| //===- CIRGenExprAggregrate.cpp - Emit CIR Code from Aggregate Expressions ===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Aggregate Expr nodes as CIR code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CIRGenBuilder.h" |
| #include "CIRGenFunction.h" |
| #include "CIRGenValue.h" |
| #include "clang/CIR/Dialect/IR/CIRAttrs.h" |
| |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include <cstdint> |
| |
| using namespace clang; |
| using namespace clang::CIRGen; |
| |
| namespace { |
| class AggExprEmitter : public StmtVisitor<AggExprEmitter> { |
| |
| CIRGenFunction &cgf; |
| AggValueSlot dest; |
| |
| // Calls `fn` with a valid return value slot, potentially creating a temporary |
| // to do so. If a temporary is created, an appropriate copy into `Dest` will |
| // be emitted, as will lifetime markers. |
| // |
| // The given function should take a ReturnValueSlot, and return an RValue that |
| // points to said slot. |
| void withReturnValueSlot(const Expr *e, |
| llvm::function_ref<RValue(ReturnValueSlot)> fn); |
| |
| AggValueSlot ensureSlot(mlir::Location loc, QualType t) { |
| if (!dest.isIgnored()) |
| return dest; |
| |
| cgf.cgm.errorNYI(loc, "Slot for ignored address"); |
| return dest; |
| } |
| |
| public: |
| AggExprEmitter(CIRGenFunction &cgf, AggValueSlot dest) |
| : cgf(cgf), dest(dest) {} |
| |
| /// Given an expression with aggregate type that represents a value lvalue, |
| /// this method emits the address of the lvalue, then loads the result into |
| /// DestPtr. |
| void emitAggLoadOfLValue(const Expr *e); |
| |
| void emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy, |
| Expr *exprToVisit, ArrayRef<Expr *> args, |
| Expr *arrayFiller); |
| |
| /// Perform the final copy to DestPtr, if desired. |
| void emitFinalDestCopy(QualType type, const LValue &src); |
| |
| void emitInitializationToLValue(Expr *e, LValue lv); |
| |
| void emitNullInitializationToLValue(mlir::Location loc, LValue lv); |
| |
| void Visit(Expr *e) { StmtVisitor<AggExprEmitter>::Visit(e); } |
| |
| void VisitCallExpr(const CallExpr *e); |
| void VisitStmtExpr(const StmtExpr *e) { |
| CIRGenFunction::StmtExprEvaluation eval(cgf); |
| Address retAlloca = |
| cgf.createMemTemp(e->getType(), cgf.getLoc(e->getSourceRange())); |
| (void)cgf.emitCompoundStmt(*e->getSubStmt(), &retAlloca, dest); |
| } |
| |
| void VisitDeclRefExpr(DeclRefExpr *e) { emitAggLoadOfLValue(e); } |
| |
| void VisitInitListExpr(InitListExpr *e); |
| void VisitCXXConstructExpr(const CXXConstructExpr *e); |
| |
| void visitCXXParenListOrInitListExpr(Expr *e, ArrayRef<Expr *> args, |
| FieldDecl *initializedFieldInUnion, |
| Expr *arrayFiller); |
| |
| void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *e) { |
| assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); |
| Visit(e->getSubExpr()); |
| } |
| |
| // Stubs -- These should be moved up when they are implemented. |
| void VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *e) { |
| // We shouldn't really get here, but we do because of missing handling for |
| // emitting constant aggregate initializers. If we just ignore this, a |
| // fallback handler will do the right thing. |
| assert(!cir::MissingFeatures::constEmitterAggILE()); |
| return; |
| } |
| void VisitCastExpr(CastExpr *e) { |
| switch (e->getCastKind()) { |
| case CK_LValueToRValue: |
| assert(!cir::MissingFeatures::aggValueSlotVolatile()); |
| [[fallthrough]]; |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| case CK_ConstructorConversion: |
| assert(cgf.getContext().hasSameUnqualifiedType(e->getSubExpr()->getType(), |
| e->getType()) && |
| "Implicit cast types must be compatible"); |
| Visit(e->getSubExpr()); |
| break; |
| default: |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| std::string("AggExprEmitter: VisitCastExpr: ") + |
| e->getCastKindName()); |
| break; |
| } |
| } |
| void VisitStmt(Stmt *s) { |
| cgf.cgm.errorNYI(s->getSourceRange(), |
| std::string("AggExprEmitter::VisitStmt: ") + |
| s->getStmtClassName()); |
| } |
| void VisitParenExpr(ParenExpr *pe) { |
| cgf.cgm.errorNYI(pe->getSourceRange(), "AggExprEmitter: VisitParenExpr"); |
| } |
| void VisitGenericSelectionExpr(GenericSelectionExpr *ge) { |
