//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// | |
// | |
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
// See https://llvm.org/LICENSE.txt for license information. | |
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This file implements semantic analysis for expressions. | |
// | |
//===----------------------------------------------------------------------===// | |
#include "TreeTransform.h" | |
#include "UsedDeclVisitor.h" | |
#include "clang/AST/ASTConsumer.h" | |
#include "clang/AST/ASTContext.h" | |
#include "clang/AST/ASTLambda.h" | |
#include "clang/AST/ASTMutationListener.h" | |
#include "clang/AST/CXXInheritance.h" | |
#include "clang/AST/DeclObjC.h" | |
#include "clang/AST/DeclTemplate.h" | |
#include "clang/AST/EvaluatedExprVisitor.h" | |
#include "clang/AST/Expr.h" | |
#include "clang/AST/ExprCXX.h" | |
#include "clang/AST/ExprObjC.h" | |
#include "clang/AST/ExprOpenMP.h" | |
#include "clang/AST/RecursiveASTVisitor.h" | |
#include "clang/AST/TypeLoc.h" | |
#include "clang/Basic/Builtins.h" | |
#include "clang/Basic/FixedPoint.h" | |
#include "clang/Basic/PartialDiagnostic.h" | |
#include "clang/Basic/SourceManager.h" | |
#include "clang/Basic/TargetInfo.h" | |
#include "clang/Lex/LiteralSupport.h" | |
#include "clang/Lex/Preprocessor.h" | |
#include "clang/Sema/AnalysisBasedWarnings.h" | |
#include "clang/Sema/DeclSpec.h" | |
#include "clang/Sema/DelayedDiagnostic.h" | |
#include "clang/Sema/Designator.h" | |
#include "clang/Sema/Initialization.h" | |
#include "clang/Sema/Lookup.h" | |
#include "clang/Sema/Overload.h" | |
#include "clang/Sema/ParsedTemplate.h" | |
#include "clang/Sema/Scope.h" | |
#include "clang/Sema/ScopeInfo.h" | |
#include "clang/Sema/SemaFixItUtils.h" | |
#include "clang/Sema/SemaInternal.h" | |
#include "clang/Sema/Template.h" | |
#include "llvm/Support/ConvertUTF.h" | |
#include "llvm/Support/SaveAndRestore.h" | |
using namespace clang; | |
using namespace sema; | |
using llvm::RoundingMode; | |
/// Determine whether the use of this declaration is valid, without | |
/// emitting diagnostics. | |
bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { | |
// See if this is an auto-typed variable whose initializer we are parsing. | |
if (ParsingInitForAutoVars.count(D)) | |
return false; | |
// See if this is a deleted function. | |
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |
if (FD->isDeleted()) | |
return false; | |
// If the function has a deduced return type, and we can't deduce it, | |
// then we can't use it either. | |
if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | |
DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) | |
return false; | |
// See if this is an aligned allocation/deallocation function that is | |
// unavailable. | |
if (TreatUnavailableAsInvalid && | |
isUnavailableAlignedAllocationFunction(*FD)) | |
return false; | |
} | |
// See if this function is unavailable. | |
if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && | |
cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) | |
return false; | |
return true; | |
} | |
static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { | |
// Warn if this is used but marked unused. | |
if (const auto *A = D->getAttr<UnusedAttr>()) { | |
// [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) | |
// should diagnose them. | |
if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && | |
A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { | |
const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); | |
if (DC && !DC->hasAttr<UnusedAttr>()) | |
S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); | |
} | |
} | |
} | |
/// Emit a note explaining that this function is deleted. | |
void Sema::NoteDeletedFunction(FunctionDecl *Decl) { | |
assert(Decl && Decl->isDeleted()); | |
if (Decl->isDefaulted()) { | |
// If the method was explicitly defaulted, point at that declaration. | |
if (!Decl->isImplicit()) | |
Diag(Decl->getLocation(), diag::note_implicitly_deleted); | |
// Try to diagnose why this special member function was implicitly | |
// deleted. This might fail, if that reason no longer applies. | |
DiagnoseDeletedDefaultedFunction(Decl); | |
return; | |
} | |
auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); | |
if (Ctor && Ctor->isInheritingConstructor()) | |
return NoteDeletedInheritingConstructor(Ctor); | |
Diag(Decl->getLocation(), diag::note_availability_specified_here) | |
<< Decl << 1; | |
} | |
/// Determine whether a FunctionDecl was ever declared with an | |
/// explicit storage class. | |
static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { | |
for (auto I : D->redecls()) { | |
if (I->getStorageClass() != SC_None) | |
return true; | |
} | |
return false; | |
} | |
/// Check whether we're in an extern inline function and referring to a | |
/// variable or function with internal linkage (C11 6.7.4p3). | |
/// | |
/// This is only a warning because we used to silently accept this code, but | |
/// in many cases it will not behave correctly. This is not enabled in C++ mode | |
/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) | |
/// and so while there may still be user mistakes, most of the time we can't | |
/// prove that there are errors. | |
static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, | |
const NamedDecl *D, | |
SourceLocation Loc) { | |
// This is disabled under C++; there are too many ways for this to fire in | |
// contexts where the warning is a false positive, or where it is technically | |
// correct but benign. | |
if (S.getLangOpts().CPlusPlus) | |
return; | |
// Check if this is an inlined function or method. | |
FunctionDecl *Current = S.getCurFunctionDecl(); | |
if (!Current) | |
return; | |
if (!Current->isInlined()) | |
return; | |
if (!Current->isExternallyVisible()) | |
return; | |
// Check if the decl has internal linkage. | |
if (D->getFormalLinkage() != InternalLinkage) | |
return; | |
// Downgrade from ExtWarn to Extension if | |
// (1) the supposedly external inline function is in the main file, | |
// and probably won't be included anywhere else. | |
// (2) the thing we're referencing is a pure function. | |
// (3) the thing we're referencing is another inline function. | |
// This last can give us false negatives, but it's better than warning on | |
// wrappers for simple C library functions. | |
const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); | |
bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); | |
if (!DowngradeWarning && UsedFn) | |
DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); | |
S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet | |
: diag::ext_internal_in_extern_inline) | |
<< /*IsVar=*/!UsedFn << D; | |
S.MaybeSuggestAddingStaticToDecl(Current); | |
S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) | |
<< D; | |
} | |
void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { | |
const FunctionDecl *First = Cur->getFirstDecl(); | |
// Suggest "static" on the function, if possible. | |
if (!hasAnyExplicitStorageClass(First)) { | |
SourceLocation DeclBegin = First->getSourceRange().getBegin(); | |
Diag(DeclBegin, diag::note_convert_inline_to_static) | |
<< Cur << FixItHint::CreateInsertion(DeclBegin, "static "); | |
} | |
} | |
/// Determine whether the use of this declaration is valid, and | |
/// emit any corresponding diagnostics. | |
/// | |
/// This routine diagnoses various problems with referencing | |
/// declarations that can occur when using a declaration. For example, | |
/// it might warn if a deprecated or unavailable declaration is being | |
/// used, or produce an error (and return true) if a C++0x deleted | |
/// function is being used. | |
/// | |
/// \returns true if there was an error (this declaration cannot be | |
/// referenced), false otherwise. | |
/// | |
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, | |
const ObjCInterfaceDecl *UnknownObjCClass, | |
bool ObjCPropertyAccess, | |
bool AvoidPartialAvailabilityChecks, | |
ObjCInterfaceDecl *ClassReceiver) { | |
SourceLocation Loc = Locs.front(); | |
if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { | |
// If there were any diagnostics suppressed by template argument deduction, | |
// emit them now. | |
auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); | |
if (Pos != SuppressedDiagnostics.end()) { | |
for (const PartialDiagnosticAt &Suppressed : Pos->second) | |
Diag(Suppressed.first, Suppressed.second); | |
// Clear out the list of suppressed diagnostics, so that we don't emit | |
// them again for this specialization. However, we don't obsolete this | |
// entry from the table, because we want to avoid ever emitting these | |
// diagnostics again. | |
Pos->second.clear(); | |
} | |
// C++ [basic.start.main]p3: | |
// The function 'main' shall not be used within a program. | |
if (cast<FunctionDecl>(D)->isMain()) | |
Diag(Loc, diag::ext_main_used); | |
diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc); | |
} | |
// See if this is an auto-typed variable whose initializer we are parsing. | |
if (ParsingInitForAutoVars.count(D)) { | |
if (isa<BindingDecl>(D)) { | |
Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) | |
<< D->getDeclName(); | |
} else { | |
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) | |
<< D->getDeclName() << cast<VarDecl>(D)->getType(); | |
} | |
return true; | |
} | |
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |
// See if this is a deleted function. | |
if (FD->isDeleted()) { | |
auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); | |
if (Ctor && Ctor->isInheritingConstructor()) | |
Diag(Loc, diag::err_deleted_inherited_ctor_use) | |
<< Ctor->getParent() | |
<< Ctor->getInheritedConstructor().getConstructor()->getParent(); | |
else | |
Diag(Loc, diag::err_deleted_function_use); | |
NoteDeletedFunction(FD); | |
return true; | |
} | |
// [expr.prim.id]p4 | |
// A program that refers explicitly or implicitly to a function with a | |
// trailing requires-clause whose constraint-expression is not satisfied, | |
// other than to declare it, is ill-formed. [...] | |
// | |
// See if this is a function with constraints that need to be satisfied. | |
// Check this before deducing the return type, as it might instantiate the | |
// definition. | |
if (FD->getTrailingRequiresClause()) { | |
ConstraintSatisfaction Satisfaction; | |
if (CheckFunctionConstraints(FD, Satisfaction, Loc)) | |
// A diagnostic will have already been generated (non-constant | |
// constraint expression, for example) | |
return true; | |
if (!Satisfaction.IsSatisfied) { | |
Diag(Loc, | |
diag::err_reference_to_function_with_unsatisfied_constraints) | |
<< D; | |
DiagnoseUnsatisfiedConstraint(Satisfaction); | |
return true; | |
} | |
} | |
// If the function has a deduced return type, and we can't deduce it, | |
// then we can't use it either. | |
if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | |
DeduceReturnType(FD, Loc)) | |
return true; | |
if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) | |
return true; | |
} | |
if (auto *MD = dyn_cast<CXXMethodDecl>(D)) { | |
// Lambdas are only default-constructible or assignable in C++2a onwards. | |
if (MD->getParent()->isLambda() && | |
((isa<CXXConstructorDecl>(MD) && | |
cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) || | |
MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { | |
Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) | |
<< !isa<CXXConstructorDecl>(MD); | |
} | |
} | |
auto getReferencedObjCProp = [](const NamedDecl *D) -> | |
const ObjCPropertyDecl * { | |
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | |
return MD->findPropertyDecl(); | |
return nullptr; | |
}; | |
if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { | |
if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) | |
return true; | |
} else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { | |
return true; | |
} | |
// [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions | |
// Only the variables omp_in and omp_out are allowed in the combiner. | |
// Only the variables omp_priv and omp_orig are allowed in the | |
// initializer-clause. | |
auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); | |
if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && | |
isa<VarDecl>(D)) { | |
Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) | |
<< getCurFunction()->HasOMPDeclareReductionCombiner; | |
Diag(D->getLocation(), diag::note_entity_declared_at) << D; | |
return true; | |
} | |
// [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions | |
// List-items in map clauses on this construct may only refer to the declared | |
// variable var and entities that could be referenced by a procedure defined | |
// at the same location | |
auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext); | |
if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) && | |
isa<VarDecl>(D)) { | |
Diag(Loc, diag::err_omp_declare_mapper_wrong_var) | |
<< DMD->getVarName().getAsString(); | |
Diag(D->getLocation(), diag::note_entity_declared_at) << D; | |
return true; | |
} | |
DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, | |
AvoidPartialAvailabilityChecks, ClassReceiver); | |
DiagnoseUnusedOfDecl(*this, D, Loc); | |
diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); | |
if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) && | |
!isUnevaluatedContext()) { | |
// C++ [expr.prim.req.nested] p3 | |
// A local parameter shall only appear as an unevaluated operand | |
// (Clause 8) within the constraint-expression. | |
Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) | |
<< D; | |
Diag(D->getLocation(), diag::note_entity_declared_at) << D; | |
return true; | |
} | |
return false; | |
} | |
/// DiagnoseSentinelCalls - This routine checks whether a call or | |
/// message-send is to a declaration with the sentinel attribute, and | |
/// if so, it checks that the requirements of the sentinel are | |
/// satisfied. | |
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, | |
ArrayRef<Expr *> Args) { | |
const SentinelAttr *attr = D->getAttr<SentinelAttr>(); | |
if (!attr) | |
return; | |
// The number of formal parameters of the declaration. | |
unsigned numFormalParams; | |
// The kind of declaration. This is also an index into a %select in | |
// the diagnostic. | |
enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; | |
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | |
numFormalParams = MD->param_size(); | |
calleeType = CT_Method; | |
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |
numFormalParams = FD->param_size(); | |
calleeType = CT_Function; | |
} else if (isa<VarDecl>(D)) { | |
QualType type = cast<ValueDecl>(D)->getType(); | |
const FunctionType *fn = nullptr; | |
if (const PointerType *ptr = type->getAs<PointerType>()) { | |
fn = ptr->getPointeeType()->getAs<FunctionType>(); | |
if (!fn) return; | |
calleeType = CT_Function; | |
} else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { | |
fn = ptr->getPointeeType()->castAs<FunctionType>(); | |
calleeType = CT_Block; | |
} else { | |
return; | |
} | |
if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { | |
numFormalParams = proto->getNumParams(); | |
} else { | |
numFormalParams = 0; | |
} | |
} else { | |
return; | |
} | |
// "nullPos" is the number of formal parameters at the end which | |
// effectively count as part of the variadic arguments. This is | |
// useful if you would prefer to not have *any* formal parameters, | |
// but the language forces you to have at least one. | |
unsigned nullPos = attr->getNullPos(); | |
assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"); | |
numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); | |
// The number of arguments which should follow the sentinel. | |
unsigned numArgsAfterSentinel = attr->getSentinel(); | |
// If there aren't enough arguments for all the formal parameters, | |
// the sentinel, and the args after the sentinel, complain. | |
if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { | |
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); | |
Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | |
return; | |
} | |
// Otherwise, find the sentinel expression. | |
Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; | |
if (!sentinelExpr) return; | |
if (sentinelExpr->isValueDependent()) return; | |
if (Context.isSentinelNullExpr(sentinelExpr)) return; | |
// Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', | |
// or 'NULL' if those are actually defined in the context. Only use | |
// 'nil' for ObjC methods, where it's much more likely that the | |
// variadic arguments form a list of object pointers. | |
SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); | |
std::string NullValue; | |
if (calleeType == CT_Method && PP.isMacroDefined("nil")) | |
NullValue = "nil"; | |
else if (getLangOpts().CPlusPlus11) | |
NullValue = "nullptr"; | |
else if (PP.isMacroDefined("NULL")) | |
NullValue = "NULL"; | |
else | |
NullValue = "(void*) 0"; | |
if (MissingNilLoc.isInvalid()) | |
Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); | |
else | |
Diag(MissingNilLoc, diag::warn_missing_sentinel) | |
<< int(calleeType) | |
<< FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); | |
Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | |
} | |
SourceRange Sema::getExprRange(Expr *E) const { | |
return E ? E->getSourceRange() : SourceRange(); | |
} | |
//===----------------------------------------------------------------------===// | |
// Standard Promotions and Conversions | |
//===----------------------------------------------------------------------===// | |
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). | |
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { | |
// Handle any placeholder expressions which made it here. | |
if (E->getType()->isPlaceholderType()) { | |
ExprResult result = CheckPlaceholderExpr(E); | |
if (result.isInvalid()) return ExprError(); | |
E = result.get(); | |
} | |
QualType Ty = E->getType(); | |
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); | |
if (Ty->isFunctionType()) { | |
if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) | |
if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | |
if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) | |
return ExprError(); | |
E = ImpCastExprToType(E, Context.getPointerType(Ty), | |
CK_FunctionToPointerDecay).get(); | |
} else if (Ty->isArrayType()) { | |
// In C90 mode, arrays only promote to pointers if the array expression is | |
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has | |
// type 'array of type' is converted to an expression that has type 'pointer | |
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression | |
// that has type 'array of type' ...". The relevant change is "an lvalue" | |
// (C90) to "an expression" (C99). | |
// | |
// C++ 4.2p1: | |
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of | |
// T" can be converted to an rvalue of type "pointer to T". | |
// | |
if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) | |
E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), | |
CK_ArrayToPointerDecay).get(); | |
} | |
return E; | |
} | |
static void CheckForNullPointerDereference(Sema &S, Expr *E) { | |
// Check to see if we are dereferencing a null pointer. If so, | |
// and if not volatile-qualified, this is undefined behavior that the | |
// optimizer will delete, so warn about it. People sometimes try to use this | |
// to get a deterministic trap and are surprised by clang's behavior. This | |
// only handles the pattern "*null", which is a very syntactic check. | |
const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()); | |
if (UO && UO->getOpcode() == UO_Deref && | |
UO->getSubExpr()->getType()->isPointerType()) { | |
const LangAS AS = | |
UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); | |
if ((!isTargetAddressSpace(AS) || | |
(isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && | |
UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( | |
S.Context, Expr::NPC_ValueDependentIsNotNull) && | |
!UO->getType().isVolatileQualified()) { | |
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | |
S.PDiag(diag::warn_indirection_through_null) | |
<< UO->getSubExpr()->getSourceRange()); | |
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | |
S.PDiag(diag::note_indirection_through_null)); | |
} | |
} | |
} | |
static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, | |
SourceLocation AssignLoc, | |
const Expr* RHS) { | |
const ObjCIvarDecl *IV = OIRE->getDecl(); | |
if (!IV) | |
return; | |
DeclarationName MemberName = IV->getDeclName(); | |
IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | |
if (!Member || !Member->isStr("isa")) | |
return; | |
const Expr *Base = OIRE->getBase(); | |
QualType BaseType = Base->getType(); | |
if (OIRE->isArrow()) | |
BaseType = BaseType->getPointeeType(); | |
if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) | |
if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { | |
ObjCInterfaceDecl *ClassDeclared = nullptr; | |
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); | |
if (!ClassDeclared->getSuperClass() | |
&& (*ClassDeclared->ivar_begin()) == IV) { | |
if (RHS) { | |
NamedDecl *ObjectSetClass = | |
S.LookupSingleName(S.TUScope, | |
&S.Context.Idents.get("object_setClass"), | |
SourceLocation(), S.LookupOrdinaryName); | |
if (ObjectSetClass) { | |
SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); | |
S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) | |
<< FixItHint::CreateInsertion(OIRE->getBeginLoc(), | |
"object_setClass(") | |
<< FixItHint::CreateReplacement( | |
SourceRange(OIRE->getOpLoc(), AssignLoc), ",") | |
<< FixItHint::CreateInsertion(RHSLocEnd, ")"); | |
} | |
else | |
S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); | |
} else { | |
NamedDecl *ObjectGetClass = | |
S.LookupSingleName(S.TUScope, | |
&S.Context.Idents.get("object_getClass"), | |
SourceLocation(), S.LookupOrdinaryName); | |
if (ObjectGetClass) | |
S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) | |
<< FixItHint::CreateInsertion(OIRE->getBeginLoc(), | |
"object_getClass(") | |
<< FixItHint::CreateReplacement( | |
SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); | |
else | |
S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); | |
} | |
S.Diag(IV->getLocation(), diag::note_ivar_decl); | |
} | |
} | |
} | |
ExprResult Sema::DefaultLvalueConversion(Expr *E) { | |
// Handle any placeholder expressions which made it here. | |
if (E->getType()->isPlaceholderType()) { | |
ExprResult result = CheckPlaceholderExpr(E); | |
if (result.isInvalid()) return ExprError(); | |
E = result.get(); | |
} | |
// C++ [conv.lval]p1: | |
// A glvalue of a non-function, non-array type T can be | |
// converted to a prvalue. | |
if (!E->isGLValue()) return E; | |
QualType T = E->getType(); | |
assert(!T.isNull() && "r-value conversion on typeless expression?"); | |
// We don't want to throw lvalue-to-rvalue casts on top of | |
// expressions of certain types in C++. | |
if (getLangOpts().CPlusPlus && | |
(E->getType() == Context.OverloadTy || | |
T->isDependentType() || | |
T->isRecordType())) | |
return E; | |
// The C standard is actually really unclear on this point, and | |
// DR106 tells us what the result should be but not why. It's | |
// generally best to say that void types just doesn't undergo | |
// lvalue-to-rvalue at all. Note that expressions of unqualified | |
// 'void' type are never l-values, but qualified void can be. | |
if (T->isVoidType()) | |
return E; | |
// OpenCL usually rejects direct accesses to values of 'half' type. | |
if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") && | |
T->isHalfType()) { | |
Diag(E->getExprLoc(), diag::err_opencl_half_load_store) | |
<< 0 << T; | |
return ExprError(); | |
} | |
CheckForNullPointerDereference(*this, E); | |
if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { | |
NamedDecl *ObjectGetClass = LookupSingleName(TUScope, | |
&Context.Idents.get("object_getClass"), | |
SourceLocation(), LookupOrdinaryName); | |
if (ObjectGetClass) | |
Diag(E->getExprLoc(), diag::warn_objc_isa_use) | |
<< FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") | |
<< FixItHint::CreateReplacement( | |
SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); | |
else | |
Diag(E->getExprLoc(), diag::warn_objc_isa_use); | |
} | |
else if (const ObjCIvarRefExpr *OIRE = | |
dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) | |
DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); | |
// C++ [conv.lval]p1: | |
// [...] If T is a non-class type, the type of the prvalue is the | |
// cv-unqualified version of T. Otherwise, the type of the | |
// rvalue is T. | |
// | |
// C99 6.3.2.1p2: | |
// If the lvalue has qualified type, the value has the unqualified | |
// version of the type of the lvalue; otherwise, the value has the | |
// type of the lvalue. | |
if (T.hasQualifiers()) | |
T = T.getUnqualifiedType(); | |
// Under the MS ABI, lock down the inheritance model now. | |
if (T->isMemberPointerType() && | |
Context.getTargetInfo().getCXXABI().isMicrosoft()) | |
(void)isCompleteType(E->getExprLoc(), T); | |
ExprResult Res = CheckLValueToRValueConversionOperand(E); | |
if (Res.isInvalid()) | |
return Res; | |
E = Res.get(); | |
// Loading a __weak object implicitly retains the value, so we need a cleanup to | |
// balance that. | |
if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) | |
Cleanup.setExprNeedsCleanups(true); | |
if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | |
Cleanup.setExprNeedsCleanups(true); | |
// C++ [conv.lval]p3: | |
// If T is cv std::nullptr_t, the result is a null pointer constant. | |
CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; | |
Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue); | |
// C11 6.3.2.1p2: | |
// ... if the lvalue has atomic type, the value has the non-atomic version | |
// of the type of the lvalue ... | |
if (const AtomicType *Atomic = T->getAs<AtomicType>()) { | |
T = Atomic->getValueType().getUnqualifiedType(); | |
Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), | |
nullptr, VK_RValue); | |
} | |
return Res; | |
} | |
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { | |
ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); | |
if (Res.isInvalid()) | |
return ExprError(); | |
Res = DefaultLvalueConversion(Res.get()); | |
if (Res.isInvalid()) | |
return ExprError(); | |
return Res; | |
} | |
/// CallExprUnaryConversions - a special case of an unary conversion | |
/// performed on a function designator of a call expression. | |
ExprResult Sema::CallExprUnaryConversions(Expr *E) { | |
QualType Ty = E->getType(); | |
ExprResult Res = E; | |
// Only do implicit cast for a function type, but not for a pointer | |
// to function type. | |
if (Ty->isFunctionType()) { | |
Res = ImpCastExprToType(E, Context.getPointerType(Ty), | |
CK_FunctionToPointerDecay).get(); | |
if (Res.isInvalid()) | |
return ExprError(); | |
} | |
Res = DefaultLvalueConversion(Res.get()); | |
if (Res.isInvalid()) | |
return ExprError(); | |
return Res.get(); | |
} | |
/// UsualUnaryConversions - Performs various conversions that are common to most | |
/// operators (C99 6.3). The conversions of array and function types are | |
/// sometimes suppressed. For example, the array->pointer conversion doesn't | |
/// apply if the array is an argument to the sizeof or address (&) operators. | |
/// In these instances, this routine should *not* be called. | |
ExprResult Sema::UsualUnaryConversions(Expr *E) { | |
// First, convert to an r-value. | |
ExprResult Res = DefaultFunctionArrayLvalueConversion(E); | |
if (Res.isInvalid()) | |
return ExprError(); | |
E = Res.get(); | |
QualType Ty = E->getType(); | |
assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); | |
// Half FP have to be promoted to float unless it is natively supported | |
if (Ty->isHalfType() && !getLangOpts().NativeHalfType) | |
return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); | |
// Try to perform integral promotions if the object has a theoretically | |
// promotable type. | |
if (Ty->isIntegralOrUnscopedEnumerationType()) { | |
// C99 6.3.1.1p2: | |
// | |
// The following may be used in an expression wherever an int or | |
// unsigned int may be used: | |
// - an object or expression with an integer type whose integer | |
// conversion rank is less than or equal to the rank of int | |
// and unsigned int. | |
// - A bit-field of type _Bool, int, signed int, or unsigned int. | |
// | |
// If an int can represent all values of the original type, the | |
// value is converted to an int; otherwise, it is converted to an | |
// unsigned int. These are called the integer promotions. All | |
// other types are unchanged by the integer promotions. | |
QualType PTy = Context.isPromotableBitField(E); | |
if (!PTy.isNull()) { | |
E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); | |
return E; | |
} | |
if (Ty->isPromotableIntegerType()) { | |
QualType PT = Context.getPromotedIntegerType(Ty); | |
E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); | |
return E; | |
} | |
} | |
return E; | |
} | |
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that | |
/// do not have a prototype. Arguments that have type float or __fp16 | |
/// are promoted to double. All other argument types are converted by | |
/// UsualUnaryConversions(). | |
ExprResult Sema::DefaultArgumentPromotion(Expr *E) { | |
QualType Ty = E->getType(); | |
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); | |
ExprResult Res = UsualUnaryConversions(E); | |
if (Res.isInvalid()) | |
return ExprError(); | |
E = Res.get(); | |
// If this is a 'float' or '__fp16' (CVR qualified or typedef) | |
// promote to double. | |
// Note that default argument promotion applies only to float (and | |
// half/fp16); it does not apply to _Float16. | |
const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | |
if (BTy && (BTy->getKind() == BuiltinType::Half || | |
BTy->getKind() == BuiltinType::Float)) { | |
if (getLangOpts().OpenCL && | |
!getOpenCLOptions().isEnabled("cl_khr_fp64")) { | |
if (BTy->getKind() == BuiltinType::Half) { | |
E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); | |
} | |
} else { | |
E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); | |
} | |
} | |
// C++ performs lvalue-to-rvalue conversion as a default argument | |
// promotion, even on class types, but note: | |
// C++11 [conv.lval]p2: | |
// When an lvalue-to-rvalue conversion occurs in an unevaluated | |
// operand or a subexpression thereof the value contained in the | |
// referenced object is not accessed. Otherwise, if the glvalue | |
// has a class type, the conversion copy-initializes a temporary | |
// of type T from the glvalue and the result of the conversion | |
// is a prvalue for the temporary. | |
// FIXME: add some way to gate this entire thing for correctness in | |
// potentially potentially evaluated contexts. | |
if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { | |
ExprResult Temp = PerformCopyInitialization( | |
InitializedEntity::InitializeTemporary(E->getType()), | |
E->getExprLoc(), E); | |
if (Temp.isInvalid()) | |
return ExprError(); | |
E = Temp.get(); | |
} | |
return E; | |
} | |
/// Determine the degree of POD-ness for an expression. | |
/// Incomplete types are considered POD, since this check can be performed | |
