| //===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ByteCodeExprGen.h" |
| #include "ByteCodeEmitter.h" |
| #include "ByteCodeGenError.h" |
| #include "ByteCodeStmtGen.h" |
| #include "Context.h" |
| #include "Floating.h" |
| #include "Function.h" |
| #include "PrimType.h" |
| #include "Program.h" |
| |
| using namespace clang; |
| using namespace clang::interp; |
| |
| using APSInt = llvm::APSInt; |
| |
| namespace clang { |
| namespace interp { |
| |
| /// Scope used to handle temporaries in toplevel variable declarations. |
| template <class Emitter> class DeclScope final : public VariableScope<Emitter> { |
| public: |
| DeclScope(ByteCodeExprGen<Emitter> *Ctx, const ValueDecl *VD) |
| : VariableScope<Emitter>(Ctx), Scope(Ctx->P, VD), |
| OldGlobalDecl(Ctx->GlobalDecl) { |
| Ctx->GlobalDecl = Context::shouldBeGloballyIndexed(VD); |
| } |
| |
| void addExtended(const Scope::Local &Local) override { |
| return this->addLocal(Local); |
| } |
| |
| ~DeclScope() { this->Ctx->GlobalDecl = OldGlobalDecl; } |
| |
| private: |
| Program::DeclScope Scope; |
| bool OldGlobalDecl; |
| }; |
| |
| /// Scope used to handle initialization methods. |
| template <class Emitter> class OptionScope final { |
| public: |
| /// Root constructor, compiling or discarding primitives. |
| OptionScope(ByteCodeExprGen<Emitter> *Ctx, bool NewDiscardResult, |
| bool NewInitializing) |
| : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), |
| OldInitializing(Ctx->Initializing) { |
| Ctx->DiscardResult = NewDiscardResult; |
| Ctx->Initializing = NewInitializing; |
| } |
| |
| ~OptionScope() { |
| Ctx->DiscardResult = OldDiscardResult; |
| Ctx->Initializing = OldInitializing; |
| } |
| |
| private: |
| /// Parent context. |
| ByteCodeExprGen<Emitter> *Ctx; |
| /// Old discard flag to restore. |
| bool OldDiscardResult; |
| bool OldInitializing; |
| }; |
| |
| } // namespace interp |
| } // namespace clang |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCastExpr(const CastExpr *CE) { |
| const Expr *SubExpr = CE->getSubExpr(); |
| switch (CE->getCastKind()) { |
| |
| case CK_LValueToRValue: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| return dereference( |
| SubExpr, DerefKind::Read, |
| [](PrimType) { |
| // Value loaded - nothing to do here. |
| return true; |
| }, |
| [this, CE](PrimType T) { |
| // Pointer on stack - dereference it. |
| return this->emitLoadPop(T, CE); |
| }); |
| } |
| |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBase: { |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| unsigned DerivedOffset = collectBaseOffset(getRecordTy(CE->getType()), |
| getRecordTy(SubExpr->getType())); |
| |
| return this->emitGetPtrBasePop(DerivedOffset, CE); |
| } |
| |
| case CK_BaseToDerived: { |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| unsigned DerivedOffset = collectBaseOffset(getRecordTy(SubExpr->getType()), |
| getRecordTy(CE->getType())); |
| |
| return this->emitGetPtrDerivedPop(DerivedOffset, CE); |
| } |
| |
| case CK_FloatingCast: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| if (!this->visit(SubExpr)) |
| return false; |
| const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); |
| return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); |
| } |
| |
| case CK_IntegralToFloating: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| std::optional<PrimType> FromT = classify(SubExpr->getType()); |
| if (!FromT) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); |
| llvm::RoundingMode RM = getRoundingMode(CE); |
| return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE); |
| } |
| |
| case CK_FloatingToBoolean: |
| case CK_FloatingToIntegral: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| std::optional<PrimType> ToT = classify(CE->getType()); |
| |
| if (!ToT) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (ToT == PT_IntAP) |
| return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), |
| CE); |
| if (ToT == PT_IntAPS) |
| return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), |
| CE); |
| |
| return this->emitCastFloatingIntegral(*ToT, CE); |
| } |
| |
| case CK_NullToPointer: |
| if (DiscardResult) |
| return true; |
| return this->emitNull(classifyPrim(CE->getType()), CE); |
| |
| case CK_PointerToIntegral: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| PrimType T = classifyPrim(CE->getType()); |
| return this->emitCastPointerIntegral(T, CE); |
| } |
| |
| case CK_ArrayToPointerDecay: { |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitArrayDecay(CE)) |
| return false; |
| if (DiscardResult) |
| return this->emitPopPtr(CE); |
| return true; |
| } |
| |
| case CK_AtomicToNonAtomic: |
| case CK_ConstructorConversion: |
| case CK_FunctionToPointerDecay: |
| case CK_NonAtomicToAtomic: |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| return this->delegate(SubExpr); |
| |
| case CK_BitCast: |
| if (CE->getType()->isAtomicType()) { |
| if (!this->discard(SubExpr)) |
| return false; |
| return this->emitInvalidCast(CastKind::Reinterpret, CE); |
| } |
| return this->delegate(SubExpr); |
| |
| case CK_IntegralToBoolean: |
| case CK_IntegralCast: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| std::optional<PrimType> FromT = classify(SubExpr->getType()); |
| std::optional<PrimType> ToT = classify(CE->getType()); |
| |
| if (!FromT || !ToT) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (ToT == PT_IntAP) |
| return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE); |
| if (ToT == PT_IntAPS) |
| return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE); |
| |
| if (FromT == ToT) |
| return true; |
| return this->emitCast(*FromT, *ToT, CE); |
| } |
| |
| case CK_PointerToBoolean: { |
| PrimType PtrT = classifyPrim(SubExpr->getType()); |
| |
| // Just emit p != nullptr for this. |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (!this->emitNull(PtrT, CE)) |
| return false; |
| |
| return this->emitNE(PtrT, CE); |
| } |
| |
| case CK_IntegralComplexToBoolean: |
| case CK_FloatingComplexToBoolean: { |
| PrimType ElemT = classifyComplexElementType(SubExpr->getType()); |
| // We emit the expression (__real(E) != 0 || __imag(E) != 0) |
| // for us, that means (bool)E[0] || (bool)E[1] |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitConstUint8(0, CE)) |
| return false; |
| if (!this->emitArrayElemPtrUint8(CE)) |
| return false; |
| if (!this->emitLoadPop(ElemT, CE)) |
| return false; |
| if (ElemT == PT_Float) { |
| if (!this->emitCastFloatingIntegral(PT_Bool, CE)) |
| return false; |
| } else { |
| if (!this->emitCast(ElemT, PT_Bool, CE)) |
| return false; |
| } |
| |
| // We now have the bool value of E[0] on the stack. |
| LabelTy LabelTrue = this->getLabel(); |
| if (!this->jumpTrue(LabelTrue)) |
| return false; |
| |
| if (!this->emitConstUint8(1, CE)) |
| return false; |
| if (!this->emitArrayElemPtrPopUint8(CE)) |
| return false; |
| if (!this->emitLoadPop(ElemT, CE)) |
| return false; |
| if (ElemT == PT_Float) { |
| if (!this->emitCastFloatingIntegral(PT_Bool, CE)) |
| return false; |
| } else { |
| if (!this->emitCast(ElemT, PT_Bool, CE)) |
| return false; |
| } |
| // Leave the boolean value of E[1] on the stack. |
| LabelTy EndLabel = this->getLabel(); |
| this->jump(EndLabel); |
| |
| this->emitLabel(LabelTrue); |
| if (!this->emitPopPtr(CE)) |
| return false; |
| if (!this->emitConstBool(true, CE)) |
| return false; |
| |
| this->fallthrough(EndLabel); |
| this->emitLabel(EndLabel); |
| |
| return true; |
| } |
| |
| case CK_IntegralComplexToReal: |
| case CK_FloatingComplexToReal: |
| return this->emitComplexReal(SubExpr); |
| |
| case CK_IntegralRealToComplex: |
| case CK_FloatingRealToComplex: { |
| // We're creating a complex value here, so we need to |
| // allocate storage for it. |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = |
| allocateLocal(CE, /*IsExtended=*/true); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| return false; |
| } |
| |
| // Init the complex value to {SubExpr, 0}. |
| if (!this->visitArrayElemInit(0, SubExpr)) |
| return false; |
| // Zero-init the second element. |
| PrimType T = classifyPrim(SubExpr->getType()); |
| if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) |
| return false; |
| return this->emitInitElem(T, 1, SubExpr); |
| } |
| |
| case CK_IntegralComplexCast: |
| case CK_FloatingComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_FloatingComplexToIntegralComplex: { |
| assert(CE->getType()->isAnyComplexType()); |
| assert(SubExpr->getType()->isAnyComplexType()); |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = |
| allocateLocal(CE, /*IsExtended=*/true); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| return false; |
| } |
| |
| // Location for the SubExpr. |
| // Since SubExpr is of complex type, visiting it results in a pointer |
| // anyway, so we just create a temporary pointer variable. |
| std::optional<unsigned> SubExprOffset = allocateLocalPrimitive( |
| SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); |
| if (!SubExprOffset) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, *SubExprOffset, CE)) |
| return false; |
| |
| PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); |
| QualType DestElemType = |
| CE->getType()->getAs<ComplexType>()->getElementType(); |
| PrimType DestElemT = classifyPrim(DestElemType); |
| // Cast both elements individually. |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!this->emitGetLocal(PT_Ptr, *SubExprOffset, CE)) |
| return false; |
| if (!this->emitConstUint8(I, CE)) |
| return false; |
| if (!this->emitArrayElemPtrPopUint8(CE)) |
| return false; |
| if (!this->emitLoadPop(SourceElemT, CE)) |
| return false; |
| |
| // Do the cast. |
| if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) |
| return false; |
| |
| // Save the value. |
| if (!this->emitInitElem(DestElemT, I, CE)) |
| return false; |
| } |
| return true; |
| } |
| |
| case CK_ToVoid: |
| return discard(SubExpr); |
| |
| default: |
| assert(false && "Cast not implemented"); |
| } |
| llvm_unreachable("Unhandled clang::CastKind enum"); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(LE->getValue(), LE); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConstFloat(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitImaginaryLiteral( |
| const ImaginaryLiteral *E) { |
| assert(E->getType()->isAnyComplexType()); |
| if (DiscardResult) |
| return true; |
| |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E, /*IsExtended=*/false); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| const Expr *SubExpr = E->getSubExpr(); |
| PrimType SubExprT = classifyPrim(SubExpr->getType()); |
| |
| if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) |
| return false; |
| if (!this->emitInitElem(SubExprT, 0, SubExpr)) |
| return false; |
| return this->visitArrayElemInit(1, SubExpr); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitParenExpr(const ParenExpr *E) { |
| return this->delegate(E->getSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { |
| // Need short-circuiting for these. |
| if (BO->isLogicalOp()) |
| return this->VisitLogicalBinOp(BO); |
| |
| if (BO->getType()->isAnyComplexType()) |
| return this->VisitComplexBinOp(BO); |
| |
| const Expr *LHS = BO->getLHS(); |
| const Expr *RHS = BO->getRHS(); |
| |
| if (BO->isPtrMemOp()) |
| return this->visit(RHS); |
| |
| // Typecheck the args. |
| std::optional<PrimType> LT = classify(LHS->getType()); |
| std::optional<PrimType> RT = classify(RHS->getType()); |
| std::optional<PrimType> T = classify(BO->getType()); |
| |
| // Deal with operations which have composite or void types. |
| if (BO->isCommaOp()) { |
| if (!this->discard(LHS)) |
| return false; |
