blob: dbfd896362c76d711d15c958435f9d2893b4dce0 [file] [log] [blame]
//===- OffloadWrapper.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "OffloadWrapper.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
namespace {
/// Magic number that begins the section containing the CUDA fatbinary.
constexpr unsigned CudaFatMagic = 0x466243b1;
constexpr unsigned HIPFatMagic = 0x48495046;
/// Copied from clang/CGCudaRuntime.h.
enum OffloadEntryKindFlag : uint32_t {
/// Mark the entry as a global entry. This indicates the presense of a
/// kernel if the size size field is zero and a variable otherwise.
OffloadGlobalEntry = 0x0,
/// Mark the entry as a managed global variable.
OffloadGlobalManagedEntry = 0x1,
/// Mark the entry as a surface variable.
OffloadGlobalSurfaceEntry = 0x2,
/// Mark the entry as a texture variable.
OffloadGlobalTextureEntry = 0x3,
};
IntegerType *getSizeTTy(Module &M) {
LLVMContext &C = M.getContext();
switch (M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))) {
case 4u:
return Type::getInt32Ty(C);
case 8u:
return Type::getInt64Ty(C);
}
llvm_unreachable("unsupported pointer type size");
}
// struct __tgt_offload_entry {
// void *addr;
// char *name;
// size_t size;
// int32_t flags;
// int32_t reserved;
// };
StructType *getEntryTy(Module &M) {
LLVMContext &C = M.getContext();
StructType *EntryTy = StructType::getTypeByName(C, "__tgt_offload_entry");
if (!EntryTy)
EntryTy = StructType::create("__tgt_offload_entry", Type::getInt8PtrTy(C),
Type::getInt8PtrTy(C), getSizeTTy(M),
Type::getInt32Ty(C), Type::getInt32Ty(C));
return EntryTy;
}
PointerType *getEntryPtrTy(Module &M) {
return PointerType::getUnqual(getEntryTy(M));
}
// struct __tgt_device_image {
// void *ImageStart;
// void *ImageEnd;
// __tgt_offload_entry *EntriesBegin;
// __tgt_offload_entry *EntriesEnd;
// };
StructType *getDeviceImageTy(Module &M) {
LLVMContext &C = M.getContext();
StructType *ImageTy = StructType::getTypeByName(C, "__tgt_device_image");
if (!ImageTy)
ImageTy = StructType::create("__tgt_device_image", Type::getInt8PtrTy(C),
Type::getInt8PtrTy(C), getEntryPtrTy(M),
getEntryPtrTy(M));
return ImageTy;
}
PointerType *getDeviceImagePtrTy(Module &M) {
return PointerType::getUnqual(getDeviceImageTy(M));
}
// struct __tgt_bin_desc {
// int32_t NumDeviceImages;
// __tgt_device_image *DeviceImages;
// __tgt_offload_entry *HostEntriesBegin;
// __tgt_offload_entry *HostEntriesEnd;
// };
StructType *getBinDescTy(Module &M) {
LLVMContext &C = M.getContext();
StructType *DescTy = StructType::getTypeByName(C, "__tgt_bin_desc");
if (!DescTy)
DescTy = StructType::create("__tgt_bin_desc", Type::getInt32Ty(C),
getDeviceImagePtrTy(M), getEntryPtrTy(M),
getEntryPtrTy(M));
return DescTy;
}
PointerType *getBinDescPtrTy(Module &M) {
return PointerType::getUnqual(getBinDescTy(M));
}
/// Creates binary descriptor for the given device images. Binary descriptor
/// is an object that is passed to the offloading runtime at program startup
/// and it describes all device images available in the executable or shared
/// library. It is defined as follows
///
/// __attribute__((visibility("hidden")))
/// extern __tgt_offload_entry *__start_omp_offloading_entries;
/// __attribute__((visibility("hidden")))
/// extern __tgt_offload_entry *__stop_omp_offloading_entries;
///
/// static const char Image0[] = { <Bufs.front() contents> };
/// ...
