| //===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Preprocessor interface. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Options to support: |
| // -H - Print the name of each header file used. |
| // -C -CC - Do not discard comments for cpp. |
| // -d[MDNI] - Dump various things. |
| // -fworking-directory - #line's with preprocessor's working dir. |
| // -fpreprocessed |
| // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD |
| // -W* |
| // -w |
| // |
| // Messages to emit: |
| // "Multiple include guards may be useful for:\n" |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Lex/Pragma.h" |
| #include "clang/Lex/ScratchBuffer.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/SourceManager.h" |
| #include <iostream> |
| using namespace llvm; |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| |
| Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts, |
| FileManager &FM, SourceManager &SM) |
| : Diags(diags), Features(opts), FileMgr(FM), SourceMgr(SM), |
| SystemDirIdx(0), NoCurDirSearch(false), |
| CurLexer(0), CurDirLookup(0), CurMacroExpander(0) { |
| ScratchBuf = new ScratchBuffer(SourceMgr); |
| |
| // Clear stats. |
| NumDirectives = NumIncluded = NumDefined = NumUndefined = NumPragma = 0; |
| NumIf = NumElse = NumEndif = 0; |
| NumEnteredSourceFiles = 0; |
| NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0; |
| NumFastMacroExpanded = 0; |
| MaxIncludeStackDepth = 0; NumMultiIncludeFileOptzn = 0; |
| NumSkipped = 0; |
| |
| // Macro expansion is enabled. |
| DisableMacroExpansion = false; |
| SkippingContents = false; |
| InMacroFormalArgs = false; |
| |
| // There is no file-change handler yet. |
| FileChangeHandler = 0; |
| IdentHandler = 0; |
| |
| // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. |
| // This gets unpoisoned where it is allowed. |
| (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); |
| |
| // Initialize the pragma handlers. |
| PragmaHandlers = new PragmaNamespace(0); |
| RegisterBuiltinPragmas(); |
| |
| // Initialize builtin macros like __LINE__ and friends. |
| RegisterBuiltinMacros(); |
| } |
| |
| Preprocessor::~Preprocessor() { |
| // Free any active lexers. |
| delete CurLexer; |
| |
| while (!IncludeMacroStack.empty()) { |
| delete IncludeMacroStack.back().TheLexer; |
| delete IncludeMacroStack.back().TheMacroExpander; |
| IncludeMacroStack.pop_back(); |
| } |
| |
| // Release pragma information. |
| delete PragmaHandlers; |
| |
| // Delete the scratch buffer info. |
| delete ScratchBuf; |
| } |
| |
| /// getFileInfo - Return the PerFileInfo structure for the specified |
| /// FileEntry. |
| Preprocessor::PerFileInfo &Preprocessor::getFileInfo(const FileEntry *FE) { |
| if (FE->getUID() >= FileInfo.size()) |
| FileInfo.resize(FE->getUID()+1); |
| return FileInfo[FE->getUID()]; |
| } |
| |
| |
| /// AddKeywords - Add all keywords to the symbol table. |
| /// |
| void Preprocessor::AddKeywords() { |
| enum { |
| C90Shift = 0, |
| EXTC90 = 1 << C90Shift, |
| NOTC90 = 2 << C90Shift, |
| C99Shift = 2, |
| EXTC99 = 1 << C99Shift, |
| NOTC99 = 2 << C99Shift, |
| CPPShift = 4, |
| EXTCPP = 1 << CPPShift, |
| NOTCPP = 2 << CPPShift, |
| Mask = 3 |
| }; |
| |
| // Add keywords and tokens for the current language. |
| #define KEYWORD(NAME, FLAGS) \ |
| AddKeyword(#NAME+1, tok::kw##NAME, \ |
| (FLAGS >> C90Shift) & Mask, \ |
| (FLAGS >> C99Shift) & Mask, \ |
| (FLAGS >> CPPShift) & Mask); |
| #define ALIAS(NAME, TOK) \ |
| AddKeyword(NAME, tok::kw_ ## TOK, 0, 0, 0); |
| #include "clang/Basic/TokenKinds.def" |
| } |
| |
| /// Diag - Forwarding function for diagnostics. This emits a diagnostic at |
| /// the specified LexerToken's location, translating the token's start |
| /// position in the current buffer into a SourcePosition object for rendering. |
| void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID, |
| const std::string &Msg) { |
| // If we are in a '#if 0' block, don't emit any diagnostics for notes, |
| // warnings or extensions. |
| if (isSkipping() && Diagnostic::isNoteWarningOrExtension(DiagID)) |
| return; |
| |
| Diags.Report(Loc, DiagID, Msg); |
| } |
| |
| void Preprocessor::DumpToken(const LexerToken &Tok, bool DumpFlags) const { |
| std::cerr << tok::getTokenName(Tok.getKind()) << " '" |
| << getSpelling(Tok) << "'"; |
| |
| if (!DumpFlags) return; |
| std::cerr << "\t"; |
| if (Tok.isAtStartOfLine()) |
| std::cerr << " [StartOfLine]"; |
| if (Tok.hasLeadingSpace()) |
| std::cerr << " [LeadingSpace]"; |
| if (Tok.needsCleaning()) { |
| const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); |
| std::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength()) |
| << "']"; |
| } |
| } |
| |
| void Preprocessor::DumpMacro(const MacroInfo &MI) const { |
| std::cerr << "MACRO: "; |
| for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { |
| DumpToken(MI.getReplacementToken(i)); |
| std::cerr << " "; |
| } |
| std::cerr << "\n"; |
| } |
| |
| void Preprocessor::PrintStats() { |
| std::cerr << "\n*** Preprocessor Stats:\n"; |
| std::cerr << FileInfo.size() << " files tracked.\n"; |
| unsigned NumOnceOnlyFiles = 0, MaxNumIncludes = 0, NumSingleIncludedFiles = 0; |
| for (unsigned i = 0, e = FileInfo.size(); i != e; ++i) { |
| NumOnceOnlyFiles += FileInfo[i].isImport; |
| if (MaxNumIncludes < FileInfo[i].NumIncludes) |
| MaxNumIncludes = FileInfo[i].NumIncludes; |
| NumSingleIncludedFiles += FileInfo[i].NumIncludes == 1; |
| } |
| std::cerr << " " << NumOnceOnlyFiles << " #import/#pragma once files.\n"; |
| std::cerr << " " << NumSingleIncludedFiles << " included exactly once.\n"; |
| std::cerr << " " << MaxNumIncludes << " max times a file is included.\n"; |
| |
| std::cerr << NumDirectives << " directives found:\n"; |
| std::cerr << " " << NumDefined << " #define.\n"; |
| std::cerr << " " << NumUndefined << " #undef.\n"; |
| std::cerr << " " << NumIncluded << " #include/#include_next/#import.\n"; |
| std::cerr << " " << NumMultiIncludeFileOptzn << " #includes skipped due to" |
| << " the multi-include optimization.\n"; |
| std::cerr << " " << NumEnteredSourceFiles << " source files entered.\n"; |
| std::cerr << " " << MaxIncludeStackDepth << " max include stack depth\n"; |
| std::cerr << " " << NumIf << " #if/#ifndef/#ifdef.\n"; |
| std::cerr << " " << NumElse << " #else/#elif.\n"; |
| std::cerr << " " << NumEndif << " #endif.\n"; |
| std::cerr << " " << NumPragma << " #pragma.\n"; |
| std::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; |
| |
| std::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" |
| << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " |
| << NumFastMacroExpanded << " on the fast path.\n"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Token Spelling |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// getSpelling() - Return the 'spelling' of this token. The spelling of a |
| /// token are the characters used to represent the token in the source file |
| /// after trigraph expansion and escaped-newline folding. In particular, this |
| /// wants to get the true, uncanonicalized, spelling of things like digraphs |
| /// UCNs, etc. |
| std::string Preprocessor::getSpelling(const LexerToken &Tok) const { |
| assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); |
| |
| // If this token contains nothing interesting, return it directly. |
| const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); |
| if (!Tok.needsCleaning()) |
| return std::string(TokStart, TokStart+Tok.getLength()); |
| |
| std::string Result; |
| Result.reserve(Tok.getLength()); |
| |
| // Otherwise, hard case, relex the characters into the string. |
| for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); |
| Ptr != End; ) { |
| unsigned CharSize; |
| Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features)); |
| Ptr += CharSize; |
| } |
| assert(Result.size() != unsigned(Tok.getLength()) && |
| "NeedsCleaning flag set on something that didn't need cleaning!"); |
| return Result; |
| } |
| |
| /// getSpelling - This method is used to get the spelling of a token into a |
| /// preallocated buffer, instead of as an std::string. The caller is required |
| /// to allocate enough space for the token, which is guaranteed to be at least |
| /// Tok.getLength() bytes long. The actual length of the token is returned. |
| /// |
| /// Note that this method may do two possible things: it may either fill in |
| /// the buffer specified with characters, or it may *change the input pointer* |
| /// to point to a constant buffer with the data already in it (avoiding a |
| /// copy). The caller is not allowed to modify the returned buffer pointer |
| /// if an internal buffer is returned. |
| unsigned Preprocessor::getSpelling(const LexerToken &Tok, |