| if (RHS->getType()->isVoidType()) |
| return this->discard(RHS); |
| |
| return this->delegate(RHS); |
| } |
| |
| // Special case for C++'s three-way/spaceship operator <=>, which |
| // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't |
| // have a PrimType). |
| if (!T && BO->getOpcode() == BO_Cmp) { |
| if (DiscardResult) |
| return true; |
| const ComparisonCategoryInfo *CmpInfo = |
| Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); |
| assert(CmpInfo); |
| |
| // We need a temporary variable holding our return value. |
| if (!Initializing) { |
| std::optional<unsigned> ResultIndex = this->allocateLocal(BO, false); |
| if (!this->emitGetPtrLocal(*ResultIndex, BO)) |
| return false; |
| } |
| |
| if (!visit(LHS) || !visit(RHS)) |
| return false; |
| |
| return this->emitCMP3(*LT, CmpInfo, BO); |
| } |
| |
| if (!LT || !RT || !T) |
| return false; |
| |
| // Pointer arithmetic special case. |
| if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { |
| if (T == PT_Ptr || (LT == PT_Ptr && RT == PT_Ptr)) |
| return this->VisitPointerArithBinOp(BO); |
| } |
| |
| if (!visit(LHS) || !visit(RHS)) |
| return false; |
| |
| // For languages such as C, cast the result of one |
| // of our comparision opcodes to T (which is usually int). |
| auto MaybeCastToBool = [this, T, BO](bool Result) { |
| if (!Result) |
| return false; |
| if (DiscardResult) |
| return this->emitPop(*T, BO); |
| if (T != PT_Bool) |
| return this->emitCast(PT_Bool, *T, BO); |
| return true; |
| }; |
| |
| auto Discard = [this, T, BO](bool Result) { |
| if (!Result) |
| return false; |
| return DiscardResult ? this->emitPop(*T, BO) : true; |
| }; |
| |
| switch (BO->getOpcode()) { |
| case BO_EQ: |
| return MaybeCastToBool(this->emitEQ(*LT, BO)); |
| case BO_NE: |
| return MaybeCastToBool(this->emitNE(*LT, BO)); |
| case BO_LT: |
| return MaybeCastToBool(this->emitLT(*LT, BO)); |
| case BO_LE: |
| return MaybeCastToBool(this->emitLE(*LT, BO)); |
| case BO_GT: |
| return MaybeCastToBool(this->emitGT(*LT, BO)); |
| case BO_GE: |
| return MaybeCastToBool(this->emitGE(*LT, BO)); |
| case BO_Sub: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitSubf(getRoundingMode(BO), BO)); |
| return Discard(this->emitSub(*T, BO)); |
| case BO_Add: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitAddf(getRoundingMode(BO), BO)); |
| return Discard(this->emitAdd(*T, BO)); |
| case BO_Mul: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitMulf(getRoundingMode(BO), BO)); |
| return Discard(this->emitMul(*T, BO)); |
| case BO_Rem: |
| return Discard(this->emitRem(*T, BO)); |
| case BO_Div: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitDivf(getRoundingMode(BO), BO)); |
| return Discard(this->emitDiv(*T, BO)); |
| case BO_Assign: |
| if (DiscardResult) |
| return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) |
| : this->emitStorePop(*T, BO); |
| return LHS->refersToBitField() ? this->emitStoreBitField(*T, BO) |
| : this->emitStore(*T, BO); |
| case BO_And: |
| return Discard(this->emitBitAnd(*T, BO)); |
| case BO_Or: |
| return Discard(this->emitBitOr(*T, BO)); |
| case BO_Shl: |
| return Discard(this->emitShl(*LT, *RT, BO)); |
| case BO_Shr: |
| return Discard(this->emitShr(*LT, *RT, BO)); |
| case BO_Xor: |
| return Discard(this->emitBitXor(*T, BO)); |
| case BO_LOr: |
| case BO_LAnd: |
| llvm_unreachable("Already handled earlier"); |
| default: |
| return false; |
| } |
| |
| llvm_unreachable("Unhandled binary op"); |
| } |
| |
| /// Perform addition/subtraction of a pointer and an integer or |
| /// subtraction of two pointers. |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { |
| BinaryOperatorKind Op = E->getOpcode(); |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| |
| if ((Op != BO_Add && Op != BO_Sub) || |
| (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) |
| return false; |
| |
| std::optional<PrimType> LT = classify(LHS); |
| std::optional<PrimType> RT = classify(RHS); |
| |
| if (!LT || !RT) |
| return false; |
| |
| if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { |
| if (Op != BO_Sub) |
| return false; |
| |
| assert(E->getType()->isIntegerType()); |
| if (!visit(RHS) || !visit(LHS)) |
| return false; |
| |
| return this->emitSubPtr(classifyPrim(E->getType()), E); |
| } |
| |
| PrimType OffsetType; |
| if (LHS->getType()->isIntegerType()) { |
| if (!visit(RHS) || !visit(LHS)) |
| return false; |
| OffsetType = *LT; |
| } else if (RHS->getType()->isIntegerType()) { |
| if (!visit(LHS) || !visit(RHS)) |
| return false; |
| OffsetType = *RT; |
| } else { |
| return false; |
| } |
| |
| if (Op == BO_Add) |
| return this->emitAddOffset(OffsetType, E); |
| else if (Op == BO_Sub) |
| return this->emitSubOffset(OffsetType, E); |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { |
| assert(E->isLogicalOp()); |
| BinaryOperatorKind Op = E->getOpcode(); |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| std::optional<PrimType> T = classify(E->getType()); |
| |
| if (Op == BO_LOr) { |
| // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. |
| LabelTy LabelTrue = this->getLabel(); |
| LabelTy LabelEnd = this->getLabel(); |
| |
| if (!this->visitBool(LHS)) |
| return false; |
| if (!this->jumpTrue(LabelTrue)) |
| return false; |
| |
| if (!this->visitBool(RHS)) |
| return false; |
| if (!this->jump(LabelEnd)) |
| return false; |
| |
| this->emitLabel(LabelTrue); |
| this->emitConstBool(true, E); |
| this->fallthrough(LabelEnd); |
| this->emitLabel(LabelEnd); |
| |
| } else { |
| assert(Op == BO_LAnd); |
| // Logical AND. |
| // Visit LHS. Only visit RHS if LHS was TRUE. |
| LabelTy LabelFalse = this->getLabel(); |
| LabelTy LabelEnd = this->getLabel(); |
| |
| if (!this->visitBool(LHS)) |
| return false; |
| if (!this->jumpFalse(LabelFalse)) |
| return false; |
| |
| if (!this->visitBool(RHS)) |
| return false; |
| if (!this->jump(LabelEnd)) |
| return false; |
| |
| this->emitLabel(LabelFalse); |
| this->emitConstBool(false, E); |
| this->fallthrough(LabelEnd); |
| this->emitLabel(LabelEnd); |
| } |
| |
| if (DiscardResult) |
| return this->emitPopBool(E); |
| |
| // For C, cast back to integer type. |
| assert(T); |
| if (T != PT_Bool) |
| return this->emitCast(PT_Bool, *T, E); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { |
| // Prepare storage for result. |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E, /*IsExtended=*/false); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| PrimType LHSElemT = this->classifyComplexElementType(LHS->getType()); |
| PrimType RHSElemT = this->classifyComplexElementType(RHS->getType()); |
| |
| unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); |
| unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); |
| unsigned ResultOffset = ~0u; |
| if (!this->DiscardResult) |
| ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); |
| |
| assert(LHSElemT == RHSElemT); |
| |
| // Save result pointer in ResultOffset |
| if (!this->DiscardResult) { |
| if (!this->emitDupPtr(E)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) |
| return false; |
| } |
| |
| // Evaluate LHS and save value to LHSOffset. |
| if (!this->visit(LHS)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
| return false; |
| |
| // Same with RHS. |
| if (!this->visit(RHS)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
| return false; |
| |
| // Now we can get pointers to the LHS and RHS from the offsets above. |
| BinaryOperatorKind Op = E->getOpcode(); |
| for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { |
| // Result pointer for the store later. |
| if (!this->DiscardResult) { |
| if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) |
| return false; |
| } |
| |
| if (!this->emitGetLocal(PT_Ptr, LHSOffset, E)) |
| return false; |
| if (!this->emitConstUint8(ElemIndex, E)) |
| return false; |
| if (!this->emitArrayElemPtrPopUint8(E)) |
| return false; |
| if (!this->emitLoadPop(LHSElemT, E)) |
| return false; |
| |
| if (!this->emitGetLocal(PT_Ptr, RHSOffset, E)) |
| return false; |
| if (!this->emitConstUint8(ElemIndex, E)) |
| return false; |
| if (!this->emitArrayElemPtrPopUint8(E)) |
| return false; |
| if (!this->emitLoadPop(RHSElemT, E)) |
| return false; |
| |
| // The actual operation. |
| switch (Op) { |
| case BO_Add: |
| if (LHSElemT == PT_Float) { |
| if (!this->emitAddf(getRoundingMode(E), E)) |
| return false; |
| } else { |
| if (!this->emitAdd(LHSElemT, E)) |
| return false; |
| } |
| break; |
| case BO_Sub: |
| if (LHSElemT == PT_Float) { |
| if (!this->emitSubf(getRoundingMode(E), E)) |
| return false; |
| } else { |
| if (!this->emitSub(LHSElemT, E)) |
| return false; |
| } |
| break; |
| |
| default: |
| return false; |
| } |
| |
| if (!this->DiscardResult) { |
| // Initialize array element with the value we just computed. |
| if (!this->emitInitElemPop(LHSElemT, ElemIndex, E)) |
| return false; |
| } else { |
| if (!this->emitPop(LHSElemT, E)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| QualType QT = E->getType(); |
| |
| if (std::optional<PrimType> T = classify(QT)) |
| return this->visitZeroInitializer(*T, QT, E); |
| |
| if (QT->isRecordType()) |
| return false; |
| |
| if (QT->isIncompleteArrayType()) |
| return true; |
| |
| if (QT->isArrayType()) { |
| const ArrayType *AT = QT->getAsArrayTypeUnsafe(); |
| assert(AT); |
| const auto *CAT = cast<ConstantArrayType>(AT); |
| size_t NumElems = CAT->getSize().getZExtValue(); |
| PrimType ElemT = classifyPrim(CAT->getElementType()); |
| |
| for (size_t I = 0; I != NumElems; ++I) { |
| if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| if (QT->isAnyComplexType()) { |
| assert(Initializing); |
| QualType ElemQT = QT->getAs<ComplexType>()->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| for (unsigned I = 0; I < 2; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitArraySubscriptExpr( |
| const ArraySubscriptExpr *E) { |
| const Expr *Base = E->getBase(); |
| const Expr *Index = E->getIdx(); |
| |
| if (DiscardResult) |
| return this->discard(Base) && this->discard(Index); |
| |
| // Take pointer of LHS, add offset from RHS. |
| // What's left on the stack after this is a pointer. |
| if (!this->visit(Base)) |
| return false; |
| |
| if (!this->visit(Index)) |
| return false; |
| |
| PrimType IndexT = classifyPrim(Index->getType()); |
| return this->emitArrayElemPtrPop(IndexT, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, |
| const Expr *E) { |
| assert(E->getType()->isRecordType()); |
| const Record *R = getRecord(E->getType()); |
| |
| if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) { |
| return this->visitInitializer(Inits[0]); |
| } |
| |
| unsigned InitIndex = 0; |
| for (const Expr *Init : Inits) { |
| if (!this->emitDupPtr(E)) |
| return false; |
| |
| if (std::optional<PrimType> T = classify(Init)) { |
| const Record::Field *FieldToInit = R->getField(InitIndex); |
| if (!this->visit(Init)) |
| return false; |
| |
| if (FieldToInit->isBitField()) { |
| if (!this->emitInitBitField(*T, FieldToInit, E)) |
| return false; |
| } else { |
| if (!this->emitInitField(*T, FieldToInit->Offset, E)) |
| return false; |
| } |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| ++InitIndex; |
| } else { |
| // Initializer for a direct base class. |
| if (const Record::Base *B = R->getBase(Init->getType())) { |
| if (!this->emitGetPtrBasePop(B->Offset, Init)) |
| return false; |
| |
| if (!this->visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitInitPtrPop(E)) |
| return false; |
| // Base initializers don't increase InitIndex, since they don't count |
| // into the Record's fields. |
| } else { |
| const Record::Field *FieldToInit = R->getField(InitIndex); |