| cgf.cgm.errorNYI(ge->getSourceRange(), |
| "AggExprEmitter: VisitGenericSelectionExpr"); |
| } |
| void VisitCoawaitExpr(CoawaitExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCoawaitExpr"); |
| } |
| void VisitCoyieldExpr(CoyieldExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCoyieldExpr"); |
| } |
| void VisitUnaryCoawait(UnaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitUnaryCoawait"); |
| } |
| void VisitUnaryExtension(UnaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitUnaryExtension"); |
| } |
| void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitSubstNonTypeTemplateParmExpr"); |
| } |
| void VisitConstantExpr(ConstantExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitConstantExpr"); |
| } |
| void VisitMemberExpr(MemberExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitMemberExpr"); |
| } |
| void VisitUnaryDeref(UnaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitUnaryDeref"); |
| } |
| void VisitStringLiteral(StringLiteral *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitStringLiteral"); |
| } |
| void VisitCompoundLiteralExpr(CompoundLiteralExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitCompoundLiteralExpr"); |
| } |
| void VisitArraySubscriptExpr(ArraySubscriptExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitArraySubscriptExpr"); |
| } |
| void VisitPredefinedExpr(const PredefinedExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitPredefinedExpr"); |
| } |
| void VisitBinaryOperator(const BinaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitBinaryOperator"); |
| } |
| void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitPointerToDataMemberBinaryOperator"); |
| } |
| void VisitBinAssign(const BinaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinAssign"); |
| } |
| void VisitBinComma(const BinaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinComma"); |
| } |
| void VisitBinCmp(const BinaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinCmp"); |
| } |
| void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitCXXRewrittenBinaryOperator"); |
| } |
| void VisitObjCMessageExpr(ObjCMessageExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitObjCMessageExpr"); |
| } |
| void VisitObjCIVarRefExpr(ObjCIvarRefExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitObjCIVarRefExpr"); |
| } |
| |
| void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitDesignatedInitUpdateExpr"); |
| } |
| void VisitAbstractConditionalOperator(const AbstractConditionalOperator *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitAbstractConditionalOperator"); |
| } |
| void VisitChooseExpr(const ChooseExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitChooseExpr"); |
| } |
| void VisitCXXParenListInitExpr(CXXParenListInitExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitCXXParenListInitExpr"); |
| } |
| void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *e, |
| llvm::Value *outerBegin = nullptr) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitArrayInitLoopExpr"); |
| } |
| void VisitImplicitValueInitExpr(ImplicitValueInitExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitImplicitValueInitExpr"); |
| } |
| void VisitNoInitExpr(NoInitExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitNoInitExpr"); |
| } |
| void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *dae) { |
| cgf.cgm.errorNYI(dae->getSourceRange(), |
| "AggExprEmitter: VisitCXXDefaultArgExpr"); |
| } |
| void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *die) { |
| cgf.cgm.errorNYI(die->getSourceRange(), |
| "AggExprEmitter: VisitCXXDefaultInitExpr"); |
| } |
| void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitCXXInheritedCtorInitExpr"); |
| } |
| void VisitLambdaExpr(LambdaExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitLambdaExpr"); |
| } |
| void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitCXXStdInitializerListExpr"); |
| } |
| |
| void VisitExprWithCleanups(ExprWithCleanups *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitExprWithCleanups"); |
| } |
| void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitCXXScalarValueInitExpr"); |
| } |
