| //===--- PPExpressions.cpp - Preprocessor Expression Evaluation -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Preprocessor::EvaluateDirectiveExpression method, |
| // which parses and evaluates integer constant expressions for #if directives. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // FIXME: implement testing for asserts. |
| // FIXME: Parse integer constants correctly. Reject 123.0, etc. |
| // FIXME: Track signed/unsigned correctly. |
| // FIXME: Track and report integer overflow correctly. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Basic/TokenKinds.h" |
| #include "clang/Basic/Diagnostic.h" |
| using namespace llvm; |
| using namespace clang; |
| |
| static bool EvaluateDirectiveSubExpr(int &LHS, unsigned MinPrec, |
| LexerToken &PeekTok, Preprocessor &PP); |
| |
| /// DefinedTracker - This struct is used while parsing expressions to keep track |
| /// of whether !defined(X) has been seen. |
| /// |
| /// With this simple scheme, we handle the basic forms: |
| /// !defined(X) and !defined X |
| /// but we also trivially handle (silly) stuff like: |
| /// !!!defined(X) and +!defined(X) and !+!+!defined(X) and !(defined(X)). |
| struct DefinedTracker { |
| /// Each time a Value is evaluated, it returns information about whether the |
| /// parsed value is of the form defined(X), !defined(X) or is something else. |
| enum TrackerState { |
| DefinedMacro, // defined(X) |
| NotDefinedMacro, // !defined(X) |
| Unknown // Something else. |
| } State; |
| /// TheMacro - When the state is DefinedMacro or NotDefinedMacro, this |
| /// indicates the macro that was checked. |
| IdentifierInfo *TheMacro; |
| }; |
| |
| |
| |
| /// EvaluateValue - Evaluate the token PeekTok (and any others needed) and |
| /// return the computed value in Result. Return true if there was an error |
| /// parsing. This function also returns information about the form of the |
| /// expression in DT. See above for information on what DT means. |
| static bool EvaluateValue(int &Result, LexerToken &PeekTok, DefinedTracker &DT, |
| Preprocessor &PP) { |
| Result = 0; |
| DT.State = DefinedTracker::Unknown; |
| |
| // If this token's spelling is a pp-identifier, check to see if it is |
| // 'defined' or if it is a macro. Note that we check here because many |
| // keywords are pp-identifiers, so we can't check the kind. |
| if (IdentifierInfo *II = PeekTok.getIdentifierInfo()) { |
| // If this identifier isn't 'defined' and it wasn't macro expanded, it turns |
| // into a simple 0. |
| if (strcmp(II->getName(), "defined")) { |
| Result = 0; |
| PP.Lex(PeekTok); |
| return false; |
| } |
| |
| // Handle "defined X" and "defined(X)". |
| |
| // Get the next token, don't expand it. |
| PP.LexUnexpandedToken(PeekTok); |
| |
| // Two options, it can either be a pp-identifier or a (. |
| bool InParens = false; |
| if (PeekTok.getKind() == tok::l_paren) { |
| // Found a paren, remember we saw it and skip it. |
| InParens = true; |
| PP.LexUnexpandedToken(PeekTok); |
| } |
| |
| // If we don't have a pp-identifier now, this is an error. |
| if ((II = PeekTok.getIdentifierInfo()) == 0) { |
| PP.Diag(PeekTok, diag::err_pp_defined_requires_identifier); |
| return true; |
| } |
| |
| // Otherwise, we got an identifier, is it defined to something? |
| Result = II->getMacroInfo() != 0; |
| |
