blob: ff27a2a45179b12e3c094d76e64af54f5ed09445 [file] [log] [blame]
//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an Environment class that is used by dataflow analyses
// that run over Control-Flow Graphs (CFGs) to keep track of the state of the
// program at given program points.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <memory>
#include <utility>
namespace clang {
namespace dataflow {
// FIXME: convert these to parameters of the analysis or environment. Current
// settings have been experimentaly validated, but only for a particular
// analysis.
static constexpr int MaxCompositeValueDepth = 3;
static constexpr int MaxCompositeValueSize = 1000;
/// Returns a map consisting of key-value entries that are present in both maps.
template <typename K, typename V>
llvm::DenseMap<K, V> intersectDenseMaps(const llvm::DenseMap<K, V> &Map1,
const llvm::DenseMap<K, V> &Map2) {
llvm::DenseMap<K, V> Result;
for (auto &Entry : Map1) {
auto It = Map2.find(Entry.first);
if (It != Map2.end() && Entry.second == It->second)
Result.insert({Entry.first, Entry.second});
}
return Result;
}
static bool areEquivalentIndirectionValues(Value *Val1, Value *Val2) {
if (auto *IndVal1 = dyn_cast<ReferenceValue>(Val1)) {
auto *IndVal2 = cast<ReferenceValue>(Val2);
return &IndVal1->getReferentLoc() == &IndVal2->getReferentLoc();
}
if (auto *IndVal1 = dyn_cast<PointerValue>(Val1)) {
auto *IndVal2 = cast<PointerValue>(Val2);
return &IndVal1->getPointeeLoc() == &IndVal2->getPointeeLoc();
}
return false;
}
/// Returns true if and only if `Val1` is equivalent to `Val2`.
static bool equivalentValues(QualType Type, Value *Val1,
const Environment &Env1, Value *Val2,
const Environment &Env2,
Environment::ValueModel &Model) {
return Val1 == Val2 || areEquivalentIndirectionValues(Val1, Val2) ||
Model.compareEquivalent(Type, *Val1, Env1, *Val2, Env2);
}
/// Attempts to merge distinct values `Val1` and `Val2` in `Env1` and `Env2`,
/// respectively, of the same type `Type`. Merging generally produces a single
/// value that (soundly) approximates the two inputs, although the actual
/// meaning depends on `Model`.
static Value *mergeDistinctValues(QualType Type, Value *Val1,
const Environment &Env1, Value *Val2,
const Environment &Env2,
Environment &MergedEnv,
Environment::ValueModel &Model) {
// Join distinct boolean values preserving information about the constraints
// in the respective path conditions.
//
// FIXME: Does not work for backedges, since the two (or more) paths will not
// have mutually exclusive conditions.
if (auto *Expr1 = dyn_cast<BoolValue>(Val1)) {
auto *Expr2 = cast<BoolValue>(Val2);
auto &MergedVal = MergedEnv.makeAtomicBoolValue();
MergedEnv.addToFlowCondition(MergedEnv.makeOr(
MergedEnv.makeAnd(Env1.getFlowConditionToken(),
MergedEnv.makeIff(MergedVal, *Expr1)),
MergedEnv.makeAnd(Env2.getFlowConditionToken(),
MergedEnv.makeIff(MergedVal, *Expr2))));
return &MergedVal;
}
// FIXME: add unit tests that cover this statement.
if (areEquivalentIndirectionValues(Val1, Val2)) {
return Val1;
}
// FIXME: Consider destroying `MergedValue` immediately if `ValueModel::merge`
// returns false to avoid storing unneeded values in `DACtx`.
if (Value *MergedVal = MergedEnv.createValue(Type))
if (Model.merge(Type, *Val1, Env1, *Val2, Env2, *MergedVal, MergedEnv))
return MergedVal;
return nullptr;
}
/// Initializes a global storage value.
static void initGlobalVar(const VarDecl &D, Environment &Env) {
if (!D.hasGlobalStorage() ||
Env.getStorageLocation(D, SkipPast::None) != nullptr)
return;
auto &Loc = Env.createStorageLocation(D);
Env.setStorageLocation(D, Loc);
if (auto *Val = Env.createValue(D.getType()))
Env.setValue(Loc, *Val);
}
/// Initializes a global storage value.
static void initGlobalVar(const Decl &D, Environment &Env) {
if (auto *V = dyn_cast<VarDecl>(&D))
initGlobalVar(*V, Env);
}
/// Initializes global storage values that are declared or referenced from
/// sub-statements of `S`.
