blob: f0a114801dda5f29cd373e066e7cc7c440751b8f [file] [log] [blame]
//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//
#include "Yaml.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/YAMLTraits.h"
#include <limits>
#include <memory>
#include <utility>
#define DEBUG_TYPE "taint-checker"
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::ImmutableSet;
namespace {
class GenericTaintChecker;
/// Check for CWE-134: Uncontrolled Format String.
constexpr llvm::StringLiteral MsgUncontrolledFormatString =
"Untrusted data is used as a format string "
"(CWE-134: Uncontrolled Format String)";
/// Check for:
/// CERT/STR02-C. "Sanitize data passed to complex subsystems"
/// CWE-78, "Failure to Sanitize Data into an OS Command"
constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
"Untrusted data is passed to a system call "
"(CERT/STR02-C. Sanitize data passed to complex subsystems)";
/// Check if tainted data is used as a buffer size in strn.. functions,
/// and allocators.
constexpr llvm::StringLiteral MsgTaintedBufferSize =
"Untrusted data is used to specify the buffer size "
"(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
"for character data and the null terminator)";
/// Check if tainted data is used as a custom sink's parameter.
constexpr llvm::StringLiteral MsgCustomSink =
"Untrusted data is passed to a user-defined sink";
using ArgIdxTy = int;
using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>;
/// Denotes the return value.
constexpr ArgIdxTy ReturnValueIndex{-1};
static ArgIdxTy fromArgumentCount(unsigned Count) {
assert(Count <=
static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) &&
"ArgIdxTy is not large enough to represent the number of arguments.");
return Count;
}
/// Check if the region the expression evaluates to is the standard input,
/// and thus, is tainted.
/// FIXME: Move this to Taint.cpp.
bool isStdin(SVal Val, const ASTContext &ACtx) {
// FIXME: What if Val is NonParamVarRegion?
// The region should be symbolic, we do not know it's value.
const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
if (!SymReg)
return false;
// Get it's symbol and find the declaration region it's pointing to.
const auto *DeclReg =
dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion());
if (!DeclReg)
return false;
// This region corresponds to a declaration, find out if it's a global/extern
// variable named stdin with the proper type.
if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
D = D->getCanonicalDecl();
// FIXME: This should look for an exact match.
if (D->getName().contains("stdin") && D->isExternC()) {
const QualType FILETy = ACtx.getFILEType().getCanonicalType();
const QualType Ty = D->getType().getCanonicalType();
if (Ty->isPointerType())
return Ty->getPointeeType() == FILETy;
}
}
return false;
}
SVal getPointeeOf(const CheckerContext &C, Loc LValue) {
const QualType ArgTy = LValue.getType(C.getASTContext());
if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType())
return C.getState()->getSVal(LValue);
// Do not dereference void pointers. Treat them as byte pointers instead.
// FIXME: we might want to consider more than just the first byte.
return C.getState()->getSVal(LValue, C.getASTContext().CharTy);
}
/// Given a pointer/reference argument, return the value it refers to.
Optional<SVal> getPointeeOf(const CheckerContext &C, SVal Arg) {
if (auto LValue = Arg.getAs<Loc>())
return getPointeeOf(C, *LValue);
return None;
}
/// Given a pointer, return the SVal of its pointee or if it is tainted,
/// otherwise return the pointer's SVal if tainted.
/// Also considers stdin as a taint source.
Optional<SVal> getTaintedPointeeOrPointer(const CheckerContext &C, SVal Arg) {
const ProgramStateRef State = C.getState();
if (auto Pointee = getPointeeOf(C, Arg))
if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None;
return Pointee;
if (isTainted(State, Arg))
return Arg;
// FIXME: This should be done by the isTainted() API.
if (isStdin(Arg, C.getASTContext()))
return Arg;
return None;
}
bool isTaintedOrPointsToTainted(const Expr *E, const ProgramStateRef &State,
CheckerContext &C) {
return getTaintedPointeeOrPointer(C, C.getSVal(E)).has_value();
}
/// ArgSet is used to describe arguments relevant for taint detection or
/// taint application. A discrete set of argument indexes and a variadic
/// argument list signified by a starting index are supported.