| // Non-primitive case. Get a pointer to the field-to-initialize |
| // on the stack and recurse into visitInitializer(). |
| if (!this->emitGetPtrField(FieldToInit->Offset, Init)) |
| return false; |
| |
| if (!this->visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| ++InitIndex; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /// Pointer to the array(not the element!) must be on the stack when calling |
| /// this. |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitArrayElemInit(unsigned ElemIndex, |
| const Expr *Init) { |
| if (std::optional<PrimType> T = classify(Init->getType())) { |
| // Visit the primitive element like normal. |
| if (!this->visit(Init)) |
| return false; |
| return this->emitInitElem(*T, ElemIndex, Init); |
| } |
| |
| // Advance the pointer currently on the stack to the given |
| // dimension. |
| if (!this->emitConstUint32(ElemIndex, Init)) |
| return false; |
| if (!this->emitArrayElemPtrUint32(Init)) |
| return false; |
| if (!this->visitInitializer(Init)) |
| return false; |
| return this->emitInitPtrPop(Init); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitInitListExpr(const InitListExpr *E) { |
| // Handle discarding first. |
| if (DiscardResult) { |
| for (const Expr *Init : E->inits()) { |
| if (!this->discard(Init)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Primitive values. |
| if (std::optional<PrimType> T = classify(E->getType())) { |
| assert(!DiscardResult); |
| if (E->getNumInits() == 0) |
| return this->visitZeroInitializer(*T, E->getType(), E); |
| assert(E->getNumInits() == 1); |
| return this->delegate(E->inits()[0]); |
| } |
| |
| QualType T = E->getType(); |
| if (T->isRecordType()) |
| return this->visitInitList(E->inits(), E); |
| |
| if (T->isArrayType()) { |
| unsigned ElementIndex = 0; |
| for (const Expr *Init : E->inits()) { |
| if (!this->visitArrayElemInit(ElementIndex, Init)) |
| return false; |
| ++ElementIndex; |
| } |
| |
| // Expand the filler expression. |
| // FIXME: This should go away. |
| if (const Expr *Filler = E->getArrayFiller()) { |
| const ConstantArrayType *CAT = |
| Ctx.getASTContext().getAsConstantArrayType(E->getType()); |
| uint64_t NumElems = CAT->getSize().getZExtValue(); |
| |
| for (; ElementIndex != NumElems; ++ElementIndex) { |
| if (!this->visitArrayElemInit(ElementIndex, Filler)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| if (T->isAnyComplexType()) { |
| unsigned NumInits = E->getNumInits(); |
| |
| if (NumInits == 1) |
| return this->delegate(E->inits()[0]); |
| |
| QualType ElemQT = E->getType()->getAs<ComplexType>()->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| if (NumInits == 0) { |
| // Zero-initialize both elements. |
| for (unsigned I = 0; I < 2; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| } else if (NumInits == 2) { |
| unsigned InitIndex = 0; |
| for (const Expr *Init : E->inits()) { |
| if (!this->visit(Init)) |
| return false; |
| |
| if (!this->emitInitElem(ElemT, InitIndex, E)) |
| return false; |
| ++InitIndex; |
| } |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXParenListInitExpr( |
| const CXXParenListInitExpr *E) { |
| if (DiscardResult) { |
| for (const Expr *Init : E->getInitExprs()) { |
| if (!this->discard(Init)) |
| return false; |
| } |
| return true; |
| } |
| |
| assert(E->getType()->isRecordType()); |
| return this->visitInitList(E->getInitExprs(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitSubstNonTypeTemplateParmExpr( |
| const SubstNonTypeTemplateParmExpr *E) { |
| return this->delegate(E->getReplacement()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitConstantExpr(const ConstantExpr *E) { |
| std::optional<PrimType> T = classify(E->getType()); |
| if (T && E->hasAPValueResult()) { |
| // Try to emit the APValue directly, without visiting the subexpr. |
| // This will only fail if we can't emit the APValue, so won't emit any |
| // diagnostics or any double values. |
| if (DiscardResult) |
| return true; |
| |
| if (this->visitAPValue(E->getAPValueResult(), *T, E)) |
| return true; |
| } |
| return this->delegate(E->getSubExpr()); |
| } |
| |
| static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, |
| UnaryExprOrTypeTrait Kind) { |
| bool AlignOfReturnsPreferred = |
| ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
| |
| // C++ [expr.alignof]p3: |
| // When alignof is applied to a reference type, the result is the |
| // alignment of the referenced type. |
| if (const auto *Ref = T->getAs<ReferenceType>()) |
| T = Ref->getPointeeType(); |
| |
| // __alignof is defined to return the preferred alignment. |
| // Before 8, clang returned the preferred alignment for alignof and |
| // _Alignof as well. |
| if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
| return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); |
| |
| return ASTCtx.getTypeAlignInChars(T); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitUnaryExprOrTypeTraitExpr( |
| const UnaryExprOrTypeTraitExpr *E) { |
| UnaryExprOrTypeTrait Kind = E->getKind(); |
| ASTContext &ASTCtx = Ctx.getASTContext(); |
| |
| if (Kind == UETT_SizeOf) { |
| QualType ArgType = E->getTypeOfArgument(); |
| |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| if (const auto *Ref = ArgType->getAs<ReferenceType>()) |
| ArgType = Ref->getPointeeType(); |
| |
| CharUnits Size; |
| if (ArgType->isVoidType() || ArgType->isFunctionType()) |
| Size = CharUnits::One(); |
| else { |
| if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) |
| return false; |
| |
| Size = ASTCtx.getTypeSizeInChars(ArgType); |
| } |
| |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(Size.getQuantity(), E); |
| } |
| |
| if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { |
| CharUnits Size; |
| |
| if (E->isArgumentType()) { |
| QualType ArgType = E->getTypeOfArgument(); |
| |
| Size = AlignOfType(ArgType, ASTCtx, Kind); |
| } else { |
| // Argument is an expression, not a type. |
| const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); |
| |
| // The kinds of expressions that we have special-case logic here for |
| // should be kept up to date with the special checks for those |
| // expressions in Sema. |
| |
| // alignof decl is always accepted, even if it doesn't make sense: we |
| // default to 1 in those cases. |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) |
| Size = ASTCtx.getDeclAlign(DRE->getDecl(), |
| /*RefAsPointee*/ true); |
| else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) |
| Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), |
| /*RefAsPointee*/ true); |
| else |
| Size = AlignOfType(Arg->getType(), ASTCtx, Kind); |
| } |
| |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(Size.getQuantity(), E); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitMemberExpr(const MemberExpr *E) { |
| // 'Base.Member' |
| const Expr *Base = E->getBase(); |
| |
| if (DiscardResult) |
| return this->discard(Base); |
| |
| if (!this->delegate(Base)) |
| return false; |
| |
| // Base above gives us a pointer on the stack. |
| // TODO: Implement non-FieldDecl members. |
| const ValueDecl *Member = E->getMemberDecl(); |
| if (const auto *FD = dyn_cast<FieldDecl>(Member)) { |
| const RecordDecl *RD = FD->getParent(); |
| const Record *R = getRecord(RD); |
| const Record::Field *F = R->getField(FD); |
| // Leave a pointer to the field on the stack. |
| if (F->Decl->getType()->isReferenceType()) |
| return this->emitGetFieldPop(PT_Ptr, F->Offset, E); |
| return this->emitGetPtrField(F->Offset, E); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitArrayInitIndexExpr( |
| const ArrayInitIndexExpr *E) { |
| // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated |
| // stand-alone, e.g. via EvaluateAsInt(). |
| if (!ArrayIndex) |
| return false; |
| return this->emitConst(*ArrayIndex, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitArrayInitLoopExpr( |
| const ArrayInitLoopExpr *E) { |
| assert(Initializing); |
| assert(!DiscardResult); |
| |
| // We visit the common opaque expression here once so we have its value |
| // cached. |
| if (!this->discard(E->getCommonExpr())) |
| return false; |
| |
| // TODO: This compiles to quite a lot of bytecode if the array is larger. |
| // Investigate compiling this to a loop. |
| const Expr *SubExpr = E->getSubExpr(); |
| size_t Size = E->getArraySize().getZExtValue(); |
| |
| // So, every iteration, we execute an assignment here |
| // where the LHS is on the stack (the target array) |
| // and the RHS is our SubExpr. |
| for (size_t I = 0; I != Size; ++I) { |
| ArrayIndexScope<Emitter> IndexScope(this, I); |
| BlockScope<Emitter> BS(this); |
| |
| if (!this->visitArrayElemInit(I, SubExpr)) |
| return false; |
| } |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
| if (Initializing) |
| return this->visitInitializer(E->getSourceExpr()); |
| |
| PrimType SubExprT = classify(E->getSourceExpr()).value_or(PT_Ptr); |
| if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) |
| return this->emitGetLocal(SubExprT, It->second, E); |
| |
| if (!this->visit(E->getSourceExpr())) |
| return false; |
| |
| // At this point we either have the evaluated source expression or a pointer |
| // to an object on the stack. We want to create a local variable that stores |
| // this value. |
| std::optional<unsigned> LocalIndex = |
| allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitSetLocal(SubExprT, *LocalIndex, E)) |
| return false; |
| |
| // Here the local variable is created but the value is removed from the stack, |
| // so we put it back if the caller needs it. |
| if (!DiscardResult) { |
| if (!this->emitGetLocal(SubExprT, *LocalIndex, E)) |
| return false; |
| } |
| |
| // This is cleaned up when the local variable is destroyed. |
| OpaqueExprs.insert({E, *LocalIndex}); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitAbstractConditionalOperator( |
| const AbstractConditionalOperator *E) { |
| const Expr *Condition = E->getCond(); |
| const Expr *TrueExpr = E->getTrueExpr(); |
| const Expr *FalseExpr = E->getFalseExpr(); |
| |
| LabelTy LabelEnd = this->getLabel(); // Label after the operator. |
| LabelTy LabelFalse = this->getLabel(); // Label for the false expr. |
| |
| if (!this->visitBool(Condition)) |
| return false; |
| |
| if (!this->jumpFalse(LabelFalse)) |
| return false; |
| |
| if (!this->delegate(TrueExpr)) |
| return false; |
| if (!this->jump(LabelEnd)) |
| return false; |
| |
| this->emitLabel(LabelFalse); |
| |
| if (!this->delegate(FalseExpr)) |
| return false; |
| |
| this->fallthrough(LabelEnd); |
| this->emitLabel(LabelEnd); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitStringLiteral(const StringLiteral *E) { |
| if (DiscardResult) |
| return true; |
| |
| if (!Initializing) { |
| unsigned StringIndex = P.createGlobalString(E); |
| return this->emitGetPtrGlobal(StringIndex, E); |
| } |
| |
| // We are initializing an array on the stack. |
| const ConstantArrayType *CAT = |
| Ctx.getASTContext().getAsConstantArrayType(E->getType()); |
| assert(CAT && "a string literal that's not a constant array?"); |
| |
| // If the initializer string is too long, a diagnostic has already been |
| // emitted. Read only the array length from the string literal. |
| unsigned ArraySize = CAT->getSize().getZExtValue(); |
| unsigned N = std::min(ArraySize, E->getLength()); |
| size_t CharWidth = E->getCharByteWidth(); |
| |
| for (unsigned I = 0; I != N; ++I) { |
| uint32_t CodeUnit = E->getCodeUnit(I); |
| |
| if (CharWidth == 1) { |
| this->emitConstSint8(CodeUnit, E); |
| this->emitInitElemSint8(I, E); |
| } else if (CharWidth == 2) { |
| this->emitConstUint16(CodeUnit, E); |
| this->emitInitElemUint16(I, E); |