// FIXME: Add support for resetting globals after function calls to enable
// the implementation of sound analyses.
static void initGlobalVars(const Stmt &S, Environment &Env) {
for (auto *Child : S.children()) {
if (Child != nullptr)
initGlobalVars(*Child, Env);
}
if (auto *DS = dyn_cast<DeclStmt>(&S)) {
if (DS->isSingleDecl()) {
initGlobalVar(*DS->getSingleDecl(), Env);
} else {
for (auto *D : DS->getDeclGroup())
initGlobalVar(*D, Env);
}
} else if (auto *E = dyn_cast<DeclRefExpr>(&S)) {
initGlobalVar(*E->getDecl(), Env);
} else if (auto *E = dyn_cast<MemberExpr>(&S)) {
initGlobalVar(*E->getMemberDecl(), Env);
}
}
Environment::Environment(DataflowAnalysisContext &DACtx)
: DACtx(&DACtx), FlowConditionToken(&DACtx.makeFlowConditionToken()) {}
Environment::Environment(const Environment &Other)
: DACtx(Other.DACtx), ReturnLoc(Other.ReturnLoc),
ThisPointeeLoc(Other.ThisPointeeLoc), DeclToLoc(Other.DeclToLoc),
ExprToLoc(Other.ExprToLoc), LocToVal(Other.LocToVal),
MemberLocToStruct(Other.MemberLocToStruct),
FlowConditionToken(&DACtx->forkFlowCondition(*Other.FlowConditionToken)) {
}
Environment &Environment::operator=(const Environment &Other) {
Environment Copy(Other);
*this = std::move(Copy);
return *this;
}
Environment::Environment(DataflowAnalysisContext &DACtx,
const DeclContext &DeclCtx)
: Environment(DACtx) {
if (const auto *FuncDecl = dyn_cast<FunctionDecl>(&DeclCtx)) {
assert(FuncDecl->getBody() != nullptr);
initGlobalVars(*FuncDecl->getBody(), *this);
for (const auto *ParamDecl : FuncDecl->parameters()) {
assert(ParamDecl != nullptr);
auto &ParamLoc = createStorageLocation(*ParamDecl);
setStorageLocation(*ParamDecl, ParamLoc);
if (Value *ParamVal = createValue(ParamDecl->getType()))
setValue(ParamLoc, *ParamVal);
}
QualType ReturnType = FuncDecl->getReturnType();
ReturnLoc = &createStorageLocation(ReturnType);
}
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(&DeclCtx)) {
auto *Parent = MethodDecl->getParent();
assert(Parent != nullptr);
if (Parent->isLambda())
MethodDecl = dyn_cast<CXXMethodDecl>(Parent->getDeclContext());
if (MethodDecl && !MethodDecl->isStatic()) {
QualType ThisPointeeType = MethodDecl->getThisObjectType();
// FIXME: Add support for union types.
if (!ThisPointeeType->isUnionType()) {
ThisPointeeLoc = &createStorageLocation(ThisPointeeType);
if (Value *ThisPointeeVal = createValue(ThisPointeeType))
setValue(*ThisPointeeLoc, *ThisPointeeVal);
}
}
}
}
Environment Environment::pushCall(const CallExpr *Call) const {
Environment Env(*this);
// FIXME: Support references here.