| // If there is a macro, mark it used. |
| if (Result) II->getMacroInfo()->setIsUsed(true); |
| |
| // Consume identifier. |
| PP.Lex(PeekTok); |
| |
| // If we are in parens, ensure we have a trailing ). |
| if (InParens) { |
| if (PeekTok.getKind() != tok::r_paren) { |
| PP.Diag(PeekTok, diag::err_pp_missing_rparen); |
| return true; |
| } |
| // Consume the ). |
| PP.Lex(PeekTok); |
| } |
| |
| // Success, remember that we saw defined(X). |
| DT.State = DefinedTracker::DefinedMacro; |
| DT.TheMacro = II; |
| return false; |
| } |
| |
| switch (PeekTok.getKind()) { |
| default: // Non-value token. |
| PP.Diag(PeekTok, diag::err_pp_expr_bad_token); |
| return true; |
| case tok::eom: |
| case tok::r_paren: |
| // If there is no expression, report and exit. |
| PP.Diag(PeekTok, diag::err_pp_expected_value_in_expr); |
| return true; |
| case tok::numeric_constant: { |
| // FIXME: faster. FIXME: track signs. |
| std::string Spell = PP.getSpelling(PeekTok); |
| // FIXME: COMPUTE integer constants CORRECTLY. |
| Result = atoi(Spell.c_str()); |
| PP.Lex(PeekTok); |
| return false; |
| } |
| case tok::l_paren: |
| PP.Lex(PeekTok); // Eat the (. |
| // Parse the value and if there are any binary operators involved, parse |
| // them. |
| if (EvaluateValue(Result, PeekTok, DT, PP)) return true; |
| |
| // If this is a silly value like (X), which doesn't need parens, check for |
| // !(defined X). |
| if (PeekTok.getKind() == tok::r_paren) { |
| // Just use DT unmodified as our result. |
| } else { |
| if (EvaluateDirectiveSubExpr(Result, 1, PeekTok, PP)) return true; |
| |
| if (PeekTok.getKind() != tok::r_paren) { |
| PP.Diag(PeekTok, diag::err_pp_expected_rparen); |
| return true; |
| } |
| DT.State = DefinedTracker::Unknown; |
| } |
| PP.Lex(PeekTok); // Eat the ). |
| return false; |
| |
| case tok::plus: |
| // Unary plus doesn't modify the value. |
| PP.Lex(PeekTok); |
| return EvaluateValue(Result, PeekTok, DT, PP); |
| case tok::minus: |
| PP.Lex(PeekTok); |
| if (EvaluateValue(Result, PeekTok, DT, PP)) return true; |
| Result = -Result; |
| DT.State = DefinedTracker::Unknown; |
| return false; |
| |
| case tok::tilde: |
| PP.Lex(PeekTok); |
| if (EvaluateValue(Result, PeekTok, DT, PP)) return true; |
| Result = ~Result; |
| DT.State = DefinedTracker::Unknown; |
| return false; |
| |
| case tok::exclaim: |
| PP.Lex(PeekTok); |
| if (EvaluateValue(Result, PeekTok, DT, PP)) return true; |
| Result = !Result; |
| |
| if (DT.State == DefinedTracker::DefinedMacro) |
| DT.State = DefinedTracker::NotDefinedMacro; |
| else if (DT.State == DefinedTracker::NotDefinedMacro) |
| DT.State = DefinedTracker::DefinedMacro; |
| return false; |
| |
| // FIXME: Handle #assert |
| } |
| } |
| |
| |
| |
| /// getPrecedence - Return the precedence of the specified binary operator |
| /// token. This returns: |
| /// ~0 - Invalid token. |
| /// 15 - *,/,% |
| /// 14 - -,+ |
| /// 13 - <<,>> |
| /// 12 - >=, <=, >, < |
| /// 11 - ==, != |
| /// 10 - <?, >? min, max (GCC extensions) |
| /// 9 - & |
| /// 8 - ^ |
| /// 7 - | |
| /// 6 - && |
| /// 5 - || |
| /// 4 - ? |
| /// 3 - : |
| /// 0 - eom, ) |
| static unsigned getPrecedence(tok::TokenKind Kind) { |
| switch (Kind) { |
| default: return ~0U; |
| case tok::percent: |
| case tok::slash: |
| case tok::star: return 15; |
| case tok::plus: |
| case tok::minus: return 14; |