/// when we're in an unevaluated context. | |
Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { | |
if (Ty->isIncompleteType()) { | |
// C++11 [expr.call]p7: | |
// After these conversions, if the argument does not have arithmetic, | |
// enumeration, pointer, pointer to member, or class type, the program | |
// is ill-formed. | |
// | |
// Since we've already performed array-to-pointer and function-to-pointer | |
// decay, the only such type in C++ is cv void. This also handles | |
// initializer lists as variadic arguments. | |
if (Ty->isVoidType()) | |
return VAK_Invalid; | |
if (Ty->isObjCObjectType()) | |
return VAK_Invalid; | |
return VAK_Valid; | |
} | |
if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | |
return VAK_Invalid; | |
if (Ty.isCXX98PODType(Context)) | |
return VAK_Valid; | |
// C++11 [expr.call]p7: | |
// Passing a potentially-evaluated argument of class type (Clause 9) | |
// having a non-trivial copy constructor, a non-trivial move constructor, | |
// or a non-trivial destructor, with no corresponding parameter, | |
// is conditionally-supported with implementation-defined semantics. | |
if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) | |
if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) | |
if (!Record->hasNonTrivialCopyConstructor() && | |
!Record->hasNonTrivialMoveConstructor() && | |
!Record->hasNonTrivialDestructor()) | |
return VAK_ValidInCXX11; | |
if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) | |
return VAK_Valid; | |
if (Ty->isObjCObjectType()) | |
return VAK_Invalid; | |
if (getLangOpts().MSVCCompat) | |
return VAK_MSVCUndefined; | |
// FIXME: In C++11, these cases are conditionally-supported, meaning we're | |
// permitted to reject them. We should consider doing so. | |
return VAK_Undefined; | |
} | |
void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { | |
// Don't allow one to pass an Objective-C interface to a vararg. | |
const QualType &Ty = E->getType(); | |
VarArgKind VAK = isValidVarArgType(Ty); | |
// Complain about passing non-POD types through varargs. | |
switch (VAK) { | |
case VAK_ValidInCXX11: | |
DiagRuntimeBehavior( | |
E->getBeginLoc(), nullptr, | |
PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); | |
LLVM_FALLTHROUGH; | |
case VAK_Valid: | |
if (Ty->isRecordType()) { | |
// This is unlikely to be what the user intended. If the class has a | |
// 'c_str' member function, the user probably meant to call that. | |
DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | |
PDiag(diag::warn_pass_class_arg_to_vararg) | |
<< Ty << CT << hasCStrMethod(E) << ".c_str()"); | |
} | |
break; | |
case VAK_Undefined: | |
case VAK_MSVCUndefined: | |
DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | |
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) | |
<< getLangOpts().CPlusPlus11 << Ty << CT); | |
break; | |
case VAK_Invalid: | |
if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | |
Diag(E->getBeginLoc(), | |
diag::err_cannot_pass_non_trivial_c_struct_to_vararg) | |
<< Ty << CT; | |
else if (Ty->isObjCObjectType()) | |
DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | |
PDiag(diag::err_cannot_pass_objc_interface_to_vararg) | |
<< Ty << CT); | |
else | |
Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) | |
<< isa<InitListExpr>(E) << Ty << CT; | |
break; | |
} | |
} | |
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but | |
/// will create a trap if the resulting type is not a POD type. | |
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, | |
FunctionDecl *FDecl) { | |
if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { | |
// Strip the unbridged-cast placeholder expression off, if applicable. | |
if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && | |
(CT == VariadicMethod || | |
(FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { | |
E = stripARCUnbridgedCast(E); | |
// Otherwise, do normal placeholder checking. | |
} else { | |
ExprResult ExprRes = CheckPlaceholderExpr(E); | |
if (ExprRes.isInvalid()) | |
return ExprError(); | |
E = ExprRes.get(); | |
} | |
} | |
ExprResult ExprRes = DefaultArgumentPromotion(E); | |
if (ExprRes.isInvalid()) | |
return ExprError(); | |
E = ExprRes.get(); | |
// Diagnostics regarding non-POD argument types are | |
// emitted along with format string checking in Sema::CheckFunctionCall(). | |
if (isValidVarArgType(E->getType()) == VAK_Undefined) { | |
// Turn this into a trap. | |
CXXScopeSpec SS; | |
SourceLocation TemplateKWLoc; | |
UnqualifiedId Name; | |
Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), | |
E->getBeginLoc()); | |
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, | |
/*HasTrailingLParen=*/true, | |
/*IsAddressOfOperand=*/false); | |
if (TrapFn.isInvalid()) | |
return ExprError(); | |
ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), | |
None, E->getEndLoc()); | |
if (Call.isInvalid()) | |
return ExprError(); | |
ExprResult Comma = | |
ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); | |
if (Comma.isInvalid()) | |
return ExprError(); | |
return Comma.get(); | |
} | |
if (!getLangOpts().CPlusPlus && | |
RequireCompleteType(E->getExprLoc(), E->getType(), | |
diag::err_call_incomplete_argument)) | |
return ExprError(); | |
return E; | |
} | |
/// Converts an integer to complex float type. Helper function of | |
/// UsualArithmeticConversions() | |
/// | |
/// \return false if the integer expression is an integer type and is | |
/// successfully converted to the complex type. | |
static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, | |
ExprResult &ComplexExpr, | |
QualType IntTy, | |
QualType ComplexTy, | |
bool SkipCast) { | |
if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; | |
if (SkipCast) return false; | |
if (IntTy->isIntegerType()) { | |
QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType(); | |
IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); | |
IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | |
CK_FloatingRealToComplex); | |
} else { | |
assert(IntTy->isComplexIntegerType()); | |
IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | |
CK_IntegralComplexToFloatingComplex); | |
} | |
return false; | |
} | |
/// Handle arithmetic conversion with complex types. Helper function of | |
/// UsualArithmeticConversions() | |
static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, QualType LHSType, | |
QualType RHSType, | |
bool IsCompAssign) { | |
// if we have an integer operand, the result is the complex type. | |
if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, | |
/*skipCast*/false)) | |
return LHSType; | |
if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, | |
/*skipCast*/IsCompAssign)) | |
return RHSType; | |
// This handles complex/complex, complex/float, or float/complex. | |
// When both operands are complex, the shorter operand is converted to the | |
// type of the longer, and that is the type of the result. This corresponds | |
// to what is done when combining two real floating-point operands. | |
// The fun begins when size promotion occur across type domains. | |
// From H&S 6.3.4: When one operand is complex and the other is a real | |
// floating-point type, the less precise type is converted, within it's | |
// real or complex domain, to the precision of the other type. For example, | |
// when combining a "long double" with a "double _Complex", the | |
// "double _Complex" is promoted to "long double _Complex". | |
// Compute the rank of the two types, regardless of whether they are complex. | |
int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | |
auto *LHSComplexType = dyn_cast<ComplexType>(LHSType); | |
auto *RHSComplexType = dyn_cast<ComplexType>(RHSType); | |
QualType LHSElementType = | |
LHSComplexType ? LHSComplexType->getElementType() : LHSType; | |
QualType RHSElementType = | |
RHSComplexType ? RHSComplexType->getElementType() : RHSType; | |
QualType ResultType = S.Context.getComplexType(LHSElementType); | |
if (Order < 0) { | |
// Promote the precision of the LHS if not an assignment. | |
ResultType = S.Context.getComplexType(RHSElementType); | |
if (!IsCompAssign) { | |
if (LHSComplexType) | |
LHS = | |
S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast); | |
else | |
LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast); | |
} | |
} else if (Order > 0) { | |
// Promote the precision of the RHS. | |
if (RHSComplexType) | |
RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast); | |
else | |
RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast); | |
} | |
return ResultType; | |
} | |
/// Handle arithmetic conversion from integer to float. Helper function | |
/// of UsualArithmeticConversions() | |
static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, | |
ExprResult &IntExpr, | |
QualType FloatTy, QualType IntTy, | |
bool ConvertFloat, bool ConvertInt) { | |
if (IntTy->isIntegerType()) { | |
if (ConvertInt) | |
// Convert intExpr to the lhs floating point type. | |
IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, | |
CK_IntegralToFloating); | |
return FloatTy; | |
} | |
// Convert both sides to the appropriate complex float. | |
assert(IntTy->isComplexIntegerType()); | |
QualType result = S.Context.getComplexType(FloatTy); | |
// _Complex int -> _Complex float | |
if (ConvertInt) | |
IntExpr = S.ImpCastExprToType(IntExpr.get(), result, | |
CK_IntegralComplexToFloatingComplex); | |
// float -> _Complex float | |
if (ConvertFloat) | |
FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, | |
CK_FloatingRealToComplex); | |
return result; | |
} | |
/// Handle arithmethic conversion with floating point types. Helper | |
/// function of UsualArithmeticConversions() | |
static QualType handleFloatConversion(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, QualType LHSType, | |
QualType RHSType, bool IsCompAssign) { | |
bool LHSFloat = LHSType->isRealFloatingType(); | |
bool RHSFloat = RHSType->isRealFloatingType(); | |
// If we have two real floating types, convert the smaller operand | |
// to the bigger result. | |
if (LHSFloat && RHSFloat) { | |
int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | |
if (order > 0) { | |
RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); | |
return LHSType; | |
} | |
assert(order < 0 && "illegal float comparison"); | |
if (!IsCompAssign) | |
LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); | |
return RHSType; | |
} | |
if (LHSFloat) { | |
// Half FP has to be promoted to float unless it is natively supported | |
if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) | |
LHSType = S.Context.FloatTy; | |
return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, | |
/*ConvertFloat=*/!IsCompAssign, | |
/*ConvertInt=*/ true); | |
} | |
assert(RHSFloat); | |
return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, | |
/*convertInt=*/ true, | |
/*convertFloat=*/!IsCompAssign); | |
} | |
/// Diagnose attempts to convert between __float128 and long double if | |
/// there is no support for such conversion. Helper function of | |
/// UsualArithmeticConversions(). | |
static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, | |
QualType RHSType) { | |
/* No issue converting if at least one of the types is not a floating point | |
type or the two types have the same rank. | |
*/ | |
if (!LHSType->isFloatingType() || !RHSType->isFloatingType() || | |
S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0) | |
return false; | |
assert(LHSType->isFloatingType() && RHSType->isFloatingType() && | |
"The remaining types must be floating point types."); | |
auto *LHSComplex = LHSType->getAs<ComplexType>(); | |
auto *RHSComplex = RHSType->getAs<ComplexType>(); | |
QualType LHSElemType = LHSComplex ? | |
LHSComplex->getElementType() : LHSType; | |
QualType RHSElemType = RHSComplex ? | |
RHSComplex->getElementType() : RHSType; | |
// No issue if the two types have the same representation | |
if (&S.Context.getFloatTypeSemantics(LHSElemType) == | |
&S.Context.getFloatTypeSemantics(RHSElemType)) | |
return false; | |
bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty && | |
RHSElemType == S.Context.LongDoubleTy); | |
Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy && | |
RHSElemType == S.Context.Float128Ty); | |
// We've handled the situation where __float128 and long double have the same | |
// representation. We allow all conversions for all possible long double types | |
// except PPC's double double. | |
return Float128AndLongDouble && | |
(&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == | |
&llvm::APFloat::PPCDoubleDouble()); | |
} | |
typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); | |
namespace { | |
/// These helper callbacks are placed in an anonymous namespace to | |
/// permit their use as function template parameters. | |
ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { | |
return S.ImpCastExprToType(op, toType, CK_IntegralCast); | |
} | |
ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { | |
return S.ImpCastExprToType(op, S.Context.getComplexType(toType), | |
CK_IntegralComplexCast); | |
} | |
} | |
/// Handle integer arithmetic conversions. Helper function of | |
/// UsualArithmeticConversions() | |
template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> | |
static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, QualType LHSType, | |
QualType RHSType, bool IsCompAssign) { | |
// The rules for this case are in C99 6.3.1.8 | |
int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); | |
bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); | |
bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); | |
if (LHSSigned == RHSSigned) { | |
// Same signedness; use the higher-ranked type | |
if (order >= 0) { | |
RHS = (*doRHSCast)(S, RHS.get(), LHSType); | |
return LHSType; | |
} else if (!IsCompAssign) | |
LHS = (*doLHSCast)(S, LHS.get(), RHSType); | |
return RHSType; | |
} else if (order != (LHSSigned ? 1 : -1)) { | |
// The unsigned type has greater than or equal rank to the | |
// signed type, so use the unsigned type | |
if (RHSSigned) { | |
RHS = (*doRHSCast)(S, RHS.get(), LHSType); | |
return LHSType; | |
} else if (!IsCompAssign) | |
LHS = (*doLHSCast)(S, LHS.get(), RHSType); | |
return RHSType; | |
} else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { | |
// The two types are different widths; if we are here, that | |
// means the signed type is larger than the unsigned type, so | |
// use the signed type. | |
if (LHSSigned) { | |
RHS = (*doRHSCast)(S, RHS.get(), LHSType); | |
return LHSType; | |
} else if (!IsCompAssign) | |
LHS = (*doLHSCast)(S, LHS.get(), RHSType); | |
return RHSType; | |
} else { | |
// The signed type is higher-ranked than the unsigned type, | |
// but isn't actually any bigger (like unsigned int and long | |
// on most 32-bit systems). Use the unsigned type corresponding | |
// to the signed type. | |
QualType result = | |
S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); | |
RHS = (*doRHSCast)(S, RHS.get(), result); | |
if (!IsCompAssign) | |
LHS = (*doLHSCast)(S, LHS.get(), result); | |
return result; | |
} | |
} | |
/// Handle conversions with GCC complex int extension. Helper function | |
/// of UsualArithmeticConversions() | |
static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, QualType LHSType, | |
QualType RHSType, | |
bool IsCompAssign) { | |
const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); | |
const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); | |
if (LHSComplexInt && RHSComplexInt) { | |
QualType LHSEltType = LHSComplexInt->getElementType(); | |
QualType RHSEltType = RHSComplexInt->getElementType(); | |
QualType ScalarType = | |
handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> | |
(S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); | |
return S.Context.getComplexType(ScalarType); | |
} | |
if (LHSComplexInt) { | |
QualType LHSEltType = LHSComplexInt->getElementType(); | |
QualType ScalarType = | |
handleIntegerConversion<doComplexIntegralCast, doIntegralCast> | |
(S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); | |
QualType ComplexType = S.Context.getComplexType(ScalarType); | |
RHS = S.ImpCastExprToType(RHS.get(), ComplexType, | |
CK_IntegralRealToComplex); | |
return ComplexType; | |
} | |
assert(RHSComplexInt); | |
QualType RHSEltType = RHSComplexInt->getElementType(); | |
QualType ScalarType = | |
handleIntegerConversion<doIntegralCast, doComplexIntegralCast> | |
(S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); | |
QualType ComplexType = S.Context.getComplexType(ScalarType); | |
if (!IsCompAssign) | |
LHS = S.ImpCastExprToType(LHS.get(), ComplexType, | |
CK_IntegralRealToComplex); | |
return ComplexType; | |
} | |
/// Return the rank of a given fixed point or integer type. The value itself | |
/// doesn't matter, but the values must be increasing with proper increasing | |
/// rank as described in N1169 4.1.1. | |
static unsigned GetFixedPointRank(QualType Ty) { | |
const auto *BTy = Ty->getAs<BuiltinType>(); | |
assert(BTy && "Expected a builtin type."); | |
switch (BTy->getKind()) { | |
case BuiltinType::ShortFract: | |
case BuiltinType::UShortFract: | |
case BuiltinType::SatShortFract: | |
case BuiltinType::SatUShortFract: | |
return 1; | |
case BuiltinType::Fract: | |
case BuiltinType::UFract: | |
case BuiltinType::SatFract: | |
case BuiltinType::SatUFract: | |
return 2; | |
case BuiltinType::LongFract: | |
case BuiltinType::ULongFract: | |
case BuiltinType::SatLongFract: | |
case BuiltinType::SatULongFract: | |
return 3; | |
case BuiltinType::ShortAccum: | |
case BuiltinType::UShortAccum: | |
case BuiltinType::SatShortAccum: | |
case BuiltinType::SatUShortAccum: | |
return 4; | |
case BuiltinType::Accum: | |
case BuiltinType::UAccum: | |
case BuiltinType::SatAccum: | |
case BuiltinType::SatUAccum: | |
return 5; | |
case BuiltinType::LongAccum: | |
case BuiltinType::ULongAccum: | |
case BuiltinType::SatLongAccum: | |
case BuiltinType::SatULongAccum: | |
return 6; | |
default: | |
if (BTy->isInteger()) | |
return 0; | |
llvm_unreachable("Unexpected fixed point or integer type"); | |
} | |
} | |
/// handleFixedPointConversion - Fixed point operations between fixed | |
/// point types and integers or other fixed point types do not fall under | |
/// usual arithmetic conversion since these conversions could result in loss | |
/// of precsision (N1169 4.1.4). These operations should be calculated with | |
/// the full precision of their result type (N1169 4.1.6.2.1). | |
static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, | |
QualType RHSTy) { | |
assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && | |
"Expected at least one of the operands to be a fixed point type"); | |
assert((LHSTy->isFixedPointOrIntegerType() || | |
RHSTy->isFixedPointOrIntegerType()) && | |
"Special fixed point arithmetic operation conversions are only " | |
"applied to ints or other fixed point types"); | |
// If one operand has signed fixed-point type and the other operand has | |
// unsigned fixed-point type, then the unsigned fixed-point operand is | |
// converted to its corresponding signed fixed-point type and the resulting | |
// type is the type of the converted operand. | |
if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) | |
LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); | |
else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) | |
RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); | |
// The result type is the type with the highest rank, whereby a fixed-point | |
// conversion rank is always greater than an integer conversion rank; if the | |
// type of either of the operands is a saturating fixedpoint type, the result | |
// type shall be the saturating fixed-point type corresponding to the type | |
// with the highest rank; the resulting value is converted (taking into | |
// account rounding and overflow) to the precision of the resulting type. | |
// Same ranks between signed and unsigned types are resolved earlier, so both | |
// types are either signed or both unsigned at this point. | |
unsigned LHSTyRank = GetFixedPointRank(LHSTy); | |
unsigned RHSTyRank = GetFixedPointRank(RHSTy); | |
QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; | |
if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) | |
ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); | |
return ResultTy; | |
} | |
/// Check that the usual arithmetic conversions can be performed on this pair of | |
/// expressions that might be of enumeration type. | |
static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, | |
SourceLocation Loc, | |
Sema::ArithConvKind ACK) { | |
// C++2a [expr.arith.conv]p1: | |
// If one operand is of enumeration type and the other operand is of a | |
// different enumeration type or a floating-point type, this behavior is | |
// deprecated ([depr.arith.conv.enum]). | |
// | |
// Warn on this in all language modes. Produce a deprecation warning in C++20. | |
// Eventually we will presumably reject these cases (in C++23 onwards?). | |
QualType L = LHS->getType(), R = RHS->getType(); | |
bool LEnum = L->isUnscopedEnumerationType(), | |
REnum = R->isUnscopedEnumerationType(); | |
bool IsCompAssign = ACK == Sema::ACK_CompAssign; | |
if ((!IsCompAssign && LEnum && R->isFloatingType()) || | |
(REnum && L->isFloatingType())) { | |
S.Diag(Loc, S.getLangOpts().CPlusPlus20 | |
? diag::warn_arith_conv_enum_float_cxx20 | |
: diag::warn_arith_conv_enum_float) | |
<< LHS->getSourceRange() << RHS->getSourceRange() | |
<< (int)ACK << LEnum << L << R; | |
} else if (!IsCompAssign && LEnum && REnum && | |
!S.Context.hasSameUnqualifiedType(L, R)) { | |
unsigned DiagID; | |
if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() || | |
!R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) { | |
// If either enumeration type is unnamed, it's less likely that the | |
// user cares about this, but this situation is still deprecated in | |
// C++2a. Use a different warning group. | |
DiagID = S.getLangOpts().CPlusPlus20 | |
? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 | |
: diag::warn_arith_conv_mixed_anon_enum_types; | |
} else if (ACK == Sema::ACK_Conditional) { | |
// Conditional expressions are separated out because they have | |
// historically had a different warning flag. | |
DiagID = S.getLangOpts().CPlusPlus20 | |
? diag::warn_conditional_mixed_enum_types_cxx20 | |
: diag::warn_conditional_mixed_enum_types; | |
} else if (ACK == Sema::ACK_Comparison) { | |
// Comparison expressions are separated out because they have | |
// historically had a different warning flag. | |
DiagID = S.getLangOpts().CPlusPlus20 | |
? diag::warn_comparison_mixed_enum_types_cxx20 | |
: diag::warn_comparison_mixed_enum_types; | |
} else { | |
DiagID = S.getLangOpts().CPlusPlus20 | |
? diag::warn_arith_conv_mixed_enum_types_cxx20 | |
: diag::warn_arith_conv_mixed_enum_types; | |
} | |
S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() | |
<< (int)ACK << L << R; | |
} | |
} | |
/// UsualArithmeticConversions - Performs various conversions that are common to | |
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this | |
/// routine returns the first non-arithmetic type found. The client is | |
/// responsible for emitting appropriate error diagnostics. | |
QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
ArithConvKind ACK) { | |
checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); | |
if (ACK != ACK_CompAssign) { | |
LHS = UsualUnaryConversions(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
} | |
RHS = UsualUnaryConversions(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
// For conversion purposes, we ignore any qualifiers. | |
// For example, "const float" and "float" are equivalent. | |
QualType LHSType = | |
Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); | |
QualType RHSType = | |
Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); | |
// For conversion purposes, we ignore any atomic qualifier on the LHS. | |
if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) | |
LHSType = AtomicLHS->getValueType(); | |
// If both types are identical, no conversion is needed. | |
if (LHSType == RHSType) | |
return LHSType; | |
// If either side is a non-arithmetic type (e.g. a pointer), we are done. | |
// The caller can deal with this (e.g. pointer + int). | |
if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) | |
return QualType(); | |
// Apply unary and bitfield promotions to the LHS's type. | |
QualType LHSUnpromotedType = LHSType; | |
if (LHSType->isPromotableIntegerType()) | |
LHSType = Context.getPromotedIntegerType(LHSType); | |
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); | |
if (!LHSBitfieldPromoteTy.isNull()) | |
LHSType = LHSBitfieldPromoteTy; | |
if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) | |
LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); | |
// If both types are identical, no conversion is needed. | |
if (LHSType == RHSType) | |
return LHSType; | |
// ExtInt types aren't subject to conversions between them or normal integers, | |
// so this fails. | |
if(LHSType->isExtIntType() || RHSType->isExtIntType()) | |
return QualType(); | |
// At this point, we have two different arithmetic types. | |
// Diagnose attempts to convert between __float128 and long double where | |
// such conversions currently can't be handled. | |
if (unsupportedTypeConversion(*this, LHSType, RHSType)) | |
return QualType(); | |
// Handle complex types first (C99 6.3.1.8p1). | |
if (LHSType->isComplexType() || RHSType->isComplexType()) | |
return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, | |
ACK == ACK_CompAssign); | |
// Now handle "real" floating types (i.e. float, double, long double). | |
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | |
return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, | |
ACK == ACK_CompAssign); | |
// Handle GCC complex int extension. | |
if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) | |
return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, | |
ACK == ACK_CompAssign); | |
if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) | |
return handleFixedPointConversion(*this, LHSType, RHSType); | |
// Finally, we have two differing integer types. | |
return handleIntegerConversion<doIntegralCast, doIntegralCast> | |
(*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); | |
} | |
//===----------------------------------------------------------------------===// | |
// Semantic Analysis for various Expression Types | |
//===----------------------------------------------------------------------===// | |
ExprResult | |
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, | |
SourceLocation DefaultLoc, | |
SourceLocation RParenLoc, | |
Expr *ControllingExpr, | |
ArrayRef<ParsedType> ArgTypes, | |
ArrayRef<Expr *> ArgExprs) { | |
unsigned NumAssocs = ArgTypes.size(); | |
assert(NumAssocs == ArgExprs.size()); | |
TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; | |
for (unsigned i = 0; i < NumAssocs; ++i) { | |
if (ArgTypes[i]) | |
(void) GetTypeFromParser(ArgTypes[i], &Types[i]); | |
else | |
Types[i] = nullptr; | |
} | |
ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, | |
ControllingExpr, | |
llvm::makeArrayRef(Types, NumAssocs), | |
ArgExprs); | |
delete [] Types; | |
return ER; | |
} | |
ExprResult | |
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, | |
SourceLocation DefaultLoc, | |
SourceLocation RParenLoc, | |
Expr *ControllingExpr, | |
ArrayRef<TypeSourceInfo *> Types, | |
ArrayRef<Expr *> Exprs) { | |
unsigned NumAssocs = Types.size(); | |
assert(NumAssocs == Exprs.size()); | |
// Decay and strip qualifiers for the controlling expression type, and handle | |
// placeholder type replacement. See committee discussion from WG14 DR423. | |
{ | |
EnterExpressionEvaluationContext Unevaluated( | |
*this, Sema::ExpressionEvaluationContext::Unevaluated); | |
ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); | |
if (R.isInvalid()) | |
return ExprError(); | |
ControllingExpr = R.get(); | |
} | |
// The controlling expression is an unevaluated operand, so side effects are | |
// likely unintended. | |
if (!inTemplateInstantiation() && | |
ControllingExpr->HasSideEffects(Context, false)) | |
Diag(ControllingExpr->getExprLoc(), | |
diag::warn_side_effects_unevaluated_context); | |
bool TypeErrorFound = false, | |
IsResultDependent = ControllingExpr->isTypeDependent(), | |
ContainsUnexpandedParameterPack | |
= ControllingExpr->containsUnexpandedParameterPack(); | |
for (unsigned i = 0; i < NumAssocs; ++i) { | |
if (Exprs[i]->containsUnexpandedParameterPack()) | |
ContainsUnexpandedParameterPack = true; | |
if (Types[i]) { | |
if (Types[i]->getType()->containsUnexpandedParameterPack()) | |
ContainsUnexpandedParameterPack = true; | |
if (Types[i]->getType()->isDependentType()) { | |
IsResultDependent = true; | |
} else { | |
// C11 6.5.1.1p2 "The type name in a generic association shall specify a | |
// complete object type other than a variably modified type." | |
unsigned D = 0; | |
if (Types[i]->getType()->isIncompleteType()) | |
D = diag::err_assoc_type_incomplete; | |
else if (!Types[i]->getType()->isObjectType()) | |
D = diag::err_assoc_type_nonobject; | |
else if (Types[i]->getType()->isVariablyModifiedType()) | |
D = diag::err_assoc_type_variably_modified; | |
if (D != 0) { | |
Diag(Types[i]->getTypeLoc().getBeginLoc(), D) | |
<< Types[i]->getTypeLoc().getSourceRange() | |
<< Types[i]->getType(); | |
TypeErrorFound = true; | |
} | |
// C11 6.5.1.1p2 "No two generic associations in the same generic | |
// selection shall specify compatible types." | |
for (unsigned j = i+1; j < NumAssocs; ++j) | |
if (Types[j] && !Types[j]->getType()->isDependentType() && | |
Context.typesAreCompatible(Types[i]->getType(), | |
Types[j]->getType())) { | |
Diag(Types[j]->getTypeLoc().getBeginLoc(), | |
diag::err_assoc_compatible_types) | |
<< Types[j]->getTypeLoc().getSourceRange() | |
<< Types[j]->getType() | |
<< Types[i]->getType(); | |
Diag(Types[i]->getTypeLoc().getBeginLoc(), | |
diag::note_compat_assoc) | |
<< Types[i]->getTypeLoc().getSourceRange() | |
<< Types[i]->getType(); | |
TypeErrorFound = true; | |
} | |
} | |
} | |
} | |
if (TypeErrorFound) | |
return ExprError(); | |
// If we determined that the generic selection is result-dependent, don't | |
// try to compute the result expression. | |
if (IsResultDependent) | |
return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, | |
Exprs, DefaultLoc, RParenLoc, | |
ContainsUnexpandedParameterPack); | |
SmallVector<unsigned, 1> CompatIndices; | |
unsigned DefaultIndex = -1U; | |
for (unsigned i = 0; i < NumAssocs; ++i) { | |
if (!Types[i]) | |
DefaultIndex = i; | |
else if (Context.typesAreCompatible(ControllingExpr->getType(), | |
Types[i]->getType())) | |
CompatIndices.push_back(i); | |
} | |
// C11 6.5.1.1p2 "The controlling expression of a generic selection shall have | |
// type compatible with at most one of the types named in its generic | |
// association list." | |
if (CompatIndices.size() > 1) { | |
// We strip parens here because the controlling expression is typically | |
// parenthesized in macro definitions. | |
ControllingExpr = ControllingExpr->IgnoreParens(); | |
Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) | |
<< ControllingExpr->getSourceRange() << ControllingExpr->getType() | |
<< (unsigned)CompatIndices.size(); | |