Env.ReturnLoc = Env.getStorageLocation(*Call, SkipPast::Reference);
const auto *FuncDecl = Call->getDirectCallee();
assert(FuncDecl != nullptr);
// FIXME: In order to allow the callee to reference globals, we probably need
// to call `initGlobalVars` here in some way.
if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
Env.ThisPointeeLoc = Env.getStorageLocation(*Arg, SkipPast::Reference);
}
}
auto ParamIt = FuncDecl->param_begin();
auto ArgIt = Call->arg_begin();
auto ArgEnd = Call->arg_end();
// FIXME: Parameters don't always map to arguments 1:1; examples include
// overloaded operators implemented as member functions, and parameter packs.
for (; ArgIt != ArgEnd; ++ParamIt, ++ArgIt) {
assert(ParamIt != FuncDecl->param_end());
const Expr *Arg = *ArgIt;
auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::Reference);
assert(ArgLoc != nullptr);
const VarDecl *Param = *ParamIt;
auto &Loc = Env.createStorageLocation(*Param);
Env.setStorageLocation(*Param, Loc);
QualType ParamType = Param->getType();
if (ParamType->isReferenceType()) {
auto &Val = Env.takeOwnership(std::make_unique<ReferenceValue>(*ArgLoc));
Env.setValue(Loc, Val);
} else if (auto *ArgVal = Env.getValue(*ArgLoc)) {
Env.setValue(Loc, *ArgVal);
} else if (Value *Val = Env.createValue(ParamType)) {
Env.setValue(Loc, *Val);
}
}
return Env;
}
void Environment::popCall(const Environment &CalleeEnv) {
// We ignore `DACtx` because it's already the same in both. We don't want the
// callee's `ReturnLoc` or `ThisPointeeLoc`. We don't bring back `DeclToLoc`
// and `ExprToLoc` because we want to be able to later analyze the same callee
// in a different context, and `setStorageLocation` requires there to not
// already be a storage location assigned. Conceptually, these maps capture
// information from the local scope, so when popping that scope, we do not
// propagate the maps.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->MemberLocToStruct = std::move(CalleeEnv.MemberLocToStruct);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
}
bool Environment::equivalentTo(const Environment &Other,
Environment::ValueModel &Model) const {
assert(DACtx == Other.DACtx);
if (ReturnLoc != Other.ReturnLoc)
return false;
if (ThisPointeeLoc != Other.ThisPointeeLoc)
return false;
if (DeclToLoc != Other.DeclToLoc)
return false;
if (ExprToLoc != Other.ExprToLoc)
return false;
// Compare the contents for the intersection of their domains.
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Other.LocToVal.find(Loc);
if (It == Other.LocToVal.end())
continue;
assert(It->second != nullptr);
if (!equivalentValues(Loc->getType(), Val, *this, It->second, Other, Model))
return false;
}
return true;
}
LatticeJoinEffect Environment::join(const Environment &Other,
Environment::ValueModel &Model) {
assert(DACtx == Other.DACtx);
assert(ReturnLoc == Other.ReturnLoc);
assert(ThisPointeeLoc == Other.ThisPointeeLoc);
auto Effect = LatticeJoinEffect::Unchanged;
Environment JoinedEnv(*DACtx);
JoinedEnv.ReturnLoc = ReturnLoc;
JoinedEnv.ThisPointeeLoc = ThisPointeeLoc;
JoinedEnv.DeclToLoc = intersectDenseMaps(DeclToLoc, Other.DeclToLoc);
if (DeclToLoc.size() != JoinedEnv.DeclToLoc.size())
Effect = LatticeJoinEffect::Changed;
JoinedEnv.ExprToLoc = intersectDenseMaps(ExprToLoc, Other.ExprToLoc);
if (ExprToLoc.size() != JoinedEnv.ExprToLoc.size())
Effect = LatticeJoinEffect::Changed;
JoinedEnv.MemberLocToStruct =
intersectDenseMaps(MemberLocToStruct, Other.MemberLocToStruct);
if (MemberLocToStruct.size() != JoinedEnv.MemberLocToStruct.size())
Effect = LatticeJoinEffect::Changed;
// FIXME: set `Effect` as needed.