| case tok::lessless: |
| case tok::greatergreater: return 13; |
| case tok::lessequal: |
| case tok::less: |
| case tok::greaterequal: |
| case tok::greater: return 12; |
| case tok::exclaimequal: |
| case tok::equalequal: return 11; |
| case tok::lessquestion: |
| case tok::greaterquestion: return 10; |
| case tok::amp: return 9; |
| case tok::caret: return 8; |
| case tok::pipe: return 7; |
| case tok::ampamp: return 6; |
| case tok::pipepipe: return 5; |
| case tok::question: return 4; |
| case tok::colon: return 3; |
| case tok::comma: return 2; |
| case tok::r_paren: return 0; // Lowest priority, end of expr. |
| case tok::eom: return 0; // Lowest priority, end of macro. |
| } |
| } |
| |
| |
| /// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is |
| /// PeekTok, and whose precedence is PeekPrec. |
| static bool EvaluateDirectiveSubExpr(int &LHS, unsigned MinPrec, |
| LexerToken &PeekTok, Preprocessor &PP) { |
| unsigned PeekPrec = getPrecedence(PeekTok.getKind()); |
| // If this token isn't valid, report the error. |
| if (PeekPrec == ~0U) { |
| PP.Diag(PeekTok, diag::err_pp_expr_bad_token); |
| return true; |
| } |
| |
| while (1) { |
| // If this token has a lower precedence than we are allowed to parse, return |
| // it so that higher levels of the recursion can parse it. |
| if (PeekPrec < MinPrec) |
| return false; |
| |
| tok::TokenKind Operator = PeekTok.getKind(); |
| |
| // Consume the operator, saving the operator token for error reporting. |
| LexerToken OpToken = PeekTok; |
| PP.Lex(PeekTok); |
| |
| int RHS; |
| // Parse the RHS of the operator. |
| DefinedTracker DT; |
| if (EvaluateValue(RHS, PeekTok, DT, PP)) return true; |
| |
| // Remember the precedence of this operator and get the precedence of the |
| // operator immediately to the right of the RHS. |
| unsigned ThisPrec = PeekPrec; |
| PeekPrec = getPrecedence(PeekTok.getKind()); |
| |
| // If this token isn't valid, report the error. |
| if (PeekPrec == ~0U) { |
| PP.Diag(PeekTok, diag::err_pp_expr_bad_token); |
| return true; |
| } |
| |
| bool isRightAssoc = Operator == tok::question; |
| |
| // Get the precedence of the operator to the right of the RHS. If it binds |
| // more tightly with RHS than we do, evaluate it completely first. |
| if (ThisPrec < PeekPrec || |
| (ThisPrec == PeekPrec && isRightAssoc)) { |
| if (EvaluateDirectiveSubExpr(RHS, ThisPrec+1, PeekTok, PP)) |
| return true; |
| PeekPrec = getPrecedence(PeekTok.getKind()); |
| } |
| assert(PeekPrec <= ThisPrec && "Recursion didn't work!"); |
| |
| switch (Operator) { |
| default: assert(0 && "Unknown operator token!"); |
| case tok::percent: |
| if (RHS == 0) { |
| PP.Diag(OpToken, diag::err_pp_remainder_by_zero); |
| return true; |
| } |
| LHS %= RHS; |
| break; |
| case tok::slash: |
| if (RHS == 0) { |
| PP.Diag(OpToken, diag::err_pp_division_by_zero); |
| return true; |
| } |
| LHS /= RHS; |
| break; |
| case tok::star : LHS *= RHS; break; |
| case tok::lessless: LHS << RHS; break; // FIXME: shift amt overflow? |
| case tok::greatergreater: LHS >> RHS; break; // FIXME: signed vs unsigned |
| case tok::plus : LHS += RHS; break; |
| case tok::minus: LHS -= RHS; break; |
| case tok::lessequal: LHS = LHS <= RHS; break; |
| case tok::less: LHS = LHS < RHS; break; |
| case tok::greaterequal: LHS = LHS >= RHS; break; |
| case tok::greater: LHS = LHS > RHS; break; |