| void VisitCXXTypeidExpr(CXXTypeidExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXTypeidExpr"); |
| } |
| void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitMaterializeTemporaryExpr"); |
| } |
| void VisitOpaqueValueExpr(OpaqueValueExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitOpaqueValueExpr"); |
| } |
| |
| void VisitPseudoObjectExpr(PseudoObjectExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "AggExprEmitter: VisitPseudoObjectExpr"); |
| } |
| |
| void VisitVAArgExpr(VAArgExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitVAArgExpr"); |
| } |
| |
| void VisitCXXThrowExpr(const CXXThrowExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXThrowExpr"); |
| } |
| void VisitAtomicExpr(AtomicExpr *e) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitAtomicExpr"); |
| } |
| }; |
| |
| } // namespace |
| |
| static bool isTrivialFiller(Expr *e) { |
| if (!e) |
| return true; |
| |
| if (isa<ImplicitValueInitExpr>(e)) |
| return true; |
| |
| if (auto *ile = dyn_cast<InitListExpr>(e)) { |
| if (ile->getNumInits()) |
| return false; |
| return isTrivialFiller(ile->getArrayFiller()); |
| } |
| |
| if (const auto *cons = dyn_cast_or_null<CXXConstructExpr>(e)) |
| return cons->getConstructor()->isDefaultConstructor() && |
| cons->getConstructor()->isTrivial(); |
| |
| return false; |
| } |
| |
| /// Given an expression with aggregate type that represents a value lvalue, this |
| /// method emits the address of the lvalue, then loads the result into DestPtr. |
| void AggExprEmitter::emitAggLoadOfLValue(const Expr *e) { |
| LValue lv = cgf.emitLValue(e); |
| |
| // If the type of the l-value is atomic, then do an atomic load. |
| assert(!cir::MissingFeatures::opLoadStoreAtomic()); |
| |
| emitFinalDestCopy(e->getType(), lv); |
| } |
| |
| void AggExprEmitter::emitArrayInit(Address destPtr, cir::ArrayType arrayTy, |
| QualType arrayQTy, Expr *e, |
| ArrayRef<Expr *> args, Expr *arrayFiller) { |
| CIRGenBuilderTy &builder = cgf.getBuilder(); |
| const mlir::Location loc = cgf.getLoc(e->getSourceRange()); |
| |
| const uint64_t numInitElements = args.size(); |
| |
| const QualType elementType = |
| cgf.getContext().getAsArrayType(arrayQTy)->getElementType(); |
| |
| if (elementType.isDestructedType() && cgf.cgm.getLangOpts().Exceptions) { |
| cgf.cgm.errorNYI(loc, "initialized array requires destruction"); |
| return; |
| } |
| |
| const QualType elementPtrType = cgf.getContext().getPointerType(elementType); |
| |
| const mlir::Type cirElementType = cgf.convertType(elementType); |
| const cir::PointerType cirElementPtrType = |
| builder.getPointerTo(cirElementType); |
| |
| auto begin = cir::CastOp::create(builder, loc, cirElementPtrType, |
| cir::CastKind::array_to_ptrdecay, |
| destPtr.getPointer()); |
| |
| const CharUnits elementSize = |
| cgf.getContext().getTypeSizeInChars(elementType); |
| const CharUnits elementAlign = |
| destPtr.getAlignment().alignmentOfArrayElement(elementSize); |
| |
| // The 'current element to initialize'. The invariants on this |
| // variable are complicated. Essentially, after each iteration of |
| // the loop, it points to the last initialized element, except |
| // that it points to the beginning of the array before any |
| // elements have been initialized. |
| mlir::Value element = begin; |
| |
| // Don't build the 'one' before the cycle to avoid |
| // emmiting the redundant `cir.const 1` instrs. |
| mlir::Value one; |
| |
| // Emit the explicit initializers. |
| for (uint64_t i = 0; i != numInitElements; ++i) { |
| // Advance to the next element. |
| if (i > 0) { |
| one = builder.getConstantInt(loc, cgf.PtrDiffTy, i); |
| element = builder.createPtrStride(loc, begin, one); |
| } |
| |
| const Address address = Address(element, cirElementType, elementAlign); |
| const LValue elementLV = cgf.makeAddrLValue(address, elementType); |
| emitInitializationToLValue(args[i], elementLV); |
| } |
| |
| const uint64_t numArrayElements = arrayTy.getSize(); |
| |
| // Check whether there's a non-trivial array-fill expression. |
| const bool hasTrivialFiller = isTrivialFiller(arrayFiller); |
| |
| // Any remaining elements need to be zero-initialized, possibly |
| // using the filler expression. We can skip this if the we're |