class ArgSet {
public:
ArgSet() = default;
ArgSet(ArgVecTy &&DiscreteArgs, Optional<ArgIdxTy> VariadicIndex = None)
: DiscreteArgs(std::move(DiscreteArgs)),
VariadicIndex(std::move(VariadicIndex)) {}
bool contains(ArgIdxTy ArgIdx) const {
if (llvm::is_contained(DiscreteArgs, ArgIdx))
return true;
return VariadicIndex && ArgIdx >= *VariadicIndex;
}
bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; }
private:
ArgVecTy DiscreteArgs;
Optional<ArgIdxTy> VariadicIndex;
};
/// A struct used to specify taint propagation rules for a function.
///
/// If any of the possible taint source arguments is tainted, all of the
/// destination arguments should also be tainted. If ReturnValueIndex is added
/// to the dst list, the return value will be tainted.
class GenericTaintRule {
/// Arguments which are taints sinks and should be checked, and a report
/// should be emitted if taint reaches these.
ArgSet SinkArgs;
/// Arguments which should be sanitized on function return.
ArgSet FilterArgs;
/// Arguments which can participate in taint propagationa. If any of the
/// arguments in PropSrcArgs is tainted, all arguments in PropDstArgs should
/// be tainted.
ArgSet PropSrcArgs;
ArgSet PropDstArgs;
/// A message that explains why the call is sensitive to taint.
Optional<StringRef> SinkMsg;
GenericTaintRule() = default;
GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst,
Optional<StringRef> SinkMsg = None)
: SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)),
PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)),
SinkMsg(SinkMsg) {}
public:
/// Make a rule that reports a warning if taint reaches any of \p FilterArgs
/// arguments.
static GenericTaintRule Sink(ArgSet &&SinkArgs,
Optional<StringRef> Msg = None) {
return {std::move(SinkArgs), {}, {}, {}, Msg};
}
/// Make a rule that sanitizes all FilterArgs arguments.
static GenericTaintRule Filter(ArgSet &&FilterArgs) {
return {{}, std::move(FilterArgs), {}, {}};
}
/// Make a rule that unconditionally taints all Args.
/// If Func is provided, it must also return true for taint to propagate.
static GenericTaintRule Source(ArgSet &&SourceArgs) {
return {{}, {}, {}, std::move(SourceArgs)};
}
/// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) {
return {{}, {}, std::move(SrcArgs), std::move(DstArgs)};
}
/// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
static GenericTaintRule SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs,
ArgSet &&DstArgs,
Optional<StringRef> Msg = None) {
return {
std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg};
}
/// Process a function which could either be a taint source, a taint sink, a
/// taint filter or a taint propagator.
void process(const GenericTaintChecker &Checker, const CallEvent &Call,
CheckerContext &C) const;
/// Handles the resolution of indexes of type ArgIdxTy to Expr*-s.
static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) {
return ArgIdx == ReturnValueIndex ? Call.getOriginExpr()
: Call.getArgExpr(ArgIdx);
};
/// Functions for custom taintedness propagation.
static bool UntrustedEnv(CheckerContext &C);
};
using RuleLookupTy = CallDescriptionMap<GenericTaintRule>;
/// Used to parse the configuration file.
struct TaintConfiguration {
using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>;
enum class VariadicType { None, Src, Dst };
struct Common {
std::string Name;
std::string Scope;
};
struct Sink : Common {
ArgVecTy SinkArgs;
};
struct Filter : Common {
ArgVecTy FilterArgs;
};
struct Propagation : Common {
ArgVecTy SrcArgs;
ArgVecTy DstArgs;
VariadicType VarType;
ArgIdxTy VarIndex;
};
std::vector<Propagation> Propagations;
std::vector<Filter> Filters;
std::vector<Sink> Sinks;
TaintConfiguration() = default;
TaintConfiguration(const TaintConfiguration &) = default;
TaintConfiguration(TaintConfiguration &&) = default;
TaintConfiguration &operator=(const TaintConfiguration &) = default;
TaintConfiguration &operator=(TaintConfiguration &&) = default;
};
struct GenericTaintRuleParser {
GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {}
/// Container type used to gather call identification objects grouped into
/// pairs with their corresponding taint rules. It is temporary as it is used
/// to finally initialize RuleLookupTy, which is considered to be immutable.