/// static const char ImageN[] = { <Bufs.back() contents> };
///
/// static const __tgt_device_image Images[] = {
/// {
/// Image0, /*ImageStart*/
/// Image0 + sizeof(Image0), /*ImageEnd*/
/// __start_omp_offloading_entries, /*EntriesBegin*/
/// __stop_omp_offloading_entries /*EntriesEnd*/
/// },
/// ...
/// {
/// ImageN, /*ImageStart*/
/// ImageN + sizeof(ImageN), /*ImageEnd*/
/// __start_omp_offloading_entries, /*EntriesBegin*/
/// __stop_omp_offloading_entries /*EntriesEnd*/
/// }
/// };
///
/// static const __tgt_bin_desc BinDesc = {
/// sizeof(Images) / sizeof(Images[0]), /*NumDeviceImages*/
/// Images, /*DeviceImages*/
/// __start_omp_offloading_entries, /*HostEntriesBegin*/
/// __stop_omp_offloading_entries /*HostEntriesEnd*/
/// };
///
/// Global variable that represents BinDesc is returned.
GlobalVariable *createBinDesc(Module &M, ArrayRef<ArrayRef<char>> Bufs) {
LLVMContext &C = M.getContext();
// Create external begin/end symbols for the offload entries table.
auto *EntriesB = new GlobalVariable(
M, getEntryTy(M), /*isConstant*/ true, GlobalValue::ExternalLinkage,
/*Initializer*/ nullptr, "__start_omp_offloading_entries");
EntriesB->setVisibility(GlobalValue::HiddenVisibility);
auto *EntriesE = new GlobalVariable(
M, getEntryTy(M), /*isConstant*/ true, GlobalValue::ExternalLinkage,
/*Initializer*/ nullptr, "__stop_omp_offloading_entries");
EntriesE->setVisibility(GlobalValue::HiddenVisibility);
// We assume that external begin/end symbols that we have created above will
// be defined by the linker. But linker will do that only if linker inputs
// have section with "omp_offloading_entries" name which is not guaranteed.
// So, we just create dummy zero sized object in the offload entries section
// to force linker to define those symbols.
auto *DummyInit =
ConstantAggregateZero::get(ArrayType::get(getEntryTy(M), 0u));
auto *DummyEntry = new GlobalVariable(
M, DummyInit->getType(), true, GlobalVariable::ExternalLinkage, DummyInit,
"__dummy.omp_offloading.entry");
DummyEntry->setSection("omp_offloading_entries");
DummyEntry->setVisibility(GlobalValue::HiddenVisibility);
auto *Zero = ConstantInt::get(getSizeTTy(M), 0u);
Constant *ZeroZero[] = {Zero, Zero};
// Create initializer for the images array.
SmallVector<Constant *, 4u> ImagesInits;
ImagesInits.reserve(Bufs.size());
for (ArrayRef<char> Buf : Bufs) {
auto *Data = ConstantDataArray::get(C, Buf);
auto *Image = new GlobalVariable(M, Data->getType(), /*isConstant*/ true,
GlobalVariable::InternalLinkage, Data,
".omp_offloading.device_image");
Image->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
Image->setSection(".llvm.offloading");
Image->setAlignment(Align(object::OffloadBinary::getAlignment()));
auto *Size = ConstantInt::get(getSizeTTy(M), Buf.size());
Constant *ZeroSize[] = {Zero, Size};
auto *ImageB =
ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroZero);
auto *ImageE =
ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroSize);
ImagesInits.push_back(ConstantStruct::get(getDeviceImageTy(M), ImageB,
ImageE, EntriesB, EntriesE));
}
// Then create images array.
auto *ImagesData = ConstantArray::get(
ArrayType::get(getDeviceImageTy(M), ImagesInits.size()), ImagesInits);
auto *Images =
new GlobalVariable(M, ImagesData->getType(), /*isConstant*/ true,
GlobalValue::InternalLinkage, ImagesData,
".omp_offloading.device_images");
Images->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
auto *ImagesB =
ConstantExpr::getGetElementPtr(Images->getValueType(), Images, ZeroZero);
// And finally create the binary descriptor object.