| } else if (CharWidth == 4) { |
| this->emitConstUint32(CodeUnit, E); |
| this->emitInitElemUint32(I, E); |
| } else { |
| llvm_unreachable("unsupported character width"); |
| } |
| } |
| |
| // Fill up the rest of the char array with NUL bytes. |
| for (unsigned I = N; I != ArraySize; ++I) { |
| if (CharWidth == 1) { |
| this->emitConstSint8(0, E); |
| this->emitInitElemSint8(I, E); |
| } else if (CharWidth == 2) { |
| this->emitConstUint16(0, E); |
| this->emitInitElemUint16(I, E); |
| } else if (CharWidth == 4) { |
| this->emitConstUint32(0, E); |
| this->emitInitElemUint32(I, E); |
| } else { |
| llvm_unreachable("unsupported character width"); |
| } |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCharacterLiteral( |
| const CharacterLiteral *E) { |
| if (DiscardResult) |
| return true; |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitFloatCompoundAssignOperator( |
| const CompoundAssignOperator *E) { |
| |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| QualType LHSType = LHS->getType(); |
| QualType LHSComputationType = E->getComputationLHSType(); |
| QualType ResultType = E->getComputationResultType(); |
| std::optional<PrimType> LT = classify(LHSComputationType); |
| std::optional<PrimType> RT = classify(ResultType); |
| |
| assert(ResultType->isFloatingType()); |
| |
| if (!LT || !RT) |
| return false; |
| |
| PrimType LHST = classifyPrim(LHSType); |
| |
| // C++17 onwards require that we evaluate the RHS first. |
| // Compute RHS and save it in a temporary variable so we can |
| // load it again later. |
| if (!visit(RHS)) |
| return false; |
| |
| unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
| if (!this->emitSetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| // First, visit LHS. |
| if (!visit(LHS)) |
| return false; |
| if (!this->emitLoad(LHST, E)) |
| return false; |
| |
| // If necessary, convert LHS to its computation type. |
| if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), |
| LHSComputationType, E)) |
| return false; |
| |
| // Now load RHS. |
| if (!this->emitGetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| llvm::RoundingMode RM = getRoundingMode(E); |
| switch (E->getOpcode()) { |
| case BO_AddAssign: |
| if (!this->emitAddf(RM, E)) |
| return false; |
| break; |
| case BO_SubAssign: |
| if (!this->emitSubf(RM, E)) |
| return false; |
| break; |
| case BO_MulAssign: |
| if (!this->emitMulf(RM, E)) |
| return false; |
| break; |
| case BO_DivAssign: |
| if (!this->emitDivf(RM, E)) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) |
| return false; |
| |
| if (DiscardResult) |
| return this->emitStorePop(LHST, E); |
| return this->emitStore(LHST, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitPointerCompoundAssignOperator( |
| const CompoundAssignOperator *E) { |
| BinaryOperatorKind Op = E->getOpcode(); |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| std::optional<PrimType> LT = classify(LHS->getType()); |
| std::optional<PrimType> RT = classify(RHS->getType()); |
| |
| if (Op != BO_AddAssign && Op != BO_SubAssign) |
| return false; |
| |
| if (!LT || !RT) |
| return false; |
| assert(*LT == PT_Ptr); |
| |
| if (!visit(LHS)) |
| return false; |
| |
| if (!this->emitLoadPtr(LHS)) |
| return false; |
| |
| if (!visit(RHS)) |
| return false; |
| |
| if (Op == BO_AddAssign) { |
| if (!this->emitAddOffset(*RT, E)) |
| return false; |
| } else { |
| if (!this->emitSubOffset(*RT, E)) |
| return false; |
| } |
| |
| if (DiscardResult) |
| return this->emitStorePopPtr(E); |
| return this->emitStorePtr(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCompoundAssignOperator( |
| const CompoundAssignOperator *E) { |
| |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| std::optional<PrimType> LHSComputationT = |
| classify(E->getComputationLHSType()); |
| std::optional<PrimType> LT = classify(LHS->getType()); |
| std::optional<PrimType> RT = classify(E->getComputationResultType()); |
| std::optional<PrimType> ResultT = classify(E->getType()); |
| |
| if (!LT || !RT || !ResultT || !LHSComputationT) |
| return false; |
| |
| // Handle floating point operations separately here, since they |
| // require special care. |
| |
| if (ResultT == PT_Float || RT == PT_Float) |
| return VisitFloatCompoundAssignOperator(E); |
| |
| if (E->getType()->isPointerType()) |
| return VisitPointerCompoundAssignOperator(E); |
| |
| assert(!E->getType()->isPointerType() && "Handled above"); |
| assert(!E->getType()->isFloatingType() && "Handled above"); |
| |
| // C++17 onwards require that we evaluate the RHS first. |
| // Compute RHS and save it in a temporary variable so we can |
| // load it again later. |
| // FIXME: Compound assignments are unsequenced in C, so we might |
| // have to figure out how to reject them. |
| if (!visit(RHS)) |
| return false; |
| |
| unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
| |
| if (!this->emitSetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| // Get LHS pointer, load its value and cast it to the |
| // computation type if necessary. |
| if (!visit(LHS)) |
| return false; |
| if (!this->emitLoad(*LT, E)) |
| return false; |
| if (*LT != *LHSComputationT) { |
| if (!this->emitCast(*LT, *LHSComputationT, E)) |
| return false; |
| } |
| |
| // Get the RHS value on the stack. |
| if (!this->emitGetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| // Perform operation. |
| switch (E->getOpcode()) { |
| case BO_AddAssign: |
| if (!this->emitAdd(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_SubAssign: |
| if (!this->emitSub(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_MulAssign: |
| if (!this->emitMul(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_DivAssign: |
| if (!this->emitDiv(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_RemAssign: |
| if (!this->emitRem(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_ShlAssign: |
| if (!this->emitShl(*LHSComputationT, *RT, E)) |
| return false; |
| break; |
| case BO_ShrAssign: |
| if (!this->emitShr(*LHSComputationT, *RT, E)) |
| return false; |
| break; |
| case BO_AndAssign: |
| if (!this->emitBitAnd(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_XorAssign: |
| if (!this->emitBitXor(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_OrAssign: |
| if (!this->emitBitOr(*LHSComputationT, E)) |
| return false; |
| break; |
| default: |
| llvm_unreachable("Unimplemented compound assign operator"); |
| } |
| |
| // And now cast from LHSComputationT to ResultT. |
| if (*ResultT != *LHSComputationT) { |
| if (!this->emitCast(*LHSComputationT, *ResultT, E)) |
| return false; |
| } |
| |
| // And store the result in LHS. |
| if (DiscardResult) { |
| if (LHS->refersToBitField()) |
| return this->emitStoreBitFieldPop(*ResultT, E); |
| return this->emitStorePop(*ResultT, E); |
| } |
| if (LHS->refersToBitField()) |
| return this->emitStoreBitField(*ResultT, E); |
| return this->emitStore(*ResultT, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitExprWithCleanups( |
| const ExprWithCleanups *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| assert(E->getNumObjects() == 0 && "TODO: Implement cleanups"); |
| |
| return this->delegate(SubExpr); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitMaterializeTemporaryExpr( |
| const MaterializeTemporaryExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| if (Initializing) { |
| // We already have a value, just initialize that. |
| return this->visitInitializer(SubExpr); |
| } |
| // If we don't end up using the materialized temporary anyway, don't |
| // bother creating it. |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| // When we're initializing a global variable *or* the storage duration of |
| // the temporary is explicitly static, create a global variable. |
| std::optional<PrimType> SubExprT = classify(SubExpr); |
| bool IsStatic = E->getStorageDuration() == SD_Static; |
| if (GlobalDecl || IsStatic) { |
| std::optional<unsigned> GlobalIndex = P.createGlobal(E); |
| if (!GlobalIndex) |
| return false; |
| |
| const LifetimeExtendedTemporaryDecl *TempDecl = |
| E->getLifetimeExtendedTemporaryDecl(); |
| if (IsStatic) |
| assert(TempDecl); |
| |
| if (SubExprT) { |
| if (!this->visit(SubExpr)) |
| return false; |
| if (IsStatic) { |
| if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) |
| return false; |
| } else { |
| if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) |
| return false; |
| } |
| return this->emitGetPtrGlobal(*GlobalIndex, E); |
| } |
| |
| // Non-primitive values. |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| if (!this->visitInitializer(SubExpr)) |
| return false; |
| if (IsStatic) |
| return this->emitInitGlobalTempComp(TempDecl, E); |
| return true; |
| } |
| |
| // For everyhing else, use local variables. |
| if (SubExprT) { |
| if (std::optional<unsigned> LocalIndex = allocateLocalPrimitive( |
| SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true)) { |
| if (!this->visit(SubExpr)) |
| return false; |
| this->emitSetLocal(*SubExprT, *LocalIndex, E); |
| return this->emitGetPtrLocal(*LocalIndex, E); |
| } |
| } else { |
| const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); |
| |
| if (std::optional<unsigned> LocalIndex = |
| allocateLocal(Inner, /*IsExtended=*/true)) { |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| return this->visitInitializer(SubExpr); |
| } |
| } |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXBindTemporaryExpr( |
| const CXXBindTemporaryExpr *E) { |
| return this->delegate(E->getSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCompoundLiteralExpr( |
| const CompoundLiteralExpr *E) { |
| const Expr *Init = E->getInitializer(); |
| if (Initializing) { |
| // We already have a value, just initialize that. |
| return this->visitInitializer(Init); |
| } |
| |
| std::optional<PrimType> T = classify(E->getType()); |
| if (E->isFileScope()) { |
| if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { |
| if (classify(E->getType())) |
| return this->visit(Init); |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| return this->visitInitializer(Init); |
| } |
| } |
| |
| // Otherwise, use a local variable. |
| if (T) { |
| // For primitive types, we just visit the initializer. |
| return this->delegate(Init); |
| } else { |
| if (std::optional<unsigned> LocalIndex = allocateLocal(Init)) { |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| if (!this->visitInitializer(Init)) |
| return false; |
| if (DiscardResult) |
| return this->emitPopPtr(E); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| if (DiscardResult) |
| return true; |
| if (E->getType()->isBooleanType()) |
| return this->emitConstBool(E->getValue(), E); |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { |
| assert(Initializing); |
| const Record *R = P.getOrCreateRecord(E->getLambdaClass()); |
| |
| auto *CaptureInitIt = E->capture_init_begin(); |
| // Initialize all fields (which represent lambda captures) of the |
| // record with their initializers. |
| for (const Record::Field &F : R->fields()) { |
| const Expr *Init = *CaptureInitIt; |
| ++CaptureInitIt; |
| |
| if (std::optional<PrimType> T = classify(Init)) { |
| if (!this->visit(Init)) |
| return false; |
| |
| if (!this->emitSetField(*T, F.Offset, E)) |
| return false; |
| } else { |
| if (!this->emitDupPtr(E)) |
| return false; |
| |
| if (!this->emitGetPtrField(F.Offset, E)) |
| return false; |
| |
| if (!this->visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->delegate(E->getFunctionName()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { |
| if (E->getSubExpr() && !this->discard(E->getSubExpr())) |
| return false; |
| |