using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>;
RulesContTy parseConfiguration(const std::string &Option,
TaintConfiguration &&Config) const;
private:
using NamePartsTy = llvm::SmallVector<SmallString<32>, 2>;
/// Validate part of the configuration, which contains a list of argument
/// indexes.
void validateArgVector(const std::string &Option, const ArgVecTy &Args) const;
template <typename Config> static NamePartsTy parseNameParts(const Config &C);
// Takes the config and creates a CallDescription for it and associates a Rule
// with that.
template <typename Config>
static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule,
RulesContTy &Rules);
void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P,
RulesContTy &Rules) const;
void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P,
RulesContTy &Rules) const;
void parseConfig(const std::string &Option,
TaintConfiguration::Propagation &&P,
RulesContTy &Rules) const;
CheckerManager &Mgr;
};
class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
/// Generate a report if the expression is tainted or points to tainted data.
bool generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const;
private:
const BugType BT{this, "Use of Untrusted Data", "Untrusted Data"};
bool checkUncontrolledFormatString(const CallEvent &Call,
CheckerContext &C) const;
void taintUnsafeSocketProtocol(const CallEvent &Call,
CheckerContext &C) const;
/// Default taint rules are initilized with the help of a CheckerContext to
/// access the names of built-in functions like memcpy.
void initTaintRules(CheckerContext &C) const;
/// CallDescription currently cannot restrict matches to the global namespace
/// only, which is why multiple CallDescriptionMaps are used, as we want to
/// disambiguate global C functions from functions inside user-defined
/// namespaces.
// TODO: Remove separation to simplify matching logic once CallDescriptions
// are more expressive.
mutable Optional<RuleLookupTy> StaticTaintRules;
mutable Optional<RuleLookupTy> DynamicTaintRules;
};
} // end of anonymous namespace
/// YAML serialization mapping.
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation)
namespace llvm {
namespace yaml {
template <> struct MappingTraits<TaintConfiguration> {
static void mapping(IO &IO, TaintConfiguration &Config) {
IO.mapOptional("Propagations", Config.Propagations);
IO.mapOptional("Filters", Config.Filters);
IO.mapOptional("Sinks", Config.Sinks);
}
};
template <> struct MappingTraits<TaintConfiguration::Sink> {
static void mapping(IO &IO, TaintConfiguration::Sink &Sink) {
IO.mapRequired("Name", Sink.Name);
IO.mapOptional("Scope", Sink.Scope);
IO.mapRequired("Args", Sink.SinkArgs);
}
};
template <> struct MappingTraits<TaintConfiguration::Filter> {
static void mapping(IO &IO, TaintConfiguration::Filter &Filter) {
IO.mapRequired("Name", Filter.Name);
IO.mapOptional("Scope", Filter.Scope);
IO.mapRequired("Args", Filter.FilterArgs);
}
};
template <> struct MappingTraits<TaintConfiguration::Propagation> {
static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) {
IO.mapRequired("Name", Propagation.Name);
IO.mapOptional("Scope", Propagation.Scope);
IO.mapOptional("SrcArgs", Propagation.SrcArgs);
IO.mapOptional("DstArgs", Propagation.DstArgs);
IO.mapOptional("VariadicType", Propagation.VarType);
IO.mapOptional("VariadicIndex", Propagation.VarIndex);
}
};
template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> {
static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) {
IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None);
IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src);
IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst);
}
};
} // namespace yaml
} // namespace llvm
/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are signed integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *,
ImmutableSet<ArgIdxTy>)
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy)
void GenericTaintRuleParser::validateArgVector(const std::string &Option,
const ArgVecTy &Args) const {
for (ArgIdxTy Arg : Args) {
if (Arg < ReturnValueIndex) {
Mgr.reportInvalidCheckerOptionValue(
Mgr.getChecker<GenericTaintChecker>(), Option,
"an argument number for propagation rules greater or equal to -1");
}
}
}
template <typename Config>
GenericTaintRuleParser::NamePartsTy
GenericTaintRuleParser::parseNameParts(const Config &C) {
NamePartsTy NameParts;
if (!C.Scope.empty()) {
// If the Scope argument contains multiple "::" parts, those are considered
// namespace identifiers.