auto *DescInit = ConstantStruct::get(
getBinDescTy(M),
ConstantInt::get(Type::getInt32Ty(C), ImagesInits.size()), ImagesB,
EntriesB, EntriesE);
return new GlobalVariable(M, DescInit->getType(), /*isConstant*/ true,
GlobalValue::InternalLinkage, DescInit,
".omp_offloading.descriptor");
}
void createRegisterFunction(Module &M, GlobalVariable *BinDesc) {
LLVMContext &C = M.getContext();
auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage,
".omp_offloading.descriptor_reg", &M);
Func->setSection(".text.startup");
// Get __tgt_register_lib function declaration.
auto *RegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M),
/*isVarArg*/ false);
FunctionCallee RegFuncC =
M.getOrInsertFunction("__tgt_register_lib", RegFuncTy);
// Construct function body
IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func));
Builder.CreateCall(RegFuncC, BinDesc);
Builder.CreateRetVoid();
// Add this function to constructors.
// Set priority to 1 so that __tgt_register_lib is executed AFTER
// __tgt_register_requires (we want to know what requirements have been
// asked for before we load a libomptarget plugin so that by the time the
// plugin is loaded it can report how many devices there are which can
// satisfy these requirements).
appendToGlobalCtors(M, Func, /*Priority*/ 1);
}
void createUnregisterFunction(Module &M, GlobalVariable *BinDesc) {
LLVMContext &C = M.getContext();
auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage,
".omp_offloading.descriptor_unreg", &M);
Func->setSection(".text.startup");
// Get __tgt_unregister_lib function declaration.
auto *UnRegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M),
/*isVarArg*/ false);
FunctionCallee UnRegFuncC =
M.getOrInsertFunction("__tgt_unregister_lib", UnRegFuncTy);
// Construct function body
IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func));
Builder.CreateCall(UnRegFuncC, BinDesc);
Builder.CreateRetVoid();
// Add this function to global destructors.
// Match priority of __tgt_register_lib
appendToGlobalDtors(M, Func, /*Priority*/ 1);
}
// struct fatbin_wrapper {
// int32_t magic;
// int32_t version;
// void *image;
// void *reserved;
//};
StructType *getFatbinWrapperTy(Module &M) {
LLVMContext &C = M.getContext();
StructType *FatbinTy = StructType::getTypeByName(C, "fatbin_wrapper");
if (!FatbinTy)
FatbinTy = StructType::create("fatbin_wrapper", Type::getInt32Ty(C),
Type::getInt32Ty(C), Type::getInt8PtrTy(C),
Type::getInt8PtrTy(C));
return FatbinTy;
}
/// Embed the image \p Image into the module \p M so it can be found by the
/// runtime.
GlobalVariable *createFatbinDesc(Module &M, ArrayRef<char> Image, bool IsHIP) {
LLVMContext &C = M.getContext();
llvm::Type *Int8PtrTy = Type::getInt8PtrTy(C);
llvm::Triple Triple = llvm::Triple(M.getTargetTriple());
// Create the global string containing the fatbinary.
StringRef FatbinConstantSection =
IsHIP ? ".hip_fatbin"
: (Triple.isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin");
auto *Data = ConstantDataArray::get(C, Image);
auto *Fatbin = new GlobalVariable(M, Data->getType(), /*isConstant*/ true,
GlobalVariable::InternalLinkage, Data,
".fatbin_image");
Fatbin->setSection(FatbinConstantSection);
// Create the fatbinary wrapper
StringRef FatbinWrapperSection = IsHIP ? ".hipFatBinSegment"
: Triple.isMacOSX() ? "__NV_CUDA,__fatbin"
: ".nvFatBinSegment";
Constant *FatbinWrapper[] = {
ConstantInt::get(Type::getInt32Ty(C), IsHIP ? HIPFatMagic : CudaFatMagic),
ConstantInt::get(Type::getInt32Ty(C), 1),
ConstantExpr::getPointerBitCastOrAddrSpaceCast(Fatbin, Int8PtrTy),
ConstantPointerNull::get(Type::getInt8PtrTy(C))};
Constant *FatbinInitializer =
ConstantStruct::get(getFatbinWrapperTy(M), FatbinWrapper);
auto *FatbinDesc =
new GlobalVariable(M, getFatbinWrapperTy(M),
/*isConstant*/ true, GlobalValue::InternalLinkage,
FatbinInitializer, ".fatbin_wrapper");
FatbinDesc->setSection(FatbinWrapperSection);
FatbinDesc->setAlignment(Align(8));
// We create a dummy entry to ensure the linker will define the begin / end
// symbols. The CUDA runtime should ignore the null address if we attempt to
// register it.