| const char *&Buffer) const { |
| assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); |
| |
| // If this token is an identifier, just return the string from the identifier |
| // table, which is very quick. |
| if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { |
| Buffer = II->getName(); |
| return Tok.getLength(); |
| } |
| |
| // Otherwise, compute the start of the token in the input lexer buffer. |
| const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); |
| |
| // If this token contains nothing interesting, return it directly. |
| if (!Tok.needsCleaning()) { |
| Buffer = TokStart; |
| return Tok.getLength(); |
| } |
| // Otherwise, hard case, relex the characters into the string. |
| char *OutBuf = const_cast<char*>(Buffer); |
| for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); |
| Ptr != End; ) { |
| unsigned CharSize; |
| *OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features); |
| Ptr += CharSize; |
| } |
| assert(unsigned(OutBuf-Buffer) != Tok.getLength() && |
| "NeedsCleaning flag set on something that didn't need cleaning!"); |
| |
| return OutBuf-Buffer; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Source File Location Methods. |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// LookupFile - Given a "foo" or <foo> reference, look up the indicated file, |
| /// return null on failure. isAngled indicates whether the file reference is |
| /// for system #include's or not (i.e. using <> instead of ""). |
| const FileEntry *Preprocessor::LookupFile(const std::string &Filename, |
| bool isAngled, |
| const DirectoryLookup *FromDir, |
| const DirectoryLookup *&CurDir) { |
| assert(CurLexer && "Cannot enter a #include inside a macro expansion!"); |
| CurDir = 0; |
| |
| // If 'Filename' is absolute, check to see if it exists and no searching. |
| // FIXME: Portability. This should be a sys::Path interface, this doesn't |
| // handle things like C:\foo.txt right, nor win32 \\network\device\blah. |
| if (Filename[0] == '/') { |
| // If this was an #include_next "/absolute/file", fail. |
| if (FromDir) return 0; |
| |
| // Otherwise, just return the file. |
| return FileMgr.getFile(Filename); |
| } |
| |
| // Step #0, unless disabled, check to see if the file is in the #includer's |
| // directory. This search is not done for <> headers. |
| if (!isAngled && !FromDir && !NoCurDirSearch) { |
| unsigned TheFileID = getCurrentFileLexer()->getCurFileID(); |
| const FileEntry *CurFE = SourceMgr.getFileEntryForFileID(TheFileID); |
| if (CurFE) { |
| // Concatenate the requested file onto the directory. |
| // FIXME: Portability. Should be in sys::Path. |
| if (const FileEntry *FE = |
| FileMgr.getFile(CurFE->getDir()->getName()+"/"+Filename)) { |
| if (CurDirLookup) |
| CurDir = CurDirLookup; |
| else |
| CurDir = 0; |
| |
| // This file is a system header or C++ unfriendly if the old file is. |
| getFileInfo(FE).DirInfo = getFileInfo(CurFE).DirInfo; |
| return FE; |
| } |
| } |
| } |
| |
| // If this is a system #include, ignore the user #include locs. |
| unsigned i = isAngled ? SystemDirIdx : 0; |
| |
| // If this is a #include_next request, start searching after the directory the |
| // file was found in. |
| if (FromDir) |
| i = FromDir-&SearchDirs[0]; |
| |
| // Check each directory in sequence to see if it contains this file. |
| for (; i != SearchDirs.size(); ++i) { |
| // Concatenate the requested file onto the directory. |
| // FIXME: Portability. Adding file to dir should be in sys::Path. |
| std::string SearchDir = SearchDirs[i].getDir()->getName()+"/"+Filename; |
| if (const FileEntry *FE = FileMgr.getFile(SearchDir)) { |
| CurDir = &SearchDirs[i]; |
| |
| // This file is a system header or C++ unfriendly if the dir is. |
| getFileInfo(FE).DirInfo = CurDir->getDirCharacteristic(); |
| return FE; |
| } |
| } |
| |
| // Otherwise, didn't find it. |
| return 0; |
| } |
| |
| /// isInPrimaryFile - Return true if we're in the top-level file, not in a |
| /// #include. |
| bool Preprocessor::isInPrimaryFile() const { |
| if (CurLexer && !CurLexer->Is_PragmaLexer) |
| return CurLexer->isMainFile(); |
| |
| // If there are any stacked lexers, we're in a #include. |
| for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) |
| if (IncludeMacroStack[i].TheLexer && |
| !IncludeMacroStack[i].TheLexer->Is_PragmaLexer) |
| return IncludeMacroStack[i].TheLexer->isMainFile(); |
| return false; |
| } |
| |
| /// getCurrentLexer - Return the current file lexer being lexed from. Note |
| /// that this ignores any potentially active macro expansions and _Pragma |
| /// expansions going on at the time. |
| Lexer *Preprocessor::getCurrentFileLexer() const { |
| if (CurLexer && !CurLexer->Is_PragmaLexer) return CurLexer; |
| |
| // Look for a stacked lexer. |
| for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { |
| Lexer *L = IncludeMacroStack[i-1].TheLexer; |
| if (L && !L->Is_PragmaLexer) // Ignore macro & _Pragma expansions. |
| return L; |
| } |
| return 0; |
| } |
| |
| |
| /// EnterSourceFile - Add a source file to the top of the include stack and |
| /// start lexing tokens from it instead of the current buffer. Return true |
| /// on failure. |
| void Preprocessor::EnterSourceFile(unsigned FileID, |
| const DirectoryLookup *CurDir, |
| bool isMainFile) { |
| assert(CurMacroExpander == 0 && "Cannot #include a file inside a macro!"); |
| ++NumEnteredSourceFiles; |
| |
| if (MaxIncludeStackDepth < IncludeMacroStack.size()) |
| MaxIncludeStackDepth = IncludeMacroStack.size(); |
| |
| const SourceBuffer *Buffer = SourceMgr.getBuffer(FileID); |
| Lexer *TheLexer = new Lexer(Buffer, FileID, *this); |
| if (isMainFile) TheLexer->setIsMainFile(); |
| EnterSourceFileWithLexer(TheLexer, CurDir); |
| } |
| |
| /// EnterSourceFile - Add a source file to the top of the include stack and |
| /// start lexing tokens from it instead of the current buffer. |
| void Preprocessor::EnterSourceFileWithLexer(Lexer *TheLexer, |
| const DirectoryLookup *CurDir) { |
| |
| // Add the current lexer to the include stack. |
| if (CurLexer || CurMacroExpander) |
| IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, |
| CurMacroExpander)); |
| |
| CurLexer = TheLexer; |
| CurDirLookup = CurDir; |
| CurMacroExpander = 0; |
| |
| // Notify the client, if desired, that we are in a new source file. |
| if (FileChangeHandler && !CurLexer->Is_PragmaLexer) { |
| DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir; |
| |
| // Get the file entry for the current file. |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForFileID(CurLexer->getCurFileID())) |
| FileType = getFileInfo(FE).DirInfo; |
| |
| FileChangeHandler(SourceLocation(CurLexer->getCurFileID(), 0), |
| EnterFile, FileType); |
| } |
| } |
| |
| |
| |
| /// EnterMacro - Add a Macro to the top of the include stack and start lexing |
| /// tokens from it instead of the current buffer. |
| void Preprocessor::EnterMacro(LexerToken &Tok, MacroFormalArgs *Formals) { |
| IdentifierInfo *Identifier = Tok.getIdentifierInfo(); |
| MacroInfo &MI = *Identifier->getMacroInfo(); |
| IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, |
| CurMacroExpander)); |
| CurLexer = 0; |
| CurDirLookup = 0; |
| |
| // Mark the macro as currently disabled, so that it is not recursively |
| // expanded. |
| MI.DisableMacro(); |
| CurMacroExpander = new MacroExpander(Tok, Formals, *this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Macro Expansion Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// RegisterBuiltinMacro - Register the specified identifier in the identifier |
| /// table and mark it as a builtin macro to be expanded. |
| IdentifierInfo *Preprocessor::RegisterBuiltinMacro(const char *Name) { |
| // Get the identifier. |
| IdentifierInfo *Id = getIdentifierInfo(Name); |
| |
| // Mark it as being a macro that is builtin. |
| MacroInfo *MI = new MacroInfo(SourceLocation()); |
| MI->setIsBuiltinMacro(); |
| Id->setMacroInfo(MI); |
| return Id; |
| } |
| |
| |
| /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the |
| /// identifier table. |
| void Preprocessor::RegisterBuiltinMacros() { |
| Ident__LINE__ = RegisterBuiltinMacro("__LINE__"); |
| Ident__FILE__ = RegisterBuiltinMacro("__FILE__"); |
| Ident__DATE__ = RegisterBuiltinMacro("__DATE__"); |
| Ident__TIME__ = RegisterBuiltinMacro("__TIME__"); |
| Ident_Pragma = RegisterBuiltinMacro("_Pragma"); |
| |
| // GCC Extensions. |
| Ident__BASE_FILE__ = RegisterBuiltinMacro("__BASE_FILE__"); |
| Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__"); |
| Ident__TIMESTAMP__ = RegisterBuiltinMacro("__TIMESTAMP__"); |
| } |
| |
| /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token |
| /// in its expansion, currently expands to that token literally. |