for (unsigned I : CompatIndices) { | |
Diag(Types[I]->getTypeLoc().getBeginLoc(), | |
diag::note_compat_assoc) | |
<< Types[I]->getTypeLoc().getSourceRange() | |
<< Types[I]->getType(); | |
} | |
return ExprError(); | |
} | |
// C11 6.5.1.1p2 "If a generic selection has no default generic association, | |
// its controlling expression shall have type compatible with exactly one of | |
// the types named in its generic association list." | |
if (DefaultIndex == -1U && CompatIndices.size() == 0) { | |
// We strip parens here because the controlling expression is typically | |
// parenthesized in macro definitions. | |
ControllingExpr = ControllingExpr->IgnoreParens(); | |
Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) | |
<< ControllingExpr->getSourceRange() << ControllingExpr->getType(); | |
return ExprError(); | |
} | |
// C11 6.5.1.1p3 "If a generic selection has a generic association with a | |
// type name that is compatible with the type of the controlling expression, | |
// then the result expression of the generic selection is the expression | |
// in that generic association. Otherwise, the result expression of the | |
// generic selection is the expression in the default generic association." | |
unsigned ResultIndex = | |
CompatIndices.size() ? CompatIndices[0] : DefaultIndex; | |
return GenericSelectionExpr::Create( | |
Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, | |
ContainsUnexpandedParameterPack, ResultIndex); | |
} | |
/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the | |
/// location of the token and the offset of the ud-suffix within it. | |
static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, | |
unsigned Offset) { | |
return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), | |
S.getLangOpts()); | |
} | |
/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up | |
/// the corresponding cooked (non-raw) literal operator, and build a call to it. | |
static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, | |
IdentifierInfo *UDSuffix, | |
SourceLocation UDSuffixLoc, | |
ArrayRef<Expr*> Args, | |
SourceLocation LitEndLoc) { | |
assert(Args.size() <= 2 && "too many arguments for literal operator"); | |
QualType ArgTy[2]; | |
for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | |
ArgTy[ArgIdx] = Args[ArgIdx]->getType(); | |
if (ArgTy[ArgIdx]->isArrayType()) | |
ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); | |
} | |
DeclarationName OpName = | |
S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | |
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | |
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | |
LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); | |
if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()), | |
/*AllowRaw*/ false, /*AllowTemplate*/ false, | |
/*AllowStringTemplate*/ false, | |
/*DiagnoseMissing*/ true) == Sema::LOLR_Error) | |
return ExprError(); | |
return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); | |
} | |
/// ActOnStringLiteral - The specified tokens were lexed as pasted string | |
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string | |
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from | |
/// multiple tokens. However, the common case is that StringToks points to one | |
/// string. | |
/// | |
ExprResult | |
Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { | |
assert(!StringToks.empty() && "Must have at least one string!"); | |
StringLiteralParser Literal(StringToks, PP); | |
if (Literal.hadError) | |
return ExprError(); | |
SmallVector<SourceLocation, 4> StringTokLocs; | |
for (const Token &Tok : StringToks) | |
StringTokLocs.push_back(Tok.getLocation()); | |
QualType CharTy = Context.CharTy; | |
StringLiteral::StringKind Kind = StringLiteral::Ascii; | |
if (Literal.isWide()) { | |
CharTy = Context.getWideCharType(); | |
Kind = StringLiteral::Wide; | |
} else if (Literal.isUTF8()) { | |
if (getLangOpts().Char8) | |
CharTy = Context.Char8Ty; | |
Kind = StringLiteral::UTF8; | |
} else if (Literal.isUTF16()) { | |
CharTy = Context.Char16Ty; | |
Kind = StringLiteral::UTF16; | |
} else if (Literal.isUTF32()) { | |
CharTy = Context.Char32Ty; | |
Kind = StringLiteral::UTF32; | |
} else if (Literal.isPascal()) { | |
CharTy = Context.UnsignedCharTy; | |
} | |
// Warn on initializing an array of char from a u8 string literal; this | |
// becomes ill-formed in C++2a. | |
if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && | |
!getLangOpts().Char8 && Kind == StringLiteral::UTF8) { | |
Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); | |
// Create removals for all 'u8' prefixes in the string literal(s). This | |
// ensures C++2a compatibility (but may change the program behavior when | |
// built by non-Clang compilers for which the execution character set is | |
// not always UTF-8). | |
auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); | |
SourceLocation RemovalDiagLoc; | |
for (const Token &Tok : StringToks) { | |
if (Tok.getKind() == tok::utf8_string_literal) { | |
if (RemovalDiagLoc.isInvalid()) | |
RemovalDiagLoc = Tok.getLocation(); | |
RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( | |
Tok.getLocation(), | |
Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, | |
getSourceManager(), getLangOpts()))); | |
} | |
} | |
Diag(RemovalDiagLoc, RemovalDiag); | |
} | |
QualType StrTy = | |
Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); | |
// Pass &StringTokLocs[0], StringTokLocs.size() to factory! | |
StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), | |
Kind, Literal.Pascal, StrTy, | |
&StringTokLocs[0], | |
StringTokLocs.size()); | |
if (Literal.getUDSuffix().empty()) | |
return Lit; | |
// We're building a user-defined literal. | |
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | |
SourceLocation UDSuffixLoc = | |
getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], | |
Literal.getUDSuffixOffset()); | |
// Make sure we're allowed user-defined literals here. | |
if (!UDLScope) | |
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); | |
// C++11 [lex.ext]p5: The literal L is treated as a call of the form | |
// operator "" X (str, len) | |
QualType SizeType = Context.getSizeType(); | |
DeclarationName OpName = | |
Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | |
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | |
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | |
QualType ArgTy[] = { | |
Context.getArrayDecayedType(StrTy), SizeType | |
}; | |
LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | |
switch (LookupLiteralOperator(UDLScope, R, ArgTy, | |
/*AllowRaw*/ false, /*AllowTemplate*/ false, | |
/*AllowStringTemplate*/ true, | |
/*DiagnoseMissing*/ true)) { | |
case LOLR_Cooked: { | |
llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); | |
IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, | |
StringTokLocs[0]); | |
Expr *Args[] = { Lit, LenArg }; | |
return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); | |
} | |
case LOLR_StringTemplate: { | |
TemplateArgumentListInfo ExplicitArgs; | |
unsigned CharBits = Context.getIntWidth(CharTy); | |
bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); | |
llvm::APSInt Value(CharBits, CharIsUnsigned); | |
TemplateArgument TypeArg(CharTy); | |
TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); | |
ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); | |
for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { | |
Value = Lit->getCodeUnit(I); | |
TemplateArgument Arg(Context, Value, CharTy); | |
TemplateArgumentLocInfo ArgInfo; | |
ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | |
} | |
return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), | |
&ExplicitArgs); | |
} | |
case LOLR_Raw: | |
case LOLR_Template: | |
case LOLR_ErrorNoDiagnostic: | |
llvm_unreachable("unexpected literal operator lookup result"); | |
case LOLR_Error: | |
return ExprError(); | |
} | |
llvm_unreachable("unexpected literal operator lookup result"); | |
} | |
DeclRefExpr * | |
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |
SourceLocation Loc, | |
const CXXScopeSpec *SS) { | |
DeclarationNameInfo NameInfo(D->getDeclName(), Loc); | |
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); | |
} | |
DeclRefExpr * | |
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |
const DeclarationNameInfo &NameInfo, | |
const CXXScopeSpec *SS, NamedDecl *FoundD, | |
SourceLocation TemplateKWLoc, | |
const TemplateArgumentListInfo *TemplateArgs) { | |
NestedNameSpecifierLoc NNS = | |
SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); | |
return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, | |
TemplateArgs); | |
} | |
NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { | |
// A declaration named in an unevaluated operand never constitutes an odr-use. | |
if (isUnevaluatedContext()) | |
return NOUR_Unevaluated; | |
// C++2a [basic.def.odr]p4: | |
// A variable x whose name appears as a potentially-evaluated expression e | |
// is odr-used by e unless [...] x is a reference that is usable in | |
// constant expressions. | |
if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | |
if (VD->getType()->isReferenceType() && | |
!(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && | |
VD->isUsableInConstantExpressions(Context)) | |
return NOUR_Constant; | |
} | |
// All remaining non-variable cases constitute an odr-use. For variables, we | |
// need to wait and see how the expression is used. | |
return NOUR_None; | |
} | |
/// BuildDeclRefExpr - Build an expression that references a | |
/// declaration that does not require a closure capture. | |
DeclRefExpr * | |
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |
const DeclarationNameInfo &NameInfo, | |
NestedNameSpecifierLoc NNS, NamedDecl *FoundD, | |
SourceLocation TemplateKWLoc, | |
const TemplateArgumentListInfo *TemplateArgs) { | |
bool RefersToCapturedVariable = | |
isa<VarDecl>(D) && | |
NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc()); | |
DeclRefExpr *E = DeclRefExpr::Create( | |
Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, | |
VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); | |
MarkDeclRefReferenced(E); | |
// C++ [except.spec]p17: | |
// An exception-specification is considered to be needed when: | |
// - in an expression, the function is the unique lookup result or | |
// the selected member of a set of overloaded functions. | |
// | |
// We delay doing this until after we've built the function reference and | |
// marked it as used so that: | |
// a) if the function is defaulted, we get errors from defining it before / | |
// instead of errors from computing its exception specification, and | |
// b) if the function is a defaulted comparison, we can use the body we | |
// build when defining it as input to the exception specification | |
// computation rather than computing a new body. | |
if (auto *FPT = Ty->getAs<FunctionProtoType>()) { | |
if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | |
if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) | |
E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); | |
} | |
} | |
if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && | |
Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && | |
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) | |
getCurFunction()->recordUseOfWeak(E); | |
FieldDecl *FD = dyn_cast<FieldDecl>(D); | |
if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) | |
FD = IFD->getAnonField(); | |
if (FD) { | |
UnusedPrivateFields.remove(FD); | |
// Just in case we're building an illegal pointer-to-member. | |
if (FD->isBitField()) | |
E->setObjectKind(OK_BitField); | |
} | |
// C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier | |
// designates a bit-field. | |
if (auto *BD = dyn_cast<BindingDecl>(D)) | |
if (auto *BE = BD->getBinding()) | |
E->setObjectKind(BE->getObjectKind()); | |
return E; | |
} | |
/// Decomposes the given name into a DeclarationNameInfo, its location, and | |
/// possibly a list of template arguments. | |
/// | |
/// If this produces template arguments, it is permitted to call | |
/// DecomposeTemplateName. | |
/// | |
/// This actually loses a lot of source location information for | |
/// non-standard name kinds; we should consider preserving that in | |
/// some way. | |
void | |
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, | |
TemplateArgumentListInfo &Buffer, | |
DeclarationNameInfo &NameInfo, | |
const TemplateArgumentListInfo *&TemplateArgs) { | |
if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { | |
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); | |
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); | |
ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), | |
Id.TemplateId->NumArgs); | |
translateTemplateArguments(TemplateArgsPtr, Buffer); | |
TemplateName TName = Id.TemplateId->Template.get(); | |
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; | |
NameInfo = Context.getNameForTemplate(TName, TNameLoc); | |
TemplateArgs = &Buffer; | |
} else { | |
NameInfo = GetNameFromUnqualifiedId(Id); | |
TemplateArgs = nullptr; | |
} | |
} | |
static void emitEmptyLookupTypoDiagnostic( | |
const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, | |
DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, | |
unsigned DiagnosticID, unsigned DiagnosticSuggestID) { | |
DeclContext *Ctx = | |
SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); | |
if (!TC) { | |
// Emit a special diagnostic for failed member lookups. | |
// FIXME: computing the declaration context might fail here (?) | |
if (Ctx) | |
SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx | |
<< SS.getRange(); | |
else | |
SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; | |
return; | |
} | |
std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); | |
bool DroppedSpecifier = | |
TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; | |
unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() | |
? diag::note_implicit_param_decl | |
: diag::note_previous_decl; | |
if (!Ctx) | |
SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, | |
SemaRef.PDiag(NoteID)); | |
else | |
SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) | |
<< Typo << Ctx << DroppedSpecifier | |
<< SS.getRange(), | |
SemaRef.PDiag(NoteID)); | |
} | |
/// Diagnose an empty lookup. | |
/// | |
/// \return false if new lookup candidates were found | |
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, | |
CorrectionCandidateCallback &CCC, | |
TemplateArgumentListInfo *ExplicitTemplateArgs, | |
ArrayRef<Expr *> Args, TypoExpr **Out) { | |
DeclarationName Name = R.getLookupName(); | |
unsigned diagnostic = diag::err_undeclared_var_use; | |
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; | |
if (Name.getNameKind() == DeclarationName::CXXOperatorName || | |
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || | |
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | |
diagnostic = diag::err_undeclared_use; | |
diagnostic_suggest = diag::err_undeclared_use_suggest; | |
} | |
// If the original lookup was an unqualified lookup, fake an | |
// unqualified lookup. This is useful when (for example) the | |
// original lookup would not have found something because it was a | |
// dependent name. | |
DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; | |
while (DC) { | |
if (isa<CXXRecordDecl>(DC)) { | |
LookupQualifiedName(R, DC); | |
if (!R.empty()) { | |
// Don't give errors about ambiguities in this lookup. | |
R.suppressDiagnostics(); | |
// During a default argument instantiation the CurContext points | |
// to a CXXMethodDecl; but we can't apply a this-> fixit inside a | |
// function parameter list, hence add an explicit check. | |
bool isDefaultArgument = | |
!CodeSynthesisContexts.empty() && | |
CodeSynthesisContexts.back().Kind == | |
CodeSynthesisContext::DefaultFunctionArgumentInstantiation; | |
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); | |
bool isInstance = CurMethod && | |
CurMethod->isInstance() && | |
DC == CurMethod->getParent() && !isDefaultArgument; | |
// Give a code modification hint to insert 'this->'. | |
// TODO: fixit for inserting 'Base<T>::' in the other cases. | |
// Actually quite difficult! | |
if (getLangOpts().MSVCCompat) | |
diagnostic = diag::ext_found_via_dependent_bases_lookup; | |
if (isInstance) { | |
Diag(R.getNameLoc(), diagnostic) << Name | |
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->"); | |
CheckCXXThisCapture(R.getNameLoc()); | |
} else { | |
Diag(R.getNameLoc(), diagnostic) << Name; | |
} | |
// Do we really want to note all of these? | |
for (NamedDecl *D : R) | |
Diag(D->getLocation(), diag::note_dependent_var_use); | |
// Return true if we are inside a default argument instantiation | |
// and the found name refers to an instance member function, otherwise | |
// the function calling DiagnoseEmptyLookup will try to create an | |
// implicit member call and this is wrong for default argument. | |
if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { | |
Diag(R.getNameLoc(), diag::err_member_call_without_object); | |
return true; | |
} | |
// Tell the callee to try to recover. | |
return false; | |
} | |
R.clear(); | |
} | |
DC = DC->getLookupParent(); | |
} | |
// We didn't find anything, so try to correct for a typo. | |
TypoCorrection Corrected; | |
if (S && Out) { | |
SourceLocation TypoLoc = R.getNameLoc(); | |
assert(!ExplicitTemplateArgs && | |
"Diagnosing an empty lookup with explicit template args!"); | |
*Out = CorrectTypoDelayed( | |
R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, | |
[=](const TypoCorrection &TC) { | |
emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, | |
diagnostic, diagnostic_suggest); | |
}, | |
nullptr, CTK_ErrorRecovery); | |
if (*Out) | |
return true; | |
} else if (S && | |
(Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), | |
S, &SS, CCC, CTK_ErrorRecovery))) { | |
std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |
bool DroppedSpecifier = | |
Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; | |
R.setLookupName(Corrected.getCorrection()); | |
bool AcceptableWithRecovery = false; | |
bool AcceptableWithoutRecovery = false; | |
NamedDecl *ND = Corrected.getFoundDecl(); | |
if (ND) { | |
if (Corrected.isOverloaded()) { | |
OverloadCandidateSet OCS(R.getNameLoc(), | |
OverloadCandidateSet::CSK_Normal); | |
OverloadCandidateSet::iterator Best; | |
for (NamedDecl *CD : Corrected) { | |
if (FunctionTemplateDecl *FTD = | |
dyn_cast<FunctionTemplateDecl>(CD)) | |
AddTemplateOverloadCandidate( | |
FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, | |
Args, OCS); | |
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | |
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) | |
AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), | |
Args, OCS); | |
} | |
switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { | |
case OR_Success: | |
ND = Best->FoundDecl; | |
Corrected.setCorrectionDecl(ND); | |
break; | |
default: | |
// FIXME: Arbitrarily pick the first declaration for the note. | |
Corrected.setCorrectionDecl(ND); | |
break; | |
} | |
} | |
R.addDecl(ND); | |
if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { | |
CXXRecordDecl *Record = nullptr; | |
if (Corrected.getCorrectionSpecifier()) { | |
const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); | |
Record = Ty->getAsCXXRecordDecl(); | |
} | |
if (!Record) | |
Record = cast<CXXRecordDecl>( | |
ND->getDeclContext()->getRedeclContext()); | |
R.setNamingClass(Record); | |
} | |
auto *UnderlyingND = ND->getUnderlyingDecl(); | |
AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || | |
isa<FunctionTemplateDecl>(UnderlyingND); | |
// FIXME: If we ended up with a typo for a type name or | |
// Objective-C class name, we're in trouble because the parser | |
// is in the wrong place to recover. Suggest the typo | |
// correction, but don't make it a fix-it since we're not going | |
// to recover well anyway. | |
AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) || | |
getAsTypeTemplateDecl(UnderlyingND) || | |
isa<ObjCInterfaceDecl>(UnderlyingND); | |
} else { | |
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it | |
// because we aren't able to recover. | |
AcceptableWithoutRecovery = true; | |
} | |
if (AcceptableWithRecovery || AcceptableWithoutRecovery) { | |
unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() | |
? diag::note_implicit_param_decl | |
: diag::note_previous_decl; | |
if (SS.isEmpty()) | |
diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, | |
PDiag(NoteID), AcceptableWithRecovery); | |
else | |
diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) | |
<< Name << computeDeclContext(SS, false) | |
<< DroppedSpecifier << SS.getRange(), | |
PDiag(NoteID), AcceptableWithRecovery); | |
// Tell the callee whether to try to recover. | |
return !AcceptableWithRecovery; | |
} | |
} | |
R.clear(); | |
// Emit a special diagnostic for failed member lookups. | |
// FIXME: computing the declaration context might fail here (?) | |
if (!SS.isEmpty()) { | |
Diag(R.getNameLoc(), diag::err_no_member) | |
<< Name << computeDeclContext(SS, false) | |
<< SS.getRange(); | |
return true; | |
} | |
// Give up, we can't recover. | |
Diag(R.getNameLoc(), diagnostic) << Name; | |
return true; | |
} | |
/// In Microsoft mode, if we are inside a template class whose parent class has | |
/// dependent base classes, and we can't resolve an unqualified identifier, then | |
/// assume the identifier is a member of a dependent base class. We can only | |
/// recover successfully in static methods, instance methods, and other contexts | |
/// where 'this' is available. This doesn't precisely match MSVC's | |
/// instantiation model, but it's close enough. | |
static Expr * | |
recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, | |
DeclarationNameInfo &NameInfo, | |
SourceLocation TemplateKWLoc, | |
const TemplateArgumentListInfo *TemplateArgs) { | |
// Only try to recover from lookup into dependent bases in static methods or | |
// contexts where 'this' is available. | |
QualType ThisType = S.getCurrentThisType(); | |
const CXXRecordDecl *RD = nullptr; | |
if (!ThisType.isNull()) | |
RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); | |
else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) | |
RD = MD->getParent(); | |
if (!RD || !RD->hasAnyDependentBases()) | |
return nullptr; | |
// Diagnose this as unqualified lookup into a dependent base class. If 'this' | |
// is available, suggest inserting 'this->' as a fixit. | |
SourceLocation Loc = NameInfo.getLoc(); | |
auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); | |
DB << NameInfo.getName() << RD; | |
if (!ThisType.isNull()) { | |
DB << FixItHint::CreateInsertion(Loc, "this->"); | |
return CXXDependentScopeMemberExpr::Create( | |
Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, | |
/*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, | |
/*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); | |
} | |
// Synthesize a fake NNS that points to the derived class. This will | |
// perform name lookup during template instantiation. | |
CXXScopeSpec SS; | |
auto *NNS = | |
NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); | |
SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); | |
return DependentScopeDeclRefExpr::Create( | |
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, | |
TemplateArgs); | |
} | |
ExprResult | |
Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, | |
SourceLocation TemplateKWLoc, UnqualifiedId &Id, | |
bool HasTrailingLParen, bool IsAddressOfOperand, | |
CorrectionCandidateCallback *CCC, | |
bool IsInlineAsmIdentifier, Token *KeywordReplacement) { | |
assert(!(IsAddressOfOperand && HasTrailingLParen) && | |
"cannot be direct & operand and have a trailing lparen"); | |
if (SS.isInvalid()) | |
return ExprError(); | |
TemplateArgumentListInfo TemplateArgsBuffer; | |
// Decompose the UnqualifiedId into the following data. | |
DeclarationNameInfo NameInfo; | |
const TemplateArgumentListInfo *TemplateArgs; | |
DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); | |
DeclarationName Name = NameInfo.getName(); | |
IdentifierInfo *II = Name.getAsIdentifierInfo(); | |
SourceLocation NameLoc = NameInfo.getLoc(); | |
if (II && II->isEditorPlaceholder()) { | |
// FIXME: When typed placeholders are supported we can create a typed | |
// placeholder expression node. | |
return ExprError(); | |
} | |
// C++ [temp.dep.expr]p3: | |
// An id-expression is type-dependent if it contains: | |
// -- an identifier that was declared with a dependent type, | |
// (note: handled after lookup) | |
// -- a template-id that is dependent, | |
// (note: handled in BuildTemplateIdExpr) | |
// -- a conversion-function-id that specifies a dependent type, | |
// -- a nested-name-specifier that contains a class-name that | |
// names a dependent type. | |
// Determine whether this is a member of an unknown specialization; | |
// we need to handle these differently. | |
bool DependentID = false; | |
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | |
Name.getCXXNameType()->isDependentType()) { | |
DependentID = true; | |
} else if (SS.isSet()) { | |
if (DeclContext *DC = computeDeclContext(SS, false)) { | |
if (RequireCompleteDeclContext(SS, DC)) | |
return ExprError(); | |
} else { | |
DependentID = true; | |
} | |
} | |
if (DependentID) | |
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | |
IsAddressOfOperand, TemplateArgs); | |
// Perform the required lookup. | |
LookupResult R(*this, NameInfo, | |
(Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) | |
? LookupObjCImplicitSelfParam | |
: LookupOrdinaryName); | |
if (TemplateKWLoc.isValid() || TemplateArgs) { | |
// Lookup the template name again to correctly establish the context in | |
// which it was found. This is really unfortunate as we already did the | |
// lookup to determine that it was a template name in the first place. If | |
// this becomes a performance hit, we can work harder to preserve those | |
// results until we get here but it's likely not worth it. | |
bool MemberOfUnknownSpecialization; | |
AssumedTemplateKind AssumedTemplate; | |
if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, | |
MemberOfUnknownSpecialization, TemplateKWLoc, | |
&AssumedTemplate)) | |
return ExprError(); | |
if (MemberOfUnknownSpecialization || | |
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) | |
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | |
IsAddressOfOperand, TemplateArgs); | |
} else { | |
bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); | |
LookupParsedName(R, S, &SS, !IvarLookupFollowUp); | |
// If the result might be in a dependent base class, this is a dependent | |
// id-expression. | |
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | |
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | |
IsAddressOfOperand, TemplateArgs); | |
// If this reference is in an Objective-C method, then we need to do | |
// some special Objective-C lookup, too. | |
if (IvarLookupFollowUp) { | |
ExprResult E(LookupInObjCMethod(R, S, II, true)); | |
if (E.isInvalid()) | |
return ExprError(); | |
if (Expr *Ex = E.getAs<Expr>()) | |
return Ex; | |
} | |
} | |
if (R.isAmbiguous()) | |
return ExprError(); | |
// This could be an implicitly declared function reference (legal in C90, | |
// extension in C99, forbidden in C++). | |
if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) { | |
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); | |
if (D) R.addDecl(D); | |
} | |
// Determine whether this name might be a candidate for | |
// argument-dependent lookup. | |
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); | |
if (R.empty() && !ADL) { | |
if (SS.isEmpty() && getLangOpts().MSVCCompat) { | |
if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, | |
TemplateKWLoc, TemplateArgs)) | |
return E; | |
} | |
// Don't diagnose an empty lookup for inline assembly. | |
if (IsInlineAsmIdentifier) | |
return ExprError(); | |
// If this name wasn't predeclared and if this is not a function | |
// call, diagnose the problem. | |
TypoExpr *TE = nullptr; | |
DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() | |
: nullptr); | |
DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; | |
assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && | |
"Typo correction callback misconfigured"); | |
if (CCC) { | |
// Make sure the callback knows what the typo being diagnosed is. | |
CCC->setTypoName(II); | |
if (SS.isValid()) | |
CCC->setTypoNNS(SS.getScopeRep()); | |
} | |
// FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for | |
// a template name, but we happen to have always already looked up the name | |
// before we get here if it must be a template name. | |
if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, | |
None, &TE)) { | |
if (TE && KeywordReplacement) { | |
auto &State = getTypoExprState(TE); | |
auto BestTC = State.Consumer->getNextCorrection(); | |
if (BestTC.isKeyword()) { | |
auto *II = BestTC.getCorrectionAsIdentifierInfo(); | |
if (State.DiagHandler) | |
State.DiagHandler(BestTC); | |
KeywordReplacement->startToken(); | |
KeywordReplacement->setKind(II->getTokenID()); | |
KeywordReplacement->setIdentifierInfo(II); | |
KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); | |
// Clean up the state associated with the TypoExpr, since it has | |
// now been diagnosed (without a call to CorrectDelayedTyposInExpr). | |
clearDelayedTypo(TE); | |
// Signal that a correction to a keyword was performed by returning a | |
// valid-but-null ExprResult. | |
return (Expr*)nullptr; | |
} | |
State.Consumer->resetCorrectionStream(); | |
} | |
return TE ? TE : ExprError(); | |
} | |
assert(!R.empty() && | |
"DiagnoseEmptyLookup returned false but added no results"); | |
// If we found an Objective-C instance variable, let | |
// LookupInObjCMethod build the appropriate expression to | |
// reference the ivar. | |
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { | |
R.clear(); | |
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); | |
// In a hopelessly buggy code, Objective-C instance variable | |
// lookup fails and no expression will be built to reference it. | |
if (!E.isInvalid() && !E.get()) | |
return ExprError(); | |
return E; | |
} | |
} | |
// This is guaranteed from this point on. | |
assert(!R.empty() || ADL); | |
// Check whether this might be a C++ implicit instance member access. | |
// C++ [class.mfct.non-static]p3: | |
// When an id-expression that is not part of a class member access | |
// syntax and not used to form a pointer to member is used in the | |
// body of a non-static member function of class X, if name lookup | |
// resolves the name in the id-expression to a non-static non-type | |
// member of some class C, the id-expression is transformed into a | |
// class member access expression using (*this) as the | |
// postfix-expression to the left of the . operator. | |
// | |
// But we don't actually need to do this for '&' operands if R | |
// resolved to a function or overloaded function set, because the | |
// expression is ill-formed if it actually works out to be a | |
// non-static member function: | |
// | |
// C++ [expr.ref]p4: | |
// Otherwise, if E1.E2 refers to a non-static member function. . . | |
// [t]he expression can be used only as the left-hand operand of a | |