| case tok::exclaimequal: LHS = LHS != RHS; break; |
| case tok::equalequal: LHS = LHS == RHS; break; |
| case tok::lessquestion: // Deprecation warning emitted by the lexer. |
| LHS = std::min(LHS, RHS); |
| break; |
| case tok::greaterquestion: // Deprecation warning emitted by the lexer. |
| LHS = std::max(LHS, RHS); |
| break; |
| case tok::amp: LHS &= RHS; break; |
| case tok::caret: LHS ^= RHS; break; |
| case tok::pipe: LHS |= RHS; break; |
| case tok::ampamp: LHS = LHS && RHS; break; |
| case tok::pipepipe: LHS = LHS || RHS; break; |
| case tok::comma: |
| PP.Diag(OpToken, diag::ext_pp_comma_expr); |
| LHS = RHS; // LHS = LHS,RHS -> RHS. |
| break; |
| case tok::question: { |
| // Parse the : part of the expression. |
| if (PeekTok.getKind() != tok::colon) { |
| PP.Diag(OpToken, diag::err_pp_question_without_colon); |
| return true; |
| } |
| // Consume the :. |
| PP.Lex(PeekTok); |
| |
| // Evaluate the value after the :. |
| int AfterColonVal = 0; |
| DefinedTracker DT; |
| if (EvaluateValue(AfterColonVal, PeekTok, DT, PP)) return true; |
| |
| // Parse anything after the : RHS that has a higher precedence than ?. |
| if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec+1, |
| PeekTok, PP)) |
| return true; |
| |
| // Now that we have the condition, the LHS and the RHS of the :, evaluate. |
| LHS = LHS ? RHS : AfterColonVal; |
| |
| // Figure out the precedence of the token after the : part. |
| PeekPrec = getPrecedence(PeekTok.getKind()); |
| break; |
| } |
| case tok::colon: |
| // Don't allow :'s to float around without being part of ?: exprs. |
| PP.Diag(OpToken, diag::err_pp_colon_without_question); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// EvaluateDirectiveExpression - Evaluate an integer constant expression that |
| /// may occur after a #if or #elif directive. If the expression is equivalent |
| /// to "!defined(X)" return X in IfNDefMacro. |
| bool Preprocessor:: |
| EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro) { |
| // Peek ahead one token. |
| LexerToken Tok; |
| Lex(Tok); |
| |
| int ResVal = 0; |
| DefinedTracker DT; |
| if (EvaluateValue(ResVal, Tok, DT, *this)) { |
| // Parse error, skip the rest of the macro line. |
| if (Tok.getKind() != tok::eom) |
| DiscardUntilEndOfDirective(); |
| return false; |
| } |
| |
| // If we are at the end of the expression after just parsing a value, there |
| // must be no (unparenthesized) binary operators involved, so we can exit |
| // directly. |
| if (Tok.getKind() == tok::eom) { |
| // If the expression we parsed was of the form !defined(macro), return the |
| // macro in IfNDefMacro. |
| if (DT.State == DefinedTracker::NotDefinedMacro) |
| IfNDefMacro = DT.TheMacro; |
| |
| return ResVal != 0; |
| } |
| |
| // Otherwise, we must have a binary operator (e.g. "#if 1 < 2"), so parse the |
| // operator and the stuff after it. |
| if (EvaluateDirectiveSubExpr(ResVal, 1, Tok, *this)) { |
| // Parse error, skip the rest of the macro line. |
| if (Tok.getKind() != tok::eom) |
| DiscardUntilEndOfDirective(); |
| return false; |
| } |
| |
| // If we aren't at the tok::eom token, something bad happened, like an extra |
| // ')' token. |
| if (Tok.getKind() != tok::eom) { |
| Diag(Tok, diag::err_pp_expected_eol); |
| DiscardUntilEndOfDirective(); |
| } |
| |
| return ResVal != 0; |
| } |
| |