llvm::SmallVector<StringRef, 2> NSParts;
StringRef{C.Scope}.split(NSParts, "::", /*MaxSplit*/ -1,
/*KeepEmpty*/ false);
NameParts.append(NSParts.begin(), NSParts.end());
}
NameParts.emplace_back(C.Name);
return NameParts;
}
template <typename Config>
void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C,
GenericTaintRule &&Rule,
RulesContTy &Rules) {
NamePartsTy NameParts = parseNameParts(C);
llvm::SmallVector<const char *, 2> CallDescParts{NameParts.size()};
llvm::transform(NameParts, CallDescParts.begin(),
[](SmallString<32> &S) { return S.c_str(); });
Rules.emplace_back(CallDescription(CallDescParts), std::move(Rule));
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Sink &&S,
RulesContTy &Rules) const {
validateArgVector(Option, S.SinkArgs);
consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)),
Rules);
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Filter &&S,
RulesContTy &Rules) const {
validateArgVector(Option, S.FilterArgs);
consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)),
Rules);
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Propagation &&P,
RulesContTy &Rules) const {
validateArgVector(Option, P.SrcArgs);
validateArgVector(Option, P.DstArgs);
bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src;
bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst;
Optional<ArgIdxTy> JustVarIndex = P.VarIndex;
ArgSet SrcDesc(std::move(P.SrcArgs), IsSrcVariadic ? JustVarIndex : None);
ArgSet DstDesc(std::move(P.DstArgs), IsDstVariadic ? JustVarIndex : None);
consumeRulesFromConfig(
P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules);
}
GenericTaintRuleParser::RulesContTy
GenericTaintRuleParser::parseConfiguration(const std::string &Option,
TaintConfiguration &&Config) const {
RulesContTy Rules;
for (auto &F : Config.Filters)
parseConfig(Option, std::move(F), Rules);
for (auto &S : Config.Sinks)
parseConfig(Option, std::move(S), Rules);
for (auto &P : Config.Propagations)
parseConfig(Option, std::move(P), Rules);
return Rules;
}
void GenericTaintChecker::initTaintRules(CheckerContext &C) const {
// Check for exact name match for functions without builtin substitutes.
// Use qualified name, because these are C functions without namespace.
if (StaticTaintRules || DynamicTaintRules)
return;
using RulesConstructionTy =
std::vector<std::pair<CallDescription, GenericTaintRule>>;
using TR = GenericTaintRule;
const Builtin::Context &BI = C.getASTContext().BuiltinInfo;
RulesConstructionTy GlobalCRules{
// Sources
{{"fdopen"}, TR::Source({{ReturnValueIndex}})},
{{"fopen"}, TR::Source({{ReturnValueIndex}})},
{{"freopen"}, TR::Source({{ReturnValueIndex}})},
{{"getch"}, TR::Source({{ReturnValueIndex}})},
{{"getchar"}, TR::Source({{ReturnValueIndex}})},
{{"getchar_unlocked"}, TR::Source({{ReturnValueIndex}})},
{{"gets"}, TR::Source({{0}, ReturnValueIndex})},
{{"gets_s"}, TR::Source({{0}, ReturnValueIndex})},
{{"scanf"}, TR::Source({{}, 1})},
{{"scanf_s"}, TR::Source({{}, {1}})},
{{"wgetch"}, TR::Source({{}, ReturnValueIndex})},
// Sometimes the line between taint sources and propagators is blurry.
// _IO_getc is choosen to be a source, but could also be a propagator.
// This way it is simpler, as modeling it as a propagator would require
// to model the possible sources of _IO_FILE * values, which the _IO_getc
// function takes as parameters.
