) | |
return; | |
Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; | |
ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); | |
if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) | |
return; | |
ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); | |
if (!ID) { | |
if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { | |
if (!CD->IsClassExtension()) | |
return; | |
} | |
// No need to add this to end of @implementation. | |
else | |
return; | |
} | |
// All conditions are met. Add a new bitfield to the tail end of ivars. | |
llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); | |
Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); | |
Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), | |
DeclLoc, DeclLoc, nullptr, | |
Context.CharTy, | |
Context.getTrivialTypeSourceInfo(Context.CharTy, | |
DeclLoc), | |
ObjCIvarDecl::Private, BW, | |
true); | |
AllIvarDecls.push_back(Ivar); | |
} | |
void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, | |
ArrayRef<Decl *> Fields, SourceLocation LBrac, | |
SourceLocation RBrac, | |
const ParsedAttributesView &Attrs) { | |
assert(EnclosingDecl && "missing record or interface decl"); | |
// If this is an Objective-C @implementation or category and we have | |
// new fields here we should reset the layout of the interface since | |
// it will now change. | |
if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { | |
ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); | |
switch (DC->getKind()) { | |
default: break; | |
case Decl::ObjCCategory: | |
Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); | |
break; | |
case Decl::ObjCImplementation: | |
Context. | |
ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); | |
break; | |
} | |
} | |
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); | |
CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); | |
// Start counting up the number of named members; make sure to include | |
// members of anonymous structs and unions in the total. | |
unsigned NumNamedMembers = 0; | |
if (Record) { | |
for (const auto *I : Record->decls()) { | |
if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | |
if (IFD->getDeclName()) | |
++NumNamedMembers; | |
} | |
} | |
// Verify that all the fields are okay. | |
SmallVector<FieldDecl*, 32> RecFields; | |
for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); | |
i != end; ++i) { | |
FieldDecl *FD = cast<FieldDecl>(*i); | |
// Get the type for the field. | |
const Type *FDTy = FD->getType().getTypePtr(); | |
if (!FD->isAnonymousStructOrUnion()) { | |
// Remember all fields written by the user. | |
RecFields.push_back(FD); | |
} | |
// If the field is already invalid for some reason, don't emit more | |
// diagnostics about it. | |
if (FD->isInvalidDecl()) { | |
EnclosingDecl->setInvalidDecl(); | |
continue; | |
} | |
// C99 6.7.2.1p2: | |
// A structure or union shall not contain a member with | |
// incomplete or function type (hence, a structure shall not | |
// contain an instance of itself, but may contain a pointer to | |
// an instance of itself), except that the last member of a | |
// structure with more than one named member may have incomplete | |
// array type; such a structure (and any union containing, | |
// possibly recursively, a member that is such a structure) | |
// shall not be a member of a structure or an element of an | |
// array. | |
bool IsLastField = (i + 1 == Fields.end()); | |
if (FDTy->isFunctionType()) { | |
// Field declared as a function. | |
Diag(FD->getLocation(), diag::err_field_declared_as_function) | |
<< FD->getDeclName(); | |
FD->setInvalidDecl(); | |
EnclosingDecl->setInvalidDecl(); | |
continue; | |
} else if (FDTy->isIncompleteArrayType() && | |
(Record || isa<ObjCContainerDecl>(EnclosingDecl))) { | |
if (Record) { | |
// Flexible array member. | |
// Microsoft and g++ is more permissive regarding flexible array. | |
// It will accept flexible array in union and also | |
// as the sole element of a struct/class. | |
unsigned DiagID = 0; | |
if (!Record->isUnion() && !IsLastField) { | |
Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) | |
<< FD->getDeclName() << FD->getType() << Record->getTagKind(); | |
Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); | |
FD->setInvalidDecl(); | |
EnclosingDecl->setInvalidDecl(); | |
continue; | |
} else if (Record->isUnion()) | |
DiagID = getLangOpts().MicrosoftExt | |
? diag::ext_flexible_array_union_ms | |
: getLangOpts().CPlusPlus | |
? diag::ext_flexible_array_union_gnu | |
: diag::err_flexible_array_union; | |
else if (NumNamedMembers < 1) | |
DiagID = getLangOpts().MicrosoftExt | |
? diag::ext_flexible_array_empty_aggregate_ms | |
: getLangOpts().CPlusPlus | |
? diag::ext_flexible_array_empty_aggregate_gnu | |
: diag::err_flexible_array_empty_aggregate; | |
if (DiagID) | |
Diag(FD->getLocation(), DiagID) << FD->getDeclName() | |
<< Record->getTagKind(); | |
// While the layout of types that contain virtual bases is not specified | |
// by the C++ standard, both the Itanium and Microsoft C++ ABIs place | |
// virtual bases after the derived members. This would make a flexible | |
// array member declared at the end of an object not adjacent to the end | |
// of the type. | |
if (CXXRecord && CXXRecord->getNumVBases() != 0) | |
Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) | |
<< FD->getDeclName() << Record->getTagKind(); | |
if (!getLangOpts().C99) | |
Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) | |
<< FD->getDeclName() << Record->getTagKind(); | |
// If the element type has a non-trivial destructor, we would not | |
// implicitly destroy the elements, so disallow it for now. | |
// | |
// FIXME: GCC allows this. We should probably either implicitly delete | |
// the destructor of the containing class, or just allow this. | |
QualType BaseElem = Context.getBaseElementType(FD->getType()); | |
if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { | |
Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) | |
<< FD->getDeclName() << FD->getType(); | |
FD->setInvalidDecl(); | |
EnclosingDecl->setInvalidDecl(); | |
continue; | |
} | |
// Okay, we have a legal flexible array member at the end of the struct. | |
Record->setHasFlexibleArrayMember(true); | |
} else { | |
// In ObjCContainerDecl ivars with incomplete array type are accepted, | |