auto *DummyInit =
ConstantAggregateZero::get(ArrayType::get(getEntryTy(M), 0u));
auto *DummyEntry = new GlobalVariable(
M, DummyInit->getType(), true, GlobalVariable::ExternalLinkage, DummyInit,
IsHIP ? "__dummy.hip_offloading.entry" : "__dummy.cuda_offloading.entry");
DummyEntry->setVisibility(GlobalValue::HiddenVisibility);
DummyEntry->setSection(IsHIP ? "hip_offloading_entries"
: "cuda_offloading_entries");
return FatbinDesc;
}
/// Create the register globals function. We will iterate all of the offloading
/// entries stored at the begin / end symbols and register them according to
/// their type. This creates the following function in IR:
///
/// extern struct __tgt_offload_entry __start_cuda_offloading_entries;
/// extern struct __tgt_offload_entry __stop_cuda_offloading_entries;
///
/// extern void __cudaRegisterFunction(void **, void *, void *, void *, int,
/// void *, void *, void *, void *, int *);
/// extern void __cudaRegisterVar(void **, void *, void *, void *, int32_t,
/// int64_t, int32_t, int32_t);
///
/// void __cudaRegisterTest(void **fatbinHandle) {
/// for (struct __tgt_offload_entry *entry = &__start_cuda_offloading_entries;
/// entry != &__stop_cuda_offloading_entries; ++entry) {
/// if (!entry->size)
/// __cudaRegisterFunction(fatbinHandle, entry->addr, entry->name,
/// entry->name, -1, 0, 0, 0, 0, 0);
/// else
/// __cudaRegisterVar(fatbinHandle, entry->addr, entry->name, entry->name,
/// 0, entry->size, 0, 0);
/// }
/// }
Function *createRegisterGlobalsFunction(Module &M, bool IsHIP) {
LLVMContext &C = M.getContext();
// Get the __cudaRegisterFunction function declaration.
auto *RegFuncTy = FunctionType::get(
Type::getInt32Ty(C),
{Type::getInt8PtrTy(C)->getPointerTo(), Type::getInt8PtrTy(C),
Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt32Ty(C),
Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C),
Type::getInt8PtrTy(C), Type::getInt32PtrTy(C)},
/*isVarArg*/ false);
FunctionCallee RegFunc = M.getOrInsertFunction(
IsHIP ? "__hipRegisterFunction" : "__cudaRegisterFunction", RegFuncTy);
// Get the __cudaRegisterVar function declaration.
auto *RegVarTy = FunctionType::get(
Type::getVoidTy(C),
{Type::getInt8PtrTy(C)->getPointerTo(), Type::getInt8PtrTy(C),
Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt32Ty(C),
getSizeTTy(M), Type::getInt32Ty(C), Type::getInt32Ty(C)},
/*isVarArg*/ false);
FunctionCallee RegVar = M.getOrInsertFunction(
IsHIP ? "__hipRegisterVar" : "__cudaRegisterVar", RegVarTy);
// Create the references to the start / stop symbols defined by the linker.