{{"_IO_getc"}, TR::Source({{ReturnValueIndex}})},
{{"getcwd"}, TR::Source({{0, ReturnValueIndex}})},
{{"getwd"}, TR::Source({{0, ReturnValueIndex}})},
{{"readlink"}, TR::Source({{1, ReturnValueIndex}})},
{{"readlinkat"}, TR::Source({{2, ReturnValueIndex}})},
{{"get_current_dir_name"}, TR::Source({{ReturnValueIndex}})},
{{"gethostname"}, TR::Source({{0}})},
{{"getnameinfo"}, TR::Source({{2, 4}})},
{{"getseuserbyname"}, TR::Source({{1, 2}})},
{{"getgroups"}, TR::Source({{1, ReturnValueIndex}})},
{{"getlogin"}, TR::Source({{ReturnValueIndex}})},
{{"getlogin_r"}, TR::Source({{0}})},
// Props
{{"atoi"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"atol"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"atoll"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fgetc"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fgetln"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fgets"}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
{{"fscanf"}, TR::Prop({{0}}, {{}, 2})},
{{"fscanf_s"}, TR::Prop({{0}}, {{}, {2}})},
{{"sscanf"}, TR::Prop({{0}}, {{}, 2})},
{{"getc"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"getc_unlocked"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"getdelim"}, TR::Prop({{3}}, {{0}})},
{{"getline"}, TR::Prop({{2}}, {{0}})},
{{"getw"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"pread"}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})},
{{"read"}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})},
{{"strchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strrchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"tolower"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"toupper"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fread"}, TR::Prop({{3}}, {{0, ReturnValueIndex}})},
{{"recv"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"recvfrom"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"ttyname"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"ttyname_r"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"basename"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"dirname"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fnmatch"}, TR::Prop({{1}}, {{ReturnValueIndex}})},
{{"memchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"memrchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"rawmemchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"mbtowc"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{"wctomb"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{"wcwidth"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"memcmp"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"memcpy"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{"memmove"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
// If memmem was called with a tainted needle and the search was
// successful, that would mean that the value pointed by the return value
// has the same content as the needle. If we choose to go by the policy of
// content equivalence implies taintedness equivalence, that would mean
// haystack should be considered a propagation source argument.
{{"memmem"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// The comment for memmem above also applies to strstr.
{{"strstr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strcasestr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strchrnul"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"index"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"rindex"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// FIXME: In case of arrays, only the first element of the array gets
// tainted.
{{"qsort"}, TR::Prop({{0}}, {{0}})},
{{"qsort_r"}, TR::Prop({{0}}, {{0}})},
{{"strcmp"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strcasecmp"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strncmp"}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
{{"strncasecmp"}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
{{"strspn"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strcspn"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strpbrk"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strndup"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strndupa"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strlen"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strnlen"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strtol"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"strtoll"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"strtoul"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"strtoull"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"isalnum"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isalpha"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isascii"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isblank"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"iscntrl"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isdigit"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isgraph"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"islower"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isprint"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"ispunct"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isspace"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isupper"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isxdigit"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncat)}},
TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcpy)}},
TR::Prop({{1, 2}}, {{0}})},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcat)}},
TR::Prop({{1, 2}}, {{0}})},
{{CDF_MaybeBuiltin, {"snprintf"}},
TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"sprintf"}},
TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strcpy"}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"stpcpy"}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strcat"}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strdupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"wcsdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// Sinks
{{"system"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"popen"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execl"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execle"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execlp"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execvp"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execvP"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execve"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"dlopen"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{CDF_MaybeBuiltin, {"malloc"}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"calloc"}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"alloca"}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"memccpy"}}, TR::Sink({{3}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"realloc"}}, TR::Sink({{1}}, MsgTaintedBufferSize)},
{{{"setproctitle"}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
{{{"setproctitle_fast"}},
TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
// SinkProps
{{CDF_MaybeBuiltin, BI.getName(Builtin::BImemcpy)},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BImemmove)}},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncpy)}},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrndup)}},
TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"bcopy"}},
TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}};
// `getenv` returns taint only in untrusted environments.
if (TR::UntrustedEnv(C)) {
// void setproctitle_init(int argc, char *argv[], char *envp[])
GlobalCRules.push_back(
{{{"setproctitle_init"}}, TR::Sink({{1, 2}}, MsgCustomSink)});
GlobalCRules.push_back({{"getenv"}, TR::Source({{ReturnValueIndex}})});
}
StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()),
std::make_move_iterator(GlobalCRules.end()));
// User-provided taint configuration.
CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager();
assert(Mgr);
GenericTaintRuleParser ConfigParser{*Mgr};
std::string Option{"Config"};
StringRef ConfigFile =
Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option);
llvm::Optional<TaintConfiguration> Config =
getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile);
if (!Config) {
// We don't have external taint config, no parsing required.
DynamicTaintRules = RuleLookupTy{};
return;
}
GenericTaintRuleParser::RulesContTy Rules{
ConfigParser.parseConfiguration(Option, std::move(*Config))};
DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()),
std::make_move_iterator(Rules.end()));
}
void GenericTaintChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
initTaintRules(C);
// FIXME: this should be much simpler.
if (const auto *Rule =
Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr)
Rule->process(*this, Call, C);
else if (const auto *Rule = DynamicTaintRules->lookup(Call))
Rule->process(*this, Call, C);
// FIXME: These edge cases are to be eliminated from here eventually.
//
// Additional check that is not supported by CallDescription.
// TODO: Make CallDescription be able to match attributes such as printf-like
// arguments.
checkUncontrolledFormatString(Call, C);
// TODO: Modeling sockets should be done in a specific checker.
// Socket is a source, which taints the return value.
taintUnsafeSocketProtocol(Call, C);
}
void GenericTaintChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// Set the marked values as tainted. The return value only accessible from
// checkPostStmt.
ProgramStateRef State = C.getState();
const StackFrameContext *CurrentFrame = C.getStackFrame();
// Depending on what was tainted at pre-visit, we determined a set of
// arguments which should be tainted after the function returns. These are
// stored in the state as TaintArgsOnPostVisit set.
TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>();
const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame);
if (!TaintArgs)
return;
assert(!TaintArgs->isEmpty());
LLVM_DEBUG(for (ArgIdxTy I
: *TaintArgs) {
llvm::dbgs() << "PostCall<";
Call.dump(llvm::dbgs());
llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n';
});
for (ArgIdxTy ArgNum : *TaintArgs) {
// Special handling for the tainted return value.
if (ArgNum == ReturnValueIndex) {
State = addTaint(State, Call.getReturnValue());
continue;
}
// The arguments are pointer arguments. The data they are pointing at is
// tainted after the call.
if (auto V = getPointeeOf(C, Call.getArgSVal(ArgNum)))
State = addTaint(State, *V);
}
// Clear up the taint info from the state.
State = State->remove<TaintArgsOnPostVisit>(CurrentFrame);
C.addTransition(State);
}
void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
printTaint(State, Out, NL, Sep);
}
void GenericTaintRule::process(const GenericTaintChecker &Checker,
const CallEvent &Call, CheckerContext &C) const {
ProgramStateRef State = C.getState();
const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
/// Iterate every call argument, and get their corresponding Expr and SVal.
const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) {
for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) {
const Expr *E = GetArgExpr(I, Call);
Fun(I, E, C.getSVal(E));
}
};
/// Check for taint sinks.
ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) {
if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(E, State, C))
Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C);
});
/// Check for taint filters.
ForEachCallArg([this, &C, &State](ArgIdxTy I, const Expr *E, SVal S) {
if (FilterArgs.contains(I)) {
State = removeTaint(State, S);
if (auto P = getPointeeOf(C, S))
State = removeTaint(State, *P);
}
});
/// Check for taint propagation sources.