// unless they are followed by another ivar. That check is done | |
// elsewhere, after synthesized ivars are known. | |
} | |
} else if (!FDTy->isDependentType() && | |
RequireCompleteSizedType( | |
FD->getLocation(), FD->getType(), | |
diag::err_field_incomplete_or_sizeless)) { | |
// Incomplete type | |
FD->setInvalidDecl(); | |
EnclosingDecl->setInvalidDecl(); | |
continue; | |
} else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { | |
if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { | |
// A type which contains a flexible array member is considered to be a | |
// flexible array member. | |
Record->setHasFlexibleArrayMember(true); | |
if (!Record->isUnion()) { | |
// If this is a struct/class and this is not the last element, reject | |
// it. Note that GCC supports variable sized arrays in the middle of | |
// structures. | |
if (!IsLastField) | |
Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) | |
<< FD->getDeclName() << FD->getType(); | |
else { | |
// We support flexible arrays at the end of structs in | |
// other structs as an extension. | |
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) | |
<< FD->getDeclName(); | |
} | |
} | |
} | |
if (isa<ObjCContainerDecl>(EnclosingDecl) && | |
RequireNonAbstractType(FD->getLocation(), FD->getType(), | |
diag::err_abstract_type_in_decl, | |
AbstractIvarType)) { | |
// Ivars can not have abstract class types | |
FD->setInvalidDecl(); | |
} | |
if (Record && FDTTy->getDecl()->hasObjectMember()) | |
Record->setHasObjectMember(true); | |
if (Record && FDTTy->getDecl()->hasVolatileMember()) | |
Record->setHasVolatileMember(true); | |
} else if (FDTy->isObjCObjectType()) { | |
/// A field cannot be an Objective-c object | |
Diag(FD->getLocation(), diag::err_statically_allocated_object) | |
<< FixItHint::CreateInsertion(FD->getLocation(), "*"); | |
QualType T = Context.getObjCObjectPointerType(FD->getType()); | |
FD->setType(T); | |
} else if (Record && Record->isUnion() && | |
FD->getType().hasNonTrivialObjCLifetime() && | |
getSourceManager().isInSystemHeader(FD->getLocation()) && | |
!getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && | |
(FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || | |
!Context.hasDirectOwnershipQualifier(FD->getType()))) { | |
// For backward compatibility, fields of C unions declared in system | |
// headers that have non-trivial ObjC ownership qualifications are marked | |
// as unavailable unless the qualifier is explicit and __strong. This can | |
// break ABI compatibility between programs compiled with ARC and MRR, but | |
// is a better option than rejecting programs using those unions under | |
// ARC. | |
FD->addAttr(UnavailableAttr::CreateImplicit( | |
Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, | |
FD->getLocation())); | |
} else if (getLangOpts().ObjC && | |
getLangOpts().getGC() != LangOptions::NonGC && Record && | |
!Record->hasObjectMember()) { | |
if (FD->getType()->isObjCObjectPointerType() || | |
FD->getType().isObjCGCStrong()) | |
Record->setHasObjectMember(true); | |
else if (Context.getAsArrayType(FD->getType())) { | |
QualType BaseType = Context.getBaseElementType(FD->getType()); | |
if (BaseType->isRecordType() && | |
BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) | |
Record->setHasObjectMember(true); | |
else if (BaseType->isObjCObjectPointerType() || | |
BaseType.isObjCGCStrong()) | |
Record->setHasObjectMember(true); | |
} | |
} | |
if (Record && !getLangOpts().CPlusPlus && | |
!shouldIgnoreForRecordTriviality(FD)) { | |
QualType FT = FD->getType(); | |
if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { | |
Record->setNonTrivialToPrimitiveDefaultInitialize(true); | |
if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |
Record->isUnion()) | |
Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); | |
} | |
QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); | |
if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { | |
Record->setNonTrivialToPrimitiveCopy(true); | |
if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) | |
Record->setHasNonTrivialToPrimitiveCopyCUnion(true); | |
} | |
if (FT.isDestructedType()) { | |
Record->setNonTrivialToPrimitiveDestroy(true); | |
Record->setParamDestroyedInCallee(true); | |
if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) | |
Record->setHasNonTrivialToPrimitiveDestructCUnion(true); | |
} | |
if (const auto *RT = FT->getAs<RecordType>()) { | |
if (RT->getDecl()->getArgPassingRestrictions() == | |
RecordDecl::APK_CanNeverPassInRegs) | |
Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | |
} else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) | |
Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | |
} | |
if (Record && FD->getType().isVolatileQualified()) | |
Record->setHasVolatileMember(true); | |
// Keep track of the number of named members. | |
if (FD->getIdentifier()) | |
++NumNamedMembers; | |
} | |
// Okay, we successfully defined 'Record'. | |
if (Record) { | |
bool Completed = false; | |
if (CXXRecord) { | |
if (!CXXRecord->isInvalidDecl()) { | |
// Set access bits correctly on the directly-declared conversions. | |
for (CXXRecordDecl::conversion_iterator | |
I = CXXRecord->conversion_begin(), | |
E = CXXRecord->conversion_end(); I != E; ++I) | |
I.setAccess((*I)->getAccess()); | |
} | |
// Add any implicitly-declared members to this class. | |
AddImplicitlyDeclaredMembersToClass(CXXRecord); | |
if (!CXXRecord->isDependentType()) { | |
if (!CXXRecord->isInvalidDecl()) { | |
// If we have virtual base classes, we may end up finding multiple | |
// final overriders for a given virtual function. Check for this | |
// problem now. | |
if (CXXRecord->getNumVBases()) { | |
CXXFinalOverriderMap FinalOverriders; | |
CXXRecord->getFinalOverriders(FinalOverriders); | |
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | |
MEnd = FinalOverriders.end(); | |
M != MEnd; ++M) { | |
for (OverridingMethods::iterator SO = M->second.begin(), | |
SOEnd = M->second.end(); | |
SO != SOEnd; ++SO) { | |
assert(SO->second.size() > 0 && | |
"Virtual function without overriding functions?"); | |
if (SO->second.size() == 1) | |
continue; | |
// C++ [class.virtual]p2: | |
// In a derived class, if a virtual member function of a base | |
// class subobject has more than one final overrider the | |
// program is ill-formed. | |