// member function call. | |
// | |
// There are other safeguards against such uses, but it's important | |
// to get this right here so that we don't end up making a | |
// spuriously dependent expression if we're inside a dependent | |
// instance method. | |
if (!R.empty() && (*R.begin())->isCXXClassMember()) { | |
bool MightBeImplicitMember; | |
if (!IsAddressOfOperand) | |
MightBeImplicitMember = true; | |
else if (!SS.isEmpty()) | |
MightBeImplicitMember = false; | |
else if (R.isOverloadedResult()) | |
MightBeImplicitMember = false; | |
else if (R.isUnresolvableResult()) | |
MightBeImplicitMember = true; | |
else | |
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || | |
isa<IndirectFieldDecl>(R.getFoundDecl()) || | |
isa<MSPropertyDecl>(R.getFoundDecl()); | |
if (MightBeImplicitMember) | |
return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, | |
R, TemplateArgs, S); | |
} | |
if (TemplateArgs || TemplateKWLoc.isValid()) { | |
// In C++1y, if this is a variable template id, then check it | |
// in BuildTemplateIdExpr(). | |
// The single lookup result must be a variable template declaration. | |
if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && | |
Id.TemplateId->Kind == TNK_Var_template) { | |
assert(R.getAsSingle<VarTemplateDecl>() && | |
"There should only be one declaration found."); | |
} | |
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); | |
} | |
return BuildDeclarationNameExpr(SS, R, ADL); | |
} | |
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified | |
/// declaration name, generally during template instantiation. | |
/// There's a large number of things which don't need to be done along | |
/// this path. | |
ExprResult Sema::BuildQualifiedDeclarationNameExpr( | |
CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, | |
bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { | |
DeclContext *DC = computeDeclContext(SS, false); | |
if (!DC) | |
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | |
NameInfo, /*TemplateArgs=*/nullptr); | |
if (RequireCompleteDeclContext(SS, DC)) | |
return ExprError(); | |
LookupResult R(*this, NameInfo, LookupOrdinaryName); | |
LookupQualifiedName(R, DC); | |
if (R.isAmbiguous()) | |
return ExprError(); | |
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | |
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | |
NameInfo, /*TemplateArgs=*/nullptr); | |
if (R.empty()) { | |
Diag(NameInfo.getLoc(), diag::err_no_member) | |
<< NameInfo.getName() << DC << SS.getRange(); | |
return ExprError(); | |
} | |
if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { | |
// Diagnose a missing typename if this resolved unambiguously to a type in | |
// a dependent context. If we can recover with a type, downgrade this to | |
// a warning in Microsoft compatibility mode. | |
unsigned DiagID = diag::err_typename_missing; | |
if (RecoveryTSI && getLangOpts().MSVCCompat) | |
DiagID = diag::ext_typename_missing; | |
SourceLocation Loc = SS.getBeginLoc(); | |
auto D = Diag(Loc, DiagID); | |
D << SS.getScopeRep() << NameInfo.getName().getAsString() | |
<< SourceRange(Loc, NameInfo.getEndLoc()); | |
// Don't recover if the caller isn't expecting us to or if we're in a SFINAE | |
// context. | |
if (!RecoveryTSI) | |
return ExprError(); | |
// Only issue the fixit if we're prepared to recover. | |
D << FixItHint::CreateInsertion(Loc, "typename "); | |
// Recover by pretending this was an elaborated type. | |
QualType Ty = Context.getTypeDeclType(TD); | |
TypeLocBuilder TLB; | |
TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); | |
QualType ET = getElaboratedType(ETK_None, SS, Ty); | |
ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); | |
QTL.setElaboratedKeywordLoc(SourceLocation()); | |
QTL.setQualifierLoc(SS.getWithLocInContext(Context)); | |
*RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); | |
return ExprEmpty(); | |
} | |
// Defend against this resolving to an implicit member access. We usually | |
// won't get here if this might be a legitimate a class member (we end up in | |
// BuildMemberReferenceExpr instead), but this can be valid if we're forming | |
// a pointer-to-member or in an unevaluated context in C++11. | |
if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) | |
return BuildPossibleImplicitMemberExpr(SS, | |
/*TemplateKWLoc=*/SourceLocation(), | |
R, /*TemplateArgs=*/nullptr, S); | |
return BuildDeclarationNameExpr(SS, R, /* ADL */ false); | |
} | |
/// The parser has read a name in, and Sema has detected that we're currently | |
/// inside an ObjC method. Perform some additional checks and determine if we | |
/// should form a reference to an ivar. | |
/// | |
/// Ideally, most of this would be done by lookup, but there's | |
/// actually quite a lot of extra work involved. | |
DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, | |
IdentifierInfo *II) { | |
SourceLocation Loc = Lookup.getNameLoc(); | |
ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |
// Check for error condition which is already reported. | |
if (!CurMethod) | |
return DeclResult(true); | |
// There are two cases to handle here. 1) scoped lookup could have failed, | |
// in which case we should look for an ivar. 2) scoped lookup could have | |
// found a decl, but that decl is outside the current instance method (i.e. | |
// a global variable). In these two cases, we do a lookup for an ivar with | |
// this name, if the lookup sucedes, we replace it our current decl. | |
// If we're in a class method, we don't normally want to look for | |
// ivars. But if we don't find anything else, and there's an | |
// ivar, that's an error. | |
bool IsClassMethod = CurMethod->isClassMethod(); | |
bool LookForIvars; | |
if (Lookup.empty()) | |
LookForIvars = true; | |
else if (IsClassMethod) | |
LookForIvars = false; | |
else | |
LookForIvars = (Lookup.isSingleResult() && | |
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); | |
ObjCInterfaceDecl *IFace = nullptr; | |
if (LookForIvars) { | |
IFace = CurMethod->getClassInterface(); | |
ObjCInterfaceDecl *ClassDeclared; | |
ObjCIvarDecl *IV = nullptr; | |
if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { | |
// Diagnose using an ivar in a class method. | |
if (IsClassMethod) { | |
Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | |
return DeclResult(true); | |
} | |
// Diagnose the use of an ivar outside of the declaring class. | |
if (IV->getAccessControl() == ObjCIvarDecl::Private && | |
!declaresSameEntity(ClassDeclared, IFace) && | |
!getLangOpts().DebuggerSupport) | |
Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); | |
// Success. | |
return IV; | |
} | |
} else if (CurMethod->isInstanceMethod()) { | |
// We should warn if a local variable hides an ivar. | |
if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { | |
ObjCInterfaceDecl *ClassDeclared; | |
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { | |
if (IV->getAccessControl() != ObjCIvarDecl::Private || | |
declaresSameEntity(IFace, ClassDeclared)) | |
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); | |
} | |
} | |
} else if (Lookup.isSingleResult() && | |
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { | |
// If accessing a stand-alone ivar in a class method, this is an error. | |
if (const ObjCIvarDecl *IV = | |
dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) { | |
Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | |
return DeclResult(true); | |
} | |
} | |
// Didn't encounter an error, didn't find an ivar. | |
return DeclResult(false); | |
} | |
ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, | |
ObjCIvarDecl *IV) { | |
ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |
assert(CurMethod && CurMethod->isInstanceMethod() && | |
"should not reference ivar from this context"); | |
ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); | |
assert(IFace && "should not reference ivar from this context"); | |
// If we're referencing an invalid decl, just return this as a silent | |
// error node. The error diagnostic was already emitted on the decl. | |
if (IV->isInvalidDecl()) | |
return ExprError(); | |
// Check if referencing a field with __attribute__((deprecated)). | |
if (DiagnoseUseOfDecl(IV, Loc)) | |
return ExprError(); | |
// FIXME: This should use a new expr for a direct reference, don't | |
// turn this into Self->ivar, just return a BareIVarExpr or something. | |
IdentifierInfo &II = Context.Idents.get("self"); | |
UnqualifiedId SelfName; | |
SelfName.setIdentifier(&II, SourceLocation()); | |
SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam); | |
CXXScopeSpec SelfScopeSpec; | |
SourceLocation TemplateKWLoc; | |
ExprResult SelfExpr = | |
ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, | |
/*HasTrailingLParen=*/false, | |
/*IsAddressOfOperand=*/false); | |
if (SelfExpr.isInvalid()) | |
return ExprError(); | |
SelfExpr = DefaultLvalueConversion(SelfExpr.get()); | |
if (SelfExpr.isInvalid()) | |
return ExprError(); | |
MarkAnyDeclReferenced(Loc, IV, true); | |
ObjCMethodFamily MF = CurMethod->getMethodFamily(); | |
if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && | |
!IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) | |
Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); | |
ObjCIvarRefExpr *Result = new (Context) | |
ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, | |
IV->getLocation(), SelfExpr.get(), true, true); | |
if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { | |
if (!isUnevaluatedContext() && | |
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) | |
getCurFunction()->recordUseOfWeak(Result); | |
} | |
if (getLangOpts().ObjCAutoRefCount) | |
if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) | |
ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); | |
return Result; | |
} | |
/// The parser has read a name in, and Sema has detected that we're currently | |
/// inside an ObjC method. Perform some additional checks and determine if we | |
/// should form a reference to an ivar. If so, build an expression referencing | |
/// that ivar. | |
ExprResult | |
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, | |
IdentifierInfo *II, bool AllowBuiltinCreation) { | |
// FIXME: Integrate this lookup step into LookupParsedName. | |
DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); | |
if (Ivar.isInvalid()) | |
return ExprError(); | |
if (Ivar.isUsable()) | |
return BuildIvarRefExpr(S, Lookup.getNameLoc(), | |
cast<ObjCIvarDecl>(Ivar.get())); | |
if (Lookup.empty() && II && AllowBuiltinCreation) | |
LookupBuiltin(Lookup); | |
// Sentinel value saying that we didn't do anything special. | |
return ExprResult(false); | |
} | |
/// Cast a base object to a member's actual type. | |
/// | |
/// Logically this happens in three phases: | |
/// | |
/// * First we cast from the base type to the naming class. | |
/// The naming class is the class into which we were looking | |
/// when we found the member; it's the qualifier type if a | |
/// qualifier was provided, and otherwise it's the base type. | |
/// | |
/// * Next we cast from the naming class to the declaring class. | |
/// If the member we found was brought into a class's scope by | |
/// a using declaration, this is that class; otherwise it's | |
/// the class declaring the member. | |
/// | |
/// * Finally we cast from the declaring class to the "true" | |
/// declaring class of the member. This conversion does not | |
/// obey access control. | |
ExprResult | |
Sema::PerformObjectMemberConversion(Expr *From, | |
NestedNameSpecifier *Qualifier, | |
NamedDecl *FoundDecl, | |
NamedDecl *Member) { | |
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); | |
if (!RD) | |
return From; | |
QualType DestRecordType; | |
QualType DestType; | |
QualType FromRecordType; | |
QualType FromType = From->getType(); | |
bool PointerConversions = false; | |
if (isa<FieldDecl>(Member)) { | |
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); | |
auto FromPtrType = FromType->getAs<PointerType>(); | |
DestRecordType = Context.getAddrSpaceQualType( | |
DestRecordType, FromPtrType | |
? FromType->getPointeeType().getAddressSpace() | |
: FromType.getAddressSpace()); | |
if (FromPtrType) { | |
DestType = Context.getPointerType(DestRecordType); | |
FromRecordType = FromPtrType->getPointeeType(); | |
PointerConversions = true; | |
} else { | |
DestType = DestRecordType; | |
FromRecordType = FromType; | |
} | |
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { | |
if (Method->isStatic()) | |
return From; | |
DestType = Method->getThisType(); | |
DestRecordType = DestType->getPointeeType(); | |
if (FromType->getAs<PointerType>()) { | |
FromRecordType = FromType->getPointeeType(); | |
PointerConversions = true; | |
} else { | |
FromRecordType = FromType; | |
DestType = DestRecordType; | |
} | |
LangAS FromAS = FromRecordType.getAddressSpace(); | |
LangAS DestAS = DestRecordType.getAddressSpace(); | |
if (FromAS != DestAS) { | |
QualType FromRecordTypeWithoutAS = | |
Context.removeAddrSpaceQualType(FromRecordType); | |
QualType FromTypeWithDestAS = | |
Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); | |
if (PointerConversions) | |
FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); | |
From = ImpCastExprToType(From, FromTypeWithDestAS, | |
CK_AddressSpaceConversion, From->getValueKind()) | |
.get(); | |
} | |
} else { | |
// No conversion necessary. | |
return From; | |
} | |
if (DestType->isDependentType() || FromType->isDependentType()) | |
return From; | |
// If the unqualified types are the same, no conversion is necessary. | |
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | |
return From; | |
SourceRange FromRange = From->getSourceRange(); | |
SourceLocation FromLoc = FromRange.getBegin(); | |
ExprValueKind VK = From->getValueKind(); | |
// C++ [class.member.lookup]p8: | |
// [...] Ambiguities can often be resolved by qualifying a name with its | |
// class name. | |
// | |
// If the member was a qualified name and the qualified referred to a | |
// specific base subobject type, we'll cast to that intermediate type | |
// first and then to the object in which the member is declared. That allows | |
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: | |
// | |
// class Base { public: int x; }; | |
// class Derived1 : public Base { }; | |
// class Derived2 : public Base { }; | |
// class VeryDerived : public Derived1, public Derived2 { void f(); }; | |
// | |
// void VeryDerived::f() { | |
// x = 17; // error: ambiguous base subobjects | |
// Derived1::x = 17; // okay, pick the Base subobject of Derived1 | |
// } | |
if (Qualifier && Qualifier->getAsType()) { | |
QualType QType = QualType(Qualifier->getAsType(), 0); | |
assert(QType->isRecordType() && "lookup done with non-record type"); | |
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); | |
// In C++98, the qualifier type doesn't actually have to be a base | |
// type of the object type, in which case we just ignore it. | |
// Otherwise build the appropriate casts. | |
if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { | |
CXXCastPath BasePath; | |
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, | |
FromLoc, FromRange, &BasePath)) | |
return ExprError(); | |
if (PointerConversions) | |
QType = Context.getPointerType(QType); | |
From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, | |
VK, &BasePath).get(); | |
FromType = QType; | |
FromRecordType = QRecordType; | |
// If the qualifier type was the same as the destination type, | |
// we're done. | |
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | |
return From; | |
} | |
} | |
bool IgnoreAccess = false; | |
// If we actually found the member through a using declaration, cast | |
// down to the using declaration's type. | |
// | |
// Pointer equality is fine here because only one declaration of a | |
// class ever has member declarations. | |
if (FoundDecl->getDeclContext() != Member->getDeclContext()) { | |
assert(isa<UsingShadowDecl>(FoundDecl)); | |
QualType URecordType = Context.getTypeDeclType( | |
cast<CXXRecordDecl>(FoundDecl->getDeclContext())); | |
// We only need to do this if the naming-class to declaring-class | |
// conversion is non-trivial. | |
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { | |
assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType)); | |
CXXCastPath BasePath; | |
if (CheckDerivedToBaseConversion(FromRecordType, URecordType, | |
FromLoc, FromRange, &BasePath)) | |
return ExprError(); | |
QualType UType = URecordType; | |
if (PointerConversions) | |
UType = Context.getPointerType(UType); | |
From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, | |
VK, &BasePath).get(); | |
FromType = UType; | |
FromRecordType = URecordType; | |
} | |
// We don't do access control for the conversion from the | |
// declaring class to the true declaring class. | |
IgnoreAccess = true; | |
} | |
CXXCastPath BasePath; | |
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, | |
FromLoc, FromRange, &BasePath, | |
IgnoreAccess)) | |
return ExprError(); | |
return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, | |
VK, &BasePath); | |
} | |
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, | |
const LookupResult &R, | |
bool HasTrailingLParen) { | |
// Only when used directly as the postfix-expression of a call. | |
if (!HasTrailingLParen) | |
return false; | |
// Never if a scope specifier was provided. | |
if (SS.isSet()) | |
return false; | |
// Only in C++ or ObjC++. | |
if (!getLangOpts().CPlusPlus) | |
return false; | |
// Turn off ADL when we find certain kinds of declarations during | |
// normal lookup: | |
for (NamedDecl *D : R) { | |
// C++0x [basic.lookup.argdep]p3: | |
// -- a declaration of a class member | |
// Since using decls preserve this property, we check this on the | |
// original decl. | |
if (D->isCXXClassMember()) | |
return false; | |
// C++0x [basic.lookup.argdep]p3: | |
// -- a block-scope function declaration that is not a | |
// using-declaration | |
// NOTE: we also trigger this for function templates (in fact, we | |
// don't check the decl type at all, since all other decl types | |
// turn off ADL anyway). | |
if (isa<UsingShadowDecl>(D)) | |
D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |
else if (D->getLexicalDeclContext()->isFunctionOrMethod()) | |
return false; | |
// C++0x [basic.lookup.argdep]p3: | |
// -- a declaration that is neither a function or a function | |
// template | |
// And also for builtin functions. | |
if (isa<FunctionDecl>(D)) { | |
FunctionDecl *FDecl = cast<FunctionDecl>(D); | |
// But also builtin functions. | |
if (FDecl->getBuiltinID() && FDecl->isImplicit()) | |
return false; | |
} else if (!isa<FunctionTemplateDecl>(D)) | |
return false; | |
} | |
return true; | |
} | |
/// Diagnoses obvious problems with the use of the given declaration | |
/// as an expression. This is only actually called for lookups that | |
/// were not overloaded, and it doesn't promise that the declaration | |
/// will in fact be used. | |
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { | |
if (D->isInvalidDecl()) | |
return true; | |
if (isa<TypedefNameDecl>(D)) { | |
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); | |
return true; | |
} | |
if (isa<ObjCInterfaceDecl>(D)) { | |
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); | |
return true; | |
} | |
if (isa<NamespaceDecl>(D)) { | |
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); | |
return true; | |
} | |
return false; | |
} | |
// Certain multiversion types should be treated as overloaded even when there is | |
// only one result. | |
static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { | |
assert(R.isSingleResult() && "Expected only a single result"); | |
const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); | |
return FD && | |
(FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); | |
} | |
ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, | |
LookupResult &R, bool NeedsADL, | |
bool AcceptInvalidDecl) { | |
// If this is a single, fully-resolved result and we don't need ADL, | |
// just build an ordinary singleton decl ref. | |
if (!NeedsADL && R.isSingleResult() && | |
!R.getAsSingle<FunctionTemplateDecl>() && | |
!ShouldLookupResultBeMultiVersionOverload(R)) | |
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), | |
R.getRepresentativeDecl(), nullptr, | |
AcceptInvalidDecl); | |
// We only need to check the declaration if there's exactly one | |
// result, because in the overloaded case the results can only be | |
// functions and function templates. | |
if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && | |
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) | |
return ExprError(); | |
// Otherwise, just build an unresolved lookup expression. Suppress | |
// any lookup-related diagnostics; we'll hash these out later, when | |
// we've picked a target. | |
R.suppressDiagnostics(); | |
UnresolvedLookupExpr *ULE | |
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(), | |
SS.getWithLocInContext(Context), | |
R.getLookupNameInfo(), | |
NeedsADL, R.isOverloadedResult(), | |
R.begin(), R.end()); | |
return ULE; | |
} | |
static void | |
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, | |
ValueDecl *var, DeclContext *DC); | |
/// Complete semantic analysis for a reference to the given declaration. | |
ExprResult Sema::BuildDeclarationNameExpr( | |
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, | |
NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, | |
bool AcceptInvalidDecl) { | |
assert(D && "Cannot refer to a NULL declaration"); | |
assert(!isa<FunctionTemplateDecl>(D) && | |
"Cannot refer unambiguously to a function template"); | |
SourceLocation Loc = NameInfo.getLoc(); | |
if (CheckDeclInExpr(*this, Loc, D)) | |
return ExprError(); | |
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { | |
// Specifically diagnose references to class templates that are missing | |
// a template argument list. | |
diagnoseMissingTemplateArguments(TemplateName(Template), Loc); | |
return ExprError(); | |
} | |
// Make sure that we're referring to a value. | |
ValueDecl *VD = dyn_cast<ValueDecl>(D); | |
if (!VD) { | |
Diag(Loc, diag::err_ref_non_value) | |
<< D << SS.getRange(); | |
Diag(D->getLocation(), diag::note_declared_at); | |
return ExprError(); | |
} | |
// Check whether this declaration can be used. Note that we suppress | |
// this check when we're going to perform argument-dependent lookup | |
// on this function name, because this might not be the function | |
// that overload resolution actually selects. | |
if (DiagnoseUseOfDecl(VD, Loc)) | |
return ExprError(); | |
// Only create DeclRefExpr's for valid Decl's. | |
if (VD->isInvalidDecl() && !AcceptInvalidDecl) | |
return ExprError(); | |
// Handle members of anonymous structs and unions. If we got here, | |
// and the reference is to a class member indirect field, then this | |
// must be the subject of a pointer-to-member expression. | |
if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) | |
if (!indirectField->isCXXClassMember()) | |
return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), | |
indirectField); | |
{ | |
QualType type = VD->getType(); | |
if (type.isNull()) | |
return ExprError(); | |
ExprValueKind valueKind = VK_RValue; | |
switch (D->getKind()) { | |
// Ignore all the non-ValueDecl kinds. | |
#define ABSTRACT_DECL(kind) | |
#define VALUE(type, base) | |
#define DECL(type, base) \ | |
case Decl::type: | |
#include "clang/AST/DeclNodes.inc" | |
llvm_unreachable("invalid value decl kind"); | |
// These shouldn't make it here. | |
case Decl::ObjCAtDefsField: | |
llvm_unreachable("forming non-member reference to ivar?"); | |
// Enum constants are always r-values and never references. | |
// Unresolved using declarations are dependent. | |
case Decl::EnumConstant: | |
case Decl::UnresolvedUsingValue: | |
case Decl::OMPDeclareReduction: | |
case Decl::OMPDeclareMapper: | |
valueKind = VK_RValue; | |
break; | |
// Fields and indirect fields that got here must be for | |
// pointer-to-member expressions; we just call them l-values for | |
// internal consistency, because this subexpression doesn't really | |
// exist in the high-level semantics. | |
case Decl::Field: | |
case Decl::IndirectField: | |
case Decl::ObjCIvar: | |
assert(getLangOpts().CPlusPlus && | |
"building reference to field in C?"); | |
// These can't have reference type in well-formed programs, but | |
// for internal consistency we do this anyway. | |
type = type.getNonReferenceType(); | |
valueKind = VK_LValue; | |
break; | |
// Non-type template parameters are either l-values or r-values | |
// depending on the type. | |
case Decl::NonTypeTemplateParm: { | |
if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { | |
type = reftype->getPointeeType(); | |
valueKind = VK_LValue; // even if the parameter is an r-value reference | |
break; | |
} | |
// For non-references, we need to strip qualifiers just in case | |
// the template parameter was declared as 'const int' or whatever. | |
valueKind = VK_RValue; | |
type = type.getUnqualifiedType(); | |
break; | |
} | |
case Decl::Var: | |
case Decl::VarTemplateSpecialization: | |
case Decl::VarTemplatePartialSpecialization: | |
case Decl::Decomposition: | |
case Decl::OMPCapturedExpr: | |
// In C, "extern void blah;" is valid and is an r-value. | |
if (!getLangOpts().CPlusPlus && | |
!type.hasQualifiers() && | |
type->isVoidType()) { | |
valueKind = VK_RValue; | |
break; | |
} | |
LLVM_FALLTHROUGH; | |
case Decl::ImplicitParam: | |
case Decl::ParmVar: { | |
// These are always l-values. | |
valueKind = VK_LValue; | |
type = type.getNonReferenceType(); | |
// FIXME: Does the addition of const really only apply in | |
// potentially-evaluated contexts? Since the variable isn't actually | |
// captured in an unevaluated context, it seems that the answer is no. | |
if (!isUnevaluatedContext()) { | |
QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); | |
if (!CapturedType.isNull()) | |
type = CapturedType; | |
} | |
break; | |
} | |
case Decl::Binding: { | |
// These are always lvalues. | |
valueKind = VK_LValue; | |
type = type.getNonReferenceType(); | |
// FIXME: Support lambda-capture of BindingDecls, once CWG actually | |
// decides how that's supposed to work. | |
auto *BD = cast<BindingDecl>(VD); | |
if (BD->getDeclContext() != CurContext) { | |
auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl()); | |
if (DD && DD->hasLocalStorage()) | |
diagnoseUncapturableValueReference(*this, Loc, BD, CurContext); | |
} | |
break; | |
} | |
case Decl::Function: { | |
if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { | |
if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) { | |
type = Context.BuiltinFnTy; | |
valueKind = VK_RValue; | |
break; | |
} | |
} | |
const FunctionType *fty = type->castAs<FunctionType>(); | |
// If we're referring to a function with an __unknown_anytype | |
// result type, make the entire expression __unknown_anytype. | |
if (fty->getReturnType() == Context.UnknownAnyTy) { | |
type = Context.UnknownAnyTy; | |
valueKind = VK_RValue; | |
break; | |
} | |
// Functions are l-values in C++. | |
if (getLangOpts().CPlusPlus) { | |
valueKind = VK_LValue; | |
break; | |
} | |
// C99 DR 316 says that, if a function type comes from a | |
// function definition (without a prototype), that type is only | |
// used for checking compatibility. Therefore, when referencing | |
// the function, we pretend that we don't have the full function | |
// type. | |
if (!cast<FunctionDecl>(VD)->hasPrototype() && | |
isa<FunctionProtoType>(fty)) | |
type = Context.getFunctionNoProtoType(fty->getReturnType(), | |
fty->getExtInfo()); | |
// Functions are r-values in C. | |
valueKind = VK_RValue; | |
break; | |
} | |
case Decl::CXXDeductionGuide: | |
llvm_unreachable("building reference to deduction guide"); | |
case Decl::MSProperty: | |
case Decl::MSGuid: | |
// FIXME: Should MSGuidDecl be subject to capture in OpenMP, | |
// or duplicated between host and device? | |
valueKind = VK_LValue; | |
break; | |
case Decl::CXXMethod: | |
// If we're referring to a method with an __unknown_anytype | |
// result type, make the entire expression __unknown_anytype. | |
// This should only be possible with a type written directly. | |
if (const FunctionProtoType *proto | |
= dyn_cast<FunctionProtoType>(VD->getType())) | |
if (proto->getReturnType() == Context.UnknownAnyTy) { | |
type = Context.UnknownAnyTy; | |
valueKind = VK_RValue; | |
break; | |
} | |
// C++ methods are l-values if static, r-values if non-static. | |
if (cast<CXXMethodDecl>(VD)->isStatic()) { | |
valueKind = VK_LValue; | |
break; | |
} | |
LLVM_FALLTHROUGH; | |
case Decl::CXXConversion: | |
case Decl::CXXDestructor: | |
case Decl::CXXConstructor: | |
valueKind = VK_RValue; | |
break; | |
} | |
return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, | |
/*FIXME: TemplateKWLoc*/ SourceLocation(), | |
TemplateArgs); | |
} | |
} | |
static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, | |
SmallString<32> &Target) { | |
Target.resize(CharByteWidth * (Source.size() + 1)); | |
char *ResultPtr = &Target[0]; | |
const llvm::UTF8 *ErrorPtr; | |
bool success = | |
llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); | |
(void)success; | |
assert(success); | |
Target.resize(ResultPtr - &Target[0]); | |
} | |
ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, | |
PredefinedExpr::IdentKind IK) { | |
// Pick the current block, lambda, captured statement or function. | |
Decl *currentDecl = nullptr; | |
if (const BlockScopeInfo *BSI = getCurBlock()) | |
currentDecl = BSI->TheDecl; | |
else if (const LambdaScopeInfo *LSI = getCurLambda()) | |
currentDecl = LSI->CallOperator; | |
else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) | |
currentDecl = CSI->TheCapturedDecl; | |
else | |
currentDecl = getCurFunctionOrMethodDecl(); | |
if (!currentDecl) { | |
Diag(Loc, diag::ext_predef_outside_function); | |
currentDecl = Context.getTranslationUnitDecl(); | |
} | |
QualType ResTy; | |
StringLiteral *SL = nullptr; | |
if (cast<DeclContext>(currentDecl)->isDependentContext()) | |
ResTy = Context.DependentTy; | |
else { | |
// Pre-defined identifiers are of type char[x], where x is the length of | |
// the string. | |
auto Str = PredefinedExpr::ComputeName(IK, currentDecl); | |
unsigned Length = Str.length(); | |
llvm::APInt LengthI(32, Length + 1); | |
if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { | |
ResTy = | |
Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); | |
SmallString<32> RawChars; | |
ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), | |
Str, RawChars); | |
ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | |
ArrayType::Normal, | |
/*IndexTypeQuals*/ 0); | |
SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, | |
/*Pascal*/ false, ResTy, Loc); | |
} else { | |
ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); | |
ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | |
ArrayType::Normal, | |
/*IndexTypeQuals*/ 0); | |
SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii, | |
/*Pascal*/ false, ResTy, Loc); | |
} | |
} | |
return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); | |
} | |
static std::pair<QualType, StringLiteral *> | |
GetUniqueStableNameInfo(ASTContext &Context, QualType OpType, | |
SourceLocation OpLoc, PredefinedExpr::IdentKind K) { | |