JoinedEnv.FlowConditionToken = &DACtx->joinFlowConditions(
*FlowConditionToken, *Other.FlowConditionToken);
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Other.LocToVal.find(Loc);
if (It == Other.LocToVal.end())
continue;
assert(It->second != nullptr);
if (Val == It->second) {
JoinedEnv.LocToVal.insert({Loc, Val});
continue;
}
if (Value *MergedVal = mergeDistinctValues(
Loc->getType(), Val, *this, It->second, Other, JoinedEnv, Model))
JoinedEnv.LocToVal.insert({Loc, MergedVal});
}
if (LocToVal.size() != JoinedEnv.LocToVal.size())
Effect = LatticeJoinEffect::Changed;
*this = std::move(JoinedEnv);
return Effect;
}
StorageLocation &Environment::createStorageLocation(QualType Type) {
return DACtx->createStorageLocation(Type);
}
StorageLocation &Environment::createStorageLocation(const VarDecl &D) {
// Evaluated declarations are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated declarations are stored in the analysis context.
return DACtx->getStableStorageLocation(D);
}
StorageLocation &Environment::createStorageLocation(const Expr &E) {
// Evaluated expressions are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated expressions are stored in the analysis context.
return DACtx->getStableStorageLocation(E);
}
void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
assert(DeclToLoc.find(&D) == DeclToLoc.end());
DeclToLoc[&D] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const ValueDecl &D,
SkipPast SP) const {
auto It = DeclToLoc.find(&D);
return It == DeclToLoc.end() ? nullptr : &skip(*It->second, SP);
}
void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
assert(ExprToLoc.find(&CanonE) == ExprToLoc.end());
ExprToLoc[&CanonE] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const Expr &E,
SkipPast SP) const {
// FIXME: Add a test with parens.
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
return It == ExprToLoc.end() ? nullptr : &skip(*It->second, SP);
}
StorageLocation *Environment::getThisPointeeStorageLocation() const {
return ThisPointeeLoc;
}
StorageLocation *Environment::getReturnStorageLocation() const {
return ReturnLoc;
}
PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
return DACtx->getOrCreateNullPointerValue(PointeeType);
}
void Environment::setValue(const StorageLocation &Loc, Value &Val) {
LocToVal[&Loc] = &Val;
if (auto *StructVal = dyn_cast<StructValue>(&Val)) {
auto &AggregateLoc = *cast<AggregateStorageLocation>(&Loc);
const QualType Type = AggregateLoc.getType();
assert(Type->isStructureOrClassType());
for (const FieldDecl *Field : getObjectFields(Type)) {
assert(Field != nullptr);
StorageLocation &FieldLoc = AggregateLoc.getChild(*Field);
MemberLocToStruct[&FieldLoc] = std::make_pair(StructVal, Field);
if (auto *FieldVal = StructVal->getChild(*Field))
setValue(FieldLoc, *FieldVal);
}
}
auto It = MemberLocToStruct.find(&Loc);
if (It != MemberLocToStruct.end()) {
// `Loc` is the location of a struct member so we need to also update the
// value of the member in the corresponding `StructValue`.
assert(It->second.first != nullptr);
StructValue &StructVal = *It->second.first;
assert(It->second.second != nullptr);
const ValueDecl &Member = *It->second.second;
StructVal.setChild(Member, Val);
}
}
Value *Environment::getValue(const StorageLocation &Loc) const {
auto It = LocToVal.find(&Loc);
return It == LocToVal.end() ? nullptr : It->second;
}
Value *Environment::getValue(const ValueDecl &D, SkipPast SP) const {
auto *Loc = getStorageLocation(D, SP);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::getValue(const Expr &E, SkipPast SP) const {
auto *Loc = getStorageLocation(E, SP);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::createValue(QualType Type) {
llvm::DenseSet<QualType> Visited;
int CreatedValuesCount = 0;
Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
CreatedValuesCount);
if (CreatedValuesCount > MaxCompositeValueSize) {
llvm::errs() << "Attempting to initialize a huge value of type: " << Type
<< '\n';
}
return Val;
}
Value *Environment::createValueUnlessSelfReferential(
QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
int &CreatedValuesCount) {
assert(!Type.isNull());
// Allow unlimited fields at depth 1; only cap at deeper nesting levels.