| return this->emitInvalid(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXReinterpretCastExpr( |
| const CXXReinterpretCastExpr *E) { |
| if (!this->discard(E->getSubExpr())) |
| return false; |
| |
| return this->emitInvalidCast(CastKind::Reinterpret, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| assert(E->getType()->isBooleanType()); |
| |
| if (DiscardResult) |
| return true; |
| return this->emitConstBool(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXConstructExpr( |
| const CXXConstructExpr *E) { |
| QualType T = E->getType(); |
| assert(!classify(T)); |
| |
| if (T->isRecordType()) { |
| const CXXConstructorDecl *Ctor = E->getConstructor(); |
| |
| // Trivial zero initialization. |
| if (E->requiresZeroInitialization() && Ctor->isTrivial()) { |
| const Record *R = getRecord(E->getType()); |
| return this->visitZeroRecordInitializer(R, E); |
| } |
| |
| const Function *Func = getFunction(Ctor); |
| |
| if (!Func) |
| return false; |
| |
| assert(Func->hasThisPointer()); |
| assert(!Func->hasRVO()); |
| |
| // If we're discarding a construct expression, we still need |
| // to allocate a variable and call the constructor and destructor. |
| if (DiscardResult) { |
| assert(!Initializing); |
| std::optional<unsigned> LocalIndex = |
| allocateLocal(E, /*IsExtended=*/true); |
| |
| if (!LocalIndex) |
| return false; |
| |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| // The This pointer is already on the stack because this is an initializer, |
| // but we need to dup() so the call() below has its own copy. |
| if (!this->emitDupPtr(E)) |
| return false; |
| |
| // Constructor arguments. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| |
| if (Func->isVariadic()) { |
| uint32_t VarArgSize = 0; |
| unsigned NumParams = Func->getNumWrittenParams(); |
| for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { |
| VarArgSize += |
| align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); |
| } |
| if (!this->emitCallVar(Func, VarArgSize, E)) |
| return false; |
| } else { |
| if (!this->emitCall(Func, 0, E)) |
| return false; |
| } |
| |
| // Immediately call the destructor if we have to. |
| if (DiscardResult) { |
| if (!this->emitPopPtr(E)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (T->isArrayType()) { |
| const ConstantArrayType *CAT = |
| Ctx.getASTContext().getAsConstantArrayType(E->getType()); |
| assert(CAT); |
| size_t NumElems = CAT->getSize().getZExtValue(); |
| const Function *Func = getFunction(E->getConstructor()); |
| if (!Func || !Func->isConstexpr()) |
| return false; |
| |
| // FIXME(perf): We're calling the constructor once per array element here, |
| // in the old intepreter we had a special-case for trivial constructors. |
| for (size_t I = 0; I != NumElems; ++I) { |
| if (!this->emitConstUint64(I, E)) |
| return false; |
| if (!this->emitArrayElemPtrUint64(E)) |
| return false; |
| |
| // Constructor arguments. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| |
| if (!this->emitCall(Func, 0, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| const APValue Val = |
| E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); |
| |
| // Things like __builtin_LINE(). |
| if (E->getType()->isIntegerType()) { |
| assert(Val.isInt()); |
| const APSInt &I = Val.getInt(); |
| return this->emitConst(I, E); |
| } |
| // Otherwise, the APValue is an LValue, with only one element. |
| // Theoretically, we don't need the APValue at all of course. |
| assert(E->getType()->isPointerType()); |
| assert(Val.isLValue()); |
| const APValue::LValueBase &Base = Val.getLValueBase(); |
| if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) |
| return this->visit(LValueExpr); |
| |
| // Otherwise, we have a decl (which is the case for |
| // __builtin_source_location). |
| assert(Base.is<const ValueDecl *>()); |
| assert(Val.getLValuePath().size() == 0); |
| const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); |
| assert(BaseDecl); |
| |
| auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); |
| |
| std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); |
| if (!GlobalIndex) |
| return false; |
| |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| |
| const Record *R = getRecord(E->getType()); |
| const APValue &V = UGCD->getValue(); |
| for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { |
| const Record::Field *F = R->getField(I); |
| const APValue &FieldValue = V.getStructField(I); |
| |
| PrimType FieldT = classifyPrim(F->Decl->getType()); |
| |
| if (!this->visitAPValue(FieldValue, FieldT, E)) |
| return false; |
| if (!this->emitInitField(FieldT, F->Offset, E)) |
| return false; |
| } |
| |
| // Leave the pointer to the global on the stack. |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { |
| unsigned N = E->getNumComponents(); |
| if (N == 0) |
| return false; |
| |
| for (unsigned I = 0; I != N; ++I) { |
| const OffsetOfNode &Node = E->getComponent(I); |
| if (Node.getKind() == OffsetOfNode::Array) { |
| const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); |
| PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); |
| |
| if (DiscardResult) { |
| if (!this->discard(ArrayIndexExpr)) |
| return false; |
| continue; |
| } |
| |
| if (!this->visit(ArrayIndexExpr)) |
| return false; |
| // Cast to Sint64. |
| if (IndexT != PT_Sint64) { |
| if (!this->emitCast(IndexT, PT_Sint64, E)) |
| return false; |
| } |
| } |
| } |
| |
| if (DiscardResult) |
| return true; |
| |
| PrimType T = classifyPrim(E->getType()); |
| return this->emitOffsetOf(T, E, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXScalarValueInitExpr( |
| const CXXScalarValueInitExpr *E) { |
| QualType Ty = E->getType(); |
| |
| if (DiscardResult || Ty->isVoidType()) |
| return true; |
| |
| if (std::optional<PrimType> T = classify(Ty)) |
| return this->visitZeroInitializer(*T, Ty, E); |
| |
| assert(Ty->isAnyComplexType()); |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E, /*IsExtended=*/false); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| // Initialize both fields to 0. |
| QualType ElemQT = Ty->getAs<ComplexType>()->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
| return this->emitConst(E->getPackLength(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitGenericSelectionExpr( |
| const GenericSelectionExpr *E) { |
| return this->delegate(E->getResultExpr()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitChooseExpr(const ChooseExpr *E) { |
| return this->delegate(E->getChosenSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitObjCBoolLiteralExpr( |
| const ObjCBoolLiteralExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXInheritedCtorInitExpr( |
| const CXXInheritedCtorInitExpr *E) { |
| const CXXConstructorDecl *Ctor = E->getConstructor(); |
| assert(!Ctor->isTrivial() && |
| "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); |
| const Function *F = this->getFunction(Ctor); |
| assert(F); |
| assert(!F->hasRVO()); |
| assert(F->hasThisPointer()); |
| |
| if (!this->emitDupPtr(SourceInfo{})) |
| return false; |
| |
| // Forward all arguments of the current function (which should be a |
| // constructor itself) to the inherited ctor. |
| // This is necessary because the calling code has pushed the pointer |
| // of the correct base for us already, but the arguments need |
| // to come after. |
| unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. |
| for (const ParmVarDecl *PD : Ctor->parameters()) { |
| PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); |
| |
| if (!this->emitGetParam(PT, Offset, E)) |
| return false; |
| Offset += align(primSize(PT)); |
| } |
| |
| return this->emitCall(F, 0, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitExpressionTraitExpr( |
| const ExpressionTraitExpr *E) { |
| assert(Ctx.getLangOpts().CPlusPlus); |
| return this->emitConstBool(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
| if (DiscardResult) |
| return true; |
| assert(!Initializing); |
| |
| std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(E->getGuidDecl()); |
| if (!GlobalIndex) |
| return false; |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| |
| const Record *R = this->getRecord(E->getType()); |
| assert(R); |
| |
| const APValue &V = E->getGuidDecl()->getAsAPValue(); |
| if (V.getKind() == APValue::None) |
| return true; |
| |
| assert(V.isStruct()); |
| assert(V.getStructNumBases() == 0); |
| // FIXME: This could be useful in visitAPValue, too. |
| for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I) { |
| const APValue &F = V.getStructField(I); |
| const Record::Field *RF = R->getField(I); |
| |
| if (F.isInt()) { |
| PrimType T = classifyPrim(RF->Decl->getType()); |
| if (!this->visitAPValue(F, T, E)) |
| return false; |
| if (!this->emitInitField(T, RF->Offset, E)) |
| return false; |
| } else if (F.isArray()) { |
| assert(RF->Desc->isPrimitiveArray()); |
| const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); |
| PrimType ElemT = classifyPrim(ArrType->getElementType()); |
| assert(ArrType); |
| |
| if (!this->emitDupPtr(E)) |
| return false; |
| if (!this->emitGetPtrField(RF->Offset, E)) |
| return false; |
| |
| for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { |
| if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, A, E)) |
| return false; |
| } |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| } else { |
| assert(false && "I don't think this should be possible"); |
| } |
| } |
| |
| return this->emitInitPtr(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { |
| assert(classifyPrim(E->getType()) == PT_Bool); |
| return this->emitConstBool(E->isSatisfied(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitConceptSpecializationExpr( |
| const ConceptSpecializationExpr *E) { |
| assert(classifyPrim(E->getType()) == PT_Bool); |
| return this->emitConstBool(E->isSatisfied(), E); |
| } |
| |
| template <class Emitter> bool ByteCodeExprGen<Emitter>::discard(const Expr *E) { |
| if (E->containsErrors()) |
| return false; |
| |
| OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, |
| /*NewInitializing=*/false); |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::delegate(const Expr *E) { |
| if (E->containsErrors()) |
| return false; |
| |
| // We're basically doing: |
| // OptionScope<Emitter> Scope(this, DicardResult, Initializing); |
| // but that's unnecessary of course. |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> bool ByteCodeExprGen<Emitter>::visit(const Expr *E) { |
| if (E->containsErrors()) |
| return false; |
| |
| if (E->getType()->isVoidType()) |
| return this->discard(E); |
| |
| // Create local variable to hold the return value. |
| if (!E->isGLValue() && !E->getType()->isAnyComplexType() && |
| !classify(E->getType())) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E, /*IsExtended=*/true); |
| if (!LocalIndex) |
| return false; |
| |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| return this->visitInitializer(E); |
| } |
| |
| // Otherwise,we have a primitive return value, produce the value directly |
| // and push it on the stack. |
| OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
| /*NewInitializing=*/false); |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitInitializer(const Expr *E) { |
| assert(!classify(E->getType())); |
| |
| if (E->containsErrors()) |
| return false; |
| |
| OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
| /*NewInitializing=*/true); |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitBool(const Expr *E) { |
| std::optional<PrimType> T = classify(E->getType()); |
| if (!T) |
| return false; |
| |
| if (!this->visit(E)) |
| return false; |
| |
| if (T == PT_Bool) |
| return true; |
| |
| // Convert pointers to bool. |