std::pair<QualType, StringLiteral*> Result{{}, nullptr}; | |
if (OpType->isDependentType()) { | |
Result.first = Context.DependentTy; | |
return Result; | |
} | |
std::string Str = PredefinedExpr::ComputeName(Context, K, OpType); | |
llvm::APInt Length(32, Str.length() + 1); | |
Result.first = | |
Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); | |
Result.first = Context.getConstantArrayType( | |
Result.first, Length, nullptr, ArrayType::Normal, /*IndexTypeQuals*/ 0); | |
Result.second = StringLiteral::Create(Context, Str, StringLiteral::Ascii, | |
/*Pascal*/ false, Result.first, OpLoc); | |
return Result; | |
} | |
ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc, | |
TypeSourceInfo *Operand) { | |
QualType ResultTy; | |
StringLiteral *SL; | |
std::tie(ResultTy, SL) = GetUniqueStableNameInfo( | |
Context, Operand->getType(), OpLoc, PredefinedExpr::UniqueStableNameType); | |
return PredefinedExpr::Create(Context, OpLoc, ResultTy, | |
PredefinedExpr::UniqueStableNameType, SL, | |
Operand); | |
} | |
ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc, | |
Expr *E) { | |
QualType ResultTy; | |
StringLiteral *SL; | |
std::tie(ResultTy, SL) = GetUniqueStableNameInfo( | |
Context, E->getType(), OpLoc, PredefinedExpr::UniqueStableNameExpr); | |
return PredefinedExpr::Create(Context, OpLoc, ResultTy, | |
PredefinedExpr::UniqueStableNameExpr, SL, E); | |
} | |
ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc, | |
SourceLocation L, SourceLocation R, | |
ParsedType Ty) { | |
TypeSourceInfo *TInfo = nullptr; | |
QualType T = GetTypeFromParser(Ty, &TInfo); | |
if (T.isNull()) | |
return ExprError(); | |
if (!TInfo) | |
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); | |
return BuildUniqueStableName(OpLoc, TInfo); | |
} | |
ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc, | |
SourceLocation L, SourceLocation R, | |
Expr *E) { | |
return BuildUniqueStableName(OpLoc, E); | |
} | |
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { | |
PredefinedExpr::IdentKind IK; | |
switch (Kind) { | |
default: llvm_unreachable("Unknown simple primary expr!"); | |
case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] | |
case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; | |
case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] | |
case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] | |
case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] | |
case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] | |
case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; | |
} | |
return BuildPredefinedExpr(Loc, IK); | |
} | |
ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { | |
SmallString<16> CharBuffer; | |
bool Invalid = false; | |
StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); | |
if (Invalid) | |
return ExprError(); | |
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), | |
PP, Tok.getKind()); | |
if (Literal.hadError()) | |
return ExprError(); | |
QualType Ty; | |
if (Literal.isWide()) | |
Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. | |
else if (Literal.isUTF8() && getLangOpts().Char8) | |
Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. | |
else if (Literal.isUTF16()) | |
Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. | |
else if (Literal.isUTF32()) | |
Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. | |
else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) | |
Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. | |
else | |
Ty = Context.CharTy; // 'x' -> char in C++ | |
CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; | |
if (Literal.isWide()) | |
Kind = CharacterLiteral::Wide; | |
else if (Literal.isUTF16()) | |
Kind = CharacterLiteral::UTF16; | |
else if (Literal.isUTF32()) | |
Kind = CharacterLiteral::UTF32; | |
else if (Literal.isUTF8()) | |
Kind = CharacterLiteral::UTF8; | |
Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, | |
Tok.getLocation()); | |
if (Literal.getUDSuffix().empty()) | |
return Lit; | |
// We're building a user-defined literal. | |
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | |
SourceLocation UDSuffixLoc = | |
getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | |
// Make sure we're allowed user-defined literals here. | |
if (!UDLScope) | |
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); | |
// C++11 [lex.ext]p6: The literal L is treated as a call of the form | |
// operator "" X (ch) | |
return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, | |
Lit, Tok.getLocation()); | |
} | |
ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { | |
unsigned IntSize = Context.getTargetInfo().getIntWidth(); | |
return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), | |
Context.IntTy, Loc); | |
} | |
static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, | |
QualType Ty, SourceLocation Loc) { | |
const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); | |
using llvm::APFloat; | |
APFloat Val(Format); | |
APFloat::opStatus result = Literal.GetFloatValue(Val); | |
// Overflow is always an error, but underflow is only an error if | |
// we underflowed to zero (APFloat reports denormals as underflow). | |
if ((result & APFloat::opOverflow) || | |
((result & APFloat::opUnderflow) && Val.isZero())) { | |
unsigned diagnostic; | |
SmallString<20> buffer; | |
if (result & APFloat::opOverflow) { | |
diagnostic = diag::warn_float_overflow; | |
APFloat::getLargest(Format).toString(buffer); | |
} else { | |
diagnostic = diag::warn_float_underflow; | |
APFloat::getSmallest(Format).toString(buffer); | |
} | |
S.Diag(Loc, diagnostic) | |
<< Ty | |
<< StringRef(buffer.data(), buffer.size()); | |
} | |
bool isExact = (result == APFloat::opOK); | |
return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); | |
} | |
bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { | |
assert(E && "Invalid expression"); | |
if (E->isValueDependent()) | |
return false; | |
QualType QT = E->getType(); | |
if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { | |
Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; | |
return true; | |
} | |
llvm::APSInt ValueAPS; | |
ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); | |
if (R.isInvalid()) | |
return true; | |
bool ValueIsPositive = ValueAPS.isStrictlyPositive(); | |
if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { | |
Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) | |
<< ValueAPS.toString(10) << ValueIsPositive; | |
return true; | |
} | |
return false; | |
} | |
ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { | |
// Fast path for a single digit (which is quite common). A single digit | |
// cannot have a trigraph, escaped newline, radix prefix, or suffix. | |
if (Tok.getLength() == 1) { | |
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); | |
return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); | |
} | |
SmallString<128> SpellingBuffer; | |
// NumericLiteralParser wants to overread by one character. Add padding to | |
// the buffer in case the token is copied to the buffer. If getSpelling() | |
// returns a StringRef to the memory buffer, it should have a null char at | |
// the EOF, so it is also safe. | |
SpellingBuffer.resize(Tok.getLength() + 1); | |
// Get the spelling of the token, which eliminates trigraphs, etc. | |
bool Invalid = false; | |
StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); | |
if (Invalid) | |
return ExprError(); | |
NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP); | |
if (Literal.hadError) | |
return ExprError(); | |
if (Literal.hasUDSuffix()) { | |
// We're building a user-defined literal. | |
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | |
SourceLocation UDSuffixLoc = | |
getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | |
// Make sure we're allowed user-defined literals here. | |
if (!UDLScope) | |
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); | |
QualType CookedTy; | |
if (Literal.isFloatingLiteral()) { | |
// C++11 [lex.ext]p4: If S contains a literal operator with parameter type | |
// long double, the literal is treated as a call of the form | |
// operator "" X (f L) | |
CookedTy = Context.LongDoubleTy; | |
} else { | |
// C++11 [lex.ext]p3: If S contains a literal operator with parameter type | |
// unsigned long long, the literal is treated as a call of the form | |
// operator "" X (n ULL) | |
CookedTy = Context.UnsignedLongLongTy; | |
} | |
DeclarationName OpName = | |
Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | |
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | |
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | |
SourceLocation TokLoc = Tok.getLocation(); | |
// Perform literal operator lookup to determine if we're building a raw | |
// literal or a cooked one. | |
LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | |
switch (LookupLiteralOperator(UDLScope, R, CookedTy, | |
/*AllowRaw*/ true, /*AllowTemplate*/ true, | |
/*AllowStringTemplate*/ false, | |
/*DiagnoseMissing*/ !Literal.isImaginary)) { | |
case LOLR_ErrorNoDiagnostic: | |
// Lookup failure for imaginary constants isn't fatal, there's still the | |
// GNU extension producing _Complex types. | |
break; | |
case LOLR_Error: | |
return ExprError(); | |
case LOLR_Cooked: { | |
Expr *Lit; | |
if (Literal.isFloatingLiteral()) { | |
Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); | |
} else { | |
llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); | |
if (Literal.GetIntegerValue(ResultVal)) | |
Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | |
<< /* Unsigned */ 1; | |
Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, | |
Tok.getLocation()); | |
} | |
return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | |
} | |
case LOLR_Raw: { | |
// C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the | |
// literal is treated as a call of the form | |
// operator "" X ("n") | |
unsigned Length = Literal.getUDSuffixOffset(); | |
QualType StrTy = Context.getConstantArrayType( | |
Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), | |
llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); | |
Expr *Lit = StringLiteral::Create( | |
Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii, | |
/*Pascal*/false, StrTy, &TokLoc, 1); | |
return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | |
} | |
case LOLR_Template: { | |
// C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator | |
// template), L is treated as a call fo the form | |
// operator "" X <'c1', 'c2', ... 'ck'>() | |
// where n is the source character sequence c1 c2 ... ck. | |
TemplateArgumentListInfo ExplicitArgs; | |
unsigned CharBits = Context.getIntWidth(Context.CharTy); | |
bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); | |
llvm::APSInt Value(CharBits, CharIsUnsigned); | |
for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { | |
Value = TokSpelling[I]; | |
TemplateArgument Arg(Context, Value, Context.CharTy); | |
TemplateArgumentLocInfo ArgInfo; | |
ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | |
} | |
return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc, | |
&ExplicitArgs); | |
} | |
case LOLR_StringTemplate: | |
llvm_unreachable("unexpected literal operator lookup result"); | |
} | |
} | |
Expr *Res; | |
if (Literal.isFixedPointLiteral()) { | |
QualType Ty; | |
if (Literal.isAccum) { | |
if (Literal.isHalf) { | |
Ty = Context.ShortAccumTy; | |
} else if (Literal.isLong) { | |
Ty = Context.LongAccumTy; | |
} else { | |
Ty = Context.AccumTy; | |
} | |
} else if (Literal.isFract) { | |
if (Literal.isHalf) { | |
Ty = Context.ShortFractTy; | |
} else if (Literal.isLong) { | |
Ty = Context.LongFractTy; | |
} else { | |
Ty = Context.FractTy; | |
} | |
} | |
if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); | |
bool isSigned = !Literal.isUnsigned; | |
unsigned scale = Context.getFixedPointScale(Ty); | |
unsigned bit_width = Context.getTypeInfo(Ty).Width; | |
llvm::APInt Val(bit_width, 0, isSigned); | |
bool Overflowed = Literal.GetFixedPointValue(Val, scale); | |
bool ValIsZero = Val.isNullValue() && !Overflowed; | |
auto MaxVal = Context.getFixedPointMax(Ty).getValue(); | |
if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) | |
// Clause 6.4.4 - The value of a constant shall be in the range of | |
// representable values for its type, with exception for constants of a | |
// fract type with a value of exactly 1; such a constant shall denote | |
// the maximal value for the type. | |
--Val; | |
else if (Val.ugt(MaxVal) || Overflowed) | |
Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); | |
Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, | |
Tok.getLocation(), scale); | |
} else if (Literal.isFloatingLiteral()) { | |
QualType Ty; | |
if (Literal.isHalf){ | |
if (getOpenCLOptions().isEnabled("cl_khr_fp16")) | |
Ty = Context.HalfTy; | |
else { | |
Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); | |
return ExprError(); | |
} | |
} else if (Literal.isFloat) | |
Ty = Context.FloatTy; | |
else if (Literal.isLong) | |
Ty = Context.LongDoubleTy; | |
else if (Literal.isFloat16) | |
Ty = Context.Float16Ty; | |
else if (Literal.isFloat128) | |
Ty = Context.Float128Ty; | |
else | |
Ty = Context.DoubleTy; | |
Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); | |
if (Ty == Context.DoubleTy) { | |
if (getLangOpts().SinglePrecisionConstants) { | |
const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | |
if (BTy->getKind() != BuiltinType::Float) { | |
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | |
} | |
} else if (getLangOpts().OpenCL && | |
!getOpenCLOptions().isEnabled("cl_khr_fp64")) { | |
// Impose single-precision float type when cl_khr_fp64 is not enabled. | |
Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64); | |
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | |
} | |
} | |
} else if (!Literal.isIntegerLiteral()) { | |
return ExprError(); | |
} else { | |
QualType Ty; | |
// 'long long' is a C99 or C++11 feature. | |
if (!getLangOpts().C99 && Literal.isLongLong) { | |
if (getLangOpts().CPlusPlus) | |
Diag(Tok.getLocation(), | |
getLangOpts().CPlusPlus11 ? | |
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | |
else | |
Diag(Tok.getLocation(), diag::ext_c99_longlong); | |
} | |
// Get the value in the widest-possible width. | |
unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth(); | |
llvm::APInt ResultVal(MaxWidth, 0); | |
if (Literal.GetIntegerValue(ResultVal)) { | |
// If this value didn't fit into uintmax_t, error and force to ull. | |
Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | |
<< /* Unsigned */ 1; | |
Ty = Context.UnsignedLongLongTy; | |
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && | |
"long long is not intmax_t?"); | |
} else { | |
// If this value fits into a ULL, try to figure out what else it fits into | |
// according to the rules of C99 6.4.4.1p5. | |
// Octal, Hexadecimal, and integers with a U suffix are allowed to | |
// be an unsigned int. | |
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; | |
// Check from smallest to largest, picking the smallest type we can. | |
unsigned Width = 0; | |
// Microsoft specific integer suffixes are explicitly sized. | |
if (Literal.MicrosoftInteger) { | |
if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { | |
Width = 8; | |
Ty = Context.CharTy; | |
} else { | |
Width = Literal.MicrosoftInteger; | |
Ty = Context.getIntTypeForBitwidth(Width, | |
/*Signed=*/!Literal.isUnsigned); | |
} | |
} | |
if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) { | |
// Are int/unsigned possibilities? | |
unsigned IntSize = Context.getTargetInfo().getIntWidth(); | |
// Does it fit in a unsigned int? | |
if (ResultVal.isIntN(IntSize)) { | |
// Does it fit in a signed int? | |
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) | |
Ty = Context.IntTy; | |
else if (AllowUnsigned) | |
Ty = Context.UnsignedIntTy; | |
Width = IntSize; | |
} | |
} | |
// Are long/unsigned long possibilities? | |
if (Ty.isNull() && !Literal.isLongLong) { | |
unsigned LongSize = Context.getTargetInfo().getLongWidth(); | |
// Does it fit in a unsigned long? | |
if (ResultVal.isIntN(LongSize)) { | |
// Does it fit in a signed long? | |
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) | |
Ty = Context.LongTy; | |
else if (AllowUnsigned) | |
Ty = Context.UnsignedLongTy; | |
// Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 | |
// is compatible. | |
else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { | |
const unsigned LongLongSize = | |
Context.getTargetInfo().getLongLongWidth(); | |
Diag(Tok.getLocation(), | |
getLangOpts().CPlusPlus | |
? Literal.isLong | |
? diag::warn_old_implicitly_unsigned_long_cxx | |
: /*C++98 UB*/ diag:: | |
ext_old_implicitly_unsigned_long_cxx | |
: diag::warn_old_implicitly_unsigned_long) | |
<< (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 | |
: /*will be ill-formed*/ 1); | |
Ty = Context.UnsignedLongTy; | |
} | |
Width = LongSize; | |
} | |
} | |
// Check long long if needed. | |
if (Ty.isNull()) { | |
unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); | |
// Does it fit in a unsigned long long? | |
if (ResultVal.isIntN(LongLongSize)) { | |
// Does it fit in a signed long long? | |
// To be compatible with MSVC, hex integer literals ending with the | |
// LL or i64 suffix are always signed in Microsoft mode. | |
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || | |
(getLangOpts().MSVCCompat && Literal.isLongLong))) | |
Ty = Context.LongLongTy; | |
else if (AllowUnsigned) | |
Ty = Context.UnsignedLongLongTy; | |
Width = LongLongSize; | |
} | |
} | |
// If we still couldn't decide a type, we probably have something that | |
// does not fit in a signed long long, but has no U suffix. | |
if (Ty.isNull()) { | |
Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed); | |
Ty = Context.UnsignedLongLongTy; | |
Width = Context.getTargetInfo().getLongLongWidth(); | |
} | |
if (ResultVal.getBitWidth() != Width) | |
ResultVal = ResultVal.trunc(Width); | |
} | |
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); | |
} | |
// If this is an imaginary literal, create the ImaginaryLiteral wrapper. | |
if (Literal.isImaginary) { | |
Res = new (Context) ImaginaryLiteral(Res, | |
Context.getComplexType(Res->getType())); | |
Diag(Tok.getLocation(), diag::ext_imaginary_constant); | |
} | |
return Res; | |
} | |
ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { | |
assert(E && "ActOnParenExpr() missing expr"); | |
return new (Context) ParenExpr(L, R, E); | |
} | |
static bool CheckVecStepTraitOperandType(Sema &S, QualType T, | |
SourceLocation Loc, | |
SourceRange ArgRange) { | |
// [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in | |
// scalar or vector data type argument..." | |
// Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic | |
// type (C99 6.2.5p18) or void. | |
if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { | |
S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) | |
<< T << ArgRange; | |
return true; | |
} | |
assert((T->isVoidType() || !T->isIncompleteType()) && | |
"Scalar types should always be complete"); | |
return false; | |
} | |
static bool CheckExtensionTraitOperandType(Sema &S, QualType T, | |
SourceLocation Loc, | |
SourceRange ArgRange, | |
UnaryExprOrTypeTrait TraitKind) { | |
// Invalid types must be hard errors for SFINAE in C++. | |
if (S.LangOpts.CPlusPlus) | |
return true; | |
// C99 6.5.3.4p1: | |
if (T->isFunctionType() && | |
(TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || | |
TraitKind == UETT_PreferredAlignOf)) { | |
// sizeof(function)/alignof(function) is allowed as an extension. | |
S.Diag(Loc, diag::ext_sizeof_alignof_function_type) | |
<< TraitKind << ArgRange; | |
return false; | |
} | |
// Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where | |
// this is an error (OpenCL v1.1 s6.3.k) | |
if (T->isVoidType()) { | |
unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type | |
: diag::ext_sizeof_alignof_void_type; | |
S.Diag(Loc, DiagID) << TraitKind << ArgRange; | |
return false; | |
} | |
return true; | |
} | |
static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, | |
SourceLocation Loc, | |
SourceRange ArgRange, | |
UnaryExprOrTypeTrait TraitKind) { | |
// Reject sizeof(interface) and sizeof(interface<proto>) if the | |
// runtime doesn't allow it. | |
if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { | |
S.Diag(Loc, diag::err_sizeof_nonfragile_interface) | |
<< T << (TraitKind == UETT_SizeOf) | |
<< ArgRange; | |
return true; | |
} | |
return false; | |
} | |
/// Check whether E is a pointer from a decayed array type (the decayed | |
/// pointer type is equal to T) and emit a warning if it is. | |
static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, | |
Expr *E) { | |
// Don't warn if the operation changed the type. | |
if (T != E->getType()) | |
return; | |
// Now look for array decays. | |
ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E); | |
if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) | |
return; | |
S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() | |
<< ICE->getType() | |
<< ICE->getSubExpr()->getType(); | |
} | |
/// Check the constraints on expression operands to unary type expression | |
/// and type traits. | |
/// | |
/// Completes any types necessary and validates the constraints on the operand | |
/// expression. The logic mostly mirrors the type-based overload, but may modify | |
/// the expression as it completes the type for that expression through template | |
/// instantiation, etc. | |
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, | |
UnaryExprOrTypeTrait ExprKind) { | |
QualType ExprTy = E->getType(); | |
assert(!ExprTy->isReferenceType()); | |
bool IsUnevaluatedOperand = | |
(ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || | |
ExprKind == UETT_PreferredAlignOf); | |
if (IsUnevaluatedOperand) { | |
ExprResult Result = CheckUnevaluatedOperand(E); | |
if (Result.isInvalid()) | |
return true; | |
E = Result.get(); | |
} | |
if (ExprKind == UETT_VecStep) | |
return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), | |
E->getSourceRange()); | |
// Whitelist some types as extensions | |
if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), | |
E->getSourceRange(), ExprKind)) | |
return false; | |
// 'alignof' applied to an expression only requires the base element type of | |
// the expression to be complete. 'sizeof' requires the expression's type to | |
// be complete (and will attempt to complete it if it's an array of unknown | |
// bound). | |
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | |
if (RequireCompleteSizedType( | |
E->getExprLoc(), Context.getBaseElementType(E->getType()), | |
diag::err_sizeof_alignof_incomplete_or_sizeless_type, ExprKind, | |
E->getSourceRange())) | |
return true; | |
} else { | |
if (RequireCompleteSizedExprType( | |
E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, ExprKind, | |
E->getSourceRange())) | |
return true; | |
} | |
// Completing the expression's type may have changed it. | |
ExprTy = E->getType(); | |
assert(!ExprTy->isReferenceType()); | |
if (ExprTy->isFunctionType()) { | |
Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) | |
<< ExprKind << E->getSourceRange(); | |
return true; | |
} | |
// The operand for sizeof and alignof is in an unevaluated expression context, | |
// so side effects could result in unintended consequences. | |
if (IsUnevaluatedOperand && !inTemplateInstantiation() && | |
E->HasSideEffects(Context, false)) | |
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | |
if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), | |
E->getSourceRange(), ExprKind)) | |
return true; | |
if (ExprKind == UETT_SizeOf) { | |
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | |
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { | |
QualType OType = PVD->getOriginalType(); | |
QualType Type = PVD->getType(); | |
if (Type->isPointerType() && OType->isArrayType()) { | |
Diag(E->getExprLoc(), diag::warn_sizeof_array_param) | |
<< Type << OType; | |
Diag(PVD->getLocation(), diag::note_declared_at); | |
} | |
} | |
} | |
// Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array | |
// decays into a pointer and returns an unintended result. This is most | |
// likely a typo for "sizeof(array) op x". | |
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { | |
warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | |
BO->getLHS()); | |
warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | |
BO->getRHS()); | |
} | |
} | |
return false; | |
} | |
/// Check the constraints on operands to unary expression and type | |
/// traits. | |
/// | |
/// This will complete any types necessary, and validate the various constraints | |
/// on those operands. | |
/// | |
/// The UsualUnaryConversions() function is *not* called by this routine. | |
/// C99 6.3.2.1p[2-4] all state: | |
/// Except when it is the operand of the sizeof operator ... | |
/// | |
/// C++ [expr.sizeof]p4 | |
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer | |
/// standard conversions are not applied to the operand of sizeof. | |
/// | |
/// This policy is followed for all of the unary trait expressions. | |
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, | |
SourceLocation OpLoc, | |
SourceRange ExprRange, | |
UnaryExprOrTypeTrait ExprKind) { | |
if (ExprType->isDependentType()) | |
return false; | |
// C++ [expr.sizeof]p2: | |
// When applied to a reference or a reference type, the result | |
// is the size of the referenced type. | |
// C++11 [expr.alignof]p3: | |
// When alignof is applied to a reference type, the result | |
// shall be the alignment of the referenced type. | |
if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) | |
ExprType = Ref->getPointeeType(); | |
// C11 6.5.3.4/3, C++11 [expr.alignof]p3: | |
// When alignof or _Alignof is applied to an array type, the result | |
// is the alignment of the element type. | |
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || | |
ExprKind == UETT_OpenMPRequiredSimdAlign) | |
ExprType = Context.getBaseElementType(ExprType); | |
if (ExprKind == UETT_VecStep) | |
return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); | |
// Whitelist some types as extensions | |
if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, | |
ExprKind)) | |
return false; | |
if (RequireCompleteSizedType( | |
OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, | |
ExprKind, ExprRange)) | |
return true; | |
if (ExprType->isFunctionType()) { | |
Diag(OpLoc, diag::err_sizeof_alignof_function_type) | |
<< ExprKind << ExprRange; | |
return true; | |
} | |
if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, | |
ExprKind)) | |
return true; | |
return false; | |
} | |
static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { | |
// Cannot know anything else if the expression is dependent. | |
if (E->isTypeDependent()) | |
return false; | |
if (E->getObjectKind() == OK_BitField) { | |
S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) | |
<< 1 << E->getSourceRange(); | |
return true; | |
} | |
ValueDecl *D = nullptr; | |
Expr *Inner = E->IgnoreParens(); | |
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) { | |
D = DRE->getDecl(); | |
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) { | |
D = ME->getMemberDecl(); | |
} | |
// If it's a field, require the containing struct to have a | |
// complete definition so that we can compute the layout. | |
// | |
// This can happen in C++11 onwards, either by naming the member | |
// in a way that is not transformed into a member access expression | |
// (in an unevaluated operand, for instance), or by naming the member | |
// in a trailing-return-type. | |
// | |
// For the record, since __alignof__ on expressions is a GCC | |
// extension, GCC seems to permit this but always gives the | |
// nonsensical answer 0. | |
// | |
// We don't really need the layout here --- we could instead just | |
// directly check for all the appropriate alignment-lowing | |
// attributes --- but that would require duplicating a lot of | |
// logic that just isn't worth duplicating for such a marginal | |
// use-case. | |
if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { | |
// Fast path this check, since we at least know the record has a | |
// definition if we can find a member of it. | |
if (!FD->getParent()->isCompleteDefinition()) { | |
S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) | |
<< E->getSourceRange(); | |
return true; | |
} | |
// Otherwise, if it's a field, and the field doesn't have | |
// reference type, then it must have a complete type (or be a | |
// flexible array member, which we explicitly want to | |
// white-list anyway), which makes the following checks trivial. | |
if (!FD->getType()->isReferenceType()) | |
return false; | |
} | |
return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); | |
} | |
bool Sema::CheckVecStepExpr(Expr *E) { | |
E = E->IgnoreParens(); | |
// Cannot know anything else if the expression is dependent. | |
if (E->isTypeDependent()) | |
return false; | |
return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); | |
} | |
static void captureVariablyModifiedType(ASTContext &Context, QualType T, | |
CapturingScopeInfo *CSI) { | |
assert(T->isVariablyModifiedType()); | |
assert(CSI != nullptr); | |
// We're going to walk down into the type and look for VLA expressions. | |
do { | |
const Type *Ty = T.getTypePtr(); | |
switch (Ty->getTypeClass()) { | |
#define TYPE(Class, Base) | |
#define ABSTRACT_TYPE(Class, Base) | |
#define NON_CANONICAL_TYPE(Class, Base) | |
#define DEPENDENT_TYPE(Class, Base) case Type::Class: | |
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) | |
#include "clang/AST/TypeNodes.inc" | |
T = QualType(); | |
break; | |
// These types are never variably-modified. | |
case Type::Builtin: | |
case Type::Complex: | |
case Type::Vector: | |
case Type::ExtVector: | |
case Type::Record: | |
case Type::Enum: | |
case Type::Elaborated: | |
case Type::TemplateSpecialization: | |
case Type::ObjCObject: | |
case Type::ObjCInterface: | |
case Type::ObjCObjectPointer: | |
case Type::ObjCTypeParam: | |
case Type::Pipe: | |
case Type::ExtInt: | |
llvm_unreachable("type class is never variably-modified!"); | |
case Type::Adjusted: | |
T = cast<AdjustedType>(Ty)->getOriginalType(); | |
break; | |
case Type::Decayed: | |
T = cast<DecayedType>(Ty)->getPointeeType(); | |
break; | |
case Type::Pointer: | |
T = cast<PointerType>(Ty)->getPointeeType(); | |
break; | |
case Type::BlockPointer: | |
T = cast<BlockPointerType>(Ty)->getPointeeType(); | |
break; | |
case Type::LValueReference: | |
case Type::RValueReference: | |
T = cast<ReferenceType>(Ty)->getPointeeType(); | |
break; | |
case Type::MemberPointer: | |
T = cast<MemberPointerType>(Ty)->getPointeeType(); | |
break; | |
case Type::ConstantArray: | |
case Type::IncompleteArray: | |
// Losing element qualification here is fine. | |
T = cast<ArrayType>(Ty)->getElementType(); | |
break; | |
case Type::VariableArray: { | |
// Losing element qualification here is fine. | |
const VariableArrayType *VAT = cast<VariableArrayType>(Ty); | |
// Unknown size indication requires no size computation. | |
// Otherwise, evaluate and record it. | |
auto Size = VAT->getSizeExpr(); | |
if (Size && !CSI->isVLATypeCaptured(VAT) && | |
(isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI))) | |
CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); | |
T = VAT->getElementType(); | |
break; | |
} | |
case Type::FunctionProto: | |
case Type::FunctionNoProto: | |
T = cast<FunctionType>(Ty)->getReturnType(); | |
break; | |
case Type::Paren: | |
case Type::TypeOf: | |
case Type::UnaryTransform: | |
case Type::Attributed: | |
case Type::SubstTemplateTypeParm: | |
case Type::PackExpansion: | |
case Type::MacroQualified: | |
// Keep walking after single level desugaring. | |
T = T.getSingleStepDesugaredType(Context); | |
break; | |
case Type::Typedef: | |
T = cast<TypedefType>(Ty)->desugar(); | |
break; | |
case Type::Decltype: | |
T = cast<DecltypeType>(Ty)->desugar(); | |
break; | |
case Type::Auto: | |
case Type::DeducedTemplateSpecialization: | |
T = cast<DeducedType>(Ty)->getDeducedType(); | |
break; | |
case Type::TypeOfExpr: | |
T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); | |
break; | |
case Type::Atomic: | |
T = cast<AtomicType>(Ty)->getValueType(); | |
break; | |
} | |
} while (!T.isNull() && T->isVariablyModifiedType()); | |
} | |
/// Build a sizeof or alignof expression given a type operand. | |
ExprResult | |
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, | |
SourceLocation OpLoc, | |
UnaryExprOrTypeTrait ExprKind, | |
SourceRange R) { | |
if (!TInfo) | |
return ExprError(); | |
QualType T = TInfo->getType(); | |
if (!T->isDependentType() && | |
CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) | |
return ExprError(); | |
if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { | |
if (auto *TT = T->getAs<TypedefType>()) { | |
for (auto I = FunctionScopes.rbegin(), | |
E = std::prev(FunctionScopes.rend()); | |
I != E; ++I) { | |
auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | |
if (CSI == nullptr) | |
break; | |
DeclContext *DC = nullptr; | |
if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | |
DC = LSI->CallOperator; | |
else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | |
DC = CRSI->TheCapturedDecl; | |
else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | |
DC = BSI->TheDecl; | |
if (DC) { | |
if (DC->containsDecl(TT->getDecl())) | |
break; | |
captureVariablyModifiedType(Context, T, CSI); | |
} | |
} | |
} | |
} | |
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | |
return new (Context) UnaryExprOrTypeTraitExpr( | |
ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); | |
} | |
/// Build a sizeof or alignof expression given an expression | |
/// operand. | |
ExprResult | |
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, | |
UnaryExprOrTypeTrait ExprKind) { | |
ExprResult PE = CheckPlaceholderExpr(E); | |
if (PE.isInvalid()) | |
return ExprError(); | |
E = PE.get(); | |
// Verify that the operand is valid. | |
bool isInvalid = false; | |
if (E->isTypeDependent()) { | |
// Delay type-checking for type-dependent expressions. | |
} else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | |
isInvalid = CheckAlignOfExpr(*this, E, ExprKind); | |
} else if (ExprKind == UETT_VecStep) { | |
isInvalid = CheckVecStepExpr(E); | |
} else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { | |
Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); | |
isInvalid = true; | |
} else if (E->refersToBitField()) { // C99 6.5.3.4p1. | |
Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; | |
isInvalid = true; | |
} else { | |
isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); | |
} | |
if (isInvalid) | |
return ExprError(); | |
if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { | |
PE = TransformToPotentiallyEvaluated(E); | |
if (PE.isInvalid()) return ExprError(); | |
E = PE.get(); | |
} | |
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | |
return new (Context) UnaryExprOrTypeTraitExpr( | |
ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); | |
} | |
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c | |
/// expr and the same for @c alignof and @c __alignof | |
/// Note that the ArgRange is invalid if isType is false. | |
ExprResult | |
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, | |
UnaryExprOrTypeTrait ExprKind, bool IsType, | |
void *TyOrEx, SourceRange ArgRange) { | |
// If error parsing type, ignore. | |
if (!TyOrEx) return ExprError(); | |
if (IsType) { | |
TypeSourceInfo *TInfo; | |
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); | |
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); | |
} | |
Expr *ArgEx = (Expr *)TyOrEx; | |
ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); | |
return Result; | |
} | |
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, | |
bool IsReal) { | |
if (V.get()->isTypeDependent()) | |
return S.Context.DependentTy; | |
// _Real and _Imag are only l-values for normal l-values. | |
if (V.get()->getObjectKind() != OK_Ordinary) { | |
V = S.DefaultLvalueConversion(V.get()); | |
if (V.isInvalid()) | |
return QualType(); | |
} | |
// These operators return the element type of a complex type. | |
if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) | |
return CT->getElementType(); | |
// Otherwise they pass through real integer and floating point types here. | |
if (V.get()->getType()->isArithmeticType()) | |
return V.get()->getType(); | |
// Test for placeholders. | |
ExprResult PR = S.CheckPlaceholderExpr(V.get()); | |
if (PR.isInvalid()) return QualType(); | |
if (PR.get() != V.get()) { | |
V = PR; | |
return CheckRealImagOperand(S, V, Loc, IsReal); | |
} | |
// Reject anything else. | |
S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() | |
<< (IsReal ? "__real" : "__imag"); | |
return QualType(); | |
} | |
ExprResult | |
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, | |
tok::TokenKind Kind, Expr *Input) { | |
UnaryOperatorKind Opc; | |
switch (Kind) { | |
default: llvm_unreachable("Unknown unary op!"); | |
case tok::plusplus: Opc = UO_PostInc; break; | |
case tok::minusminus: Opc = UO_PostDec; break; | |
} | |
// Since this might is a postfix expression, get rid of ParenListExprs. | |
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); | |
if (Result.isInvalid()) return ExprError(); | |
Input = Result.get(); | |
return BuildUnaryOp(S, OpLoc, Opc, Input); | |
} | |
/// Diagnose if arithmetic on the given ObjC pointer is illegal. | |
/// | |
/// \return true on error | |
static bool checkArithmeticOnObjCPointer(Sema &S, | |
SourceLocation opLoc, | |
Expr *op) { | |
assert(op->getType()->isObjCObjectPointerType()); | |
if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && | |
!S.LangOpts.ObjCSubscriptingLegacyRuntime) | |
return false; | |
S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) | |
<< op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() | |
<< op->getSourceRange(); | |
return true; | |
} | |
static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { | |
auto *BaseNoParens = Base->IgnoreParens(); | |
if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) | |
return MSProp->getPropertyDecl()->getType()->isArrayType(); | |
return isa<MSPropertySubscriptExpr>(BaseNoParens); | |
} | |
ExprResult | |
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc, | |
Expr *idx, SourceLocation rbLoc) { | |
if (base && !base->getType().isNull() && | |
base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection)) | |
return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(), | |
/*Length=*/nullptr, rbLoc); | |
// Since this might be a postfix expression, get rid of ParenListExprs. | |
if (isa<ParenListExpr>(base)) { | |
ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); | |
if (result.isInvalid()) return ExprError(); | |
base = result.get(); | |
} | |
// A comma-expression as the index is deprecated in C++2a onwards. | |
if (getLangOpts().CPlusPlus20 && | |
((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) || | |
(isa<CXXOperatorCallExpr>(idx) && | |
cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) { | |
Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) | |
<< SourceRange(base->getBeginLoc(), rbLoc); | |
} | |
// Handle any non-overload placeholder types in the base and index | |
// expressions. We can't handle overloads here because the other | |
// operand might be an overloadable type, in which case the overload | |
// resolution for the operator overload should get the first crack | |
// at the overload. | |
bool IsMSPropertySubscript = false; | |
if (base->getType()->isNonOverloadPlaceholderType()) { | |
IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); | |
if (!IsMSPropertySubscript) { | |
ExprResult result = CheckPlaceholderExpr(base); | |
if (result.isInvalid()) | |
return ExprError(); | |
base = result.get(); | |
} | |
} | |
if (idx->getType()->isNonOverloadPlaceholderType()) { | |
ExprResult result = CheckPlaceholderExpr(idx); | |
if (result.isInvalid()) return ExprError(); | |
idx = result.get(); | |
} | |
// Build an unanalyzed expression if either operand is type-dependent. | |
if (getLangOpts().CPlusPlus && | |
(base->isTypeDependent() || idx->isTypeDependent())) { | |
return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy, | |
VK_LValue, OK_Ordinary, rbLoc); | |
} | |
// MSDN, property (C++) | |
// https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx | |
// This attribute can also be used in the declaration of an empty array in a | |
// class or structure definition. For example: | |
// __declspec(property(get=GetX, put=PutX)) int x[]; | |
// The above statement indicates that x[] can be used with one or more array | |
// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), | |
// and p->x[a][b] = i will be turned into p->PutX(a, b, i); | |
if (IsMSPropertySubscript) { | |
// Build MS property subscript expression if base is MS property reference | |
// or MS property subscript. | |
return new (Context) MSPropertySubscriptExpr( | |
base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc); | |
} | |
// Use C++ overloaded-operator rules if either operand has record | |
// type. The spec says to do this if either type is *overloadable*, | |
// but enum types can't declare subscript operators or conversion | |
// operators, so there's nothing interesting for overload resolution | |
// to do if there aren't any record types involved. | |
// | |
// ObjC pointers have their own subscripting logic that is not tied | |
// to overload resolution and so should not take this path. | |
if (getLangOpts().CPlusPlus && | |
(base->getType()->isRecordType() || | |
(!base->getType()->isObjCObjectPointerType() && | |
idx->getType()->isRecordType()))) { | |
return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx); | |
} | |
ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc); | |
if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get())) | |
CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get())); | |
return Res; | |
} | |
void Sema::CheckAddressOfNoDeref(const Expr *E) { | |
ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | |
const Expr *StrippedExpr = E->IgnoreParenImpCasts(); | |
// For expressions like `&(*s).b`, the base is recorded and what should be | |
// checked. | |
const MemberExpr *Member = nullptr; | |
while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow()) | |
StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); | |
LastRecord.PossibleDerefs.erase(StrippedExpr); | |
} | |
void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { | |
QualType ResultTy = E->getType(); | |
ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | |
// Bail if the element is an array since it is not memory access. | |
if (isa<ArrayType>(ResultTy)) | |
return; | |
if (ResultTy->hasAttr(attr::NoDeref)) { | |
LastRecord.PossibleDerefs.insert(E); | |
return; | |
} | |
// Check if the base type is a pointer to a member access of a struct | |
// marked with noderef. | |
const Expr *Base = E->getBase(); | |
QualType BaseTy = Base->getType(); | |
if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy))) | |
// Not a pointer access | |
return; | |
const MemberExpr *Member = nullptr; | |
while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) && | |
Member->isArrow()) | |
Base = Member->getBase(); | |
if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) { | |
if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) | |
LastRecord.PossibleDerefs.insert(E); | |
} | |
} | |
ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, | |
Expr *LowerBound, | |
SourceLocation ColonLoc, Expr *Length, | |
SourceLocation RBLoc) { | |
if (Base->getType()->isPlaceholderType() && | |
!Base->getType()->isSpecificPlaceholderType( | |
BuiltinType::OMPArraySection)) { | |
ExprResult Result = CheckPlaceholderExpr(Base); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Base = Result.get(); | |
} | |
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { | |
ExprResult Result = CheckPlaceholderExpr(LowerBound); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Result = DefaultLvalueConversion(Result.get()); | |
if (Result.isInvalid()) | |
return ExprError(); | |
LowerBound = Result.get(); | |
} | |
if (Length && Length->getType()->isNonOverloadPlaceholderType()) { | |
ExprResult Result = CheckPlaceholderExpr(Length); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Result = DefaultLvalueConversion(Result.get()); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Length = Result.get(); | |
} | |
// Build an unanalyzed expression if either operand is type-dependent. | |
if (Base->isTypeDependent() || | |
(LowerBound && | |
(LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || | |
(Length && (Length->isTypeDependent() || Length->isValueDependent()))) { | |
return new (Context) | |
OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy, | |
VK_LValue, OK_Ordinary, ColonLoc, RBLoc); | |
} | |
// Perform default conversions. | |
QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); | |
QualType ResultTy; | |
if (OriginalTy->isAnyPointerType()) { | |
ResultTy = OriginalTy->getPointeeType(); | |
} else if (OriginalTy->isArrayType()) { | |
ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); | |
} else { | |
return ExprError( | |
Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) | |
<< Base->getSourceRange()); | |
} | |
// C99 6.5.2.1p1 | |
if (LowerBound) { | |
auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), | |
LowerBound); | |
if (Res.isInvalid()) | |
return ExprError(Diag(LowerBound->getExprLoc(), | |
diag::err_omp_typecheck_section_not_integer) | |
<< 0 << LowerBound->getSourceRange()); | |
LowerBound = Res.get(); | |
if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |
LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |
Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) | |
<< 0 << LowerBound->getSourceRange(); | |
} | |
if (Length) { | |
auto Res = | |
PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); | |
if (Res.isInvalid()) | |
return ExprError(Diag(Length->getExprLoc(), | |
diag::err_omp_typecheck_section_not_integer) | |
<< 1 << Length->getSourceRange()); | |
Length = Res.get(); | |
if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |
Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |
Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) | |
<< 1 << Length->getSourceRange(); | |
} | |
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | |
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object | |
// type. Note that functions are not objects, and that (in C99 parlance) | |
// incomplete types are not object types. | |
if (ResultTy->isFunctionType()) { | |
Diag(Base->getExprLoc(), diag::err_omp_section_function_type) | |
<< ResultTy << Base->getSourceRange(); | |
return ExprError(); | |
} | |
if (RequireCompleteType(Base->getExprLoc(), ResultTy, | |
diag::err_omp_section_incomplete_type, Base)) | |
return ExprError(); | |
if (LowerBound && !OriginalTy->isAnyPointerType()) { | |
Expr::EvalResult Result; | |
if (LowerBound->EvaluateAsInt(Result, Context)) { | |
// OpenMP 4.5, [2.4 Array Sections] | |
// The array section must be a subset of the original array. | |
llvm::APSInt LowerBoundValue = Result.Val.getInt(); | |
if (LowerBoundValue.isNegative()) { | |
Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) | |
<< LowerBound->getSourceRange(); | |
return ExprError(); | |
} | |
} | |
} | |
if (Length) { | |
Expr::EvalResult Result; | |
if (Length->EvaluateAsInt(Result, Context)) { | |
// OpenMP 4.5, [2.4 Array Sections] | |
// The length must evaluate to non-negative integers. | |
llvm::APSInt LengthValue = Result.Val.getInt(); | |
if (LengthValue.isNegative()) { | |
Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) | |
<< LengthValue.toString(/*Radix=*/10, /*Signed=*/true) | |
<< Length->getSourceRange(); | |
return ExprError(); | |
} | |
} | |
} else if (ColonLoc.isValid() && | |
(OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && | |
!OriginalTy->isVariableArrayType()))) { | |
// OpenMP 4.5, [2.4 Array Sections] | |
// When the size of the array dimension is not known, the length must be | |
// specified explicitly. | |
Diag(ColonLoc, diag::err_omp_section_length_undefined) | |
<< (!OriginalTy.isNull() && OriginalTy->isArrayType()); | |
return ExprError(); | |
} | |
if (!Base->getType()->isSpecificPlaceholderType( | |
BuiltinType::OMPArraySection)) { | |
ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Base = Result.get(); | |
} | |
return new (Context) | |
OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy, | |
VK_LValue, OK_Ordinary, ColonLoc, RBLoc); | |
} | |
ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, | |
SourceLocation RParenLoc, | |
ArrayRef<Expr *> Dims, | |
ArrayRef<SourceRange> Brackets) { | |
if (Base->getType()->isPlaceholderType()) { | |
ExprResult Result = CheckPlaceholderExpr(Base); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Result = DefaultLvalueConversion(Result.get()); | |
if (Result.isInvalid()) | |
return ExprError(); | |
Base = Result.get(); | |
} | |
QualType BaseTy = Base->getType(); | |
// Delay analysis of the types/expressions if instantiation/specialization is | |
// required. | |
if (!BaseTy->isPointerType() && Base->isTypeDependent()) | |
return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, | |
LParenLoc, RParenLoc, Dims, Brackets); | |
if (!BaseTy->isPointerType() || | |
(!Base->isTypeDependent() && | |
BaseTy->getPointeeType()->isIncompleteType())) | |
return ExprError(Diag(Base->getExprLoc(), | |
diag::err_omp_non_pointer_type_array_shaping_base) | |
<< Base->getSourceRange()); | |
SmallVector<Expr *, 4> NewDims; | |
bool ErrorFound = false; | |
for (Expr *Dim : Dims) { | |
if (Dim->getType()->isPlaceholderType()) { | |
ExprResult Result = CheckPlaceholderExpr(Dim); | |
if (Result.isInvalid()) { | |
ErrorFound = true; | |
continue; | |
} | |
Result = DefaultLvalueConversion(Result.get()); | |
if (Result.isInvalid()) { | |
ErrorFound = true; | |
continue; | |
} | |
Dim = Result.get(); | |
} | |
if (!Dim->isTypeDependent()) { | |
ExprResult Result = | |
PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); | |
if (Result.isInvalid()) { | |
ErrorFound = true; | |
Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) | |
<< Dim->getSourceRange(); | |
continue; | |
} | |
Dim = Result.get(); | |
Expr::EvalResult EvResult; | |
if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { | |
// OpenMP 5.0, [2.1.4 Array Shaping] | |
// Each si is an integral type expression that must evaluate to a | |
// positive integer. | |
llvm::APSInt Value = EvResult.Val.getInt(); | |
if (!Value.isStrictlyPositive()) { | |
Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) | |
<< Value.toString(/*Radix=*/10, /*Signed=*/true) | |
<< Dim->getSourceRange(); | |
ErrorFound = true; | |
continue; | |
} | |
} | |
} | |
NewDims.push_back(Dim); | |
} | |
if (ErrorFound) | |
return ExprError(); | |
return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, | |
LParenLoc, RParenLoc, NewDims, Brackets); | |
} | |
ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, | |
SourceLocation LLoc, SourceLocation RLoc, | |
ArrayRef<OMPIteratorData> Data) { | |
SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID; | |
bool IsCorrect = true; | |
for (const OMPIteratorData &D : Data) { | |
TypeSourceInfo *TInfo = nullptr; | |
SourceLocation StartLoc; | |
QualType DeclTy; | |
if (!D.Type.getAsOpaquePtr()) { | |
// OpenMP 5.0, 2.1.6 Iterators | |
// In an iterator-specifier, if the iterator-type is not specified then | |
// the type of that iterator is of int type. | |
DeclTy = Context.IntTy; | |
StartLoc = D.DeclIdentLoc; | |
} else { | |
DeclTy = GetTypeFromParser(D.Type, &TInfo); | |
StartLoc = TInfo->getTypeLoc().getBeginLoc(); | |
} | |
bool IsDeclTyDependent = DeclTy->isDependentType() || | |
DeclTy->containsUnexpandedParameterPack() || | |
DeclTy->isInstantiationDependentType(); | |
if (!IsDeclTyDependent) { | |
if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { | |
// OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ | |
// The iterator-type must be an integral or pointer type. | |
Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) | |
<< DeclTy; | |
IsCorrect = false; | |
continue; | |
} | |
if (DeclTy.isConstant(Context)) { | |
// OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ | |
// The iterator-type must not be const qualified. | |
Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) | |
<< DeclTy; | |
IsCorrect = false; | |
continue; | |
} | |
} | |
// Iterator declaration. | |
assert(D.DeclIdent && "Identifier expected."); | |
// Always try to create iterator declarator to avoid extra error messages | |
// about unknown declarations use. | |
auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, | |
D.DeclIdent, DeclTy, TInfo, SC_None); | |
VD->setImplicit(); | |
if (S) { | |
// Check for conflicting previous declaration. | |
DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); | |
LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |
ForVisibleRedeclaration); | |
Previous.suppressDiagnostics(); | |
LookupName(Previous, S); | |
FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, | |
/*AllowInlineNamespace=*/false); | |
if (!Previous.empty()) { | |
NamedDecl *Old = Previous.getRepresentativeDecl(); | |
Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); | |
Diag(Old->getLocation(), diag::note_previous_definition); | |
} else { | |
PushOnScopeChains(VD, S); | |
} | |
} else { | |
CurContext->addDecl(VD); | |
} | |
Expr *Begin = D.Range.Begin; | |
if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { | |
ExprResult BeginRes = | |
PerformImplicitConversion(Begin, DeclTy, AA_Converting); | |
Begin = BeginRes.get(); | |
} | |
Expr *End = D.Range.End; | |
if (!IsDeclTyDependent && End && !End->isTypeDependent()) { | |
ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); | |
End = EndRes.get(); | |
} | |
Expr *Step = D.Range.Step; | |
if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { | |
if (!Step->getType()->isIntegralType(Context)) { | |
Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) | |
<< Step << Step->getSourceRange(); | |
IsCorrect = false; | |
continue; | |
} | |
llvm::APSInt Result; | |
bool IsConstant = Step->isIntegerConstantExpr(Result, Context); | |
// OpenMP 5.0, 2.1.6 Iterators, Restrictions | |
// If the step expression of a range-specification equals zero, the | |
// behavior is unspecified. | |
if (IsConstant && Result.isNullValue()) { | |
Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) | |
<< Step << Step->getSourceRange(); | |
IsCorrect = false; | |
continue; | |
} | |
} | |
if (!Begin || !End || !IsCorrect) { | |
IsCorrect = false; | |
continue; | |
} | |
OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); | |
IDElem.IteratorDecl = VD; | |
IDElem.AssignmentLoc = D.AssignLoc; | |
IDElem.Range.Begin = Begin; | |
IDElem.Range.End = End; | |
IDElem.Range.Step = Step; | |
IDElem.ColonLoc = D.ColonLoc; | |
IDElem.SecondColonLoc = D.SecColonLoc; | |
} | |
if (!IsCorrect) { | |
// Invalidate all created iterator declarations if error is found. | |
for (const OMPIteratorExpr::IteratorDefinition &D : ID) { | |
if (Decl *ID = D.IteratorDecl) | |
ID->setInvalidDecl(); | |
} | |
return ExprError(); | |
} | |
SmallVector<OMPIteratorHelperData, 4> Helpers; | |
if (!CurContext->isDependentContext()) { | |
// Build number of ityeration for each iteration range. | |
// Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : | |
// ((Begini-Stepi-1-Endi) / -Stepi); | |
for (OMPIteratorExpr::IteratorDefinition &D : ID) { | |
// (Endi - Begini) | |
ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, | |
D.Range.Begin); | |
if(!Res.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
ExprResult St, St1; | |
if (D.Range.Step) { | |
St = D.Range.Step; | |
// (Endi - Begini) + Stepi | |
Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); | |
if (!Res.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// (Endi - Begini) + Stepi - 1 | |
Res = | |
CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), | |
ActOnIntegerConstant(D.AssignmentLoc, 1).get()); | |
if (!Res.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// ((Endi - Begini) + Stepi - 1) / Stepi | |
Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); | |
if (!Res.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); | |
// (Begini - Endi) | |
ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, | |
D.Range.Begin, D.Range.End); | |
if (!Res1.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// (Begini - Endi) - Stepi | |
Res1 = | |
CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); | |
if (!Res1.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// (Begini - Endi) - Stepi - 1 | |
Res1 = | |
CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), | |
ActOnIntegerConstant(D.AssignmentLoc, 1).get()); | |
if (!Res1.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// ((Begini - Endi) - Stepi - 1) / (-Stepi) | |
Res1 = | |
CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); | |
if (!Res1.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// Stepi > 0. | |
ExprResult CmpRes = | |
CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, | |
ActOnIntegerConstant(D.AssignmentLoc, 0).get()); | |
if (!CmpRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), | |
Res.get(), Res1.get()); | |
if (!Res.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
} | |
Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); | |
if (!Res.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
// Build counter update. | |
// Build counter. | |
auto *CounterVD = | |
VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), | |
D.IteratorDecl->getBeginLoc(), nullptr, | |
Res.get()->getType(), nullptr, SC_None); | |
CounterVD->setImplicit(); | |
ExprResult RefRes = | |
BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, | |
D.IteratorDecl->getBeginLoc()); | |
// Build counter update. | |
// I = Begini + counter * Stepi; | |
ExprResult UpdateRes; | |
if (D.Range.Step) { | |
UpdateRes = CreateBuiltinBinOp( | |
D.AssignmentLoc, BO_Mul, | |
DefaultLvalueConversion(RefRes.get()).get(), St.get()); | |
} else { | |
UpdateRes = DefaultLvalueConversion(RefRes.get()); | |
} | |
if (!UpdateRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, | |
UpdateRes.get()); | |
if (!UpdateRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
ExprResult VDRes = | |
BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl), | |
cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue, | |
D.IteratorDecl->getBeginLoc()); | |
UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), | |
UpdateRes.get()); | |
if (!UpdateRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
UpdateRes = | |
ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); | |
if (!UpdateRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
ExprResult CounterUpdateRes = | |
CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); | |
if (!CounterUpdateRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
CounterUpdateRes = | |
ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); | |
if (!CounterUpdateRes.isUsable()) { | |
IsCorrect = false; | |
continue; | |
} | |
OMPIteratorHelperData &HD = Helpers.emplace_back(); | |
HD.CounterVD = CounterVD; | |
HD.Upper = Res.get(); | |
HD.Update = UpdateRes.get(); | |
HD.CounterUpdate = CounterUpdateRes.get(); | |
} | |
} else { | |
Helpers.assign(ID.size(), {}); | |
} | |
if (!IsCorrect) { | |
// Invalidate all created iterator declarations if error is found. | |
for (const OMPIteratorExpr::IteratorDefinition &D : ID) { | |
if (Decl *ID = D.IteratorDecl) | |
ID->setInvalidDecl(); | |
} | |
return ExprError(); | |
} | |
return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, | |
LLoc, RLoc, ID, Helpers); | |
} | |
ExprResult | |
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, | |
Expr *Idx, SourceLocation RLoc) { | |
Expr *LHSExp = Base; | |
Expr *RHSExp = Idx; | |
ExprValueKind VK = VK_LValue; | |
ExprObjectKind OK = OK_Ordinary; | |
// Per C++ core issue 1213, the result is an xvalue if either operand is | |
// a non-lvalue array, and an lvalue otherwise. | |
if (getLangOpts().CPlusPlus11) { | |
for (auto *Op : {LHSExp, RHSExp}) { | |
Op = Op->IgnoreImplicit(); | |
if (Op->getType()->isArrayType() && !Op->isLValue()) | |
VK = VK_XValue; | |
} | |
} | |
// Perform default conversions. | |
if (!LHSExp->getType()->getAs<VectorType>()) { | |
ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); | |
if (Result.isInvalid()) | |
return ExprError(); | |
LHSExp = Result.get(); | |
} | |
ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); | |
if (Result.isInvalid()) | |
return ExprError(); | |
RHSExp = Result.get(); | |
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); | |
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent | |
// to the expression *((e1)+(e2)). This means the array "Base" may actually be | |
// in the subscript position. As a result, we need to derive the array base | |
// and index from the expression types. | |
Expr *BaseExpr, *IndexExpr; | |
QualType ResultType; | |
if (LHSTy->isDependentType() || RHSTy->isDependentType()) { | |
BaseExpr = LHSExp; | |
IndexExpr = RHSExp; | |
ResultType = Context.DependentTy; | |
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { | |
BaseExpr = LHSExp; | |
IndexExpr = RHSExp; | |
ResultType = PTy->getPointeeType(); | |
} else if (const ObjCObjectPointerType *PTy = | |
LHSTy->getAs<ObjCObjectPointerType>()) { | |
BaseExpr = LHSExp; | |
IndexExpr = RHSExp; | |
// Use custom logic if this should be the pseudo-object subscript | |
// expression. | |
if (!LangOpts.isSubscriptPointerArithmetic()) | |
return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, | |
nullptr); | |
ResultType = PTy->getPointeeType(); | |
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { | |
// Handle the uncommon case of "123[Ptr]". | |
BaseExpr = RHSExp; | |
IndexExpr = LHSExp; | |
ResultType = PTy->getPointeeType(); | |
} else if (const ObjCObjectPointerType *PTy = | |
RHSTy->getAs<ObjCObjectPointerType>()) { | |
// Handle the uncommon case of "123[Ptr]". | |
BaseExpr = RHSExp; | |
IndexExpr = LHSExp; | |
ResultType = PTy->getPointeeType(); | |
if (!LangOpts.isSubscriptPointerArithmetic()) { | |
Diag(LLoc, diag::err_subscript_nonfragile_interface) | |
<< ResultType << BaseExpr->getSourceRange(); | |
return ExprError(); | |
} | |
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { | |
BaseExpr = LHSExp; // vectors: V[123] | |
IndexExpr = RHSExp; | |