| static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, |
| const IdentifierInfo *MacroIdent) { |
| IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); |
| |
| // If the token isn't an identifier, it's always literally expanded. |
| if (II == 0) return true; |
| |
| // If the identifier is a macro, and if that macro is enabled, it may be |
| // expanded so it's not a trivial expansion. |
| if (II->getMacroInfo() && II->getMacroInfo()->isEnabled() && |
| // Fast expanding "#define X X" is ok, because X would be disabled. |
| II != MacroIdent) |
| return false; |
| |
| // If this is an object-like macro invocation, it is safe to trivially expand |
| // it. |
| if (MI->isObjectLike()) return true; |
| |
| // If this is a function-like macro invocation, it's safe to trivially expand |
| // as long as the identifier is not a macro argument. |
| for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); |
| I != E; ++I) |
| if (*I == II) |
| return false; // Identifier is a macro argument. |
| return true; |
| } |
| |
| |
| /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be |
| /// expanded as a macro, handle it and return the next token as 'Identifier'. |
| bool Preprocessor::HandleMacroExpandedIdentifier(LexerToken &Identifier, |
| MacroInfo *MI) { |
| |
| // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. |
| if (MI->isBuiltinMacro()) { |
| ExpandBuiltinMacro(Identifier); |
| return false; |
| } |
| |
| /// FormalArgs - If this is a function-like macro expansion, this contains, |
| /// for each macro argument, the list of tokens that were provided to the |
| /// invocation. |
| MacroFormalArgs *FormalArgs = 0; |
| |
| // If this is a function-like macro, read the arguments. |
| if (MI->isFunctionLike()) { |
| // FIXME: We need to query to see if the ( exists without reading it. |
| |
| // C99 6.10.3p10: If the preprocessing token immediately after the the macro |
| // name isn't a '(', this macro should not be expanded. |
| bool isFunctionInvocation = true; |
| if (!isFunctionInvocation) |
| return true; |
| |
| LexerToken Tok; |
| LexUnexpandedToken(Tok); |
| assert(Tok.getKind() == tok::l_paren && |
| "not a function-like macro invocation!"); |
| |
| // Remember that we are now parsing the arguments to a macro invocation. |
| // Preprocessor directives used inside macro arguments are not portable, and |
| // this enables the warning. |
| InMacroFormalArgs = true; |
| FormalArgs = ReadFunctionLikeMacroFormalArgs(Identifier, MI); |
| |
| // Finished parsing args. |
| InMacroFormalArgs = false; |
| |
| // If there was an error parsing the arguments, bail out. |
| if (FormalArgs == 0) return false; |
| |
| ++NumFnMacroExpanded; |
| } else { |
| ++NumMacroExpanded; |
| } |
| |
| // Notice that this macro has been used. |
| MI->setIsUsed(true); |
| |
| // If we started lexing a macro, enter the macro expansion body. |
| |
| // If this macro expands to no tokens, don't bother to push it onto the |
| // expansion stack, only to take it right back off. |
| if (MI->getNumTokens() == 0) { |
| // No need for formal arg info. |
| delete FormalArgs; |
| |
| // Ignore this macro use, just return the next token in the current |
| // buffer. |
| bool HadLeadingSpace = Identifier.hasLeadingSpace(); |
| bool IsAtStartOfLine = Identifier.isAtStartOfLine(); |
| |
| Lex(Identifier); |
| |
| // If the identifier isn't on some OTHER line, inherit the leading |
| // whitespace/first-on-a-line property of this token. This handles |
| // stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is |
| // empty. |
| if (!Identifier.isAtStartOfLine()) { |
| if (IsAtStartOfLine) Identifier.SetFlag(LexerToken::StartOfLine); |
| if (HadLeadingSpace) Identifier.SetFlag(LexerToken::LeadingSpace); |
| } |
| ++NumFastMacroExpanded; |
| return false; |
| |
| } else if (MI->getNumTokens() == 1 && |
| isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo())){ |
| // Otherwise, if this macro expands into a single trivially-expanded |
| // token: expand it now. This handles common cases like |
| // "#define VAL 42". |
| |
| // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro |
| // identifier to the expanded token. |
| bool isAtStartOfLine = Identifier.isAtStartOfLine(); |
| bool hasLeadingSpace = Identifier.hasLeadingSpace(); |
| |
| // Remember where the token is instantiated. |
| SourceLocation InstantiateLoc = Identifier.getLocation(); |
| |
| // Replace the result token. |
| Identifier = MI->getReplacementToken(0); |
| |
| // Restore the StartOfLine/LeadingSpace markers. |
| Identifier.SetFlagValue(LexerToken::StartOfLine , isAtStartOfLine); |
| Identifier.SetFlagValue(LexerToken::LeadingSpace, hasLeadingSpace); |
| |
| // Update the tokens location to include both its logical and physical |
| // locations. |
| SourceLocation Loc = |
| SourceMgr.getInstantiationLoc(Identifier.getLocation(), InstantiateLoc); |
| Identifier.SetLocation(Loc); |
| |
| // Since this is not an identifier token, it can't be macro expanded, so |
| // we're done. |
| ++NumFastMacroExpanded; |
| return false; |
| } |
| |
| // Start expanding the macro. |
| EnterMacro(Identifier, FormalArgs); |
| |
| // Now that the macro is at the top of the include stack, ask the |
| // preprocessor to read the next token from it. |
| Lex(Identifier); |
| return false; |
| } |
| |
| /// ReadFunctionLikeMacroFormalArgs - After reading "MACRO(", this method is |
| /// invoked to read all of the formal arguments specified for the macro |
| /// invocation. This returns null on error. |
| MacroFormalArgs *Preprocessor:: |
| ReadFunctionLikeMacroFormalArgs(LexerToken &MacroName, MacroInfo *MI) { |
| // Use an auto_ptr here so that the MacroFormalArgs object is deleted on |
| // all error paths. |
| std::auto_ptr<MacroFormalArgs> Args(new MacroFormalArgs(MI)); |
| |
| // The number of fixed arguments to parse. |
| unsigned NumFixedArgsLeft = MI->getNumArgs(); |
| bool isVariadic = MI->isVariadic(); |
| |
| // If this is a C99-style varargs macro invocation, add an extra expected |
| // argument, which will catch all of the varargs formals in one argument. |
| if (MI->isC99Varargs()) |
| ++NumFixedArgsLeft; |
| |
| // Outer loop, while there are more arguments, keep reading them. |
| LexerToken Tok; |
| Tok.SetKind(tok::comma); |
| --NumFixedArgsLeft; // Start reading the first arg. |
| |
| while (Tok.getKind() == tok::comma) { |
| // ArgTokens - Build up a list of tokens that make up this argument. |
| std::vector<LexerToken> ArgTokens; |
| // C99 6.10.3p11: Keep track of the number of l_parens we have seen. |
| unsigned NumParens = 0; |
| |
| while (1) { |
| LexUnexpandedToken(Tok); |
| |
| if (Tok.getKind() == tok::eof) { |
| Diag(MacroName, diag::err_unterm_macro_invoc); |
| // Do not lose the EOF. Return it to the client. |
| MacroName = Tok; |
| return 0; |
| } else if (Tok.getKind() == tok::r_paren) { |
| // If we found the ) token, the macro arg list is done. |
| if (NumParens-- == 0) |
| break; |
| } else if (Tok.getKind() == tok::l_paren) { |
| ++NumParens; |
| } else if (Tok.getKind() == tok::comma && NumParens == 0) { |
| // Comma ends this argument if there are more fixed arguments expected. |
| if (NumFixedArgsLeft) |
| break; |
| |
| // If this is not a variadic macro, too many formals were specified. |
| if (!isVariadic) { |
| // Emit the diagnostic at the macro name in case there is a missing ). |
| // Emitting it at the , could be far away from the macro name. |
| Diag(MacroName, diag::err_too_many_formals_in_macro_invoc); |
| return 0; |
| } |
| // Otherwise, continue to add the tokens to this variable argument. |
| } |
| |
| ArgTokens.push_back(Tok); |
| } |
| |
| // Remember the tokens that make up this argument. This destroys ArgTokens. |
| Args->addArgument(ArgTokens); |
| --NumFixedArgsLeft; |
| }; |
| |
| // Okay, we either found the r_paren. Check to see if we parsed too few |
| // arguments. |
| unsigned NumFormals = Args->getNumArguments(); |
| unsigned MinArgsExpected = MI->getNumArgs(); |
| |
| // C99 expects us to pass at least one vararg arg (but as an extension, we |
| // don't require this). GNU-style varargs already include the 'rest' name in |
| // the count. |
| MinArgsExpected += MI->isC99Varargs(); |
| |
| if (NumFormals < MinArgsExpected) { |
| // There are several cases where too few arguments is ok, handle them now. |
| if (NumFormals+1 == MinArgsExpected && MI->isVariadic()) { |
| // Varargs where the named vararg parameter is missing: ok as extension. |
| // #define A(x, ...) |
| // A("blah") |
| Diag(Tok, diag::ext_missing_varargs_arg); |
| } else if (MI->getNumArgs() == 1) { |
| // #define A(x) |
| // A() |
| // is ok. Add an empty argument. |