| if (T == PT_Ptr || T == PT_FnPtr) { |
| if (!this->emitNull(*T, E)) |
| return false; |
| return this->emitNE(*T, E); |
| } |
| |
| // Or Floats. |
| if (T == PT_Float) |
| return this->emitCastFloatingIntegralBool(E); |
| |
| // Or anything else we can. |
| return this->emitCast(*T, PT_Bool, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitZeroInitializer(PrimType T, QualType QT, |
| const Expr *E) { |
| switch (T) { |
| case PT_Bool: |
| return this->emitZeroBool(E); |
| case PT_Sint8: |
| return this->emitZeroSint8(E); |
| case PT_Uint8: |
| return this->emitZeroUint8(E); |
| case PT_Sint16: |
| return this->emitZeroSint16(E); |
| case PT_Uint16: |
| return this->emitZeroUint16(E); |
| case PT_Sint32: |
| return this->emitZeroSint32(E); |
| case PT_Uint32: |
| return this->emitZeroUint32(E); |
| case PT_Sint64: |
| return this->emitZeroSint64(E); |
| case PT_Uint64: |
| return this->emitZeroUint64(E); |
| case PT_IntAP: |
| return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); |
| case PT_IntAPS: |
| return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); |
| case PT_Ptr: |
| return this->emitNullPtr(E); |
| case PT_FnPtr: |
| return this->emitNullFnPtr(E); |
| case PT_Float: { |
| return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); |
| } |
| } |
| llvm_unreachable("unknown primitive type"); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitZeroRecordInitializer(const Record *R, |
| const Expr *E) { |
| assert(E); |
| assert(R); |
| // Fields |
| for (const Record::Field &Field : R->fields()) { |
| const Descriptor *D = Field.Desc; |
| if (D->isPrimitive()) { |
| QualType QT = D->getType(); |
| PrimType T = classifyPrim(D->getType()); |
| if (!this->visitZeroInitializer(T, QT, E)) |
| return false; |
| if (!this->emitInitField(T, Field.Offset, E)) |
| return false; |
| continue; |
| } |
| |
| // TODO: Add GetPtrFieldPop and get rid of this dup. |
| if (!this->emitDupPtr(E)) |
| return false; |
| if (!this->emitGetPtrField(Field.Offset, E)) |
| return false; |
| |
| if (D->isPrimitiveArray()) { |
| QualType ET = D->getElemQualType(); |
| PrimType T = classifyPrim(ET); |
| for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { |
| if (!this->visitZeroInitializer(T, ET, E)) |
| return false; |
| if (!this->emitInitElem(T, I, E)) |
| return false; |
| } |
| } else if (D->isCompositeArray()) { |
| const Record *ElemRecord = D->ElemDesc->ElemRecord; |
| assert(D->ElemDesc->ElemRecord); |
| for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { |
| if (!this->emitConstUint32(I, E)) |
| return false; |
| if (!this->emitArrayElemPtr(PT_Uint32, E)) |
| return false; |
| if (!this->visitZeroRecordInitializer(ElemRecord, E)) |
| return false; |
| if (!this->emitPopPtr(E)) |
| return false; |
| } |
| } else if (D->isRecord()) { |
| if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) |
| return false; |
| } else { |
| assert(false); |
| } |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| } |
| |
| for (const Record::Base &B : R->bases()) { |
| if (!this->emitGetPtrBase(B.Offset, E)) |
| return false; |
| if (!this->visitZeroRecordInitializer(B.R, E)) |
| return false; |
| if (!this->emitInitPtrPop(E)) |
| return false; |
| } |
| |
| // FIXME: Virtual bases. |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::dereference( |
| const Expr *LV, DerefKind AK, llvm::function_ref<bool(PrimType)> Direct, |
| llvm::function_ref<bool(PrimType)> Indirect) { |
| if (std::optional<PrimType> T = classify(LV->getType())) { |
| if (!LV->refersToBitField()) { |
| // Only primitive, non bit-field types can be dereferenced directly. |
| if (const auto *DE = dyn_cast<DeclRefExpr>(LV)) { |
| if (!DE->getDecl()->getType()->isReferenceType()) { |
| if (const auto *PD = dyn_cast<ParmVarDecl>(DE->getDecl())) |
| return dereferenceParam(LV, *T, PD, AK, Direct, Indirect); |
| if (const auto *VD = dyn_cast<VarDecl>(DE->getDecl())) |
| return dereferenceVar(LV, *T, VD, AK, Direct, Indirect); |
| } |
| } |
| } |
| |
| if (!visit(LV)) |
| return false; |
| return Indirect(*T); |
| } |
| |
| if (LV->getType()->isAnyComplexType()) |
| return this->delegate(LV); |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::dereferenceParam( |
| const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK, |
| llvm::function_ref<bool(PrimType)> Direct, |
| llvm::function_ref<bool(PrimType)> Indirect) { |
| if (auto It = this->Params.find(PD); It != this->Params.end()) { |
| unsigned Idx = It->second.Offset; |
| switch (AK) { |
| case DerefKind::Read: |
| return DiscardResult ? true : this->emitGetParam(T, Idx, LV); |
| |
| case DerefKind::Write: |
| if (!Direct(T)) |
| return false; |
| if (!this->emitSetParam(T, Idx, LV)) |
| return false; |
| return DiscardResult ? true : this->emitGetPtrParam(Idx, LV); |
| |
| case DerefKind::ReadWrite: |
| if (!this->emitGetParam(T, Idx, LV)) |
| return false; |
| if (!Direct(T)) |
| return false; |
| if (!this->emitSetParam(T, Idx, LV)) |
| return false; |
| return DiscardResult ? true : this->emitGetPtrParam(Idx, LV); |
| } |
| return true; |
| } |
| |
| // If the param is a pointer, we can dereference a dummy value. |
| if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) { |
| if (auto Idx = P.getOrCreateDummy(PD)) |
| return this->emitGetPtrGlobal(*Idx, PD); |
| return false; |
| } |
| |
| // Value cannot be produced - try to emit pointer and do stuff with it. |
| return visit(LV) && Indirect(T); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::dereferenceVar( |
| const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK, |
| llvm::function_ref<bool(PrimType)> Direct, |
| llvm::function_ref<bool(PrimType)> Indirect) { |
| auto It = Locals.find(VD); |
| if (It != Locals.end()) { |
| const auto &L = It->second; |
| switch (AK) { |
| case DerefKind::Read: |
| if (!this->emitGetLocal(T, L.Offset, LV)) |
| return false; |
| return DiscardResult ? this->emitPop(T, LV) : true; |
| |
| case DerefKind::Write: |
| if (!Direct(T)) |
| return false; |
| if (!this->emitSetLocal(T, L.Offset, LV)) |
| return false; |
| return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV); |
| |
| case DerefKind::ReadWrite: |
| if (!this->emitGetLocal(T, L.Offset, LV)) |
| return false; |
| if (!Direct(T)) |
| return false; |
| if (!this->emitSetLocal(T, L.Offset, LV)) |
| return false; |
| return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV); |
| } |
| } else if (auto Idx = P.getGlobal(VD)) { |
| switch (AK) { |
| case DerefKind::Read: |
| if (!this->emitGetGlobal(T, *Idx, LV)) |
| return false; |
| return DiscardResult ? this->emitPop(T, LV) : true; |
| |
| case DerefKind::Write: |
| if (!Direct(T)) |
| return false; |
| if (!this->emitSetGlobal(T, *Idx, LV)) |
| return false; |
| return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV); |
| |
| case DerefKind::ReadWrite: |
| if (!this->emitGetGlobal(T, *Idx, LV)) |
| return false; |
| if (!Direct(T)) |
| return false; |
| if (!this->emitSetGlobal(T, *Idx, LV)) |
| return false; |
| return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV); |
| } |
| } |
| |
| // If the declaration is a constant value, emit it here even |
| // though the declaration was not evaluated in the current scope. |
| // The access mode can only be read in this case. |
| if (!DiscardResult && AK == DerefKind::Read) { |
| if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) { |
| QualType VT = VD->getType(); |
| if (VT.isConstQualified() && VT->isFundamentalType()) |
| return this->visit(VD->getInit()); |
| } |
| } |
| |
| // Value cannot be produced - try to emit pointer. |
| return visit(LV) && Indirect(T); |
| } |
| |
| template <class Emitter> |
| template <typename T> |
| bool ByteCodeExprGen<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { |
| switch (Ty) { |
| case PT_Sint8: |
| return this->emitConstSint8(Value, E); |
| case PT_Uint8: |
| return this->emitConstUint8(Value, E); |
| case PT_Sint16: |
| return this->emitConstSint16(Value, E); |
| case PT_Uint16: |
| return this->emitConstUint16(Value, E); |
| case PT_Sint32: |
| return this->emitConstSint32(Value, E); |
| case PT_Uint32: |
| return this->emitConstUint32(Value, E); |
| case PT_Sint64: |
| return this->emitConstSint64(Value, E); |
| case PT_Uint64: |
| return this->emitConstUint64(Value, E); |
| case PT_Bool: |
| return this->emitConstBool(Value, E); |
| case PT_Ptr: |
| case PT_FnPtr: |
| case PT_Float: |
| case PT_IntAP: |
| case PT_IntAPS: |
| llvm_unreachable("Invalid integral type"); |
| break; |
| } |
| llvm_unreachable("unknown primitive type"); |
| } |
| |
| template <class Emitter> |
| template <typename T> |
| bool ByteCodeExprGen<Emitter>::emitConst(T Value, const Expr *E) { |
| return this->emitConst(Value, classifyPrim(E->getType()), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::emitConst(const APSInt &Value, PrimType Ty, |
| const Expr *E) { |
| if (Ty == PT_IntAPS) |
| return this->emitConstIntAPS(Value, E); |
| if (Ty == PT_IntAP) |
| return this->emitConstIntAP(Value, E); |
| |
| if (Value.isSigned()) |
| return this->emitConst(Value.getSExtValue(), Ty, E); |
| return this->emitConst(Value.getZExtValue(), Ty, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::emitConst(const APSInt &Value, const Expr *E) { |
| return this->emitConst(Value, classifyPrim(E->getType()), E); |
| } |
| |
| template <class Emitter> |
| unsigned ByteCodeExprGen<Emitter>::allocateLocalPrimitive(DeclTy &&Src, |
| PrimType Ty, |
| bool IsConst, |
| bool IsExtended) { |
| // Make sure we don't accidentally register the same decl twice. |
| if (const auto *VD = |
| dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { |
| assert(!P.getGlobal(VD)); |
| assert(!Locals.contains(VD)); |
| } |
| |
| // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. |
| // (int){12} in C. Consider using Expr::isTemporaryObject() instead |
| // or isa<MaterializeTemporaryExpr>(). |
| Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, |
| Src.is<const Expr *>()); |
| Scope::Local Local = this->createLocal(D); |
| if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) |
| Locals.insert({VD, Local}); |
| VarScope->add(Local, IsExtended); |
| return Local.Offset; |
| } |
| |
| template <class Emitter> |
| std::optional<unsigned> |
| ByteCodeExprGen<Emitter>::allocateLocal(DeclTy &&Src, bool IsExtended) { |
| // Make sure we don't accidentally register the same decl twice. |
| if ([[maybe_unused]] const auto *VD = |
| dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { |
| assert(!P.getGlobal(VD)); |
| assert(!Locals.contains(VD)); |
| } |
| |
| QualType Ty; |
| const ValueDecl *Key = nullptr; |
| const Expr *Init = nullptr; |
| bool IsTemporary = false; |
| if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { |
| Key = VD; |
| Ty = VD->getType(); |
| |
| if (const auto *VarD = dyn_cast<VarDecl>(VD)) |
| Init = VarD->getInit(); |
| } |
| if (auto *E = Src.dyn_cast<const Expr *>()) { |
| IsTemporary = true; |
| Ty = E->getType(); |
| } |
| |
| Descriptor *D = P.createDescriptor( |
| Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), |
| IsTemporary, /*IsMutable=*/false, Init); |
| if (!D) |
| return std::nullopt; |
| |
| Scope::Local Local = this->createLocal(D); |
| if (Key) |
| Locals.insert({Key, Local}); |
| VarScope->add(Local, IsExtended); |
| return Local.Offset; |
| } |
| |
| template <class Emitter> |
| const RecordType *ByteCodeExprGen<Emitter>::getRecordTy(QualType Ty) { |
| if (const PointerType *PT = dyn_cast<PointerType>(Ty)) |
| return PT->getPointeeType()->getAs<RecordType>(); |
| return Ty->getAs<RecordType>(); |
| } |
| |
| template <class Emitter> |