Diag(Record->getLocation(), diag::err_multiple_final_overriders) | |
<< (const NamedDecl *)M->first << Record; | |
Diag(M->first->getLocation(), | |
diag::note_overridden_virtual_function); | |
for (OverridingMethods::overriding_iterator | |
OM = SO->second.begin(), | |
OMEnd = SO->second.end(); | |
OM != OMEnd; ++OM) | |
Diag(OM->Method->getLocation(), diag::note_final_overrider) | |
<< (const NamedDecl *)M->first << OM->Method->getParent(); | |
Record->setInvalidDecl(); | |
} | |
} | |
CXXRecord->completeDefinition(&FinalOverriders); | |
Completed = true; | |
} | |
} | |
} | |
} | |
if (!Completed) | |
Record->completeDefinition(); | |
// Handle attributes before checking the layout. | |
ProcessDeclAttributeList(S, Record, Attrs); | |
// We may have deferred checking for a deleted destructor. Check now. | |
if (CXXRecord) { | |
auto *Dtor = CXXRecord->getDestructor(); | |
if (Dtor && Dtor->isImplicit() && | |
ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { | |
CXXRecord->setImplicitDestructorIsDeleted(); | |
SetDeclDeleted(Dtor, CXXRecord->getLocation()); | |
} | |
} | |
if (Record->hasAttrs()) { | |
CheckAlignasUnderalignment(Record); | |
if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) | |
checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), | |
IA->getRange(), IA->getBestCase(), | |
IA->getInheritanceModel()); | |
} | |
// Check if the structure/union declaration is a type that can have zero | |
// size in C. For C this is a language extension, for C++ it may cause | |
// compatibility problems. | |
bool CheckForZeroSize; | |
if (!getLangOpts().CPlusPlus) { | |
CheckForZeroSize = true; | |
} else { | |
// For C++ filter out types that cannot be referenced in C code. | |
CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); | |
CheckForZeroSize = | |
CXXRecord->getLexicalDeclContext()->isExternCContext() && | |
!CXXRecord->isDependentType() && !inTemplateInstantiation() && | |
CXXRecord->isCLike(); | |
} | |
if (CheckForZeroSize) { | |
bool ZeroSize = true; | |
bool IsEmpty = true; | |
unsigned NonBitFields = 0; | |
for (RecordDecl::field_iterator I = Record->field_begin(), | |
E = Record->field_end(); | |
(NonBitFields == 0 || ZeroSize) && I != E; ++I) { | |
IsEmpty = false; | |
if (I->isUnnamedBitfield()) { | |
if (!I->isZeroLengthBitField(Context)) | |
ZeroSize = false; | |
} else { | |
++NonBitFields; | |
QualType FieldType = I->getType(); | |
if (FieldType->isIncompleteType() || | |
!Context.getTypeSizeInChars(FieldType).isZero()) | |
ZeroSize = false; | |
} | |
} | |
// Empty structs are an extension in C (C99 6.7.2.1p7). They are | |
// allowed in C++, but warn if its declaration is inside | |
// extern "C" block. | |
if (ZeroSize) { | |
Diag(RecLoc, getLangOpts().CPlusPlus ? | |
diag::warn_zero_size_struct_union_in_extern_c : | |
diag::warn_zero_size_struct_union_compat) | |
<< IsEmpty << Record->isUnion() << (NonBitFields > 1); | |
} | |
// Structs without named members are extension in C (C99 6.7.2.1p7), | |
// but are accepted by GCC. | |
if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { | |
Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : | |
diag::ext_no_named_members_in_struct_union) | |
<< Record->isUnion(); | |
} | |
} | |
} else { | |
ObjCIvarDecl **ClsFields = | |
reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); | |
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { | |
ID->setEndOfDefinitionLoc(RBrac); | |
// Add ivar's to class's DeclContext. | |
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | |
ClsFields[i]->setLexicalDeclContext(ID); | |
ID->addDecl(ClsFields[i]); | |
} | |
// Must enforce the rule that ivars in the base classes may not be | |
// duplicates. | |
if (ID->getSuperClass()) | |
DiagnoseDuplicateIvars(ID, ID->getSuperClass()); | |
} else if (ObjCImplementationDecl *IMPDecl = | |
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | |
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); | |
for (unsigned I = 0, N = RecFields.size(); I != N; ++I) | |
// Ivar declared in @implementation never belongs to the implementation. | |
// Only it is in implementation's lexical context. | |
ClsFields[I]->setLexicalDeclContext(IMPDecl); | |
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); | |
IMPDecl->setIvarLBraceLoc(LBrac); | |
IMPDecl->setIvarRBraceLoc(RBrac); | |
} else if (ObjCCategoryDecl *CDecl = | |
dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | |
// case of ivars in class extension; all other cases have been | |
// reported as errors elsewhere. | |
// FIXME. Class extension does not have a LocEnd field. | |
// CDecl->setLocEnd(RBrac); | |
// Add ivar's to class extension's DeclContext. | |
// Diagnose redeclaration of private ivars. | |
ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); | |
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | |
if (IDecl) { | |
if (const ObjCIvarDecl *ClsIvar = | |
IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { | |
Diag(ClsFields[i]->getLocation(), | |
diag::err_duplicate_ivar_declaration); | |
Diag(ClsIvar->getLocation(), diag::note_previous_definition); | |
continue; | |
} | |
for (const auto *Ext : IDecl->known_extensions()) { | |
if (const ObjCIvarDecl *ClsExtIvar | |
= Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { | |
Diag(ClsFields[i]->getLocation(), | |
diag::err_duplicate_ivar_declaration); | |
Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); | |
continue; | |
} | |
} | |
} | |
ClsFields[i]->setLexicalDeclContext(CDecl); | |
CDecl->addDecl(ClsFields[i]); | |
} | |
CDecl->setIvarLBraceLoc(LBrac); | |
CDecl->setIvarRBraceLoc(RBrac); | |
} | |
} | |
} | |
/// Determine whether the given integral value is representable within | |
/// the given type T. | |
static bool isRepresentableIntegerValue(ASTContext &Context, | |
llvm::APSInt &Value, | |
QualType T) { | |
assert((T->isIntegralType(Context) || T->isEnumeralType()) && | |
"Integral type required!"); | |
unsigned BitWidth = Context.getIntWidth(T); | |
if (Value.isUnsigned() || Value.isNonNegative()) { | |
if (T->isSignedIntegerOrEnumerationType()) | |
--BitWidth; | |
return Value.getActiveBits() <= BitWidth; | |
} | |
return Value.getMinSignedBits() <= BitWidth; | |
} | |
// Given an integral type, return the next larger integral type | |
// (or a NULL type of no such type exists). | |
static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { | |
// FIXME: Int128/UInt128 support, which also needs to be introduced into | |
// enum checking below. | |
assert((T->isIntegralType(Context) || | |
T->isEnumeralType()) && "Integral type required!"); | |
const unsigned NumTypes = 4; | |
QualType SignedIntegralTypes[NumTypes] = { | |
Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy | |
}; | |
QualType UnsignedIntegralTypes[NumTypes] = { | |
Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, | |
Context.UnsignedLongLongTy | |
}; | |
unsigned BitWidth = Context.getTypeSize(T); | |
QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes | |
: UnsignedIntegralTypes; | |
for (unsigned I = 0; I != NumTypes; ++I) | |
if (Context.getTypeSize(Types[I]) > BitWidth) | |
return Types[I]; | |
return QualType(); | |
} | |
EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, | |
EnumConstantDecl *LastEnumConst, | |
SourceLocation IdLoc, | |
IdentifierInfo *Id, | |
Expr *Val) { | |
unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | |
llvm::APSInt EnumVal(IntWidth); | |
QualType EltTy; | |
if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) | |
Val = nullptr; | |
if (Val) | |
Val = DefaultLvalueConversion(Val).get(); | |
if (Val) { | |
if (Enum->isDependentType() || Val->isTypeDependent()) | |
EltTy = Context.DependentTy; | |
else { | |
// FIXME: We don't allow folding in C++11 mode for an enum with a fixed | |
// underlying type, but do allow it in all other contexts. | |
if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { | |
// C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the | |
// constant-expression in the enumerator-definition shall be a converted | |
// constant expression of the underlying type. | |
EltTy = Enum->getIntegerType(); | |
ExprResult Converted = | |
CheckConvertedConstantExpression(Val, EltTy, EnumVal, | |
CCEK_Enumerator); | |
if (Converted.isInvalid()) | |
Val = nullptr; | |
else | |
Val = Converted.get(); | |
} else if (!Val->isValueDependent() && | |
!(Val = | |
VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold) | |
.get())) { | |
// C99 6.7.2.2p2: Make sure we have an integer constant expression. | |
} else { | |
if (Enum->isComplete()) { | |
EltTy = Enum->getIntegerType(); | |
// In Obj-C and Microsoft mode, require the enumeration value to be | |
// representable in the underlying type of the enumeration. In C++11, | |
// we perform a non-narrowing conversion as part of converted constant | |
// expression checking. | |
if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | |
if (Context.getTargetInfo() | |
.getTriple() | |
.isWindowsMSVCEnvironment()) { | |
Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; | |
} else { | |
Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; | |
} | |
} | |
// Cast to the underlying type. | |
Val = ImpCastExprToType(Val, EltTy, | |
EltTy->isBooleanType() ? CK_IntegralToBoolean | |
: CK_IntegralCast) | |
.get(); | |
} else if (getLangOpts().CPlusPlus) { | |
// C++11 [dcl.enum]p5: | |
// If the underlying type is not fixed, the type of each enumerator | |
// is the type of its initializing value: | |
// - If an initializer is specified for an enumerator, the | |
// initializing value has the same type as the expression. | |
EltTy = Val->getType(); | |
} else { | |
// C99 6.7.2.2p2: | |
// The expression that defines the value of an enumeration constant | |
// shall be an integer constant expression that has a value | |
// representable as an int. | |
// Complain if the value is not representable in an int. | |
if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) | |
Diag(IdLoc, diag::ext_enum_value_not_int) | |
<< EnumVal.toString(10) << Val->getSourceRange() | |
<< (EnumVal.isUnsigned() || EnumVal.isNonNegative()); | |
else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { | |
// Force the type of the expression to 'int'. | |
Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); | |
} | |
EltTy = Val->getType(); | |
} | |
} | |
} | |
} | |
if (!Val) { | |
if (Enum->isDependentType()) | |
EltTy = Context.DependentTy; | |
else if (!LastEnumConst) { | |
// C++0x [dcl.enum]p5: | |
// If the underlying type is not fixed, the type of each enumerator | |
// is the type of its initializing value: | |
// - If no initializer is specified for the first enumerator, the | |
// initializing value has an unspecified integral type. | |
// | |
// GCC uses 'int' for its unspecified integral type, as does | |
// C99 6.7.2.2p3. | |
if (Enum->isFixed()) { | |
EltTy = Enum->getIntegerType(); | |
} | |
else { | |
EltTy = Context.IntTy; | |
} | |
} else { | |
// Assign the last value + 1. | |
EnumVal = LastEnumConst->getInitVal(); | |
++EnumVal; | |
EltTy = LastEnumConst->getType(); | |
// Check for overflow on increment. | |
if (EnumVal < LastEnumConst->getInitVal()) { | |
// C++0x [dcl.enum]p5: | |
// If the underlying type is not fixed, the type of each enumerator | |
// is the type of its initializing value: | |
// | |
// - Otherwise the type of the initializing value is the same as | |
// the type of the initializing value of the preceding enumerator | |
// unless the incremented value is not representable in that type, | |
// in which case the type is an unspecified integral type | |
// sufficient to contain the incremented value. If no such type | |
// exists, the program is ill-formed. | |
QualType T = getNextLargerIntegralType(Context, EltTy); | |
if (T.isNull() || Enum->isFixed()) { | |
// There is no integral type larger enough to represent this | |
// value. Complain, then allow the value to wrap around. | |
EnumVal = LastEnumConst->getInitVal(); | |
EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); | |
++EnumVal; | |
if (Enum->isFixed()) | |
// When the underlying type is fixed, this is ill-formed. | |
Diag(IdLoc, diag::err_enumerator_wrapped) | |
<< EnumVal.toString(10) | |
<< EltTy; | |
else | |
Diag(IdLoc, diag::ext_enumerator_increment_too_large) | |
<< EnumVal.toString(10); | |
} else { | |
EltTy = T; | |
} | |
// Retrieve the last enumerator's value, extent that type to the | |
// type that is supposed to be large enough to represent the incremented | |
// value, then increment. | |
EnumVal = LastEnumConst->getInitVal(); | |
EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | |
EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | |
++EnumVal; | |