| std::vector<LexerToken> ArgTokens; |
| Args->addArgument(ArgTokens); |
| } else { |
| // Otherwise, emit the error. |
| Diag(Tok, diag::err_too_few_formals_in_macro_invoc); |
| return 0; |
| } |
| } |
| |
| return Args.release(); |
| } |
| |
| /// ComputeDATE_TIME - Compute the current time, enter it into the specified |
| /// scratch buffer, then return DATELoc/TIMELoc locations with the position of |
| /// the identifier tokens inserted. |
| static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, |
| ScratchBuffer *ScratchBuf) { |
| time_t TT = time(0); |
| struct tm *TM = localtime(&TT); |
| |
| static const char * const Months[] = { |
| "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" |
| }; |
| |
| char TmpBuffer[100]; |
| sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, |
| TM->tm_year+1900); |
| DATELoc = ScratchBuf->getToken(TmpBuffer, strlen(TmpBuffer)); |
| |
| sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec); |
| TIMELoc = ScratchBuf->getToken(TmpBuffer, strlen(TmpBuffer)); |
| } |
| |
| /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded |
| /// as a builtin macro, handle it and return the next token as 'Tok'. |
| void Preprocessor::ExpandBuiltinMacro(LexerToken &Tok) { |
| // Figure out which token this is. |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| assert(II && "Can't be a macro without id info!"); |
| |
| // If this is an _Pragma directive, expand it, invoke the pragma handler, then |
| // lex the token after it. |
| if (II == Ident_Pragma) |
| return Handle_Pragma(Tok); |
| |
| ++NumBuiltinMacroExpanded; |
| |
| char TmpBuffer[100]; |
| |
| // Set up the return result. |
| Tok.SetIdentifierInfo(0); |
| Tok.ClearFlag(LexerToken::NeedsCleaning); |
| |
| if (II == Ident__LINE__) { |
| // __LINE__ expands to a simple numeric value. |
| sprintf(TmpBuffer, "%u", SourceMgr.getLineNumber(Tok.getLocation())); |
| unsigned Length = strlen(TmpBuffer); |
| Tok.SetKind(tok::numeric_constant); |
| Tok.SetLength(Length); |
| Tok.SetLocation(ScratchBuf->getToken(TmpBuffer, Length, Tok.getLocation())); |
| } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) { |
| SourceLocation Loc = Tok.getLocation(); |
| if (II == Ident__BASE_FILE__) { |
| Diag(Tok, diag::ext_pp_base_file); |
| SourceLocation NextLoc = SourceMgr.getIncludeLoc(Loc.getFileID()); |
| while (NextLoc.getFileID() != 0) { |
| Loc = NextLoc; |
| NextLoc = SourceMgr.getIncludeLoc(Loc.getFileID()); |
| } |
| } |
| |
| // Escape this filename. Turn '\' -> '\\' '"' -> '\"' |
| std::string FN = SourceMgr.getSourceName(Loc); |
| FN = Lexer::Stringify(FN); |
| Tok.SetKind(tok::string_literal); |
| Tok.SetLength(FN.size()); |
| Tok.SetLocation(ScratchBuf->getToken(&FN[0], FN.size(), Tok.getLocation())); |
| } else if (II == Ident__DATE__) { |
| if (!DATELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, ScratchBuf); |
| Tok.SetKind(tok::string_literal); |
| Tok.SetLength(strlen("\"Mmm dd yyyy\"")); |
| Tok.SetLocation(SourceMgr.getInstantiationLoc(DATELoc, Tok.getLocation())); |
| } else if (II == Ident__TIME__) { |
| if (!TIMELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, ScratchBuf); |
| Tok.SetKind(tok::string_literal); |
| Tok.SetLength(strlen("\"hh:mm:ss\"")); |
| Tok.SetLocation(SourceMgr.getInstantiationLoc(TIMELoc, Tok.getLocation())); |
| } else if (II == Ident__INCLUDE_LEVEL__) { |
| Diag(Tok, diag::ext_pp_include_level); |
| |
| // Compute the include depth of this token. |
| unsigned Depth = 0; |
| SourceLocation Loc = SourceMgr.getIncludeLoc(Tok.getLocation().getFileID()); |
| for (; Loc.getFileID() != 0; ++Depth) |
| Loc = SourceMgr.getIncludeLoc(Loc.getFileID()); |
| |
| // __INCLUDE_LEVEL__ expands to a simple numeric value. |
| sprintf(TmpBuffer, "%u", Depth); |
| unsigned Length = strlen(TmpBuffer); |
| Tok.SetKind(tok::numeric_constant); |
| Tok.SetLength(Length); |
| Tok.SetLocation(ScratchBuf->getToken(TmpBuffer, Length, Tok.getLocation())); |
| } else if (II == Ident__TIMESTAMP__) { |
| // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be |
| // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. |
| Diag(Tok, diag::ext_pp_timestamp); |
| |
| // Get the file that we are lexing out of. If we're currently lexing from |
| // a macro, dig into the include stack. |
| const FileEntry *CurFile = 0; |
| Lexer *TheLexer = getCurrentFileLexer(); |
| |
| if (TheLexer) |
| CurFile = SourceMgr.getFileEntryForFileID(TheLexer->getCurFileID()); |
| |
| // If this file is older than the file it depends on, emit a diagnostic. |
| const char *Result; |
| if (CurFile) { |
| time_t TT = CurFile->getModificationTime(); |
| struct tm *TM = localtime(&TT); |
| Result = asctime(TM); |
| } else { |
| Result = "??? ??? ?? ??:??:?? ????\n"; |
| } |
| TmpBuffer[0] = '"'; |
| strcpy(TmpBuffer+1, Result); |
| unsigned Len = strlen(TmpBuffer); |
| TmpBuffer[Len-1] = '"'; // Replace the newline with a quote. |
| Tok.SetKind(tok::string_literal); |
| Tok.SetLength(Len); |
| Tok.SetLocation(ScratchBuf->getToken(TmpBuffer, Len, Tok.getLocation())); |
| } else { |
| assert(0 && "Unknown identifier!"); |
| } |
| } |
| |
| namespace { |
| struct UnusedIdentifierReporter : public IdentifierVisitor { |
| Preprocessor &PP; |
| UnusedIdentifierReporter(Preprocessor &pp) : PP(pp) {} |
| |
| void VisitIdentifier(IdentifierInfo &II) const { |
| if (II.getMacroInfo() && !II.getMacroInfo()->isUsed()) |
| PP.Diag(II.getMacroInfo()->getDefinitionLoc(), diag::pp_macro_not_used); |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer Event Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// LookUpIdentifierInfo - Given a tok::identifier token, look up the |
| /// identifier information for the token and install it into the token. |
| IdentifierInfo *Preprocessor::LookUpIdentifierInfo(LexerToken &Identifier, |
| const char *BufPtr) { |
| assert(Identifier.getKind() == tok::identifier && "Not an identifier!"); |
| assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!"); |
| |
| // Look up this token, see if it is a macro, or if it is a language keyword. |
| IdentifierInfo *II; |
| if (BufPtr && !Identifier.needsCleaning()) { |
| // No cleaning needed, just use the characters from the lexed buffer. |
| II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength()); |
| } else { |
| // Cleaning needed, alloca a buffer, clean into it, then use the buffer. |
| const char *TmpBuf = (char*)alloca(Identifier.getLength()); |
| unsigned Size = getSpelling(Identifier, TmpBuf); |
| II = getIdentifierInfo(TmpBuf, TmpBuf+Size); |
| } |
| Identifier.SetIdentifierInfo(II); |
| return II; |
| } |
| |
| |
| /// HandleIdentifier - This callback is invoked when the lexer reads an |
| /// identifier. This callback looks up the identifier in the map and/or |
| /// potentially macro expands it or turns it into a named token (like 'for'). |
| void Preprocessor::HandleIdentifier(LexerToken &Identifier) { |
| if (Identifier.getIdentifierInfo() == 0) { |
| // If we are skipping tokens (because we are in a #if 0 block), there will |
| // be no identifier info, just return the token. |
| assert(isSkipping() && "Token isn't an identifier?"); |
| return; |
| } |
| IdentifierInfo &II = *Identifier.getIdentifierInfo(); |
| |
| // If this identifier was poisoned, and if it was not produced from a macro |
| // expansion, emit an error. |
| if (II.isPoisoned() && CurLexer) { |
| if (&II != Ident__VA_ARGS__) // We warn about __VA_ARGS__ with poisoning. |
| Diag(Identifier, diag::err_pp_used_poisoned_id); |
| else |
| Diag(Identifier, diag::ext_pp_bad_vaargs_use); |
| } |
| |
| // If this is a macro to be expanded, do it. |
| if (MacroInfo *MI = II.getMacroInfo()) |
| if (MI->isEnabled() && !DisableMacroExpansion) |
| if (!HandleMacroExpandedIdentifier(Identifier, MI)) |
| return; |
| |
| // Change the kind of this identifier to the appropriate token kind, e.g. |
| // turning "for" into a keyword. |
| Identifier.SetKind(II.getTokenID()); |
| |
| // If this is an extension token, diagnose its use. |
| if (II.isExtensionToken()) Diag(Identifier, diag::ext_token_used); |
| } |
| |
| /// HandleEndOfFile - This callback is invoked when the lexer hits the end of |
| /// the current file. This either returns the EOF token or pops a level off |
| /// the include stack and keeps going. |
| void Preprocessor::HandleEndOfFile(LexerToken &Result, bool isEndOfMacro) { |
| assert(!CurMacroExpander && |
| "Ending a file when currently in a macro!"); |
| |
| // If we are in a #if 0 block skipping tokens, and we see the end of the file, |
| // this is an error condition. Just return the EOF token up to |
| // SkipExcludedConditionalBlock. The Lexer will have already have issued |
| // errors for the unterminated #if's on the conditional stack. |