| Record *ByteCodeExprGen<Emitter>::getRecord(QualType Ty) { |
| if (const auto *RecordTy = getRecordTy(Ty)) |
| return getRecord(RecordTy->getDecl()); |
| return nullptr; |
| } |
| |
| template <class Emitter> |
| Record *ByteCodeExprGen<Emitter>::getRecord(const RecordDecl *RD) { |
| return P.getOrCreateRecord(RD); |
| } |
| |
| template <class Emitter> |
| const Function *ByteCodeExprGen<Emitter>::getFunction(const FunctionDecl *FD) { |
| return Ctx.getOrCreateFunction(FD); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitExpr(const Expr *E) { |
| ExprScope<Emitter> RootScope(this); |
| // Void expressions. |
| if (E->getType()->isVoidType()) { |
| if (!visit(E)) |
| return false; |
| return this->emitRetVoid(E); |
| } |
| |
| // Expressions with a primitive return type. |
| if (std::optional<PrimType> T = classify(E)) { |
| if (!visit(E)) |
| return false; |
| return this->emitRet(*T, E); |
| } |
| |
| // Expressions with a composite return type. |
| // For us, that means everything we don't |
| // have a PrimType for. |
| if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { |
| if (!this->emitGetPtrLocal(*LocalOffset, E)) |
| return false; |
| |
| if (!visitInitializer(E)) |
| return false; |
| |
| if (!this->emitInitPtr(E)) |
| return false; |
| return this->emitRetValue(E); |
| } |
| |
| return false; |
| } |
| |
| /// Toplevel visitDecl(). |
| /// We get here from evaluateAsInitializer(). |
| /// We need to evaluate the initializer and return its value. |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitDecl(const VarDecl *VD) { |
| assert(!VD->isInvalidDecl() && "Trying to constant evaluate an invalid decl"); |
| |
| // Create and initialize the variable. |
| if (!this->visitVarDecl(VD)) |
| return false; |
| |
| std::optional<PrimType> VarT = classify(VD->getType()); |
| // Get a pointer to the variable |
| if (Context::shouldBeGloballyIndexed(VD)) { |
| auto GlobalIndex = P.getGlobal(VD); |
| assert(GlobalIndex); // visitVarDecl() didn't return false. |
| if (VarT) { |
| if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) |
| return false; |
| } else { |
| if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) |
| return false; |
| } |
| } else { |
| auto Local = Locals.find(VD); |
| assert(Local != Locals.end()); // Same here. |
| if (VarT) { |
| if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) |
| return false; |
| } else { |
| if (!this->emitGetPtrLocal(Local->second.Offset, VD)) |
| return false; |
| } |
| } |
| |
| // Return the value |
| if (VarT) |
| return this->emitRet(*VarT, VD); |
| |
| // Return non-primitive values as pointers here. |
| return this->emitRet(PT_Ptr, VD); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitVarDecl(const VarDecl *VD) { |
| // We don't know what to do with these, so just return false. |
| if (VD->getType().isNull()) |
| return false; |
| |
| const Expr *Init = VD->getInit(); |
| std::optional<PrimType> VarT = classify(VD->getType()); |
| |
| if (Context::shouldBeGloballyIndexed(VD)) { |
| // We've already seen and initialized this global. |
| if (P.getGlobal(VD)) |
| return true; |
| |
| std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); |
| |
| if (!GlobalIndex) |
| return false; |
| |
| assert(Init); |
| { |
| DeclScope<Emitter> LocalScope(this, VD); |
| |
| if (VarT) { |
| if (!this->visit(Init)) |
| return false; |
| return this->emitInitGlobal(*VarT, *GlobalIndex, VD); |
| } |
| return this->visitGlobalInitializer(Init, *GlobalIndex); |
| } |
| } else { |
| VariableScope<Emitter> LocalScope(this); |
| if (VarT) { |
| unsigned Offset = this->allocateLocalPrimitive( |
| VD, *VarT, VD->getType().isConstQualified()); |
| if (Init) { |
| // Compile the initializer in its own scope. |
| ExprScope<Emitter> Scope(this); |
| if (!this->visit(Init)) |
| return false; |
| |
| return this->emitSetLocal(*VarT, Offset, VD); |
| } |
| } else { |
| if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { |
| if (Init) |
| return this->visitLocalInitializer(Init, *Offset); |
| } |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::visitAPValue(const APValue &Val, |
| PrimType ValType, const Expr *E) { |
| assert(!DiscardResult); |
| if (Val.isInt()) |
| return this->emitConst(Val.getInt(), ValType, E); |
| |
| if (Val.isLValue()) { |
| APValue::LValueBase Base = Val.getLValueBase(); |
| if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) |
| return this->visit(BaseExpr); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) { |
| const Function *Func = getFunction(E->getDirectCallee()); |
| if (!Func) |
| return false; |
| |
| if (!Func->isUnevaluatedBuiltin()) { |
| // Put arguments on the stack. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| } |
| |
| if (!this->emitCallBI(Func, E, E)) |
| return false; |
| |
| QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); |
| if (DiscardResult && !ReturnType->isVoidType()) { |
| PrimType T = classifyPrim(ReturnType); |
| return this->emitPop(T, E); |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCallExpr(const CallExpr *E) { |
| if (E->getBuiltinCallee()) |
| return VisitBuiltinCallExpr(E); |
| |
| QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); |
| std::optional<PrimType> T = classify(ReturnType); |
| bool HasRVO = !ReturnType->isVoidType() && !T; |
| |
| if (HasRVO) { |
| if (DiscardResult) { |
| // If we need to discard the return value but the function returns its |
| // value via an RVO pointer, we need to create one such pointer just |
| // for this call. |
| if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| } else { |
| assert(Initializing); |
| if (!this->emitDupPtr(E)) |
| return false; |
| } |
| } |
| |
| // Add the (optional, implicit) This pointer. |
| if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { |
| if (!this->visit(MC->getImplicitObjectArgument())) |
| return false; |
| } |
| |
| // Put arguments on the stack. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| |
| if (const FunctionDecl *FuncDecl = E->getDirectCallee()) { |
| const Function *Func = getFunction(FuncDecl); |
| if (!Func) |
| return false; |
| assert(HasRVO == Func->hasRVO()); |
| |
| bool HasQualifier = false; |
| if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) |
| HasQualifier = ME->hasQualifier(); |
| |
| bool IsVirtual = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) |
| IsVirtual = MD->isVirtual(); |
| |
| // In any case call the function. The return value will end up on the stack |
| // and if the function has RVO, we already have the pointer on the stack to |
| // write the result into. |
| if (IsVirtual && !HasQualifier) { |
| uint32_t VarArgSize = 0; |
| unsigned NumParams = Func->getNumWrittenParams(); |
| for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
| VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); |
| |
| if (!this->emitCallVirt(Func, VarArgSize, E)) |
| return false; |
| } else if (Func->isVariadic()) { |
| uint32_t VarArgSize = 0; |
| unsigned NumParams = Func->getNumWrittenParams(); |
| for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
| VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); |
| if (!this->emitCallVar(Func, VarArgSize, E)) |
| return false; |
| } else { |
| if (!this->emitCall(Func, 0, E)) |
| return false; |
| } |
| } else { |
| // Indirect call. Visit the callee, which will leave a FunctionPointer on |
| // the stack. Cleanup of the returned value if necessary will be done after |
| // the function call completed. |
| |
| // Sum the size of all args from the call expr. |
| uint32_t ArgSize = 0; |
| for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) |
| ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); |
| |
| if (!this->visit(E->getCallee())) |
| return false; |
| |
| if (!this->emitCallPtr(ArgSize, E)) |
| return false; |
| } |
| |
| // Cleanup for discarded return values. |
| if (DiscardResult && !ReturnType->isVoidType() && T) |
| return this->emitPop(*T, E); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXDefaultInitExpr( |
| const CXXDefaultInitExpr *E) { |
| SourceLocScope<Emitter> SLS(this, E); |
| if (Initializing) |
| return this->visitInitializer(E->getExpr()); |
| |
| assert(classify(E->getType())); |
| return this->visit(E->getExpr()); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXDefaultArgExpr( |
| const CXXDefaultArgExpr *E) { |
| SourceLocScope<Emitter> SLS(this, E); |
| |
| const Expr *SubExpr = E->getExpr(); |
| if (std::optional<PrimType> T = classify(E->getExpr())) |
| return this->visit(SubExpr); |
| |
| assert(Initializing); |
| return this->visitInitializer(SubExpr); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXBoolLiteralExpr( |
| const CXXBoolLiteralExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConstBool(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXNullPtrLiteralExpr( |
| const CXXNullPtrLiteralExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitNullPtr(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| assert(E->getType()->isIntegerType()); |
| |
| PrimType T = classifyPrim(E->getType()); |
| return this->emitZero(T, E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| if (this->LambdaThisCapture > 0) |
| return this->emitGetThisFieldPtr(this->LambdaThisCapture, E); |
| |
| return this->emitThis(E); |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| std::optional<PrimType> T = classify(SubExpr->getType()); |
| |
| switch (E->getOpcode()) { |
| case UO_PostInc: { // x++ |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr) { |
| if (!this->emitIncPtr(E)) |
| return false; |
| |
| return DiscardResult ? this->emitPopPtr(E) : true; |
| } |
| |
| if (T == PT_Float) { |
| return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E) |
| : this->emitIncf(getRoundingMode(E), E); |
| } |
| |
| return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); |
| } |
| case UO_PostDec: { // x-- |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr) { |
| if (!this->emitDecPtr(E)) |
| return false; |
| |
| return DiscardResult ? this->emitPopPtr(E) : true; |
| } |
| |
| if (T == PT_Float) { |
| return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E) |
| : this->emitDecf(getRoundingMode(E), E); |
| } |
| |
| return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); |
| } |
| case UO_PreInc: { // ++x |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr) { |
| if (!this->emitLoadPtr(E)) |
| return false; |
| if (!this->emitConstUint8(1, E)) |
| return false; |
| if (!this->emitAddOffsetUint8(E)) |
| return false; |
| return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
| } |
| |
| // Post-inc and pre-inc are the same if the value is to be discarded. |
| if (DiscardResult) { |
| if (T == PT_Float) |
| return this->emitIncfPop(getRoundingMode(E), E); |
| return this->emitIncPop(*T, E); |
| } |
| |
| if (T == PT_Float) { |
| const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); |
| if (!this->emitLoadFloat(E)) |
| return false; |
| if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
| return false; |
| if (!this->emitAddf(getRoundingMode(E), E)) |
| return false; |
| return this->emitStoreFloat(E); |
| } |
| if (!this->emitLoad(*T, E)) |
| return false; |
| if (!this->emitConst(1, E)) |
| return false; |
| if (!this->emitAdd(*T, E)) |
| return false; |
| return this->emitStore(*T, E); |
| } |
| case UO_PreDec: { // --x |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr) { |
| if (!this->emitLoadPtr(E)) |
| return false; |
| if (!this->emitConstUint8(1, E)) |
| return false; |
| if (!this->emitSubOffsetUint8(E)) |
| return false; |
| return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
| } |
| |