// If we're not in C++, diagnose the overflow of enumerator values, | |
// which in C99 means that the enumerator value is not representable in | |
// an int (C99 6.7.2.2p2). However, we support GCC's extension that | |
// permits enumerator values that are representable in some larger | |
// integral type. | |
if (!getLangOpts().CPlusPlus && !T.isNull()) | |
Diag(IdLoc, diag::warn_enum_value_overflow); | |
} else if (!getLangOpts().CPlusPlus && | |
!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | |
// Enforce C99 6.7.2.2p2 even when we compute the next value. | |
Diag(IdLoc, diag::ext_enum_value_not_int) | |
<< EnumVal.toString(10) << 1; | |
} | |
} | |
} | |
if (!EltTy->isDependentType()) { | |
// Make the enumerator value match the signedness and size of the | |
// enumerator's type. | |
EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); | |
EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | |
} | |
return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, | |
Val, EnumVal); | |
} | |
Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, | |
SourceLocation IILoc) { | |
if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || | |
!getLangOpts().CPlusPlus) | |
return SkipBodyInfo(); | |
// We have an anonymous enum definition. Look up the first enumerator to | |
// determine if we should merge the definition with an existing one and | |
// skip the body. | |
NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, | |
forRedeclarationInCurContext()); | |
auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); | |
if (!PrevECD) | |
return SkipBodyInfo(); | |
EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); | |
NamedDecl *Hidden; | |
if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { | |
SkipBodyInfo Skip; | |
Skip.Previous = Hidden; | |
return Skip; | |
} | |
return SkipBodyInfo(); | |
} | |
Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, | |
SourceLocation IdLoc, IdentifierInfo *Id, | |
const ParsedAttributesView &Attrs, | |
SourceLocation EqualLoc, Expr *Val) { | |
EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); | |
EnumConstantDecl *LastEnumConst = | |
cast_or_null<EnumConstantDecl>(lastEnumConst); | |
// The scope passed in may not be a decl scope. Zip up the scope tree until | |
// we find one that is. | |
S = getNonFieldDeclScope(S); | |
// Verify that there isn't already something declared with this name in this | |
// scope. | |
LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); | |
LookupName(R, S); | |
NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); | |
if (PrevDecl && PrevDecl->isTemplateParameter()) { | |
// Maybe we will complain about the shadowed template parameter. | |
DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); | |
// Just pretend that we didn't see the previous declaration. | |
PrevDecl = nullptr; | |
} | |
// C++ [class.mem]p15: | |
// If T is the name of a class, then each of the following shall have a name | |
// different from T: | |
// - every enumerator of every member of class T that is an unscoped | |
// enumerated type | |
if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) | |
DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), | |
DeclarationNameInfo(Id, IdLoc)); | |
EnumConstantDecl *New = | |
CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); | |
if (!New) | |
return nullptr; | |
if (PrevDecl) { | |
if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { | |
// Check for other kinds of shadowing not already handled. | |
CheckShadow(New, PrevDecl, R); | |
} | |
// When in C++, we may get a TagDecl with the same name; in this case the | |
// enum constant will 'hide' the tag. | |
assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && | |
"Received TagDecl when not in C++!"); | |
if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { | |
if (isa<EnumConstantDecl>(PrevDecl)) | |
Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; | |
else | |
Diag(IdLoc, diag::err_redefinition) << Id; | |
notePreviousDefinition(PrevDecl, IdLoc); | |
return nullptr; | |
} | |
} | |
// Process attributes. | |
ProcessDeclAttributeList(S, New, Attrs); | |
AddPragmaAttributes(S, New); | |
// Register this decl in the current scope stack. | |
New->setAccess(TheEnumDecl->getAccess()); | |
PushOnScopeChains(New, S); | |
ActOnDocumentableDecl(New); | |
return New; | |
} | |
// Returns true when the enum initial expression does not trigger the | |
// duplicate enum warning. A few common cases are exempted as follows: | |
// Element2 = Element1 | |
// Element2 = Element1 + 1 | |
// Element2 = Element1 - 1 | |
// Where Element2 and Element1 are from the same enum. | |
static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { | |
Expr *InitExpr = ECD->getInitExpr(); | |
if (!InitExpr) | |
return true; | |
InitExpr = InitExpr->IgnoreImpCasts(); | |
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { | |
if (!BO->isAdditiveOp()) | |
return true; | |
IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); | |
if (!IL) | |
return true; | |
if (IL->getValue() != 1) | |
return true; | |
InitExpr = BO->getLHS(); | |
} | |
// This checks if the elements are from the same enum. | |
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); | |
if (!DRE) | |
return true; | |
EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); | |
if (!EnumConstant) | |
return true; | |
if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != | |
Enum) | |
return true; | |
return false; | |
} | |
// Emits a warning when an element is implicitly set a value that | |
// a previous element has already been set to. | |
static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, | |
EnumDecl *Enum, QualType EnumType) { | |
// Avoid anonymous enums | |
if (!Enum->getIdentifier()) | |
return; | |
// Only check for small enums. | |
if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) | |
return; | |
if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) | |
return; | |
typedef SmallVector<EnumConstantDecl *, 3> ECDVector; | |
typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; | |
typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; | |
// DenseMaps cannot contain the all ones int64_t value, so use unordered_map. | |
typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; | |
// Use int64_t as a key to avoid needing special handling for map keys. | |