/// A rule is relevant if PropSrcArgs is empty, or if any of its signified
/// args are tainted in context of the current CallEvent.
bool IsMatching = PropSrcArgs.isEmpty();
ForEachCallArg(
[this, &C, &IsMatching, &State](ArgIdxTy I, const Expr *E, SVal) {
IsMatching = IsMatching || (PropSrcArgs.contains(I) &&
isTaintedOrPointsToTainted(E, State, C));
});
if (!IsMatching)
return;
const auto WouldEscape = [](SVal V, QualType Ty) -> bool {
if (!isa<Loc>(V))
return false;
const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified();
const bool IsNonConstPtr =
Ty->isPointerType() && !Ty->getPointeeType().isConstQualified();
return IsNonConstRef || IsNonConstPtr;
};
/// Propagate taint where it is necessary.
auto &F = State->getStateManager().get_context<ArgIdxFactory>();
ImmutableSet<ArgIdxTy> Result = F.getEmptySet();
ForEachCallArg(
[&](ArgIdxTy I, const Expr *E, SVal V) {
if (PropDstArgs.contains(I)) {
LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs());
llvm::dbgs()
<< "> prepares tainting arg index: " << I << '\n';);
Result = F.add(Result, I);
}
// TODO: We should traverse all reachable memory regions via the
// escaping parameter. Instead of doing that we simply mark only the
// referred memory region as tainted.
if (WouldEscape(V, E->getType())) {
LLVM_DEBUG(if (!Result.contains(I)) {
llvm::dbgs() << "PreCall<";
Call.dump(llvm::dbgs());
llvm::dbgs() << "> prepares tainting arg index: " << I << '\n';
});
Result = F.add(Result, I);
}
});
if (!Result.isEmpty())
State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
C.addTransition(State);
}
bool GenericTaintRule::UntrustedEnv(CheckerContext &C) {
return !C.getAnalysisManager()
.getAnalyzerOptions()
.ShouldAssumeControlledEnvironment;
}
bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const {
assert(E);
Optional<SVal> TaintedSVal{getTaintedPointeeOrPointer(C, C.getSVal(E))};
if (!TaintedSVal)
return false;
// Generate diagnostic.
if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
auto report = std::make_unique<PathSensitiveBugReport>(BT, Msg, N);
report->addRange(E->getSourceRange());
report->addVisitor(std::make_unique<TaintBugVisitor>(*TaintedSVal));
C.emitReport(std::move(report));
return true;
}
return false;
}
/// TODO: remove checking for printf format attributes and socket whitelisting
/// from GenericTaintChecker, and that means the following functions:
/// getPrintfFormatArgumentNum,
/// GenericTaintChecker::checkUncontrolledFormatString,
/// GenericTaintChecker::taintUnsafeSocketProtocol
static bool getPrintfFormatArgumentNum(const CallEvent &Call,
const CheckerContext &C,
ArgIdxTy &ArgNum) {
// Find if the function contains a format string argument.
// Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
// vsnprintf, syslog, custom annotated functions.
const Decl *CallDecl = Call.getDecl();
if (!CallDecl)
return false;
const FunctionDecl *FDecl = CallDecl->getAsFunction();
if (!FDecl)
return false;
const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
ArgNum = Format->getFormatIdx() - 1;
if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum)
return true;
}
return false;
}
bool GenericTaintChecker::checkUncontrolledFormatString(
const CallEvent &Call, CheckerContext &C) const {
// Check if the function contains a format string argument.
ArgIdxTy ArgNum = 0;
if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
return false;
// If either the format string content or the pointer itself are tainted,
// warn.
return generateReportIfTainted(Call.getArgExpr(ArgNum),
MsgUncontrolledFormatString, C);
}
void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call,
CheckerContext &C) const {
if (Call.getNumArgs() < 1)
return;
const IdentifierInfo *ID = Call.getCalleeIdentifier();
if (!ID)
return;
if (!ID->getName().equals("socket"))
return;
SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
// Allow internal communication protocols.
bool SafeProtocol = DomName.equals("AF_SYSTEM") ||
DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") ||
DomName.equals("AF_RESERVED_36");
if (SafeProtocol)
return;
ProgramStateRef State = C.getState();
auto &F = State->getStateManager().get_context<ArgIdxFactory>();
ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex);
State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
C.addTransition(State);
}
/// Checker registration
void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
Mgr.registerChecker<GenericTaintChecker>();
}
bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
return true;
}