// We apply C++ DR1213 to vector subscripting too. | |
if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) { | |
ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); | |
if (Materialized.isInvalid()) | |
return ExprError(); | |
LHSExp = Materialized.get(); | |
} | |
VK = LHSExp->getValueKind(); | |
if (VK != VK_RValue) | |
OK = OK_VectorComponent; | |
ResultType = VTy->getElementType(); | |
QualType BaseType = BaseExpr->getType(); | |
Qualifiers BaseQuals = BaseType.getQualifiers(); | |
Qualifiers MemberQuals = ResultType.getQualifiers(); | |
Qualifiers Combined = BaseQuals + MemberQuals; | |
if (Combined != MemberQuals) | |
ResultType = Context.getQualifiedType(ResultType, Combined); | |
} else if (LHSTy->isArrayType()) { | |
// If we see an array that wasn't promoted by | |
// DefaultFunctionArrayLvalueConversion, it must be an array that | |
// wasn't promoted because of the C90 rule that doesn't | |
// allow promoting non-lvalue arrays. Warn, then | |
// force the promotion here. | |
Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | |
<< LHSExp->getSourceRange(); | |
LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), | |
CK_ArrayToPointerDecay).get(); | |
LHSTy = LHSExp->getType(); | |
BaseExpr = LHSExp; | |
IndexExpr = RHSExp; | |
ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); | |
} else if (RHSTy->isArrayType()) { | |
// Same as previous, except for 123[f().a] case | |
Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | |
<< RHSExp->getSourceRange(); | |
RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), | |
CK_ArrayToPointerDecay).get(); | |
RHSTy = RHSExp->getType(); | |
BaseExpr = RHSExp; | |
IndexExpr = LHSExp; | |
ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); | |
} else { | |
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) | |
<< LHSExp->getSourceRange() << RHSExp->getSourceRange()); | |
} | |
// C99 6.5.2.1p1 | |
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) | |
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) | |
<< IndexExpr->getSourceRange()); | |
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |
&& !IndexExpr->isTypeDependent()) | |
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); | |
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | |
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object | |
// type. Note that Functions are not objects, and that (in C99 parlance) | |
// incomplete types are not object types. | |
if (ResultType->isFunctionType()) { | |
Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) | |
<< ResultType << BaseExpr->getSourceRange(); | |
return ExprError(); | |
} | |
if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { | |
// GNU extension: subscripting on pointer to void | |
Diag(LLoc, diag::ext_gnu_subscript_void_type) | |
<< BaseExpr->getSourceRange(); | |
// C forbids expressions of unqualified void type from being l-values. | |
// See IsCForbiddenLValueType. | |
if (!ResultType.hasQualifiers()) VK = VK_RValue; | |
} else if (!ResultType->isDependentType() && | |
RequireCompleteSizedType( | |
LLoc, ResultType, | |
diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) | |
return ExprError(); | |
assert(VK == VK_RValue || LangOpts.CPlusPlus || | |
!ResultType.isCForbiddenLValueType()); | |
if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && | |
FunctionScopes.size() > 1) { | |
if (auto *TT = | |
LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) { | |
for (auto I = FunctionScopes.rbegin(), | |
E = std::prev(FunctionScopes.rend()); | |
I != E; ++I) { | |
auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | |
if (CSI == nullptr) | |
break; | |
DeclContext *DC = nullptr; | |
if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | |
DC = LSI->CallOperator; | |
else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | |
DC = CRSI->TheCapturedDecl; | |
else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | |
DC = BSI->TheDecl; | |
if (DC) { | |
if (DC->containsDecl(TT->getDecl())) | |
break; | |
captureVariablyModifiedType( | |
Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); | |
} | |
} | |
} | |
} | |
return new (Context) | |
ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); | |
} | |
bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, | |
ParmVarDecl *Param) { | |
if (Param->hasUnparsedDefaultArg()) { | |
Diag(CallLoc, | |
diag::err_use_of_default_argument_to_function_declared_later) << | |
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); | |
Diag(UnparsedDefaultArgLocs[Param], | |
diag::note_default_argument_declared_here); | |
return true; | |
} | |
if (Param->hasUninstantiatedDefaultArg()) { | |
Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); | |
EnterExpressionEvaluationContext EvalContext( | |
*this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); | |
// Instantiate the expression. | |
// | |
// FIXME: Pass in a correct Pattern argument, otherwise | |
// getTemplateInstantiationArgs uses the lexical context of FD, e.g. | |
// | |
// template<typename T> | |
// struct A { | |
// static int FooImpl(); | |
// | |
// template<typename Tp> | |
// // bug: default argument A<T>::FooImpl() is evaluated with 2-level | |
// // template argument list [[T], [Tp]], should be [[Tp]]. | |
// friend A<Tp> Foo(int a); | |
// }; | |
// | |
// template<typename T> | |
// A<T> Foo(int a = A<T>::FooImpl()); | |
MultiLevelTemplateArgumentList MutiLevelArgList | |
= getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true); | |
InstantiatingTemplate Inst(*this, CallLoc, Param, | |
MutiLevelArgList.getInnermost()); | |
if (Inst.isInvalid()) | |
return true; | |
if (Inst.isAlreadyInstantiating()) { | |
Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; | |
Param->setInvalidDecl(); | |
return true; | |
} | |
ExprResult Result; | |
{ | |
// C++ [dcl.fct.default]p5: | |
// The names in the [default argument] expression are bound, and | |
// the semantic constraints are checked, at the point where the | |
// default argument expression appears. | |
ContextRAII SavedContext(*this, FD); | |
LocalInstantiationScope Local(*this); | |
runWithSufficientStackSpace(CallLoc, [&] { | |
Result = SubstInitializer(UninstExpr, MutiLevelArgList, | |
/*DirectInit*/false); | |
}); | |
} | |
if (Result.isInvalid()) | |
return true; | |
// Check the expression as an initializer for the parameter. | |
InitializedEntity Entity | |
= InitializedEntity::InitializeParameter(Context, Param); | |
InitializationKind Kind = InitializationKind::CreateCopy( | |
Param->getLocation(), | |
/*FIXME:EqualLoc*/ UninstExpr->getBeginLoc()); | |
Expr *ResultE = Result.getAs<Expr>(); | |
InitializationSequence InitSeq(*this, Entity, Kind, ResultE); | |
Result = InitSeq.Perform(*this, Entity, Kind, ResultE); | |
if (Result.isInvalid()) | |
return true; | |
Result = | |
ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(), | |
/*DiscardedValue*/ false); | |
if (Result.isInvalid()) | |
return true; | |
// Remember the instantiated default argument. | |
Param->setDefaultArg(Result.getAs<Expr>()); | |
if (ASTMutationListener *L = getASTMutationListener()) { | |
L->DefaultArgumentInstantiated(Param); | |
} | |
} | |
// If the default argument expression is not set yet, we are building it now. | |
if (!Param->hasInit()) { | |
Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; | |
Diag(CallLoc, diag::note_recursive_default_argument_used_here); | |
Param->setInvalidDecl(); | |
return true; | |
} | |
// If the default expression creates temporaries, we need to | |
// push them to the current stack of expression temporaries so they'll | |
// be properly destroyed. | |
// FIXME: We should really be rebuilding the default argument with new | |
// bound temporaries; see the comment in PR5810. | |
// We don't need to do that with block decls, though, because | |
// blocks in default argument expression can never capture anything. | |
if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) { | |
// Set the "needs cleanups" bit regardless of whether there are | |
// any explicit objects. | |
Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects()); | |
// Append all the objects to the cleanup list. Right now, this | |
// should always be a no-op, because blocks in default argument | |
// expressions should never be able to capture anything. | |
assert(!Init->getNumObjects() && | |
"default argument expression has capturing blocks?"); | |
} | |
// We already type-checked the argument, so we know it works. | |
// Just mark all of the declarations in this potentially-evaluated expression | |
// as being "referenced". | |
EnterExpressionEvaluationContext EvalContext( | |
*this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); | |
MarkDeclarationsReferencedInExpr(Param->getDefaultArg(), | |
/*SkipLocalVariables=*/true); | |
return false; | |
} | |
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, | |
FunctionDecl *FD, ParmVarDecl *Param) { | |
if (CheckCXXDefaultArgExpr(CallLoc, FD, Param)) | |
return ExprError(); | |
return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext); | |
} | |
Sema::VariadicCallType | |
Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, | |
Expr *Fn) { | |
if (Proto && Proto->isVariadic()) { | |
if (dyn_cast_or_null<CXXConstructorDecl>(FDecl)) | |
return VariadicConstructor; | |
else if (Fn && Fn->getType()->isBlockPointerType()) | |
return VariadicBlock; | |
else if (FDecl) { | |
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | |
if (Method->isInstance()) | |
return VariadicMethod; | |
} else if (Fn && Fn->getType() == Context.BoundMemberTy) | |
return VariadicMethod; | |
return VariadicFunction; | |
} | |
return VariadicDoesNotApply; | |
} | |
namespace { | |
class FunctionCallCCC final : public FunctionCallFilterCCC { | |
public: | |
FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, | |
unsigned NumArgs, MemberExpr *ME) | |
: FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), | |
FunctionName(FuncName) {} | |
bool ValidateCandidate(const TypoCorrection &candidate) override { | |
if (!candidate.getCorrectionSpecifier() || | |
candidate.getCorrectionAsIdentifierInfo() != FunctionName) { | |
return false; | |
} | |
return FunctionCallFilterCCC::ValidateCandidate(candidate); | |
} | |
std::unique_ptr<CorrectionCandidateCallback> clone() override { | |
return std::make_unique<FunctionCallCCC>(*this); | |
} | |
private: | |
const IdentifierInfo *const FunctionName; | |
}; | |
} | |
static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, | |
FunctionDecl *FDecl, | |
ArrayRef<Expr *> Args) { | |
MemberExpr *ME = dyn_cast<MemberExpr>(Fn); | |
DeclarationName FuncName = FDecl->getDeclName(); | |
SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); | |
FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); | |
if (TypoCorrection Corrected = S.CorrectTypo( | |
DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, | |
S.getScopeForContext(S.CurContext), nullptr, CCC, | |
Sema::CTK_ErrorRecovery)) { | |
if (NamedDecl *ND = Corrected.getFoundDecl()) { | |
if (Corrected.isOverloaded()) { | |
OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); | |
OverloadCandidateSet::iterator Best; | |
for (NamedDecl *CD : Corrected) { | |
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | |
S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, | |
OCS); | |
} | |
switch (OCS.BestViableFunction(S, NameLoc, Best)) { | |
case OR_Success: | |
ND = Best->FoundDecl; | |
Corrected.setCorrectionDecl(ND); | |
break; | |
default: | |
break; | |
} | |
} | |
ND = ND->getUnderlyingDecl(); | |
if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) | |
return Corrected; | |
} | |
} | |
return TypoCorrection(); | |
} | |
/// ConvertArgumentsForCall - Converts the arguments specified in | |
/// Args/NumArgs to the parameter types of the function FDecl with | |
/// function prototype Proto. Call is the call expression itself, and | |
/// Fn is the function expression. For a C++ member function, this | |
/// routine does not attempt to convert the object argument. Returns | |
/// true if the call is ill-formed. | |
bool | |
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, | |
FunctionDecl *FDecl, | |
const FunctionProtoType *Proto, | |
ArrayRef<Expr *> Args, | |
SourceLocation RParenLoc, | |
bool IsExecConfig) { | |
// Bail out early if calling a builtin with custom typechecking. | |
if (FDecl) | |
if (unsigned ID = FDecl->getBuiltinID()) | |
if (Context.BuiltinInfo.hasCustomTypechecking(ID)) | |
return false; | |
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by | |
// assignment, to the types of the corresponding parameter, ... | |
unsigned NumParams = Proto->getNumParams(); | |
bool Invalid = false; | |
unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; | |
unsigned FnKind = Fn->getType()->isBlockPointerType() | |
? 1 /* block */ | |
: (IsExecConfig ? 3 /* kernel function (exec config) */ | |
: 0 /* function */); | |
// If too few arguments are available (and we don't have default | |
// arguments for the remaining parameters), don't make the call. | |
if (Args.size() < NumParams) { | |
if (Args.size() < MinArgs) { | |
TypoCorrection TC; | |
if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | |
unsigned diag_id = | |
MinArgs == NumParams && !Proto->isVariadic() | |
? diag::err_typecheck_call_too_few_args_suggest | |
: diag::err_typecheck_call_too_few_args_at_least_suggest; | |
diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs | |
<< static_cast<unsigned>(Args.size()) | |
<< TC.getCorrectionRange()); | |
} else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) | |
Diag(RParenLoc, | |
MinArgs == NumParams && !Proto->isVariadic() | |
? diag::err_typecheck_call_too_few_args_one | |
: diag::err_typecheck_call_too_few_args_at_least_one) | |
<< FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); | |
else | |
Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() | |
? diag::err_typecheck_call_too_few_args | |
: diag::err_typecheck_call_too_few_args_at_least) | |
<< FnKind << MinArgs << static_cast<unsigned>(Args.size()) | |
<< Fn->getSourceRange(); | |
// Emit the location of the prototype. | |
if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | |
Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | |
return true; | |
} | |
// We reserve space for the default arguments when we create | |
// the call expression, before calling ConvertArgumentsForCall. | |
assert((Call->getNumArgs() == NumParams) && | |
"We should have reserved space for the default arguments before!"); | |
} | |
// If too many are passed and not variadic, error on the extras and drop | |
// them. | |
if (Args.size() > NumParams) { | |
if (!Proto->isVariadic()) { | |
TypoCorrection TC; | |
if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | |
unsigned diag_id = | |
MinArgs == NumParams && !Proto->isVariadic() | |
? diag::err_typecheck_call_too_many_args_suggest | |
: diag::err_typecheck_call_too_many_args_at_most_suggest; | |
diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams | |
<< static_cast<unsigned>(Args.size()) | |
<< TC.getCorrectionRange()); | |
} else if (NumParams == 1 && FDecl && | |
FDecl->getParamDecl(0)->getDeclName()) | |
Diag(Args[NumParams]->getBeginLoc(), | |
MinArgs == NumParams | |
? diag::err_typecheck_call_too_many_args_one | |
: diag::err_typecheck_call_too_many_args_at_most_one) | |
<< FnKind << FDecl->getParamDecl(0) | |
<< static_cast<unsigned>(Args.size()) << Fn->getSourceRange() | |
<< SourceRange(Args[NumParams]->getBeginLoc(), | |
Args.back()->getEndLoc()); | |
else | |
Diag(Args[NumParams]->getBeginLoc(), | |
MinArgs == NumParams | |
? diag::err_typecheck_call_too_many_args | |
: diag::err_typecheck_call_too_many_args_at_most) | |
<< FnKind << NumParams << static_cast<unsigned>(Args.size()) | |
<< Fn->getSourceRange() | |
<< SourceRange(Args[NumParams]->getBeginLoc(), | |
Args.back()->getEndLoc()); | |
// Emit the location of the prototype. | |
if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | |
Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | |
// This deletes the extra arguments. | |
Call->shrinkNumArgs(NumParams); | |
return true; | |
} | |
} | |
SmallVector<Expr *, 8> AllArgs; | |
VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); | |
Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, | |
AllArgs, CallType); | |
if (Invalid) | |
return true; | |
unsigned TotalNumArgs = AllArgs.size(); | |
for (unsigned i = 0; i < TotalNumArgs; ++i) | |
Call->setArg(i, AllArgs[i]); | |
return false; | |
} | |
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, | |
const FunctionProtoType *Proto, | |
unsigned FirstParam, ArrayRef<Expr *> Args, | |
SmallVectorImpl<Expr *> &AllArgs, | |
VariadicCallType CallType, bool AllowExplicit, | |
bool IsListInitialization) { | |
unsigned NumParams = Proto->getNumParams(); | |
bool Invalid = false; | |
size_t ArgIx = 0; | |
// Continue to check argument types (even if we have too few/many args). | |
for (unsigned i = FirstParam; i < NumParams; i++) { | |
QualType ProtoArgType = Proto->getParamType(i); | |
Expr *Arg; | |
ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; | |
if (ArgIx < Args.size()) { | |
Arg = Args[ArgIx++]; | |
if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, | |
diag::err_call_incomplete_argument, Arg)) | |
return true; | |
// Strip the unbridged-cast placeholder expression off, if applicable. | |
bool CFAudited = false; | |
if (Arg->getType() == Context.ARCUnbridgedCastTy && | |
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | |
(!Param || !Param->hasAttr<CFConsumedAttr>())) | |
Arg = stripARCUnbridgedCast(Arg); | |
else if (getLangOpts().ObjCAutoRefCount && | |
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | |
(!Param || !Param->hasAttr<CFConsumedAttr>())) | |
CFAudited = true; | |
if (Proto->getExtParameterInfo(i).isNoEscape()) | |
if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) | |
BE->getBlockDecl()->setDoesNotEscape(); | |
InitializedEntity Entity = | |
Param ? InitializedEntity::InitializeParameter(Context, Param, | |
ProtoArgType) | |
: InitializedEntity::InitializeParameter( | |
Context, ProtoArgType, Proto->isParamConsumed(i)); | |
// Remember that parameter belongs to a CF audited API. | |
if (CFAudited) | |
Entity.setParameterCFAudited(); | |
ExprResult ArgE = PerformCopyInitialization( | |
Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); | |
if (ArgE.isInvalid()) | |
return true; | |
Arg = ArgE.getAs<Expr>(); | |
} else { | |
assert(Param && "can't use default arguments without a known callee"); | |
ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); | |
if (ArgExpr.isInvalid()) | |
return true; | |
Arg = ArgExpr.getAs<Expr>(); | |
} | |
// Check for array bounds violations for each argument to the call. This | |
// check only triggers warnings when the argument isn't a more complex Expr | |
// with its own checking, such as a BinaryOperator. | |
CheckArrayAccess(Arg); | |
// Check for violations of C99 static array rules (C99 6.7.5.3p7). | |
CheckStaticArrayArgument(CallLoc, Param, Arg); | |
AllArgs.push_back(Arg); | |
} | |
// If this is a variadic call, handle args passed through "...". | |
if (CallType != VariadicDoesNotApply) { | |
// Assume that extern "C" functions with variadic arguments that | |
// return __unknown_anytype aren't *really* variadic. | |
if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && | |
FDecl->isExternC()) { | |
for (Expr *A : Args.slice(ArgIx)) { | |
QualType paramType; // ignored | |
ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); | |
Invalid |= arg.isInvalid(); | |
AllArgs.push_back(arg.get()); | |
} | |
// Otherwise do argument promotion, (C99 6.5.2.2p7). | |
} else { | |
for (Expr *A : Args.slice(ArgIx)) { | |
ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); | |
Invalid |= Arg.isInvalid(); | |
// Copy blocks to the heap. | |
if (A->getType()->isBlockPointerType()) | |
maybeExtendBlockObject(Arg); | |
AllArgs.push_back(Arg.get()); | |
} | |
} | |
// Check for array bounds violations. | |
for (Expr *A : Args.slice(ArgIx)) | |
CheckArrayAccess(A); | |
} | |
return Invalid; | |
} | |
static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { | |
TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); | |
if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) | |
TL = DTL.getOriginalLoc(); | |
if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) | |
S.Diag(PVD->getLocation(), diag::note_callee_static_array) | |
<< ATL.getLocalSourceRange(); | |
} | |
/// CheckStaticArrayArgument - If the given argument corresponds to a static | |
/// array parameter, check that it is non-null, and that if it is formed by | |
/// array-to-pointer decay, the underlying array is sufficiently large. | |
/// | |
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the | |
/// array type derivation, then for each call to the function, the value of the | |
/// corresponding actual argument shall provide access to the first element of | |
/// an array with at least as many elements as specified by the size expression. | |
void | |
Sema::CheckStaticArrayArgument(SourceLocation CallLoc, | |
ParmVarDecl *Param, | |
const Expr *ArgExpr) { | |
// Static array parameters are not supported in C++. | |
if (!Param || getLangOpts().CPlusPlus) | |
return; | |
QualType OrigTy = Param->getOriginalType(); | |
const ArrayType *AT = Context.getAsArrayType(OrigTy); | |
if (!AT || AT->getSizeModifier() != ArrayType::Static) | |
return; | |
if (ArgExpr->isNullPointerConstant(Context, | |
Expr::NPC_NeverValueDependent)) { | |
Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); | |
DiagnoseCalleeStaticArrayParam(*this, Param); | |
return; | |
} | |
const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); | |
if (!CAT) | |
return; | |
const ConstantArrayType *ArgCAT = | |
Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); | |
if (!ArgCAT) | |
return; | |
if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), | |
ArgCAT->getElementType())) { | |
if (ArgCAT->getSize().ult(CAT->getSize())) { | |
Diag(CallLoc, diag::warn_static_array_too_small) | |
<< ArgExpr->getSourceRange() | |
<< (unsigned)ArgCAT->getSize().getZExtValue() | |
<< (unsigned)CAT->getSize().getZExtValue() << 0; | |
DiagnoseCalleeStaticArrayParam(*this, Param); | |
} | |
return; | |
} | |
Optional<CharUnits> ArgSize = | |
getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); | |
Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT); | |
if (ArgSize && ParmSize && *ArgSize < *ParmSize) { | |
Diag(CallLoc, diag::warn_static_array_too_small) | |
<< ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() | |
<< (unsigned)ParmSize->getQuantity() << 1; | |
DiagnoseCalleeStaticArrayParam(*this, Param); | |
} | |
} | |
/// Given a function expression of unknown-any type, try to rebuild it | |
/// to have a function type. | |
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); | |
/// Is the given type a placeholder that we need to lower out | |
/// immediately during argument processing? | |
static bool isPlaceholderToRemoveAsArg(QualType type) { | |
// Placeholders are never sugared. | |
const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); | |
if (!placeholder) return false; | |
switch (placeholder->getKind()) { | |
// Ignore all the non-placeholder types. | |
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | |
case BuiltinType::Id: | |
#include "clang/Basic/OpenCLImageTypes.def" | |
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | |
case BuiltinType::Id: | |
#include "clang/Basic/OpenCLExtensionTypes.def" | |
// In practice we'll never use this, since all SVE types are sugared | |
// via TypedefTypes rather than exposed directly as BuiltinTypes. | |
#define SVE_TYPE(Name, Id, SingletonId) \ | |
case BuiltinType::Id: | |
#include "clang/Basic/AArch64SVEACLETypes.def" | |
#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) | |
#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: | |
#include "clang/AST/BuiltinTypes.def" | |
return false; | |
// We cannot lower out overload sets; they might validly be resolved | |
// by the call machinery. | |
case BuiltinType::Overload: | |
return false; | |
// Unbridged casts in ARC can be handled in some call positions and | |
// should be left in place. | |
case BuiltinType::ARCUnbridgedCast: | |
return false; | |
// Pseudo-objects should be converted as soon as possible. | |
case BuiltinType::PseudoObject: | |
return true; | |
// The debugger mode could theoretically but currently does not try | |
// to resolve unknown-typed arguments based on known parameter types. | |
case BuiltinType::UnknownAny: | |
return true; | |
// These are always invalid as call arguments and should be reported. | |
case BuiltinType::BoundMember: | |
case BuiltinType::BuiltinFn: | |
case BuiltinType::OMPArraySection: | |
case BuiltinType::OMPArrayShaping: | |
case BuiltinType::OMPIterator: | |
return true; | |
} | |
llvm_unreachable("bad builtin type kind"); | |
} | |
/// Check an argument list for placeholders that we won't try to | |
/// handle later. | |
static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { | |
// Apply this processing to all the arguments at once instead of | |
// dying at the first failure. | |
bool hasInvalid = false; | |
for (size_t i = 0, e = args.size(); i != e; i++) { | |
if (isPlaceholderToRemoveAsArg(args[i]->getType())) { | |
ExprResult result = S.CheckPlaceholderExpr(args[i]); | |
if (result.isInvalid()) hasInvalid = true; | |
else args[i] = result.get(); | |
} else if (hasInvalid) { | |
(void)S.CorrectDelayedTyposInExpr(args[i]); | |
} | |
} | |
return hasInvalid; | |
} | |
/// If a builtin function has a pointer argument with no explicit address | |
/// space, then it should be able to accept a pointer to any address | |
/// space as input. In order to do this, we need to replace the | |
/// standard builtin declaration with one that uses the same address space | |
/// as the call. | |
/// | |
/// \returns nullptr If this builtin is not a candidate for a rewrite i.e. | |
/// it does not contain any pointer arguments without | |
/// an address space qualifer. Otherwise the rewritten | |
/// FunctionDecl is returned. | |
/// TODO: Handle pointer return types. | |
static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, | |
FunctionDecl *FDecl, | |
MultiExprArg ArgExprs) { | |
QualType DeclType = FDecl->getType(); | |
const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType); | |
if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || | |
ArgExprs.size() < FT->getNumParams()) | |
return nullptr; | |
bool NeedsNewDecl = false; | |
unsigned i = 0; | |
SmallVector<QualType, 8> OverloadParams; | |
for (QualType ParamType : FT->param_types()) { | |
// Convert array arguments to pointer to simplify type lookup. | |
ExprResult ArgRes = | |
Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); | |
if (ArgRes.isInvalid()) | |
return nullptr; | |
Expr *Arg = ArgRes.get(); | |
QualType ArgType = Arg->getType(); | |
if (!ParamType->isPointerType() || | |
ParamType.hasAddressSpace() || | |
!ArgType->isPointerType() || | |
!ArgType->getPointeeType().hasAddressSpace()) { | |
OverloadParams.push_back(ParamType); | |
continue; | |
} | |
QualType PointeeType = ParamType->getPointeeType(); | |
if (PointeeType.hasAddressSpace()) | |
continue; | |
NeedsNewDecl = true; | |
LangAS AS = ArgType->getPointeeType().getAddressSpace(); | |
PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); | |
OverloadParams.push_back(Context.getPointerType(PointeeType)); | |
} | |
if (!NeedsNewDecl) | |
return nullptr; | |
FunctionProtoType::ExtProtoInfo EPI; | |
EPI.Variadic = FT->isVariadic(); | |
QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), | |
OverloadParams, EPI); | |
DeclContext *Parent = FDecl->getParent(); | |
FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent, | |
FDecl->getLocation(), | |
FDecl->getLocation(), | |
FDecl->getIdentifier(), | |
OverloadTy, | |
/*TInfo=*/nullptr, | |
SC_Extern, false, | |
/*hasPrototype=*/true); | |
SmallVector<ParmVarDecl*, 16> Params; | |
FT = cast<FunctionProtoType>(OverloadTy); | |
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | |
QualType ParamType = FT->getParamType(i); | |
ParmVarDecl *Parm = | |
ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), | |
SourceLocation(), nullptr, ParamType, | |
/*TInfo=*/nullptr, SC_None, nullptr); | |
Parm->setScopeInfo(0, i); | |
Params.push_back(Parm); | |
} | |
OverloadDecl->setParams(Params); | |
return OverloadDecl; | |
} | |
static void checkDirectCallValidity(Sema &S, const Expr *Fn, | |
FunctionDecl *Callee, | |
MultiExprArg ArgExprs) { | |
// `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and | |
// similar attributes) really don't like it when functions are called with an | |
// invalid number of args. | |
if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), | |
/*PartialOverloading=*/false) && | |
!Callee->isVariadic()) | |
return; | |
if (Callee->getMinRequiredArguments() > ArgExprs.size()) | |
return; | |
if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) { | |
S.Diag(Fn->getBeginLoc(), | |
isa<CXXMethodDecl>(Callee) | |
? diag::err_ovl_no_viable_member_function_in_call | |
: diag::err_ovl_no_viable_function_in_call) | |
<< Callee << Callee->getSourceRange(); | |
S.Diag(Callee->getLocation(), | |
diag::note_ovl_candidate_disabled_by_function_cond_attr) | |
<< Attr->getCond()->getSourceRange() << Attr->getMessage(); | |
return; | |
} | |
} | |
static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( | |
const UnresolvedMemberExpr *const UME, Sema &S) { | |
const auto GetFunctionLevelDCIfCXXClass = | |
[](Sema &S) -> const CXXRecordDecl * { | |
const DeclContext *const DC = S.getFunctionLevelDeclContext(); | |
if (!DC || !DC->getParent()) | |
return nullptr; | |
// If the call to some member function was made from within a member | |
// function body 'M' return return 'M's parent. | |
if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | |
return MD->getParent()->getCanonicalDecl(); | |
// else the call was made from within a default member initializer of a | |
// class, so return the class. | |
if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) | |
return RD->getCanonicalDecl(); | |
return nullptr; | |
}; | |
// If our DeclContext is neither a member function nor a class (in the | |
// case of a lambda in a default member initializer), we can't have an | |
// enclosing 'this'. | |
const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); | |
if (!CurParentClass) | |
return false; | |
// The naming class for implicit member functions call is the class in which | |
// name lookup starts. | |
const CXXRecordDecl *const NamingClass = | |
UME->getNamingClass()->getCanonicalDecl(); | |
assert(NamingClass && "Must have naming class even for implicit access"); | |
// If the unresolved member functions were found in a 'naming class' that is | |
// related (either the same or derived from) to the class that contains the | |
// member function that itself contained the implicit member access. | |
return CurParentClass == NamingClass || | |
CurParentClass->isDerivedFrom(NamingClass); | |
} | |
static void | |
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | |
Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { | |
if (!UME) | |
return; | |
LambdaScopeInfo *const CurLSI = S.getCurLambda(); | |