| // emitting to zeroed memory. |
| if (numInitElements != numArrayElements && |
| !(dest.isZeroed() && hasTrivialFiller && |
| cgf.getTypes().isZeroInitializable(elementType))) { |
| // Advance to the start of the rest of the array. |
| if (numInitElements) { |
| one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1); |
| element = cir::PtrStrideOp::create(builder, loc, cirElementPtrType, |
| element, one); |
| } |
| |
| // Allocate the temporary variable |
| // to store the pointer to first unitialized element |
| const Address tmpAddr = cgf.createTempAlloca( |
| cirElementPtrType, cgf.getPointerAlign(), loc, "arrayinit.temp"); |
| LValue tmpLV = cgf.makeAddrLValue(tmpAddr, elementPtrType); |
| cgf.emitStoreThroughLValue(RValue::get(element), tmpLV); |
| |
| // Compute the end of array |
| cir::ConstantOp numArrayElementsConst = builder.getConstInt( |
| loc, mlir::cast<cir::IntType>(cgf.PtrDiffTy), numArrayElements); |
| mlir::Value end = cir::PtrStrideOp::create(builder, loc, cirElementPtrType, |
| begin, numArrayElementsConst); |
| |
| builder.createDoWhile( |
| loc, |
| /*condBuilder=*/ |
| [&](mlir::OpBuilder &b, mlir::Location loc) { |
| cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr); |
| mlir::Type boolTy = cgf.convertType(cgf.getContext().BoolTy); |
| cir::CmpOp cmp = cir::CmpOp::create( |
| builder, loc, boolTy, cir::CmpOpKind::ne, currentElement, end); |
| builder.createCondition(cmp); |
| }, |
| /*bodyBuilder=*/ |
| [&](mlir::OpBuilder &b, mlir::Location loc) { |
| cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr); |
| |
| assert(!cir::MissingFeatures::requiresCleanups()); |
| |
| // Emit the actual filler expression. |
| LValue elementLV = cgf.makeAddrLValue( |
| Address(currentElement, cirElementType, elementAlign), |
| elementType); |
| if (arrayFiller) |
| emitInitializationToLValue(arrayFiller, elementLV); |
| else |
| emitNullInitializationToLValue(loc, elementLV); |
| |
| // Tell the EH cleanup that we finished with the last element. |
| if (cgf.cgm.getLangOpts().Exceptions) { |
| cgf.cgm.errorNYI(loc, "update destructed array element for EH"); |
| return; |
| } |
| |
| // Advance pointer and store them to temporary variable |
| cir::ConstantOp one = builder.getConstInt( |
| loc, mlir::cast<cir::IntType>(cgf.PtrDiffTy), 1); |
| auto nextElement = cir::PtrStrideOp::create( |
| builder, loc, cirElementPtrType, currentElement, one); |
| cgf.emitStoreThroughLValue(RValue::get(nextElement), tmpLV); |
| |
| builder.createYield(loc); |
| }); |
| } |
| } |
| |
| /// Perform the final copy to destPtr, if desired. |
| void AggExprEmitter::emitFinalDestCopy(QualType type, const LValue &src) { |
| // If dest is ignored, then we're evaluating an aggregate expression |
| // in a context that doesn't care about the result. Note that loads |
| // from volatile l-values force the existence of a non-ignored |
| // destination. |
| if (dest.isIgnored()) |
| return; |
| |
| cgf.cgm.errorNYI("emitFinalDestCopy: non-ignored dest is NYI"); |
| } |
| |
| void AggExprEmitter::emitInitializationToLValue(Expr *e, LValue lv) { |
| const QualType type = lv.getType(); |
| |
| if (isa<ImplicitValueInitExpr, CXXScalarValueInitExpr>(e)) { |
| const mlir::Location loc = e->getSourceRange().isValid() |
| ? cgf.getLoc(e->getSourceRange()) |
| : *cgf.currSrcLoc; |
| return emitNullInitializationToLValue(loc, lv); |
| } |
| |
| if (isa<NoInitExpr>(e)) |
| return; |
| |
| if (type->isReferenceType()) |
| cgf.cgm.errorNYI("emitInitializationToLValue ReferenceType"); |
| |
| switch (cgf.getEvaluationKind(type)) { |
| case cir::TEK_Complex: |
| cgf.cgm.errorNYI("emitInitializationToLValue TEK_Complex"); |
| break; |
| case cir::TEK_Aggregate: |
| cgf.emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsDestructed, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::MayOverlap, |
| dest.isZeroed())); |
| |
| return; |
| case cir::TEK_Scalar: |
| if (lv.isSimple()) |
| cgf.emitScalarInit(e, cgf.getLoc(e->getSourceRange()), lv); |
| else |
| cgf.emitStoreThroughLValue(RValue::get(cgf.emitScalarExpr(e)), lv); |
| return; |
| } |
| } |
| |
| void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *e) { |