auto EnumConstantToKey = [](const EnumConstantDecl *D) { | |
llvm::APSInt Val = D->getInitVal(); | |
return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); | |
}; | |
DuplicatesVector DupVector; | |
ValueToVectorMap EnumMap; | |
// Populate the EnumMap with all values represented by enum constants without | |
// an initializer. | |
for (auto *Element : Elements) { | |
EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); | |
// Null EnumConstantDecl means a previous diagnostic has been emitted for | |
// this constant. Skip this enum since it may be ill-formed. | |
if (!ECD) { | |
return; | |
} | |
// Constants with initalizers are handled in the next loop. | |
if (ECD->getInitExpr()) | |
continue; | |
// Duplicate values are handled in the next loop. | |
EnumMap.insert({EnumConstantToKey(ECD), ECD}); | |
} | |
if (EnumMap.size() == 0) | |
return; | |
// Create vectors for any values that has duplicates. | |
for (auto *Element : Elements) { | |
// The last loop returned if any constant was null. | |
EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); | |
if (!ValidDuplicateEnum(ECD, Enum)) | |
continue; | |
auto Iter = EnumMap.find(EnumConstantToKey(ECD)); | |
if (Iter == EnumMap.end()) | |
continue; | |
DeclOrVector& Entry = Iter->second; | |
if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { | |
// Ensure constants are different. | |
if (D == ECD) | |
continue; | |
// Create new vector and push values onto it. | |
auto Vec = std::make_unique<ECDVector>(); | |
Vec->push_back(D); | |
Vec->push_back(ECD); | |
// Update entry to point to the duplicates vector. | |
Entry = Vec.get(); | |
// Store the vector somewhere we can consult later for quick emission of | |
// diagnostics. | |
DupVector.emplace_back(std::move(Vec)); | |
continue; | |
} | |
ECDVector *Vec = Entry.get<ECDVector*>(); | |
// Make sure constants are not added more than once. | |
if (*Vec->begin() == ECD) | |
continue; | |
Vec->push_back(ECD); | |
} | |
// Emit diagnostics. | |
for (const auto &Vec : DupVector) { | |
assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); | |
// Emit warning for one enum constant. | |
auto *FirstECD = Vec->front(); | |
S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) | |
<< FirstECD << FirstECD->getInitVal().toString(10) | |
<< FirstECD->getSourceRange(); | |
// Emit one note for each of the remaining enum constants with | |
// the same value. | |
for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) | |
S.Diag(ECD->getLocation(), diag::note_duplicate_element) | |
<< ECD << ECD->getInitVal().toString(10) | |
<< ECD->getSourceRange(); | |
} | |
} | |
bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, | |
bool AllowMask) const { | |
assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); | |
assert(ED->isCompleteDefinition() && "expected enum definition"); | |
auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); | |
llvm::APInt &FlagBits = R.first->second; | |
if (R.second) { | |
for (auto *E : ED->enumerators()) { | |
const auto &EVal = E->getInitVal(); | |
// Only single-bit enumerators introduce new flag values. | |
if (EVal.isPowerOf2()) | |
FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; | |
} | |
} | |
// A value is in a flag enum if either its bits are a subset of the enum's | |
// flag bits (the first condition) or we are allowing masks and the same is | |
// true of its complement (the second condition). When masks are allowed, we | |
// allow the common idiom of ~(enum1 | enum2) to be a valid enum value. | |
// | |
// While it's true that any value could be used as a mask, the assumption is | |
// that a mask will have all of the insignificant bits set. Anything else is | |
// likely a logic error. | |
llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); | |
return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); | |
} | |
void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, | |
Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, | |
const ParsedAttributesView &Attrs) { | |
EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); | |
QualType EnumType = Context.getTypeDeclType(Enum); | |
ProcessDeclAttributeList(S, Enum, Attrs); | |
if (Enum->isDependentType()) { | |
for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | |
EnumConstantDecl *ECD = | |
cast_or_null<EnumConstantDecl>(Elements[i]); | |
if (!ECD) continue; | |
ECD->setType(EnumType); | |
} | |
Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); | |
return; | |
} | |
// TODO: If the result value doesn't fit in an int, it must be a long or long | |
// long value. ISO C does not support this, but GCC does as an extension, | |
// emit a warning. | |
unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | |
unsigned CharWidth = Context.getTargetInfo().getCharWidth(); | |
unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); | |
// Verify that all the values are okay, compute the size of the values, and | |
// reverse the list. | |
unsigned NumNegativeBits = 0; | |
unsigned NumPositiveBits = 0; | |
// Keep track of whether all elements have type int. | |
bool AllElementsInt = true; | |
for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | |
EnumConstantDecl *ECD = | |
cast_or_null<EnumConstantDecl>(Elements[i]); | |
if (!ECD) continue; // Already issued a diagnostic. | |
const llvm::APSInt &InitVal = ECD->getInitVal(); | |
// Keep track of the size of positive and negative values. | |
if (InitVal.isUnsigned() || InitVal.isNonNegative()) | |
NumPositiveBits = std::max(NumPositiveBits, | |
(unsigned)InitVal.getActiveBits()); | |
else | |
NumNegativeBits = std::max(NumNegativeBits, | |
(unsigned)InitVal.getMinSignedBits()); | |
// Keep track of whether every enum element has type int (very common). | |
if (AllElementsInt) | |
AllElementsInt = ECD->getType() == Context.IntTy; | |
} | |
// Figure out the type that should be used for this enum. | |
QualType BestType; | |
unsigned BestWidth; | |
// C++0x N3000 [conv.prom]p3: | |
// An rvalue of an unscoped enumeration type whose underlying | |
// type is not fixed can be converted to an rvalue of the first | |
// of the following types that can represent all the values of | |
// the enumeration: int, unsigned int, long int, unsigned long | |
// int, long long int, or unsigned long long int. | |
// C99 6.4.4.3p2: | |