| if (isSkipping()) { |
| Result.StartToken(); |
| CurLexer->BufferPtr = CurLexer->BufferEnd; |
| CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd); |
| Result.SetKind(tok::eof); |
| return; |
| } |
| |
| // See if this file had a controlling macro. |
| if (CurLexer) { // Not ending a macro, ignore it. |
| if (const IdentifierInfo *ControllingMacro = |
| CurLexer->MIOpt.GetControllingMacroAtEndOfFile()) { |
| // Okay, this has a controlling macro, remember in PerFileInfo. |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForFileID(CurLexer->getCurFileID())) |
| getFileInfo(FE).ControllingMacro = ControllingMacro; |
| } |
| } |
| |
| // If this is a #include'd file, pop it off the include stack and continue |
| // lexing the #includer file. |
| if (!IncludeMacroStack.empty()) { |
| // We're done with the #included file. |
| delete CurLexer; |
| CurLexer = IncludeMacroStack.back().TheLexer; |
| CurDirLookup = IncludeMacroStack.back().TheDirLookup; |
| CurMacroExpander = IncludeMacroStack.back().TheMacroExpander; |
| IncludeMacroStack.pop_back(); |
| |
| // Notify the client, if desired, that we are in a new source file. |
| if (FileChangeHandler && !isEndOfMacro && CurLexer) { |
| DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir; |
| |
| // Get the file entry for the current file. |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForFileID(CurLexer->getCurFileID())) |
| FileType = getFileInfo(FE).DirInfo; |
| |
| FileChangeHandler(CurLexer->getSourceLocation(CurLexer->BufferPtr), |
| ExitFile, FileType); |
| } |
| |
| return Lex(Result); |
| } |
| |
| Result.StartToken(); |
| CurLexer->BufferPtr = CurLexer->BufferEnd; |
| CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd); |
| Result.SetKind(tok::eof); |
| |
| // We're done with the #included file. |
| delete CurLexer; |
| CurLexer = 0; |
| |
| // This is the end of the top-level file. |
| Identifiers.VisitIdentifiers(UnusedIdentifierReporter(*this)); |
| } |
| |
| /// HandleEndOfMacro - This callback is invoked when the lexer hits the end of |
| /// the current macro line. |
| void Preprocessor::HandleEndOfMacro(LexerToken &Result) { |
| assert(CurMacroExpander && !CurLexer && |
| "Ending a macro when currently in a #include file!"); |
| |
| // Mark macro not ignored now that it is no longer being expanded. |
| CurMacroExpander->getMacro().EnableMacro(); |
| delete CurMacroExpander; |
| |
| // Handle this like a #include file being popped off the stack. |
| CurMacroExpander = 0; |
| return HandleEndOfFile(Result, true); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Utility Methods for Preprocessor Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// DiscardUntilEndOfDirective - Read and discard all tokens remaining on the |
| /// current line until the tok::eom token is found. |
| void Preprocessor::DiscardUntilEndOfDirective() { |
| LexerToken Tmp; |
| do { |
| LexUnexpandedToken(Tmp); |
| } while (Tmp.getKind() != tok::eom); |
| } |
| |
| /// ReadMacroName - Lex and validate a macro name, which occurs after a |
| /// #define or #undef. This sets the token kind to eom and discards the rest |
| /// of the macro line if the macro name is invalid. isDefineUndef is 1 if |
| /// this is due to a a #define, 2 if #undef directive, 0 if it is something |
| /// else (e.g. #ifdef). |
| void Preprocessor::ReadMacroName(LexerToken &MacroNameTok, char isDefineUndef) { |
| // Read the token, don't allow macro expansion on it. |
| LexUnexpandedToken(MacroNameTok); |
| |
| // Missing macro name? |
| if (MacroNameTok.getKind() == tok::eom) |
| return Diag(MacroNameTok, diag::err_pp_missing_macro_name); |
| |
| IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); |
| if (II == 0) { |
| Diag(MacroNameTok, diag::err_pp_macro_not_identifier); |
| // Fall through on error. |
| } else if (0) { |
| // FIXME: C++. Error if defining a C++ named operator. |
| |
| } else if (isDefineUndef && II->getName()[0] == 'd' && // defined |
| !strcmp(II->getName()+1, "efined")) { |
| // Error if defining "defined": C99 6.10.8.4. |
| Diag(MacroNameTok, diag::err_defined_macro_name); |
| } else if (isDefineUndef && II->getMacroInfo() && |
| II->getMacroInfo()->isBuiltinMacro()) { |
| // Error if defining "__LINE__" and other builtins: C99 6.10.8.4. |
| if (isDefineUndef == 1) |
| Diag(MacroNameTok, diag::pp_redef_builtin_macro); |
| else |
| Diag(MacroNameTok, diag::pp_undef_builtin_macro); |
| } else { |
| // Okay, we got a good identifier node. Return it. |
| return; |
| } |
| |
| // Invalid macro name, read and discard the rest of the line. Then set the |
| // token kind to tok::eom. |
| MacroNameTok.SetKind(tok::eom); |
| return DiscardUntilEndOfDirective(); |
| } |
| |
| /// CheckEndOfDirective - Ensure that the next token is a tok::eom token. If |
| /// not, emit a diagnostic and consume up until the eom. |
| void Preprocessor::CheckEndOfDirective(const char *DirType) { |
| LexerToken Tmp; |
| Lex(Tmp); |
| // There should be no tokens after the directive, but we allow them as an |
| // extension. |
| if (Tmp.getKind() != tok::eom) { |
| Diag(Tmp, diag::ext_pp_extra_tokens_at_eol, DirType); |
| DiscardUntilEndOfDirective(); |
| } |
| } |
| |
| |
| |
| /// SkipExcludedConditionalBlock - We just read a #if or related directive and |
| /// decided that the subsequent tokens are in the #if'd out portion of the |
| /// file. Lex the rest of the file, until we see an #endif. If |
| /// FoundNonSkipPortion is true, then we have already emitted code for part of |
| /// this #if directive, so #else/#elif blocks should never be entered. If ElseOk |
| /// is true, then #else directives are ok, if not, then we have already seen one |
| /// so a #else directive is a duplicate. When this returns, the caller can lex |
| /// the first valid token. |
| void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc, |
| bool FoundNonSkipPortion, |
| bool FoundElse) { |
| ++NumSkipped; |
| assert(CurMacroExpander == 0 && CurLexer && |
| "Lexing a macro, not a file?"); |
| |
| CurLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false, |
| FoundNonSkipPortion, FoundElse); |
| |
| // Know that we are going to be skipping tokens. Set this flag to indicate |
| // this, which has a couple of effects: |
| // 1. If EOF of the current lexer is found, the include stack isn't popped. |
| // 2. Identifier information is not looked up for identifier tokens. As an |
| // effect of this, implicit macro expansion is naturally disabled. |
| // 3. "#" tokens at the start of a line are treated as normal tokens, not |
| // implicitly transformed by the lexer. |
| // 4. All notes, warnings, and extension messages are disabled. |
| // |
| SkippingContents = true; |
| LexerToken Tok; |
| while (1) { |
| CurLexer->Lex(Tok); |
| |
| // If this is the end of the buffer, we have an error. The lexer will have |
| // already handled this error condition, so just return and let the caller |
| // lex after this #include. |
| if (Tok.getKind() == tok::eof) break; |
| |
| // If this token is not a preprocessor directive, just skip it. |
| if (Tok.getKind() != tok::hash || !Tok.isAtStartOfLine()) |
| continue; |
| |
| // We just parsed a # character at the start of a line, so we're in |
| // directive mode. Tell the lexer this so any newlines we see will be |
| // converted into an EOM token (this terminates the macro). |
| CurLexer->ParsingPreprocessorDirective = true; |
| |
| // Read the next token, the directive flavor. |
| LexUnexpandedToken(Tok); |
| |
| // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or |
| // something bogus), skip it. |
| if (Tok.getKind() != tok::identifier) { |
| CurLexer->ParsingPreprocessorDirective = false; |
| continue; |
| } |
| |
| // If the first letter isn't i or e, it isn't intesting to us. We know that |
| // this is safe in the face of spelling differences, because there is no way |
| // to spell an i/e in a strange way that is another letter. Skipping this |
| // allows us to avoid looking up the identifier info for #define/#undef and |
| // other common directives. |
| const char *RawCharData = SourceMgr.getCharacterData(Tok.getLocation()); |
| char FirstChar = RawCharData[0]; |
| if (FirstChar >= 'a' && FirstChar <= 'z' && |
| FirstChar != 'i' && FirstChar != 'e') { |
| CurLexer->ParsingPreprocessorDirective = false; |
| continue; |
| } |
| |
| // Get the identifier name without trigraphs or embedded newlines. Note |
| // that we can't use Tok.getIdentifierInfo() because its lookup is disabled |
| // when skipping. |
| // TODO: could do this with zero copies in the no-clean case by using |
| // strncmp below. |
| char Directive[20]; |
| unsigned IdLen; |
| if (!Tok.needsCleaning() && Tok.getLength() < 20) { |