| AggValueSlot slot = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); |
| cgf.emitCXXConstructExpr(e, slot); |
| } |
| |
| void AggExprEmitter::emitNullInitializationToLValue(mlir::Location loc, |
| LValue lv) { |
| const QualType type = lv.getType(); |
| |
| // If the destination slot is already zeroed out before the aggregate is |
| // copied into it, we don't have to emit any zeros here. |
| if (dest.isZeroed() && cgf.getTypes().isZeroInitializable(type)) |
| return; |
| |
| if (cgf.hasScalarEvaluationKind(type)) { |
| // For non-aggregates, we can store the appropriate null constant. |
| mlir::Value null = cgf.cgm.emitNullConstant(type, loc); |
| if (lv.isSimple()) { |
| cgf.emitStoreOfScalar(null, lv, /* isInitialization */ true); |
| return; |
| } |
| |
| cgf.cgm.errorNYI("emitStoreThroughBitfieldLValue"); |
| return; |
| } |
| |
| // There's a potential optimization opportunity in combining |
| // memsets; that would be easy for arrays, but relatively |
| // difficult for structures with the current code. |
| cgf.emitNullInitialization(loc, lv.getAddress(), lv.getType()); |
| } |
| |
| void AggExprEmitter::VisitCallExpr(const CallExpr *e) { |
| if (e->getCallReturnType(cgf.getContext())->isReferenceType()) { |
| cgf.cgm.errorNYI(e->getSourceRange(), "reference return type"); |
| return; |
| } |
| |
| withReturnValueSlot( |
| e, [&](ReturnValueSlot slot) { return cgf.emitCallExpr(e, slot); }); |
| } |
| |
| void AggExprEmitter::withReturnValueSlot( |
| const Expr *e, llvm::function_ref<RValue(ReturnValueSlot)> fn) { |
| QualType retTy = e->getType(); |
| |
| assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); |
| bool requiresDestruction = |
| retTy.isDestructedType() == QualType::DK_nontrivial_c_struct; |
| if (requiresDestruction) |
| cgf.cgm.errorNYI( |
| e->getSourceRange(), |
| "withReturnValueSlot: return value requiring destruction is NYI"); |
| |
| // If it makes no observable difference, save a memcpy + temporary. |
| // |
| // We need to always provide our own temporary if destruction is required. |
| // Otherwise, fn will emit its own, notice that it's "unused", and end its |
| // lifetime before we have the chance to emit a proper destructor call. |
| assert(!cir::MissingFeatures::aggValueSlotAlias()); |
| assert(!cir::MissingFeatures::aggValueSlotGC()); |
| |
| Address retAddr = dest.getAddress(); |
| assert(!cir::MissingFeatures::emitLifetimeMarkers()); |
| |
| assert(!cir::MissingFeatures::aggValueSlotVolatile()); |
| assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); |
| fn(ReturnValueSlot(retAddr)); |
| } |
| |
| void AggExprEmitter::VisitInitListExpr(InitListExpr *e) { |
| if (e->hadArrayRangeDesignator()) |
| llvm_unreachable("GNU array range designator extension"); |
| |
| if (e->isTransparent()) |
| return Visit(e->getInit(0)); |
| |
| visitCXXParenListOrInitListExpr( |
| e, e->inits(), e->getInitializedFieldInUnion(), e->getArrayFiller()); |
| } |
| |
| void AggExprEmitter::visitCXXParenListOrInitListExpr( |
| Expr *e, ArrayRef<Expr *> args, FieldDecl *initializedFieldInUnion, |
| Expr *arrayFiller) { |
| |
| const AggValueSlot dest = |
| ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); |
| |
| if (e->getType()->isConstantArrayType()) { |
| cir::ArrayType arrayTy = |
| cast<cir::ArrayType>(dest.getAddress().getElementType()); |
| emitArrayInit(dest.getAddress(), arrayTy, e->getType(), e, args, |
| arrayFiller); |
| return; |
| } else if (e->getType()->isVariableArrayType()) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "visitCXXParenListOrInitListExpr variable array type"); |
| return; |
| } |
| |
| if (e->getType()->isArrayType()) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "visitCXXParenListOrInitListExpr array type"); |
| return; |
| } |
| |
| assert(e->getType()->isRecordType() && "Only support structs/unions here!"); |
| |
| // Do struct initialization; this code just sets each individual member |
| // to the approprate value. This makes bitfield support automatic; |
| // the disadvantage is that the generated code is more difficult for |
| // the optimizer, especially with bitfields. |
| unsigned numInitElements = args.size(); |
| auto *record = e->getType()->castAsRecordDecl(); |