auto *EntriesB =
new GlobalVariable(M, ArrayType::get(getEntryTy(M), 0),
/*isConstant*/ true, GlobalValue::ExternalLinkage,
/*Initializer*/ nullptr,
IsHIP ? "__start_hip_offloading_entries"
: "__start_cuda_offloading_entries");
EntriesB->setVisibility(GlobalValue::HiddenVisibility);
auto *EntriesE =
new GlobalVariable(M, ArrayType::get(getEntryTy(M), 0),
/*isConstant*/ true, GlobalValue::ExternalLinkage,
/*Initializer*/ nullptr,
IsHIP ? "__stop_hip_offloading_entries"
: "__stop_cuda_offloading_entries");
EntriesE->setVisibility(GlobalValue::HiddenVisibility);
auto *RegGlobalsTy = FunctionType::get(Type::getVoidTy(C),
Type::getInt8PtrTy(C)->getPointerTo(),
/*isVarArg*/ false);
auto *RegGlobalsFn =
Function::Create(RegGlobalsTy, GlobalValue::InternalLinkage,
IsHIP ? ".hip.globals_reg" : ".cuda.globals_reg", &M);
RegGlobalsFn->setSection(".text.startup");
// Create the loop to register all the entries.
IRBuilder<> Builder(BasicBlock::Create(C, "entry", RegGlobalsFn));
auto *EntryBB = BasicBlock::Create(C, "while.entry", RegGlobalsFn);
auto *IfThenBB = BasicBlock::Create(C, "if.then", RegGlobalsFn);
auto *IfElseBB = BasicBlock::Create(C, "if.else", RegGlobalsFn);
auto *SwGlobalBB = BasicBlock::Create(C, "sw.global", RegGlobalsFn);
auto *SwManagedBB = BasicBlock::Create(C, "sw.managed", RegGlobalsFn);
auto *SwSurfaceBB = BasicBlock::Create(C, "sw.surface", RegGlobalsFn);
auto *SwTextureBB = BasicBlock::Create(C, "sw.texture", RegGlobalsFn);
auto *IfEndBB = BasicBlock::Create(C, "if.end", RegGlobalsFn);
auto *ExitBB = BasicBlock::Create(C, "while.end", RegGlobalsFn);
auto *EntryCmp = Builder.CreateICmpNE(EntriesB, EntriesE);
Builder.CreateCondBr(EntryCmp, EntryBB, ExitBB);
Builder.SetInsertPoint(EntryBB);
auto *Entry = Builder.CreatePHI(getEntryPtrTy(M), 2, "entry");
auto *AddrPtr =
Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
{ConstantInt::get(getSizeTTy(M), 0),
ConstantInt::get(Type::getInt32Ty(C), 0)});
auto *Addr = Builder.CreateLoad(Type::getInt8PtrTy(C), AddrPtr, "addr");
auto *NamePtr =
Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
{ConstantInt::get(getSizeTTy(M), 0),
ConstantInt::get(Type::getInt32Ty(C), 1)});
auto *Name = Builder.CreateLoad(Type::getInt8PtrTy(C), NamePtr, "name");
auto *SizePtr =
Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
{ConstantInt::get(getSizeTTy(M), 0),
ConstantInt::get(Type::getInt32Ty(C), 2)});
auto *Size = Builder.CreateLoad(getSizeTTy(M), SizePtr, "size");
auto *FlagsPtr =
Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
{ConstantInt::get(getSizeTTy(M), 0),
ConstantInt::get(Type::getInt32Ty(C), 3)});
auto *Flags = Builder.CreateLoad(Type::getInt32Ty(C), FlagsPtr, "flag");
auto *FnCond =
Builder.CreateICmpEQ(Size, ConstantInt::getNullValue(getSizeTTy(M)));
Builder.CreateCondBr(FnCond, IfThenBB, IfElseBB);
// Create kernel registration code.
Builder.SetInsertPoint(IfThenBB);
Builder.CreateCall(RegFunc,
{RegGlobalsFn->arg_begin(), Addr, Name, Name,
ConstantInt::get(Type::getInt32Ty(C), -1),
ConstantPointerNull::get(Type::getInt8PtrTy(C)),
ConstantPointerNull::get(Type::getInt8PtrTy(C)),
ConstantPointerNull::get(Type::getInt8PtrTy(C)),
ConstantPointerNull::get(Type::getInt8PtrTy(C)),
ConstantPointerNull::get(Type::getInt32PtrTy(C))});
Builder.CreateBr(IfEndBB);
Builder.SetInsertPoint(IfElseBB);
auto *Switch = Builder.CreateSwitch(Flags, IfEndBB);
// Create global variable registration code.