| // Post-dec and pre-dec are the same if the value is to be discarded. |
| if (DiscardResult) { |
| if (T == PT_Float) |
| return this->emitDecfPop(getRoundingMode(E), E); |
| return this->emitDecPop(*T, E); |
| } |
| |
| if (T == PT_Float) { |
| const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); |
| if (!this->emitLoadFloat(E)) |
| return false; |
| if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
| return false; |
| if (!this->emitSubf(getRoundingMode(E), E)) |
| return false; |
| return this->emitStoreFloat(E); |
| } |
| if (!this->emitLoad(*T, E)) |
| return false; |
| if (!this->emitConst(1, E)) |
| return false; |
| if (!this->emitSub(*T, E)) |
| return false; |
| return this->emitStore(*T, E); |
| } |
| case UO_LNot: // !x |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!this->visitBool(SubExpr)) |
| return false; |
| |
| if (!this->emitInvBool(E)) |
| return false; |
| |
| if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
| return this->emitCast(PT_Bool, ET, E); |
| return true; |
| case UO_Minus: // -x |
| if (!this->visit(SubExpr)) |
| return false; |
| return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); |
| case UO_Plus: // +x |
| if (!this->visit(SubExpr)) // noop |
| return false; |
| return DiscardResult ? this->emitPop(*T, E) : true; |
| case UO_AddrOf: // &x |
| // We should already have a pointer when we get here. |
| return this->delegate(SubExpr); |
| case UO_Deref: // *x |
| return dereference( |
| SubExpr, DerefKind::Read, |
| [](PrimType) { |
| llvm_unreachable("Dereferencing requires a pointer"); |
| return false; |
| }, |
| [this, E](PrimType T) { |
| return DiscardResult ? this->emitPop(T, E) : true; |
| }); |
| case UO_Not: // ~x |
| if (!this->visit(SubExpr)) |
| return false; |
| return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); |
| case UO_Real: // __real x |
| if (T) |
| return this->delegate(SubExpr); |
| return this->emitComplexReal(SubExpr); |
| case UO_Imag: { // __imag x |
| if (T) { |
| if (!this->discard(SubExpr)) |
| return false; |
| return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); |
| } |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitConstUint8(1, E)) |
| return false; |
| if (!this->emitArrayElemPtrPopUint8(E)) |
| return false; |
| |
| // Since our _Complex implementation does not map to a primitive type, |
| // we sometimes have to do the lvalue-to-rvalue conversion here manually. |
| if (!SubExpr->isLValue()) |
| return this->emitLoadPop(classifyPrim(E->getType()), E); |
| return true; |
| } |
| case UO_Extension: |
| return this->delegate(SubExpr); |
| case UO_Coawait: |
| assert(false && "Unhandled opcode"); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| const auto *D = E->getDecl(); |
| |
| if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { |
| return this->emitConst(ECD->getInitVal(), E); |
| } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { |
| return this->visit(BD->getBinding()); |
| } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { |
| const Function *F = getFunction(FuncDecl); |
| return F && this->emitGetFnPtr(F, E); |
| } |
| |
| // References are implemented via pointers, so when we see a DeclRefExpr |
| // pointing to a reference, we need to get its value directly (i.e. the |
| // pointer to the actual value) instead of a pointer to the pointer to the |
| // value. |
| bool IsReference = D->getType()->isReferenceType(); |
| // Complex values are copied in the AST via a simply assignment or |
| // ltor cast. But we represent them as two-element arrays, which means |
| // we pass them around as pointers. So, to assignm from them, we will |
| // have to copy both (primitive) elements instead. |
| bool IsComplex = D->getType()->isAnyComplexType(); |
| |
| // Check for local/global variables and parameters. |
| if (auto It = Locals.find(D); It != Locals.end()) { |
| const unsigned Offset = It->second.Offset; |
| // FIXME: Fix the code duplication here with the code in the global case. |
| if (Initializing && IsComplex) { |
| PrimType ElemT = classifyComplexElementType(D->getType()); |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!this->emitGetPtrLocal(Offset, E)) |
| return false; |
| if (!this->emitArrayElemPop(ElemT, I, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (IsReference) |
| return this->emitGetLocal(PT_Ptr, Offset, E); |
| return this->emitGetPtrLocal(Offset, E); |
| } else if (auto GlobalIndex = P.getGlobal(D)) { |
| if (Initializing && IsComplex) { |
| PrimType ElemT = classifyComplexElementType(D->getType()); |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| if (!this->emitArrayElemPop(ElemT, I, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (IsReference) |
| return this->emitGetGlobalPtr(*GlobalIndex, E); |
| |
| return this->emitGetPtrGlobal(*GlobalIndex, E); |
| } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { |
| if (auto It = this->Params.find(PVD); It != this->Params.end()) { |
| // FIXME: _Complex initializing case? |
| if (IsReference || !It->second.IsPtr) |
| return this->emitGetParamPtr(It->second.Offset, E); |
| |
| return this->emitGetPtrParam(It->second.Offset, E); |
| } |
| } |
| |
| // Handle lambda captures. |
| if (auto It = this->LambdaCaptures.find(D); |
| It != this->LambdaCaptures.end()) { |
| auto [Offset, IsPtr] = It->second; |
| |
| if (IsPtr) |
| return this->emitGetThisFieldPtr(Offset, E); |
| return this->emitGetPtrThisField(Offset, E); |
| } |
| |
| // Try to lazily visit (or emit dummy pointers for) declarations |
| // we haven't seen yet. |
| if (Ctx.getLangOpts().CPlusPlus) { |
| if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isStaticLocal()) { |
| if (std::optional<unsigned> I = P.getOrCreateDummy(D)) |
| return this->emitGetPtrGlobal(*I, E); |
| } |
| } else { |
| if (const auto *VD = dyn_cast<VarDecl>(D); |
| VD && VD->getAnyInitializer() && VD->getType().isConstQualified()) { |
| if (!this->visitVarDecl(VD)) |
| return false; |
| // Retry. |
| return this->VisitDeclRefExpr(E); |
| } |
| |
| if (std::optional<unsigned> I = P.getOrCreateDummy(D)) |
| return this->emitGetPtrGlobal(*I, E); |
| } |
| |
| return this->emitInvalidDeclRef(E, E); |
| } |
| |
| template <class Emitter> |
| void ByteCodeExprGen<Emitter>::emitCleanup() { |
| for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) |
| C->emitDestruction(); |
| } |
| |
| template <class Emitter> |
| unsigned |
| ByteCodeExprGen<Emitter>::collectBaseOffset(const RecordType *BaseType, |
| const RecordType *DerivedType) { |
| const auto *FinalDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| const RecordDecl *CurDecl = DerivedType->getDecl(); |
| const Record *CurRecord = getRecord(CurDecl); |
| assert(CurDecl && FinalDecl); |
| |
| unsigned OffsetSum = 0; |
| for (;;) { |
| assert(CurRecord->getNumBases() > 0); |
| // One level up |
| for (const Record::Base &B : CurRecord->bases()) { |
| const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl); |
| |
| if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) { |
| OffsetSum += B.Offset; |
| CurRecord = B.R; |
| CurDecl = BaseDecl; |
| break; |
| } |
| } |
| if (CurDecl == FinalDecl) |
| break; |
| } |
| |
| assert(OffsetSum > 0); |
| return OffsetSum; |
| } |
| |
| /// Emit casts from a PrimType to another PrimType. |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, |
| QualType ToQT, const Expr *E) { |
| |
| if (FromT == PT_Float) { |
| // Floating to floating. |
| if (ToT == PT_Float) { |
| const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); |
| return this->emitCastFP(ToSem, getRoundingMode(E), E); |
| } |
| |
| // Float to integral. |
| if (isIntegralType(ToT) || ToT == PT_Bool) |
| return this->emitCastFloatingIntegral(ToT, E); |
| } |
| |
| if (isIntegralType(FromT) || FromT == PT_Bool) { |
| // Integral to integral. |
| if (isIntegralType(ToT) || ToT == PT_Bool) |
| return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; |
| |
| if (ToT == PT_Float) { |
| // Integral to floating. |
| const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); |
| return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E), |
| E); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Emits __real(SubExpr) |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::emitComplexReal(const Expr *SubExpr) { |
| assert(SubExpr->getType()->isAnyComplexType()); |
| |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitConstUint8(0, SubExpr)) |
| return false; |
| if (!this->emitArrayElemPtrPopUint8(SubExpr)) |
| return false; |
| |
| // Since our _Complex implementation does not map to a primitive type, |
| // we sometimes have to do the lvalue-to-rvalue conversion here manually. |
| if (!SubExpr->isLValue()) |
| return this->emitLoadPop(classifyComplexElementType(SubExpr->getType()), |
| SubExpr); |
| return true; |
| } |
| |
| /// When calling this, we have a pointer of the local-to-destroy |
| /// on the stack. |
| /// Emit destruction of record types (or arrays of record types). |
| template <class Emitter> |
| bool ByteCodeExprGen<Emitter>::emitRecordDestruction(const Descriptor *Desc) { |
| assert(Desc); |
| assert(!Desc->isPrimitive()); |
| assert(!Desc->isPrimitiveArray()); |
| |
| // Arrays. |
| if (Desc->isArray()) { |
| const Descriptor *ElemDesc = Desc->ElemDesc; |
| assert(ElemDesc); |
| |
| // Don't need to do anything for these. |
| if (ElemDesc->isPrimitiveArray()) |
| return this->emitPopPtr(SourceInfo{}); |
| |
| // If this is an array of record types, check if we need |
| // to call the element destructors at all. If not, try |
| // to save the work. |
| if (const Record *ElemRecord = ElemDesc->ElemRecord) { |
| if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); |
| !Dtor || Dtor->isTrivial()) |
| return this->emitPopPtr(SourceInfo{}); |
| } |
| |
| for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { |
| if (!this->emitConstUint64(I, SourceInfo{})) |
| return false; |
| if (!this->emitArrayElemPtrUint64(SourceInfo{})) |
| return false; |
| if (!this->emitRecordDestruction(ElemDesc)) |
| return false; |
| } |
| return this->emitPopPtr(SourceInfo{}); |
| } |
| |
| const Record *R = Desc->ElemRecord; |
| assert(R); |
| // First, destroy all fields. |
| for (const Record::Field &Field : llvm::reverse(R->fields())) { |
| const Descriptor *D = Field.Desc; |
| if (!D->isPrimitive() && !D->isPrimitiveArray()) { |
| if (!this->emitDupPtr(SourceInfo{})) |
| return false; |
| if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) |
| return false; |
| if (!this->emitRecordDestruction(D)) |
| return false; |
| } |
| } |
| |
| // FIXME: Unions need to be handled differently here. We don't want to |
| // call the destructor of its members. |
| |
| // Now emit the destructor and recurse into base classes. |
| if (const CXXDestructorDecl *Dtor = R->getDestructor(); |
| Dtor && !Dtor->isTrivial()) { |
| if (const Function *DtorFunc = getFunction(Dtor)) { |
| assert(DtorFunc->hasThisPointer()); |
| assert(DtorFunc->getNumParams() == 1); |
| if (!this->emitDupPtr(SourceInfo{})) |
| return false; |
| if (!this->emitCall(DtorFunc, 0, SourceInfo{})) |
| return false; |
| } |
| } |
| |
| for (const Record::Base &Base : llvm::reverse(R->bases())) { |
| if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) |
| return false; |
| if (!this->emitRecordDestruction(Base.Desc)) |
| return false; |
| } |
| // FIXME: Virtual bases. |
| |
| // Remove the instance pointer. |
| return this->emitPopPtr(SourceInfo{}); |
| } |
| |
| namespace clang { |
| namespace interp { |
| |
| template class ByteCodeExprGen<ByteCodeEmitter>; |
| template class ByteCodeExprGen<EvalEmitter>; |
| |
| } // namespace interp |
| } // namespace clang |