| IdLen = Tok.getLength(); |
| memcpy(Directive, RawCharData, IdLen); |
| Directive[IdLen] = 0; |
| } else { |
| std::string DirectiveStr = getSpelling(Tok); |
| IdLen = DirectiveStr.size(); |
| if (IdLen >= 20) { |
| CurLexer->ParsingPreprocessorDirective = false; |
| continue; |
| } |
| memcpy(Directive, &DirectiveStr[0], IdLen); |
| Directive[IdLen] = 0; |
| } |
| |
| if (FirstChar == 'i' && Directive[1] == 'f') { |
| if ((IdLen == 2) || // "if" |
| (IdLen == 5 && !strcmp(Directive+2, "def")) || // "ifdef" |
| (IdLen == 6 && !strcmp(Directive+2, "ndef"))) { // "ifndef" |
| // We know the entire #if/#ifdef/#ifndef block will be skipped, don't |
| // bother parsing the condition. |
| DiscardUntilEndOfDirective(); |
| CurLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true, |
| /*foundnonskip*/false, |
| /*fnddelse*/false); |
| } |
| } else if (FirstChar == 'e') { |
| if (IdLen == 5 && !strcmp(Directive+1, "ndif")) { // "endif" |
| CheckEndOfDirective("#endif"); |
| PPConditionalInfo CondInfo; |
| CondInfo.WasSkipping = true; // Silence bogus warning. |
| bool InCond = CurLexer->popConditionalLevel(CondInfo); |
| assert(!InCond && "Can't be skipping if not in a conditional!"); |
| |
| // If we popped the outermost skipping block, we're done skipping! |
| if (!CondInfo.WasSkipping) |
| break; |
| } else if (IdLen == 4 && !strcmp(Directive+1, "lse")) { // "else". |
| // #else directive in a skipping conditional. If not in some other |
| // skipping conditional, and if #else hasn't already been seen, enter it |
| // as a non-skipping conditional. |
| CheckEndOfDirective("#else"); |
| PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel(); |
| |
| // If this is a #else with a #else before it, report the error. |
| if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else); |
| |
| // Note that we've seen a #else in this conditional. |
| CondInfo.FoundElse = true; |
| |
| // If the conditional is at the top level, and the #if block wasn't |
| // entered, enter the #else block now. |
| if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) { |
| CondInfo.FoundNonSkip = true; |
| break; |
| } |
| } else if (IdLen == 4 && !strcmp(Directive+1, "lif")) { // "elif". |
| PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel(); |
| |
| bool ShouldEnter; |
| // If this is in a skipping block or if we're already handled this #if |
| // block, don't bother parsing the condition. |
| if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) { |
| DiscardUntilEndOfDirective(); |
| ShouldEnter = false; |
| } else { |
| // Restore the value of SkippingContents so that identifiers are |
| // looked up, etc, inside the #elif expression. |
| assert(SkippingContents && "We have to be skipping here!"); |
| SkippingContents = false; |
| IdentifierInfo *IfNDefMacro = 0; |
| ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro); |
| SkippingContents = true; |
| } |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else); |
| |
| // If this condition is true, enter it! |
| if (ShouldEnter) { |
| CondInfo.FoundNonSkip = true; |
| break; |
| } |
| } |
| } |
| |
| CurLexer->ParsingPreprocessorDirective = false; |
| } |
| |
| // Finally, if we are out of the conditional (saw an #endif or ran off the end |
| // of the file, just stop skipping and return to lexing whatever came after |
| // the #if block. |
| SkippingContents = false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleDirective - This callback is invoked when the lexer sees a # token |
| /// at the start of a line. This consumes the directive, modifies the |
| /// lexer/preprocessor state, and advances the lexer(s) so that the next token |
| /// read is the correct one. |
| void Preprocessor::HandleDirective(LexerToken &Result) { |
| // FIXME: Traditional: # with whitespace before it not recognized by K&R? |
| |
| // We just parsed a # character at the start of a line, so we're in directive |
| // mode. Tell the lexer this so any newlines we see will be converted into an |
| // EOM token (which terminates the directive). |
| CurLexer->ParsingPreprocessorDirective = true; |
| |
| ++NumDirectives; |
| |
| // We are about to read a token. For the multiple-include optimization FA to |
| // work, we have to remember if we had read any tokens *before* this |
| // pp-directive. |
| bool ReadAnyTokensBeforeDirective = CurLexer->MIOpt.getHasReadAnyTokensVal(); |
| |
| // Read the next token, the directive flavor. This isn't expanded due to |
| // C99 6.10.3p8. |
| LexUnexpandedToken(Result); |
| |
| // C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.: |
| // #define A(x) #x |
| // A(abc |
| // #warning blah |
| // def) |
| // If so, the user is relying on non-portable behavior, emit a diagnostic. |
| if (InMacroFormalArgs) |
| Diag(Result, diag::ext_embedded_directive); |
| |
| switch (Result.getKind()) { |
| default: break; |
| case tok::eom: |
| return; // null directive. |
| |
| #if 0 |
| case tok::numeric_constant: |
| // FIXME: implement # 7 line numbers! |
| break; |
| #endif |
| case tok::kw_else: |
| return HandleElseDirective(Result); |
| case tok::kw_if: |
| return HandleIfDirective(Result, ReadAnyTokensBeforeDirective); |
| case tok::identifier: |
| // Get the identifier name without trigraphs or embedded newlines. |
| const char *Directive = Result.getIdentifierInfo()->getName(); |
| bool isExtension = false; |
| switch (Result.getIdentifierInfo()->getNameLength()) { |
| case 4: |
| if (Directive[0] == 'l' && !strcmp(Directive, "line")) |
| ; // FIXME: implement #line |
| if (Directive[0] == 'e' && !strcmp(Directive, "elif")) |
| return HandleElifDirective(Result); |
| if (Directive[0] == 's' && !strcmp(Directive, "sccs")) |
| return HandleIdentSCCSDirective(Result); |
| break; |
| case 5: |
| if (Directive[0] == 'e' && !strcmp(Directive, "endif")) |
| return HandleEndifDirective(Result); |
| if (Directive[0] == 'i' && !strcmp(Directive, "ifdef")) |
| return HandleIfdefDirective(Result, false, true/*not valid for miopt*/); |
| if (Directive[0] == 'u' && !strcmp(Directive, "undef")) |
| return HandleUndefDirective(Result); |
| if (Directive[0] == 'e' && !strcmp(Directive, "error")) |
| return HandleUserDiagnosticDirective(Result, false); |
| if (Directive[0] == 'i' && !strcmp(Directive, "ident")) |
| return HandleIdentSCCSDirective(Result); |
| break; |
| case 6: |
| if (Directive[0] == 'd' && !strcmp(Directive, "define")) |
| return HandleDefineDirective(Result); |
| if (Directive[0] == 'i' && !strcmp(Directive, "ifndef")) |
| return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective); |
| if (Directive[0] == 'i' && !strcmp(Directive, "import")) |
| return HandleImportDirective(Result); |
| if (Directive[0] == 'p' && !strcmp(Directive, "pragma")) |
| return HandlePragmaDirective(); |
| if (Directive[0] == 'a' && !strcmp(Directive, "assert")) |
| isExtension = true; // FIXME: implement #assert |
| break; |
| case 7: |
| if (Directive[0] == 'i' && !strcmp(Directive, "include")) |
| return HandleIncludeDirective(Result); // Handle #include. |
| if (Directive[0] == 'w' && !strcmp(Directive, "warning")) { |
| Diag(Result, diag::ext_pp_warning_directive); |
| return HandleUserDiagnosticDirective(Result, true); |
| } |
| break; |
| case 8: |
| if (Directive[0] == 'u' && !strcmp(Directive, "unassert")) { |
| isExtension = true; // FIXME: implement #unassert |
| } |
| break; |
| case 12: |
| if (Directive[0] == 'i' && !strcmp(Directive, "include_next")) |
| return HandleIncludeNextDirective(Result); // Handle #include_next. |
| break; |
| } |
| break; |
| } |
| |
| // If we reached here, the preprocessing token is not valid! |
| Diag(Result, diag::err_pp_invalid_directive); |
| |
| // Read the rest of the PP line. |
| DiscardUntilEndOfDirective(); |
| |
| // Okay, we're done parsing the directive. |
| } |
| |
| void Preprocessor::HandleUserDiagnosticDirective(LexerToken &Tok, |
| bool isWarning) { |
| // Read the rest of the line raw. We do this because we don't want macros |
| // to be expanded and we don't require that the tokens be valid preprocessing |
| // tokens. For example, this is allowed: "#warning ` 'foo". GCC does |
| // collapse multiple consequtive white space between tokens, but this isn't |
| // specified by the standard. |
| std::string Message = CurLexer->ReadToEndOfLine(); |
| |
| unsigned DiagID = isWarning ? diag::pp_hash_warning : diag::err_pp_hash_error; |
| return Diag(Tok, DiagID, Message); |
| } |
| |
| /// HandleIdentSCCSDirective - Handle a #ident/#sccs directive. |
| /// |
| void Preprocessor::HandleIdentSCCSDirective(LexerToken &Tok) { |
| // Yes, this directive is an extension. |
| Diag(Tok, diag::ext_pp_ident_directive); |
| |
| // Read the string argument. |