| |
| // We'll need to enter cleanup scopes in case any of the element |
| // initializers throws an exception. |
| assert(!cir::MissingFeatures::requiresCleanups()); |
| |
| unsigned curInitIndex = 0; |
| |
| // Emit initialization of base classes. |
| if (auto *cxxrd = dyn_cast<CXXRecordDecl>(record)) { |
| assert(numInitElements >= cxxrd->getNumBases() && |
| "missing initializer for base class"); |
| if (cxxrd->getNumBases() > 0) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "visitCXXParenListOrInitListExpr base class init"); |
| return; |
| } |
| } |
| |
| LValue destLV = cgf.makeAddrLValue(dest.getAddress(), e->getType()); |
| |
| if (record->isUnion()) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "visitCXXParenListOrInitListExpr union type"); |
| return; |
| } |
| |
| // Here we iterate over the fields; this makes it simpler to both |
| // default-initialize fields and skip over unnamed fields. |
| for (const FieldDecl *field : record->fields()) { |
| // We're done once we hit the flexible array member. |
| if (field->getType()->isIncompleteArrayType()) |
| break; |
| |
| // Always skip anonymous bitfields. |
| if (field->isUnnamedBitField()) |
| continue; |
| |
| // We're done if we reach the end of the explicit initializers, we |
| // have a zeroed object, and the rest of the fields are |
| // zero-initializable. |
| if (curInitIndex == numInitElements && dest.isZeroed() && |
| cgf.getTypes().isZeroInitializable(e->getType())) |
| break; |
| LValue lv = |
| cgf.emitLValueForFieldInitialization(destLV, field, field->getName()); |
| // We never generate write-barriers for initialized fields. |
| assert(!cir::MissingFeatures::setNonGC()); |
| |
| if (curInitIndex < numInitElements) { |
| // Store the initializer into the field. |
| CIRGenFunction::SourceLocRAIIObject loc{ |
| cgf, cgf.getLoc(record->getSourceRange())}; |
| emitInitializationToLValue(args[curInitIndex++], lv); |
| } else { |
| // We're out of initializers; default-initialize to null |
| emitNullInitializationToLValue(cgf.getLoc(e->getSourceRange()), lv); |
| } |
| |
| // Push a destructor if necessary. |
| // FIXME: if we have an array of structures, all explicitly |
| // initialized, we can end up pushing a linear number of cleanups. |
| if (field->getType().isDestructedType()) { |
| cgf.cgm.errorNYI(e->getSourceRange(), |
| "visitCXXParenListOrInitListExpr destructor"); |
| return; |
| } |
| |
| // From classic codegen, maybe not useful for CIR: |
| // If the GEP didn't get used because of a dead zero init or something |
| // else, clean it up for -O0 builds and general tidiness. |
| } |
| } |
| |
| // TODO(cir): This could be shared with classic codegen. |
| AggValueSlot::Overlap_t CIRGenFunction::getOverlapForBaseInit( |
| const CXXRecordDecl *rd, const CXXRecordDecl *baseRD, bool isVirtual) { |
| // If the most-derived object is a field declared with [[no_unique_address]], |
| // the tail padding of any virtual base could be reused for other subobjects |
| // of that field's class. |
| if (isVirtual) |
| return AggValueSlot::MayOverlap; |
| |
| // If the base class is laid out entirely within the nvsize of the derived |
| // class, its tail padding cannot yet be initialized, so we can issue |
| // stores at the full width of the base class. |
| const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd); |
| if (layout.getBaseClassOffset(baseRD) + |
| getContext().getASTRecordLayout(baseRD).getSize() <= |
| layout.getNonVirtualSize()) |
| return AggValueSlot::DoesNotOverlap; |
| |
| // The tail padding may contain values we need to preserve. |
| return AggValueSlot::MayOverlap; |
| } |
| |
| void CIRGenFunction::emitAggExpr(const Expr *e, AggValueSlot slot) { |
| AggExprEmitter(*this, slot).Visit(const_cast<Expr *>(e)); |
| } |
| |
| LValue CIRGenFunction::emitAggExprToLValue(const Expr *e) { |
| assert(hasAggregateEvaluationKind(e->getType()) && "Invalid argument!"); |
| Address temp = createMemTemp(e->getType(), getLoc(e->getSourceRange())); |
| LValue lv = makeAddrLValue(temp, e->getType()); |
| emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsNotDestructed, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap)); |
| return lv; |
| } |