Builder.SetInsertPoint(SwGlobalBB);
Builder.CreateCall(RegVar, {RegGlobalsFn->arg_begin(), Addr, Name, Name,
ConstantInt::get(Type::getInt32Ty(C), 0), Size,
ConstantInt::get(Type::getInt32Ty(C), 0),
ConstantInt::get(Type::getInt32Ty(C), 0)});
Builder.CreateBr(IfEndBB);
Switch->addCase(Builder.getInt32(OffloadGlobalEntry), SwGlobalBB);
// Create managed variable registration code.
Builder.SetInsertPoint(SwManagedBB);
Builder.CreateBr(IfEndBB);
Switch->addCase(Builder.getInt32(OffloadGlobalManagedEntry), SwManagedBB);
// Create surface variable registration code.
Builder.SetInsertPoint(SwSurfaceBB);
Builder.CreateBr(IfEndBB);
Switch->addCase(Builder.getInt32(OffloadGlobalSurfaceEntry), SwSurfaceBB);
// Create texture variable registration code.
Builder.SetInsertPoint(SwTextureBB);
Builder.CreateBr(IfEndBB);
Switch->addCase(Builder.getInt32(OffloadGlobalTextureEntry), SwTextureBB);
Builder.SetInsertPoint(IfEndBB);
auto *NewEntry = Builder.CreateInBoundsGEP(
getEntryTy(M), Entry, ConstantInt::get(getSizeTTy(M), 1));
auto *Cmp = Builder.CreateICmpEQ(
NewEntry,
ConstantExpr::getInBoundsGetElementPtr(
ArrayType::get(getEntryTy(M), 0), EntriesE,
ArrayRef<Constant *>({ConstantInt::get(getSizeTTy(M), 0),
ConstantInt::get(getSizeTTy(M), 0)})));
Entry->addIncoming(
ConstantExpr::getInBoundsGetElementPtr(
ArrayType::get(getEntryTy(M), 0), EntriesB,
ArrayRef<Constant *>({ConstantInt::get(getSizeTTy(M), 0),
ConstantInt::get(getSizeTTy(M), 0)})),
&RegGlobalsFn->getEntryBlock());
Entry->addIncoming(NewEntry, IfEndBB);
Builder.CreateCondBr(Cmp, ExitBB, EntryBB);
Builder.SetInsertPoint(ExitBB);
Builder.CreateRetVoid();
return RegGlobalsFn;
}
// Create the constructor and destructor to register the fatbinary with the CUDA
// runtime.
void createRegisterFatbinFunction(Module &M, GlobalVariable *FatbinDesc,
bool IsHIP) {
LLVMContext &C = M.getContext();
auto *CtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
auto *CtorFunc =
Function::Create(CtorFuncTy, GlobalValue::InternalLinkage,
IsHIP ? ".hip.fatbin_reg" : ".cuda.fatbin_reg", &M);
CtorFunc->setSection(".text.startup");
auto *DtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
auto *DtorFunc =
Function::Create(DtorFuncTy, GlobalValue::InternalLinkage,
IsHIP ? ".hip.fatbin_unreg" : ".cuda.fatbin_unreg", &M);
DtorFunc->setSection(".text.startup");
// Get the __cudaRegisterFatBinary function declaration.
auto *RegFatTy = FunctionType::get(Type::getInt8PtrTy(C)->getPointerTo(),
Type::getInt8PtrTy(C),
/*isVarArg*/ false);
FunctionCallee RegFatbin = M.getOrInsertFunction(
IsHIP ? "__hipRegisterFatBinary" : "__cudaRegisterFatBinary", RegFatTy);
// Get the __cudaRegisterFatBinaryEnd function declaration.