| LexerToken StrTok; |
| Lex(StrTok); |
| |
| // If the token kind isn't a string, it's a malformed directive. |
| if (StrTok.getKind() != tok::string_literal) |
| return Diag(StrTok, diag::err_pp_malformed_ident); |
| |
| // Verify that there is nothing after the string, other than EOM. |
| CheckEndOfDirective("#ident"); |
| |
| if (IdentHandler) |
| IdentHandler(Tok.getLocation(), getSpelling(StrTok)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Include Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleIncludeDirective - The "#include" tokens have just been read, read the |
| /// file to be included from the lexer, then include it! This is a common |
| /// routine with functionality shared between #include, #include_next and |
| /// #import. |
| void Preprocessor::HandleIncludeDirective(LexerToken &IncludeTok, |
| const DirectoryLookup *LookupFrom, |
| bool isImport) { |
| ++NumIncluded; |
| |
| LexerToken FilenameTok; |
| std::string Filename = CurLexer->LexIncludeFilename(FilenameTok); |
| |
| // If the token kind is EOM, the error has already been diagnosed. |
| if (FilenameTok.getKind() == tok::eom) |
| return; |
| |
| // Verify that there is nothing after the filename, other than EOM. Use the |
| // preprocessor to lex this in case lexing the filename entered a macro. |
| CheckEndOfDirective("#include"); |
| |
| // Check that we don't have infinite #include recursion. |
| if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1) |
| return Diag(FilenameTok, diag::err_pp_include_too_deep); |
| |
| // Find out whether the filename is <x> or "x". |
| bool isAngled = Filename[0] == '<'; |
| |
| // Remove the quotes. |
| Filename = std::string(Filename.begin()+1, Filename.end()-1); |
| |
| // Search include directories. |
| const DirectoryLookup *CurDir; |
| const FileEntry *File = LookupFile(Filename, isAngled, LookupFrom, CurDir); |
| if (File == 0) |
| return Diag(FilenameTok, diag::err_pp_file_not_found); |
| |
| // Get information about this file. |
| PerFileInfo &FileInfo = getFileInfo(File); |
| |
| // If this is a #import directive, check that we have not already imported |
| // this header. |
| if (isImport) { |
| // If this has already been imported, don't import it again. |
| FileInfo.isImport = true; |
| |
| // Has this already been #import'ed or #include'd? |
| if (FileInfo.NumIncludes) return; |
| } else { |
| // Otherwise, if this is a #include of a file that was previously #import'd |
| // or if this is the second #include of a #pragma once file, ignore it. |
| if (FileInfo.isImport) |
| return; |
| } |
| |
| // Next, check to see if the file is wrapped with #ifndef guards. If so, and |
| // if the macro that guards it is defined, we know the #include has no effect. |
| if (FileInfo.ControllingMacro && FileInfo.ControllingMacro->getMacroInfo()) { |
| ++NumMultiIncludeFileOptzn; |
| return; |
| } |
| |
| |
| // Look up the file, create a File ID for it. |
| unsigned FileID = SourceMgr.createFileID(File, FilenameTok.getLocation()); |
| if (FileID == 0) |
| return Diag(FilenameTok, diag::err_pp_file_not_found); |
| |
| // Finally, if all is good, enter the new file! |
| EnterSourceFile(FileID, CurDir); |
| |
| // Increment the number of times this file has been included. |
| ++FileInfo.NumIncludes; |
| } |
| |
| /// HandleIncludeNextDirective - Implements #include_next. |
| /// |
| void Preprocessor::HandleIncludeNextDirective(LexerToken &IncludeNextTok) { |
| Diag(IncludeNextTok, diag::ext_pp_include_next_directive); |
| |
| // #include_next is like #include, except that we start searching after |
| // the current found directory. If we can't do this, issue a |
| // diagnostic. |
| const DirectoryLookup *Lookup = CurDirLookup; |
| if (isInPrimaryFile()) { |
| Lookup = 0; |
| Diag(IncludeNextTok, diag::pp_include_next_in_primary); |
| } else if (Lookup == 0) { |
| Diag(IncludeNextTok, diag::pp_include_next_absolute_path); |
| } else { |
| // Start looking up in the next directory. |
| ++Lookup; |
| } |
| |
| return HandleIncludeDirective(IncludeNextTok, Lookup); |
| } |
| |
| /// HandleImportDirective - Implements #import. |
| /// |
| void Preprocessor::HandleImportDirective(LexerToken &ImportTok) { |
| Diag(ImportTok, diag::ext_pp_import_directive); |
| |
| return HandleIncludeDirective(ImportTok, 0, true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Macro Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// ReadMacroDefinitionArgList - The ( starting an argument list of a macro |
| /// definition has just been read. Lex the rest of the arguments and the |
| /// closing ), updating MI with what we learn. Return true if an error occurs |
| /// parsing the arg list. |
| bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI) { |
| LexerToken Tok; |
| while (1) { |
| LexUnexpandedToken(Tok); |
| switch (Tok.getKind()) { |
| case tok::r_paren: |
| // Found the end of the argument list. |
| if (MI->arg_begin() == MI->arg_end()) return false; // #define FOO() |
| // Otherwise we have #define FOO(A,) |
| Diag(Tok, diag::err_pp_expected_ident_in_arg_list); |
| return true; |
| case tok::ellipsis: // #define X(... -> C99 varargs |
| // Warn if use of C99 feature in non-C99 mode. |
| if (!Features.C99) Diag(Tok, diag::ext_variadic_macro); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.getKind() != tok::r_paren) { |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| } |
| MI->setIsC99Varargs(); |
| return false; |
| case tok::eom: // #define X( |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| default: // #define X(1 |
| Diag(Tok, diag::err_pp_invalid_tok_in_arg_list); |
| return true; |
| case tok::identifier: |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| |
| // If this is already used as an argument, it is used multiple times (e.g. |
| // #define X(A,A. |
| if (II->isMacroArg()) { // C99 6.10.3p6 |
| Diag(Tok, diag::err_pp_duplicate_name_in_arg_list, II->getName()); |
| return true; |
| } |
| |
| // Add the argument to the macro info. |
| MI->addArgument(II); |
| // Remember it is an argument now. |
| II->setIsMacroArg(true); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| |
| switch (Tok.getKind()) { |
| default: // #define X(A B |
| Diag(Tok, diag::err_pp_expected_comma_in_arg_list); |
| return true; |
| case tok::r_paren: // #define X(A) |
| return false; |
| case tok::comma: // #define X(A, |
| break; |
| case tok::ellipsis: // #define X(A... -> GCC extension |
| // Diagnose extension. |
| Diag(Tok, diag::ext_named_variadic_macro); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.getKind() != tok::r_paren) { |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| } |
| |
| MI->setIsGNUVarargs(); |
| return false; |
| } |
| } |
| } |
| } |
| |
| /// HandleDefineDirective - Implements #define. This consumes the entire macro |
| /// line then lets the caller lex the next real token. |
| /// |
| void Preprocessor::HandleDefineDirective(LexerToken &DefineTok) { |
| ++NumDefined; |
| |
| LexerToken MacroNameTok; |
| ReadMacroName(MacroNameTok, 1); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.getKind() == tok::eom) |
| return; |
| |
| MacroInfo *MI = new MacroInfo(MacroNameTok.getLocation()); |
| |
| LexerToken Tok; |
| LexUnexpandedToken(Tok); |
| |
| // FIXME: Enable __VA_ARGS__. |
| |
| // If this is a function-like macro definition, parse the argument list, |
| // marking each of the identifiers as being used as macro arguments. Also, |
| // check other constraints on the first token of the macro body. |
| if (Tok.getKind() == tok::eom) { |
| // If there is no body to this macro, we have no special handling here. |
| } else if (Tok.getKind() == tok::l_paren && !Tok.hasLeadingSpace()) { |
| // This is a function-like macro definition. Read the argument list. |
| MI->setIsFunctionLike(); |
| if (ReadMacroDefinitionArgList(MI)) { |
| // Clear the "isMacroArg" flags from all the macro arguments parsed. |
| MI->SetIdentifierIsMacroArgFlags(false); |
| // Forget about MI. |
| delete MI; |
| // Throw away the rest of the line. |
| if (CurLexer->ParsingPreprocessorDirective) |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // Read the first token after the arg list for down below. |
| LexUnexpandedToken(Tok); |
| } else if (!Tok.hasLeadingSpace()) { |
| // C99 requires whitespace between the macro definition and the body. Emit |
| // a diagnostic for something like "#define X+". |
| if (Features.C99) { |
| Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name); |
| } else { |
| // FIXME: C90/C++ do not get this diagnostic, but it does get a similar |
| // one in some cases! |
| } |
| } else { |
| // This is a normal token with leading space. Clear the leading space |