// An identifier declared as an enumeration constant has type int. | |
// The C99 rule is modified by a gcc extension | |
QualType BestPromotionType; | |
bool Packed = Enum->hasAttr<PackedAttr>(); | |
// -fshort-enums is the equivalent to specifying the packed attribute on all | |
// enum definitions. | |
if (LangOpts.ShortEnums) | |
Packed = true; | |
// If the enum already has a type because it is fixed or dictated by the | |
// target, promote that type instead of analyzing the enumerators. | |
if (Enum->isComplete()) { | |
BestType = Enum->getIntegerType(); | |
if (BestType->isPromotableIntegerType()) | |
BestPromotionType = Context.getPromotedIntegerType(BestType); | |
else | |
BestPromotionType = BestType; | |
BestWidth = Context.getIntWidth(BestType); | |
} | |
else if (NumNegativeBits) { | |
// If there is a negative value, figure out the smallest integer type (of | |
// int/long/longlong) that fits. | |
// If it's packed, check also if it fits a char or a short. | |
if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { | |
BestType = Context.SignedCharTy; | |
BestWidth = CharWidth; | |
} else if (Packed && NumNegativeBits <= ShortWidth && | |
NumPositiveBits < ShortWidth) { | |
BestType = Context.ShortTy; | |
BestWidth = ShortWidth; | |
} else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { | |
BestType = Context.IntTy; | |
BestWidth = IntWidth; | |
} else { | |
BestWidth = Context.getTargetInfo().getLongWidth(); | |
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { | |
BestType = Context.LongTy; | |
} else { | |
BestWidth = Context.getTargetInfo().getLongLongWidth(); | |
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) | |
Diag(Enum->getLocation(), diag::ext_enum_too_large); | |
BestType = Context.LongLongTy; | |
} | |
} | |
BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); | |
} else { | |
// If there is no negative value, figure out the smallest type that fits | |
// all of the enumerator values. | |
// If it's packed, check also if it fits a char or a short. | |
if (Packed && NumPositiveBits <= CharWidth) { | |
BestType = Context.UnsignedCharTy; | |
BestPromotionType = Context.IntTy; | |
BestWidth = CharWidth; | |
} else if (Packed && NumPositiveBits <= ShortWidth) { | |
BestType = Context.UnsignedShortTy; | |
BestPromotionType = Context.IntTy; | |
BestWidth = ShortWidth; | |
} else if (NumPositiveBits <= IntWidth) { | |
BestType = Context.UnsignedIntTy; | |
BestWidth = IntWidth; | |
BestPromotionType | |
= (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | |
? Context.UnsignedIntTy : Context.IntTy; | |
} else if (NumPositiveBits <= | |
(BestWidth = Context.getTargetInfo().getLongWidth())) { | |
BestType = Context.UnsignedLongTy; | |
BestPromotionType | |
= (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | |
? Context.UnsignedLongTy : Context.LongTy; | |
} else { | |
BestWidth = Context.getTargetInfo().getLongLongWidth(); | |
assert(NumPositiveBits <= BestWidth && | |
"How could an initializer get larger than ULL?"); | |
BestType = Context.UnsignedLongLongTy; | |
BestPromotionType | |
= (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | |
? Context.UnsignedLongLongTy : Context.LongLongTy; | |
} | |
} | |
// Loop over all of the enumerator constants, changing their types to match | |
// the type of the enum if needed. | |
for (auto *D : Elements) { | |
auto *ECD = cast_or_null<EnumConstantDecl>(D); | |
if (!ECD) continue; // Already issued a diagnostic. | |
// Standard C says the enumerators have int type, but we allow, as an | |
// extension, the enumerators to be larger than int size. If each | |
// enumerator value fits in an int, type it as an int, otherwise type it the | |
// same as the enumerator decl itself. This means that in "enum { X = 1U }" | |
// that X has type 'int', not 'unsigned'. | |
// Determine whether the value fits into an int. | |
llvm::APSInt InitVal = ECD->getInitVal(); | |
// If it fits into an integer type, force it. Otherwise force it to match | |
// the enum decl type. | |
QualType NewTy; | |
unsigned NewWidth; | |
bool NewSign; | |
if (!getLangOpts().CPlusPlus && | |
!Enum->isFixed() && | |
isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { | |
NewTy = Context.IntTy; | |
NewWidth = IntWidth; | |
NewSign = true; | |
} else if (ECD->getType() == BestType) { | |
// Already the right type! | |
if (getLangOpts().CPlusPlus) | |
// C++ [dcl.enum]p4: Following the closing brace of an | |
// enum-specifier, each enumerator has the type of its | |
// enumeration. | |
ECD->setType(EnumType); | |
continue; | |
} else { | |
NewTy = BestType; | |
NewWidth = BestWidth; | |
NewSign = BestType->isSignedIntegerOrEnumerationType(); | |
} | |
// Adjust the APSInt value. | |
InitVal = InitVal.extOrTrunc(NewWidth); | |
InitVal.setIsSigned(NewSign); | |
ECD->setInitVal(InitVal); | |
// Adjust the Expr initializer and type. | |
if (ECD->getInitExpr() && | |
!Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) | |
ECD->setInitExpr(ImplicitCastExpr::Create( | |
Context, NewTy, CK_IntegralCast, ECD->getInitExpr(), | |
/*base paths*/ nullptr, VK_RValue, FPOptionsOverride())); | |
if (getLangOpts().CPlusPlus) | |
// C++ [dcl.enum]p4: Following the closing brace of an | |
// enum-specifier, each enumerator has the type of its | |
// enumeration. | |
ECD->setType(EnumType); | |
else | |
ECD->setType(NewTy); | |
} | |
Enum->completeDefinition(BestType, BestPromotionType, | |
NumPositiveBits, NumNegativeBits); | |
CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); | |
if (Enum->isClosedFlag()) { | |
for (Decl *D : Elements) { | |
EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); | |
if (!ECD) continue; // Already issued a diagnostic. | |
llvm::APSInt InitVal = ECD->getInitVal(); | |
if (InitVal != 0 && !InitVal.isPowerOf2() && | |
!IsValueInFlagEnum(Enum, InitVal, true)) | |
Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) | |
<< ECD << Enum; | |
} | |
} | |
// Now that the enum type is defined, ensure it's not been underaligned. | |
if (Enum->hasAttrs()) | |
CheckAlignasUnderalignment(Enum); | |
} | |
Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, | |
SourceLocation StartLoc, | |
SourceLocation EndLoc) { | |
StringLiteral *AsmString = cast<StringLiteral>(expr); | |
FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, | |
AsmString, StartLoc, | |
EndLoc); | |
CurContext->addDecl(New); | |