if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
Depth > MaxCompositeValueDepth)
return nullptr;
if (Type->isBooleanType()) {
CreatedValuesCount++;
return &makeAtomicBoolValue();
}
if (Type->isIntegerType()) {
CreatedValuesCount++;
return &takeOwnership(std::make_unique<IntegerValue>());
}
if (Type->isReferenceType()) {
CreatedValuesCount++;
QualType PointeeType = Type->castAs<ReferenceType>()->getPointeeType();
auto &PointeeLoc = createStorageLocation(PointeeType);
if (Visited.insert(PointeeType.getCanonicalType()).second) {
Value *PointeeVal = createValueUnlessSelfReferential(
PointeeType, Visited, Depth, CreatedValuesCount);
Visited.erase(PointeeType.getCanonicalType());
if (PointeeVal != nullptr)
setValue(PointeeLoc, *PointeeVal);
}
return &takeOwnership(std::make_unique<ReferenceValue>(PointeeLoc));
}
if (Type->isPointerType()) {
CreatedValuesCount++;
QualType PointeeType = Type->castAs<PointerType>()->getPointeeType();
auto &PointeeLoc = createStorageLocation(PointeeType);
if (Visited.insert(PointeeType.getCanonicalType()).second) {
Value *PointeeVal = createValueUnlessSelfReferential(
PointeeType, Visited, Depth, CreatedValuesCount);
Visited.erase(PointeeType.getCanonicalType());
if (PointeeVal != nullptr)
setValue(PointeeLoc, *PointeeVal);
}
return &takeOwnership(std::make_unique<PointerValue>(PointeeLoc));
}
if (Type->isStructureOrClassType()) {
CreatedValuesCount++;
// FIXME: Initialize only fields that are accessed in the context that is
// being analyzed.
llvm::DenseMap<const ValueDecl *, Value *> FieldValues;
for (const FieldDecl *Field : getObjectFields(Type)) {
assert(Field != nullptr);
QualType FieldType = Field->getType();
if (Visited.contains(FieldType.getCanonicalType()))
continue;
Visited.insert(FieldType.getCanonicalType());
if (auto *FieldValue = createValueUnlessSelfReferential(
FieldType, Visited, Depth + 1, CreatedValuesCount))
FieldValues.insert({Field, FieldValue});
Visited.erase(FieldType.getCanonicalType());
}
return &takeOwnership(
std::make_unique<StructValue>(std::move(FieldValues)));
}
return nullptr;
}
StorageLocation &Environment::skip(StorageLocation &Loc, SkipPast SP) const {
switch (SP) {
case SkipPast::None:
return Loc;
case SkipPast::Reference:
// References cannot be chained so we only need to skip past one level of
// indirection.
if (auto *Val = dyn_cast_or_null<ReferenceValue>(getValue(Loc)))
return Val->getReferentLoc();
return Loc;
case SkipPast::ReferenceThenPointer:
StorageLocation &LocPastRef = skip(Loc, SkipPast::Reference);
if (auto *Val = dyn_cast_or_null<PointerValue>(getValue(LocPastRef)))
return Val->getPointeeLoc();
return LocPastRef;
}
llvm_unreachable("bad SkipPast kind");
}
const StorageLocation &Environment::skip(const StorageLocation &Loc,
SkipPast SP) const {
return skip(*const_cast<StorageLocation *>(&Loc), SP);
}
void Environment::addToFlowCondition(BoolValue &Val) {
DACtx->addFlowConditionConstraint(*FlowConditionToken, Val);
}
bool Environment::flowConditionImplies(BoolValue &Val) const {
return DACtx->flowConditionImplies(*FlowConditionToken, Val);
}
void Environment::dump() const {
DACtx->dumpFlowCondition(*FlowConditionToken);
}
} // namespace dataflow
} // namespace clang