| // marker on the first token to get proper expansion. |
| Tok.ClearFlag(LexerToken::LeadingSpace); |
| } |
| |
| // Read the rest of the macro body. |
| while (Tok.getKind() != tok::eom) { |
| MI->AddTokenToBody(Tok); |
| |
| // Check C99 6.10.3.2p1: ensure that # operators are followed by macro |
| // parameters. |
| if (Tok.getKind() != tok::hash) { |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| continue; |
| } |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| |
| // Not a macro arg identifier? |
| if (!Tok.getIdentifierInfo() || !Tok.getIdentifierInfo()->isMacroArg()) { |
| Diag(Tok, diag::err_pp_stringize_not_parameter); |
| // Clear the "isMacroArg" flags from all the macro arguments. |
| MI->SetIdentifierIsMacroArgFlags(false); |
| delete MI; |
| return; |
| } |
| |
| // Things look ok, add the param name token to the macro. |
| MI->AddTokenToBody(Tok); |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| } |
| |
| // Clear the "isMacroArg" flags from all the macro arguments. |
| MI->SetIdentifierIsMacroArgFlags(false); |
| |
| // Check that there is no paste (##) operator at the begining or end of the |
| // replacement list. |
| unsigned NumTokens = MI->getNumTokens(); |
| if (NumTokens != 0) { |
| if (MI->getReplacementToken(0).getKind() == tok::hashhash) { |
| Diag(MI->getReplacementToken(0), diag::err_paste_at_start); |
| delete MI; |
| return; |
| } |
| if (MI->getReplacementToken(NumTokens-1).getKind() == tok::hashhash) { |
| Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end); |
| delete MI; |
| return; |
| } |
| } |
| |
| // If this is the primary source file, remember that this macro hasn't been |
| // used yet. |
| if (isInPrimaryFile()) |
| MI->setIsUsed(false); |
| |
| // Finally, if this identifier already had a macro defined for it, verify that |
| // the macro bodies are identical and free the old definition. |
| if (MacroInfo *OtherMI = MacroNameTok.getIdentifierInfo()->getMacroInfo()) { |
| if (!OtherMI->isUsed()) |
| Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used); |
| |
| // Macros must be identical. This means all tokes and whitespace separation |
| // must be the same. C99 6.10.3.2. |
| if (!MI->isIdenticalTo(*OtherMI, *this)) { |
| Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef, |
| MacroNameTok.getIdentifierInfo()->getName()); |
| Diag(OtherMI->getDefinitionLoc(), diag::ext_pp_macro_redef2); |
| } |
| delete OtherMI; |
| } |
| |
| MacroNameTok.getIdentifierInfo()->setMacroInfo(MI); |
| } |
| |
| |
| /// HandleUndefDirective - Implements #undef. |
| /// |
| void Preprocessor::HandleUndefDirective(LexerToken &UndefTok) { |
| ++NumUndefined; |
| |
| LexerToken MacroNameTok; |
| ReadMacroName(MacroNameTok, 2); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.getKind() == tok::eom) |
| return; |
| |
| // Check to see if this is the last token on the #undef line. |
| CheckEndOfDirective("#undef"); |
| |
| // Okay, we finally have a valid identifier to undef. |
| MacroInfo *MI = MacroNameTok.getIdentifierInfo()->getMacroInfo(); |
| |
| // If the macro is not defined, this is a noop undef, just return. |
| if (MI == 0) return; |
| |
| if (!MI->isUsed()) |
| Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used); |
| |
| // Free macro definition. |
| delete MI; |
| MacroNameTok.getIdentifierInfo()->setMacroInfo(0); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Conditional Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleIfdefDirective - Implements the #ifdef/#ifndef directive. isIfndef is |
| /// true when this is a #ifndef directive. ReadAnyTokensBeforeDirective is true |
| /// if any tokens have been returned or pp-directives activated before this |
| /// #ifndef has been lexed. |
| /// |
| void Preprocessor::HandleIfdefDirective(LexerToken &Result, bool isIfndef, |
| bool ReadAnyTokensBeforeDirective) { |
| ++NumIf; |
| LexerToken DirectiveTok = Result; |
| |
| LexerToken MacroNameTok; |
| ReadMacroName(MacroNameTok); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.getKind() == tok::eom) |
| return; |
| |
| // Check to see if this is the last token on the #if[n]def line. |
| CheckEndOfDirective(isIfndef ? "#ifndef" : "#ifdef"); |
| |
| // If the start of a top-level #ifdef, inform MIOpt. |
| if (!ReadAnyTokensBeforeDirective && |
| CurLexer->getConditionalStackDepth() == 0) { |
| assert(isIfndef && "#ifdef shouldn't reach here"); |
| CurLexer->MIOpt.EnterTopLevelIFNDEF(MacroNameTok.getIdentifierInfo()); |
| } |
| |
| MacroInfo *MI = MacroNameTok.getIdentifierInfo()->getMacroInfo(); |
| |
| // If there is a macro, mark it used. |
| if (MI) MI->setIsUsed(true); |
| |
| // Should we include the stuff contained by this directive? |
| if (!MI == isIfndef) { |
| // Yes, remember that we are inside a conditional, then lex the next token. |
| CurLexer->pushConditionalLevel(DirectiveTok.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/true, /*foundelse*/false); |
| } else { |
| // No, skip the contents of this block and return the first token after it. |
| SkipExcludedConditionalBlock(DirectiveTok.getLocation(), |
| /*Foundnonskip*/false, |
| /*FoundElse*/false); |
| } |
| } |
| |
| /// HandleIfDirective - Implements the #if directive. |
| /// |
| void Preprocessor::HandleIfDirective(LexerToken &IfToken, |
| bool ReadAnyTokensBeforeDirective) { |
| ++NumIf; |
| |
| // Parse and evaluation the conditional expression. |
| IdentifierInfo *IfNDefMacro = 0; |
| bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro); |
| |
| // Should we include the stuff contained by this directive? |
| if (ConditionalTrue) { |
| // If this condition is equivalent to #ifndef X, and if this is the first |
| // directive seen, handle it for the multiple-include optimization. |
| if (!ReadAnyTokensBeforeDirective && |
| CurLexer->getConditionalStackDepth() == 0 && IfNDefMacro) |
| CurLexer->MIOpt.EnterTopLevelIFNDEF(IfNDefMacro); |
| |
| // Yes, remember that we are inside a conditional, then lex the next token. |
| CurLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/true, /*foundelse*/false); |
| } else { |
| // No, skip the contents of this block and return the first token after it. |
| SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false, |
| /*FoundElse*/false); |
| } |
| } |
| |
| /// HandleEndifDirective - Implements the #endif directive. |
| /// |
| void Preprocessor::HandleEndifDirective(LexerToken &EndifToken) { |
| ++NumEndif; |
| |
| // Check that this is the whole directive. |
| CheckEndOfDirective("#endif"); |
| |
| PPConditionalInfo CondInfo; |
| if (CurLexer->popConditionalLevel(CondInfo)) { |
| // No conditionals on the stack: this is an #endif without an #if. |
| return Diag(EndifToken, diag::err_pp_endif_without_if); |
| } |
| |
| // If this the end of a top-level #endif, inform MIOpt. |
| if (CurLexer->getConditionalStackDepth() == 0) |
| CurLexer->MIOpt.ExitTopLevelConditional(); |
| |
| assert(!CondInfo.WasSkipping && !isSkipping() && |
| "This code should only be reachable in the non-skipping case!"); |
| } |
| |
| |
| void Preprocessor::HandleElseDirective(LexerToken &Result) { |
| ++NumElse; |
| |
| // #else directive in a non-skipping conditional... start skipping. |
| CheckEndOfDirective("#else"); |
| |
| PPConditionalInfo CI; |
| if (CurLexer->popConditionalLevel(CI)) |
| return Diag(Result, diag::pp_err_else_without_if); |
| |
| // If this is a top-level #else, inform the MIOpt. |
| if (CurLexer->getConditionalStackDepth() == 0) |
| CurLexer->MIOpt.FoundTopLevelElse(); |
| |
| // If this is a #else with a #else before it, report the error. |
| if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else); |
| |
| // Finally, skip the rest of the contents of this block and return the first |
| // token after it. |
| return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, |
| /*FoundElse*/true); |
| } |
| |
| void Preprocessor::HandleElifDirective(LexerToken &ElifToken) { |
| ++NumElse; |
| |
| // #elif directive in a non-skipping conditional... start skipping. |
| // We don't care what the condition is, because we will always skip it (since |
| // the block immediately before it was included). |
| DiscardUntilEndOfDirective(); |
| |
| PPConditionalInfo CI; |
| if (CurLexer->popConditionalLevel(CI)) |
| return Diag(ElifToken, diag::pp_err_elif_without_if); |
| |
| // If this is a top-level #elif, inform the MIOpt. |
| if (CurLexer->getConditionalStackDepth() == 0) |
| CurLexer->MIOpt.FoundTopLevelElse(); |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else); |
| |
| // Finally, skip the rest of the contents of this block and return the first |
| // token after it. |
| return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, |
| /*FoundElse*/CI.FoundElse); |
| } |
| |