auto *RegFatEndTy = FunctionType::get(Type::getVoidTy(C),
Type::getInt8PtrTy(C)->getPointerTo(),
/*isVarArg*/ false);
FunctionCallee RegFatbinEnd =
M.getOrInsertFunction("__cudaRegisterFatBinaryEnd", RegFatEndTy);
// Get the __cudaUnregisterFatBinary function declaration.
auto *UnregFatTy = FunctionType::get(Type::getVoidTy(C),
Type::getInt8PtrTy(C)->getPointerTo(),
/*isVarArg*/ false);
FunctionCallee UnregFatbin = M.getOrInsertFunction(
IsHIP ? "__hipUnregisterFatBinary" : "__cudaUnregisterFatBinary",
UnregFatTy);
auto *AtExitTy =
FunctionType::get(Type::getInt32Ty(C), DtorFuncTy->getPointerTo(),
/*isVarArg*/ false);
FunctionCallee AtExit = M.getOrInsertFunction("atexit", AtExitTy);
auto *BinaryHandleGlobal = new llvm::GlobalVariable(
M, Type::getInt8PtrTy(C)->getPointerTo(), false,
llvm::GlobalValue::InternalLinkage,
llvm::ConstantPointerNull::get(Type::getInt8PtrTy(C)->getPointerTo()),
IsHIP ? ".hip.binary_handle" : ".cuda.binary_handle");
// Create the constructor to register this image with the runtime.
IRBuilder<> CtorBuilder(BasicBlock::Create(C, "entry", CtorFunc));
CallInst *Handle = CtorBuilder.CreateCall(
RegFatbin, ConstantExpr::getPointerBitCastOrAddrSpaceCast(
FatbinDesc, Type::getInt8PtrTy(C)));
CtorBuilder.CreateAlignedStore(
Handle, BinaryHandleGlobal,
Align(M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))));
CtorBuilder.CreateCall(createRegisterGlobalsFunction(M, IsHIP), Handle);
if (!IsHIP)
CtorBuilder.CreateCall(RegFatbinEnd, Handle);
CtorBuilder.CreateCall(AtExit, DtorFunc);
CtorBuilder.CreateRetVoid();
// Create the destructor to unregister the image with the runtime. We cannot
// use a standard global destructor after CUDA 9.2 so this must be called by
// `atexit()` intead.
IRBuilder<> DtorBuilder(BasicBlock::Create(C, "entry", DtorFunc));
LoadInst *BinaryHandle = DtorBuilder.CreateAlignedLoad(
Type::getInt8PtrTy(C)->getPointerTo(), BinaryHandleGlobal,
Align(M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))));
DtorBuilder.CreateCall(UnregFatbin, BinaryHandle);
DtorBuilder.CreateRetVoid();
// Add this function to constructors.
appendToGlobalCtors(M, CtorFunc, /*Priority*/ 1);
}
} // namespace
Error wrapOpenMPBinaries(Module &M, ArrayRef<ArrayRef<char>> Images) {
GlobalVariable *Desc = createBinDesc(M, Images);
if (!Desc)
return createStringError(inconvertibleErrorCode(),
"No binary descriptors created.");
createRegisterFunction(M, Desc);
createUnregisterFunction(M, Desc);
return Error::success();
}
Error wrapCudaBinary(Module &M, ArrayRef<char> Image) {
GlobalVariable *Desc = createFatbinDesc(M, Image, /* IsHIP */ false);
if (!Desc)
return createStringError(inconvertibleErrorCode(),
"No fatinbary section created.");
createRegisterFatbinFunction(M, Desc, /* IsHIP */ false);
return Error::success();
}
Error wrapHIPBinary(Module &M, ArrayRef<char> Image) {
GlobalVariable *Desc = createFatbinDesc(M, Image, /* IsHIP */ true);
if (!Desc)
return createStringError(inconvertibleErrorCode(),
"No fatinbary section created.");
createRegisterFatbinFunction(M, Desc, /* IsHIP */ true);
return Error::success();
}