return New; | |
} | |
void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, | |
IdentifierInfo* AliasName, | |
SourceLocation PragmaLoc, | |
SourceLocation NameLoc, | |
SourceLocation AliasNameLoc) { | |
NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, | |
LookupOrdinaryName); | |
AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), | |
AttributeCommonInfo::AS_Pragma); | |
AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( | |
Context, AliasName->getName(), /*LiteralLabel=*/true, Info); | |
// If a declaration that: | |
// 1) declares a function or a variable | |
// 2) has external linkage | |
// already exists, add a label attribute to it. | |
if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { | |
if (isDeclExternC(PrevDecl)) | |
PrevDecl->addAttr(Attr); | |
else | |
Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) | |
<< /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; | |
// Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. | |
} else | |
(void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); | |
} | |
void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, | |
SourceLocation PragmaLoc, | |
SourceLocation NameLoc) { | |
Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); | |
if (PrevDecl) { | |
PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma)); | |
} else { | |
(void)WeakUndeclaredIdentifiers.insert( | |
std::pair<IdentifierInfo*,WeakInfo> | |
(Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); | |
} | |
} | |
void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, | |
IdentifierInfo* AliasName, | |
SourceLocation PragmaLoc, | |
SourceLocation NameLoc, | |
SourceLocation AliasNameLoc) { | |
Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, | |
LookupOrdinaryName); | |
WeakInfo W = WeakInfo(Name, NameLoc); | |
if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { | |
if (!PrevDecl->hasAttr<AliasAttr>()) | |
if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) | |
DeclApplyPragmaWeak(TUScope, ND, W); | |
} else { | |
(void)WeakUndeclaredIdentifiers.insert( | |
std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); | |
} | |
} | |
Decl *Sema::getObjCDeclContext() const { | |
return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); | |
} | |
Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD, | |
bool Final) { | |
// SYCL functions can be template, so we check if they have appropriate | |
// attribute prior to checking if it is a template. | |
if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>()) | |
return FunctionEmissionStatus::Emitted; | |
// Templates are emitted when they're instantiated. | |
if (FD->isDependentContext()) | |
return FunctionEmissionStatus::TemplateDiscarded; | |
FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown; | |
if (LangOpts.OpenMPIsDevice) { | |
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = | |
OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); | |
if (DevTy.hasValue()) { | |
if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) | |
OMPES = FunctionEmissionStatus::OMPDiscarded; | |
else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost || | |
*DevTy == OMPDeclareTargetDeclAttr::DT_Any) { | |
OMPES = FunctionEmissionStatus::Emitted; | |
} | |
} | |
} else if (LangOpts.OpenMP) { | |
// In OpenMP 4.5 all the functions are host functions. | |
if (LangOpts.OpenMP <= 45) { | |
OMPES = FunctionEmissionStatus::Emitted; | |
} else { | |
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = | |
OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); | |
// In OpenMP 5.0 or above, DevTy may be changed later by | |
// #pragma omp declare target to(*) device_type(*). Therefore DevTy | |
// having no value does not imply host. The emission status will be | |
// checked again at the end of compilation unit. | |
if (DevTy.hasValue()) { | |
if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) { | |
OMPES = FunctionEmissionStatus::OMPDiscarded; | |
} else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host || | |
*DevTy == OMPDeclareTargetDeclAttr::DT_Any) | |
OMPES = FunctionEmissionStatus::Emitted; | |
} else if (Final) | |
OMPES = FunctionEmissionStatus::Emitted; | |
} | |
} | |
if (OMPES == FunctionEmissionStatus::OMPDiscarded || | |
(OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA)) | |
return OMPES; | |
if (LangOpts.CUDA) { | |
// When compiling for device, host functions are never emitted. Similarly, | |
// when compiling for host, device and global functions are never emitted. | |
// (Technically, we do emit a host-side stub for global functions, but this | |
// doesn't count for our purposes here.) | |
Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); | |
if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) | |
return FunctionEmissionStatus::CUDADiscarded; | |
if (!LangOpts.CUDAIsDevice && | |
(T == Sema::CFT_Device || T == Sema::CFT_Global)) | |
return FunctionEmissionStatus::CUDADiscarded; | |
// Check whether this function is externally visible -- if so, it's | |
// known-emitted. | |
// | |
// We have to check the GVA linkage of the function's *definition* -- if we | |
// only have a declaration, we don't know whether or not the function will | |
// be emitted, because (say) the definition could include "inline". | |
FunctionDecl *Def = FD->getDefinition(); | |
if (Def && | |
!isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def)) | |
&& (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted)) | |
return FunctionEmissionStatus::Emitted; | |
} | |
// Otherwise, the function is known-emitted if it's in our set of | |
// known-emitted functions. | |
return FunctionEmissionStatus::Unknown; | |
} | |
bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { | |
// Host-side references to a __global__ function refer to the stub, so the | |
// function itself is never emitted and therefore should not be marked. | |
// If we have host fn calls kernel fn calls host+device, the HD function | |
// does not get instantiated on the host. We model this by omitting at the | |
// call to the kernel from the callgraph. This ensures that, when compiling | |
// for host, only HD functions actually called from the host get marked as | |
// known-emitted. | |
return LangOpts.CUDA && !LangOpts.CUDAIsDevice && | |
IdentifyCUDATarget(Callee) == CFT_Global; | |
} |