// Only try and implicitly capture 'this' within a C++ Lambda if it hasn't | |
// already been captured, or if this is an implicit member function call (if | |
// it isn't, an attempt to capture 'this' should already have been made). | |
if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || | |
!UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) | |
return; | |
// Check if the naming class in which the unresolved members were found is | |
// related (same as or is a base of) to the enclosing class. | |
if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) | |
return; | |
DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); | |
// If the enclosing function is not dependent, then this lambda is | |
// capture ready, so if we can capture this, do so. | |
if (!EnclosingFunctionCtx->isDependentContext()) { | |
// If the current lambda and all enclosing lambdas can capture 'this' - | |
// then go ahead and capture 'this' (since our unresolved overload set | |
// contains at least one non-static member function). | |
if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) | |
S.CheckCXXThisCapture(CallLoc); | |
} else if (S.CurContext->isDependentContext()) { | |
// ... since this is an implicit member reference, that might potentially | |
// involve a 'this' capture, mark 'this' for potential capture in | |
// enclosing lambdas. | |
if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) | |
CurLSI->addPotentialThisCapture(CallLoc); | |
} | |
} | |
ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | |
MultiExprArg ArgExprs, SourceLocation RParenLoc, | |
Expr *ExecConfig) { | |
ExprResult Call = | |
BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig); | |
if (Call.isInvalid()) | |
return Call; | |
// Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier | |
// language modes. | |
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) { | |
if (ULE->hasExplicitTemplateArgs() && | |
ULE->decls_begin() == ULE->decls_end()) { | |
Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20 | |
? diag::warn_cxx17_compat_adl_only_template_id | |
: diag::ext_adl_only_template_id) | |
<< ULE->getName(); | |
} | |
} | |
if (LangOpts.OpenMP) | |
Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc, | |
ExecConfig); | |
return Call; | |
} | |
/// BuildCallExpr - Handle a call to Fn with the specified array of arguments. | |
/// This provides the location of the left/right parens and a list of comma | |
/// locations. | |
ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | |
MultiExprArg ArgExprs, SourceLocation RParenLoc, | |
Expr *ExecConfig, bool IsExecConfig) { | |
// Since this might be a postfix expression, get rid of ParenListExprs. | |
ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); | |
if (Result.isInvalid()) return ExprError(); | |
Fn = Result.get(); | |
if (checkArgsForPlaceholders(*this, ArgExprs)) | |
return ExprError(); | |
if (getLangOpts().CPlusPlus) { | |
// If this is a pseudo-destructor expression, build the call immediately. | |
if (isa<CXXPseudoDestructorExpr>(Fn)) { | |
if (!ArgExprs.empty()) { | |
// Pseudo-destructor calls should not have any arguments. | |
Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) | |
<< FixItHint::CreateRemoval( | |
SourceRange(ArgExprs.front()->getBeginLoc(), | |
ArgExprs.back()->getEndLoc())); | |
} | |
return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, | |
VK_RValue, RParenLoc); | |
} | |
if (Fn->getType() == Context.PseudoObjectTy) { | |
ExprResult result = CheckPlaceholderExpr(Fn); | |
if (result.isInvalid()) return ExprError(); | |
Fn = result.get(); | |
} | |
// Determine whether this is a dependent call inside a C++ template, | |
// in which case we won't do any semantic analysis now. | |
if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { | |
if (ExecConfig) { | |
return CUDAKernelCallExpr::Create( | |
Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs, | |
Context.DependentTy, VK_RValue, RParenLoc); | |
} else { | |
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | |
*this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()), | |
Fn->getBeginLoc()); | |
return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | |
VK_RValue, RParenLoc); | |
} | |
} | |
// Determine whether this is a call to an object (C++ [over.call.object]). | |
if (Fn->getType()->isRecordType()) | |
return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, | |
RParenLoc); | |
if (Fn->getType() == Context.UnknownAnyTy) { | |
ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | |
if (result.isInvalid()) return ExprError(); | |
Fn = result.get(); | |
} | |
if (Fn->getType() == Context.BoundMemberTy) { | |
return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | |
RParenLoc); | |
} | |
} | |
// Check for overloaded calls. This can happen even in C due to extensions. | |
if (Fn->getType() == Context.OverloadTy) { | |
OverloadExpr::FindResult find = OverloadExpr::find(Fn); | |
// We aren't supposed to apply this logic if there's an '&' involved. | |
if (!find.HasFormOfMemberPointer) { | |
if (Expr::hasAnyTypeDependentArguments(ArgExprs)) | |
return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | |
VK_RValue, RParenLoc); | |
OverloadExpr *ovl = find.Expression; | |
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl)) | |
return BuildOverloadedCallExpr( | |
Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, | |
/*AllowTypoCorrection=*/true, find.IsAddressOfOperand); | |
return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | |
RParenLoc); | |
} | |
} | |
// If we're directly calling a function, get the appropriate declaration. | |
if (Fn->getType() == Context.UnknownAnyTy) { | |
ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | |
if (result.isInvalid()) return ExprError(); | |
Fn = result.get(); | |
} | |
Expr *NakedFn = Fn->IgnoreParens(); | |
bool CallingNDeclIndirectly = false; | |
NamedDecl *NDecl = nullptr; | |
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) { | |
if (UnOp->getOpcode() == UO_AddrOf) { | |
CallingNDeclIndirectly = true; | |
NakedFn = UnOp->getSubExpr()->IgnoreParens(); | |
} | |
} | |
if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) { | |
NDecl = DRE->getDecl(); | |
FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl); | |
if (FDecl && FDecl->getBuiltinID()) { | |
// Rewrite the function decl for this builtin by replacing parameters | |
// with no explicit address space with the address space of the arguments | |
// in ArgExprs. | |
if ((FDecl = | |
rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { | |
NDecl = FDecl; | |
Fn = DeclRefExpr::Create( | |
Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, | |
SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, | |
nullptr, DRE->isNonOdrUse()); | |
} | |
} | |
} else if (isa<MemberExpr>(NakedFn)) | |
NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl(); | |
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) { | |
if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( | |
FD, /*Complain=*/true, Fn->getBeginLoc())) | |
return ExprError(); | |
if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn)) | |
return ExprError(); | |
checkDirectCallValidity(*this, Fn, FD, ArgExprs); | |
} | |
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, | |
ExecConfig, IsExecConfig); | |
} | |
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments. | |
/// | |
/// __builtin_astype( value, dst type ) | |
/// | |
ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, | |
SourceLocation BuiltinLoc, | |
SourceLocation RParenLoc) { | |
ExprValueKind VK = VK_RValue; | |
ExprObjectKind OK = OK_Ordinary; | |
QualType DstTy = GetTypeFromParser(ParsedDestTy); | |
QualType SrcTy = E->getType(); | |
if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy)) | |
return ExprError(Diag(BuiltinLoc, | |
diag::err_invalid_astype_of_different_size) | |
<< DstTy | |
<< SrcTy | |
<< E->getSourceRange()); | |
return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc); | |
} | |
/// ActOnConvertVectorExpr - create a new convert-vector expression from the | |
/// provided arguments. | |
/// | |
/// __builtin_convertvector( value, dst type ) | |
/// | |
ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, | |
SourceLocation BuiltinLoc, | |
SourceLocation RParenLoc) { | |
TypeSourceInfo *TInfo; | |
GetTypeFromParser(ParsedDestTy, &TInfo); | |
return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); | |
} | |
/// BuildResolvedCallExpr - Build a call to a resolved expression, | |
/// i.e. an expression not of \p OverloadTy. The expression should | |
/// unary-convert to an expression of function-pointer or | |
/// block-pointer type. | |
/// | |
/// \param NDecl the declaration being called, if available | |
ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, | |
SourceLocation LParenLoc, | |
ArrayRef<Expr *> Args, | |
SourceLocation RParenLoc, Expr *Config, | |
bool IsExecConfig, ADLCallKind UsesADL) { | |
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); | |
unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); | |
// Functions with 'interrupt' attribute cannot be called directly. | |
if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) { | |
Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); | |
return ExprError(); | |
} | |
// Interrupt handlers don't save off the VFP regs automatically on ARM, | |
// so there's some risk when calling out to non-interrupt handler functions | |
// that the callee might not preserve them. This is easy to diagnose here, | |
// but can be very challenging to debug. | |
if (auto *Caller = getCurFunctionDecl()) | |
if (Caller->hasAttr<ARMInterruptAttr>()) { | |
bool VFP = Context.getTargetInfo().hasFeature("vfp"); | |
if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) | |
Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); | |
} | |
// Promote the function operand. | |
// We special-case function promotion here because we only allow promoting | |
// builtin functions to function pointers in the callee of a call. | |
ExprResult Result; | |
QualType ResultTy; | |
if (BuiltinID && | |
Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { | |
// Extract the return type from the (builtin) function pointer type. | |
// FIXME Several builtins still have setType in | |
// Sema::CheckBuiltinFunctionCall. One should review their definitions in | |
// Builtins.def to ensure they are correct before removing setType calls. | |
QualType FnPtrTy = Context.getPointerType(FDecl->getType()); | |
Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); | |
ResultTy = FDecl->getCallResultType(); | |
} else { | |
Result = CallExprUnaryConversions(Fn); | |
ResultTy = Context.BoolTy; | |
} | |
if (Result.isInvalid()) | |
return ExprError(); | |
Fn = Result.get(); | |
// Check for a valid function type, but only if it is not a builtin which | |
// requires custom type checking. These will be handled by | |
// CheckBuiltinFunctionCall below just after creation of the call expression. | |
const FunctionType *FuncT = nullptr; | |
if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { | |
retry: | |
if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { | |
// C99 6.5.2.2p1 - "The expression that denotes the called function shall | |
// have type pointer to function". | |
FuncT = PT->getPointeeType()->getAs<FunctionType>(); | |
if (!FuncT) | |
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | |
<< Fn->getType() << Fn->getSourceRange()); | |
} else if (const BlockPointerType *BPT = | |
Fn->getType()->getAs<BlockPointerType>()) { | |
FuncT = BPT->getPointeeType()->castAs<FunctionType>(); | |
} else { | |
// Handle calls to expressions of unknown-any type. | |
if (Fn->getType() == Context.UnknownAnyTy) { | |
ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); | |
if (rewrite.isInvalid()) | |
return ExprError(); | |
Fn = rewrite.get(); | |
goto retry; | |
} | |
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | |
<< Fn->getType() << Fn->getSourceRange()); | |
} | |
} | |
// Get the number of parameters in the function prototype, if any. | |
// We will allocate space for max(Args.size(), NumParams) arguments | |
// in the call expression. | |
const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT); | |
unsigned NumParams = Proto ? Proto->getNumParams() : 0; | |
CallExpr *TheCall; | |
if (Config) { | |
assert(UsesADL == ADLCallKind::NotADL && | |
"CUDAKernelCallExpr should not use ADL"); | |
TheCall = | |
CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args, | |
ResultTy, VK_RValue, RParenLoc, NumParams); | |
} else { | |
TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, | |
RParenLoc, NumParams, UsesADL); | |
} | |
if (!getLangOpts().CPlusPlus) { | |
// Forget about the nulled arguments since typo correction | |
// do not handle them well. | |
TheCall->shrinkNumArgs(Args.size()); | |
// C cannot always handle TypoExpr nodes in builtin calls and direct | |
// function calls as their argument checking don't necessarily handle | |
// dependent types properly, so make sure any TypoExprs have been | |
// dealt with. | |
ExprResult Result = CorrectDelayedTyposInExpr(TheCall); | |
if (!Result.isUsable()) return ExprError(); | |
CallExpr *TheOldCall = TheCall; | |
TheCall = dyn_cast<CallExpr>(Result.get()); | |
bool CorrectedTypos = TheCall != TheOldCall; | |
if (!TheCall) return Result; | |
Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); | |
// A new call expression node was created if some typos were corrected. | |
// However it may not have been constructed with enough storage. In this | |
// case, rebuild the node with enough storage. The waste of space is | |
// immaterial since this only happens when some typos were corrected. | |
if (CorrectedTypos && Args.size() < NumParams) { | |
if (Config) | |
TheCall = CUDAKernelCallExpr::Create( | |
Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue, | |
RParenLoc, NumParams); | |
else | |
TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, | |
RParenLoc, NumParams, UsesADL); | |
} | |
// We can now handle the nulled arguments for the default arguments. | |
TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams)); | |
} | |
// Bail out early if calling a builtin with custom type checking. | |
if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) | |
return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); | |
if (getLangOpts().CUDA) { | |
if (Config) { | |
// CUDA: Kernel calls must be to global functions | |
if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) | |
return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) | |
<< FDecl << Fn->getSourceRange()); | |
// CUDA: Kernel function must have 'void' return type | |
if (!FuncT->getReturnType()->isVoidType() && | |
!FuncT->getReturnType()->getAs<AutoType>() && | |
!FuncT->getReturnType()->isInstantiationDependentType()) | |
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) | |
<< Fn->getType() << Fn->getSourceRange()); | |
} else { | |
// CUDA: Calls to global functions must be configured | |
if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>()) | |
return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) | |
<< FDecl << Fn->getSourceRange()); | |
} | |
} | |
// Check for a valid return type | |
if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall, | |
FDecl)) | |
return ExprError(); | |
// We know the result type of the call, set it. | |
TheCall->setType(FuncT->getCallResultType(Context)); | |
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); | |
if (Proto) { | |
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, | |
IsExecConfig)) | |
return ExprError(); | |
} else { | |
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); | |
if (FDecl) { | |
// Check if we have too few/too many template arguments, based | |
// on our knowledge of the function definition. | |
const FunctionDecl *Def = nullptr; | |
if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { | |
Proto = Def->getType()->getAs<FunctionProtoType>(); | |
if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) | |
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) | |
<< (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); | |
} | |
// If the function we're calling isn't a function prototype, but we have | |
// a function prototype from a prior declaratiom, use that prototype. | |
if (!FDecl->hasPrototype()) | |
Proto = FDecl->getType()->getAs<FunctionProtoType>(); | |
} | |
// Promote the arguments (C99 6.5.2.2p6). | |
for (unsigned i = 0, e = Args.size(); i != e; i++) { | |
Expr *Arg = Args[i]; | |
if (Proto && i < Proto->getNumParams()) { | |
InitializedEntity Entity = InitializedEntity::InitializeParameter( | |
Context, Proto->getParamType(i), Proto->isParamConsumed(i)); | |
ExprResult ArgE = | |
PerformCopyInitialization(Entity, SourceLocation(), Arg); | |
if (ArgE.isInvalid()) | |
return true; | |
Arg = ArgE.getAs<Expr>(); | |
} else { | |
ExprResult ArgE = DefaultArgumentPromotion(Arg); | |
if (ArgE.isInvalid()) | |
return true; | |
Arg = ArgE.getAs<Expr>(); | |
} | |
if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(), | |
diag::err_call_incomplete_argument, Arg)) | |
return ExprError(); | |
TheCall->setArg(i, Arg); | |
} | |
} | |
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | |
if (!Method->isStatic()) | |
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) | |
<< Fn->getSourceRange()); | |
// Check for sentinels | |
if (NDecl) | |
DiagnoseSentinelCalls(NDecl, LParenLoc, Args); | |
// Warn for unions passing across security boundary (CMSE). | |
if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) { | |
for (unsigned i = 0, e = Args.size(); i != e; i++) { | |
if (const auto *RT = | |
dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) { | |
if (RT->getDecl()->isOrContainsUnion()) | |
Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union) | |
<< 0 << i; | |
} | |
} | |
} | |
// Do special checking on direct calls to functions. | |
if (FDecl) { | |
if (CheckFunctionCall(FDecl, TheCall, Proto)) | |
return ExprError(); | |
checkFortifiedBuiltinMemoryFunction(FDecl, TheCall); | |
if (BuiltinID) | |
return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); | |
} else if (NDecl) { | |
if (CheckPointerCall(NDecl, TheCall, Proto)) | |
return ExprError(); | |
} else { | |
if (CheckOtherCall(TheCall, Proto)) | |
return ExprError(); | |
} | |
return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl); | |
} | |
ExprResult | |
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, | |
SourceLocation RParenLoc, Expr *InitExpr) { | |
assert(Ty && "ActOnCompoundLiteral(): missing type"); | |
assert(InitExpr && "ActOnCompoundLiteral(): missing expression"); | |
TypeSourceInfo *TInfo; | |
QualType literalType = GetTypeFromParser(Ty, &TInfo); | |
if (!TInfo) | |
TInfo = Context.getTrivialTypeSourceInfo(literalType); | |
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); | |
} | |
ExprResult | |
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, | |
SourceLocation RParenLoc, Expr *LiteralExpr) { | |
QualType literalType = TInfo->getType(); | |
if (literalType->isArrayType()) { | |
if (RequireCompleteSizedType( | |
LParenLoc, Context.getBaseElementType(literalType), | |
diag::err_array_incomplete_or_sizeless_type, | |
SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) | |
return ExprError(); | |
if (literalType->isVariableArrayType()) | |
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) | |
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())); | |
} else if (!literalType->isDependentType() && | |
RequireCompleteType(LParenLoc, literalType, | |
diag::err_typecheck_decl_incomplete_type, | |
SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) | |
return ExprError(); | |
InitializedEntity Entity | |
= InitializedEntity::InitializeCompoundLiteralInit(TInfo); | |
InitializationKind Kind | |
= InitializationKind::CreateCStyleCast(LParenLoc, | |
SourceRange(LParenLoc, RParenLoc), | |
/*InitList=*/true); | |
InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); | |
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, | |
&literalType); | |
if (Result.isInvalid()) | |
return ExprError(); | |
LiteralExpr = Result.get(); | |
bool isFileScope = !CurContext->isFunctionOrMethod(); | |
// In C, compound literals are l-values for some reason. | |
// For GCC compatibility, in C++, file-scope array compound literals with | |
// constant initializers are also l-values, and compound literals are | |
// otherwise prvalues. | |
// | |
// (GCC also treats C++ list-initialized file-scope array prvalues with | |
// constant initializers as l-values, but that's non-conforming, so we don't | |
// follow it there.) | |
// | |
// FIXME: It would be better to handle the lvalue cases as materializing and | |
// lifetime-extending a temporary object, but our materialized temporaries | |
// representation only supports lifetime extension from a variable, not "out | |
// of thin air". | |
// FIXME: For C++, we might want to instead lifetime-extend only if a pointer | |
// is bound to the result of applying array-to-pointer decay to the compound | |
// literal. | |
// FIXME: GCC supports compound literals of reference type, which should | |
// obviously have a value kind derived from the kind of reference involved. | |
ExprValueKind VK = | |
(getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) | |
? VK_RValue | |
: VK_LValue; | |
if (isFileScope) | |
if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr)) | |
for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) { | |
Expr *Init = ILE->getInit(i); | |
ILE->setInit(i, ConstantExpr::Create(Context, Init)); | |
} | |
auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, | |
VK, LiteralExpr, isFileScope); | |
if (isFileScope) { | |
if (!LiteralExpr->isTypeDependent() && | |
!LiteralExpr->isValueDependent() && | |
!literalType->isDependentType()) // C99 6.5.2.5p3 | |
if (CheckForConstantInitializer(LiteralExpr, literalType)) | |
return ExprError(); | |
} else if (literalType.getAddressSpace() != LangAS::opencl_private && | |
literalType.getAddressSpace() != LangAS::Default) { | |
// Embedded-C extensions to C99 6.5.2.5: | |
// "If the compound literal occurs inside the body of a function, the | |
// type name shall not be qualified by an address-space qualifier." | |
Diag(LParenLoc, diag::err_compound_literal_with_address_space) | |
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()); | |
return ExprError(); | |
} | |
if (!isFileScope && !getLangOpts().CPlusPlus) { | |
// Compound literals that have automatic storage duration are destroyed at | |
// the end of the scope in C; in C++, they're just temporaries. | |
// Emit diagnostics if it is or contains a C union type that is non-trivial | |
// to destruct. | |
if (E->getType().hasNonTrivialToPrimitiveDestructCUnion()) | |
checkNonTrivialCUnion(E->getType(), E->getExprLoc(), | |
NTCUC_CompoundLiteral, NTCUK_Destruct); | |
// Diagnose jumps that enter or exit the lifetime of the compound literal. | |
if (literalType.isDestructedType()) { | |
Cleanup.setExprNeedsCleanups(true); | |
ExprCleanupObjects.push_back(E); | |
getCurFunction()->setHasBranchProtectedScope(); | |
} | |
} | |
if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |
E->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |
checkNonTrivialCUnionInInitializer(E->getInitializer(), | |
E->getInitializer()->getExprLoc()); | |
return MaybeBindToTemporary(E); | |
} | |
ExprResult | |
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, | |
SourceLocation RBraceLoc) { | |
// Only produce each kind of designated initialization diagnostic once. | |
SourceLocation FirstDesignator; | |
bool DiagnosedArrayDesignator = false; | |
bool DiagnosedNestedDesignator = false; | |
bool DiagnosedMixedDesignator = false; | |
// Check that any designated initializers are syntactically valid in the | |
// current language mode. | |
for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { | |
if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) { | |
if (FirstDesignator.isInvalid()) | |
FirstDesignator = DIE->getBeginLoc(); | |
if (!getLangOpts().CPlusPlus) | |
break; | |
if (!DiagnosedNestedDesignator && DIE->size() > 1) { | |
DiagnosedNestedDesignator = true; | |
Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested) | |
<< DIE->getDesignatorsSourceRange(); | |
} | |
for (auto &Desig : DIE->designators()) { | |
if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) { | |
DiagnosedArrayDesignator = true; | |
Diag(Desig.getBeginLoc(), diag::ext_designated_init_array) | |
<< Desig.getSourceRange(); | |
} | |
} | |
if (!DiagnosedMixedDesignator && | |
!isa<DesignatedInitExpr>(InitArgList[0])) { | |
DiagnosedMixedDesignator = true; | |
Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) | |
<< DIE->getSourceRange(); | |
Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed) | |
<< InitArgList[0]->getSourceRange(); | |
} | |
} else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator && | |
isa<DesignatedInitExpr>(InitArgList[0])) { | |
DiagnosedMixedDesignator = true; | |
auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]); | |
Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) | |
<< DIE->getSourceRange(); | |
Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed) | |
<< InitArgList[I]->getSourceRange(); | |
} | |
} | |
if (FirstDesignator.isValid()) { | |
// Only diagnose designated initiaization as a C++20 extension if we didn't | |
// already diagnose use of (non-C++20) C99 designator syntax. | |
if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator && | |
!DiagnosedNestedDesignator && !DiagnosedMixedDesignator) { | |
Diag(FirstDesignator, getLangOpts().CPlusPlus20 | |
? diag::warn_cxx17_compat_designated_init | |
: diag::ext_cxx_designated_init); | |
} else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) { | |
Diag(FirstDesignator, diag::ext_designated_init); | |
} | |
} | |
return BuildInitList(LBraceLoc, InitArgList, RBraceLoc); | |
} | |
ExprResult | |
Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, | |
SourceLocation RBraceLoc) { | |
// Semantic analysis for initializers is done by ActOnDeclarator() and | |
// CheckInitializer() - it requires knowledge of the object being initialized. | |
// Immediately handle non-overload placeholders. Overloads can be | |
// resolved contextually, but everything else here can't. | |
for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { | |
if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { | |
ExprResult result = CheckPlaceholderExpr(InitArgList[I]); | |
// Ignore failures; dropping the entire initializer list because | |
// of one failure would be terrible for indexing/etc. | |
if (result.isInvalid()) continue; | |
InitArgList[I] = result.get(); | |
} | |
} | |
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, | |
RBraceLoc); | |
E->setType(Context.VoidTy); // FIXME: just a place holder for now. | |
return E; | |
} | |
/// Do an explicit extend of the given block pointer if we're in ARC. | |
void Sema::maybeExtendBlockObject(ExprResult &E) { | |
assert(E.get()->getType()->isBlockPointerType()); | |
assert(E.get()->isRValue()); | |
// Only do this in an r-value context. | |
if (!getLangOpts().ObjCAutoRefCount) return; | |
E = ImplicitCastExpr::Create(Context, E.get()->getType(), | |
CK_ARCExtendBlockObject, E.get(), | |
/*base path*/ nullptr, VK_RValue); | |
Cleanup.setExprNeedsCleanups(true); | |
} | |
/// Prepare a conversion of the given expression to an ObjC object | |
/// pointer type. | |
CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { | |
QualType type = E.get()->getType(); | |
if (type->isObjCObjectPointerType()) { | |
return CK_BitCast; | |
} else if (type->isBlockPointerType()) { | |
maybeExtendBlockObject(E); | |
return CK_BlockPointerToObjCPointerCast; | |
} else { | |
assert(type->isPointerType()); | |
return CK_CPointerToObjCPointerCast; | |
} | |
} | |
/// Prepares for a scalar cast, performing all the necessary stages | |
/// except the final cast and returning the kind required. | |
CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { | |
// Both Src and Dest are scalar types, i.e. arithmetic or pointer. | |
// Also, callers should have filtered out the invalid cases with | |
// pointers. Everything else should be possible. | |
QualType SrcTy = Src.get()->getType(); | |
if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) | |
return CK_NoOp; | |
switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { | |
case Type::STK_MemberPointer: | |
llvm_unreachable("member pointer type in C"); | |
case Type::STK_CPointer: | |
case Type::STK_BlockPointer: | |
case Type::STK_ObjCObjectPointer: | |
switch (DestTy->getScalarTypeKind()) { | |
case Type::STK_CPointer: { | |
LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); | |
LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); | |
if (SrcAS != DestAS) | |
return CK_AddressSpaceConversion; | |
if (Context.hasCvrSimilarType(SrcTy, DestTy)) | |
return CK_NoOp; | |
return CK_BitCast; | |
} | |
case Type::STK_BlockPointer: | |
return (SrcKind == Type::STK_BlockPointer | |
? CK_BitCast : CK_AnyPointerToBlockPointerCast); | |
case Type::STK_ObjCObjectPointer: | |
if (SrcKind == Type::STK_ObjCObjectPointer) | |
return CK_BitCast; | |
if (SrcKind == Type::STK_CPointer) | |
return CK_CPointerToObjCPointerCast; | |
maybeExtendBlockObject(Src); | |
return CK_BlockPointerToObjCPointerCast; | |
case Type::STK_Bool: | |
return CK_PointerToBoolean; | |
case Type::STK_Integral: | |
return CK_PointerToIntegral; | |
case Type::STK_Floating: | |
case Type::STK_FloatingComplex: | |
case Type::STK_IntegralComplex: | |
case Type::STK_MemberPointer: | |
case Type::STK_FixedPoint: | |
llvm_unreachable("illegal cast from pointer"); | |
} | |
llvm_unreachable("Should have returned before this"); | |
case Type::STK_FixedPoint: | |
switch (DestTy->getScalarTypeKind()) { | |
case Type::STK_FixedPoint: | |
return CK_FixedPointCast; | |
case Type::STK_Bool: | |
return CK_FixedPointToBoolean; | |
case Type::STK_Integral: | |
return CK_FixedPointToIntegral; | |
case Type::STK_Floating: | |
case Type::STK_IntegralComplex: | |
case Type::STK_FloatingComplex: | |
Diag(Src.get()->getExprLoc(), | |
diag::err_unimplemented_conversion_with_fixed_point_type) | |
<< DestTy; | |
return CK_IntegralCast; | |
case Type::STK_CPointer: | |
case Type::STK_ObjCObjectPointer: | |
case Type::STK_BlockPointer: | |
case Type::STK_MemberPointer: | |
llvm_unreachable("illegal cast to pointer type"); | |
} | |
llvm_unreachable("Should have returned before this"); | |
case Type::STK_Bool: // casting from bool is like casting from an integer | |
case Type::STK_Integral: | |
switch (DestTy->getScalarTypeKind()) { | |
case Type::STK_CPointer: | |
case Type::STK_ObjCObjectPointer: | |
case Type::STK_BlockPointer: | |
if (Src.get()->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNull)) | |
return CK_NullToPointer; | |
return CK_IntegralToPointer; | |
case Type::STK_Bool: | |
return CK_IntegralToBoolean; | |
case Type::STK_Integral: | |
return CK_IntegralCast; | |
case Type::STK_Floating: | |
return CK_IntegralToFloating; | |
case Type::STK_IntegralComplex: | |
Src = ImpCastExprToType(Src.get(), | |
DestTy->castAs<ComplexType>()->getElementType(), | |
CK_IntegralCast); | |
return CK_IntegralRealToComplex; | |
case Type::STK_FloatingComplex: | |
Src = ImpCastExprToType(Src.get(), | |
DestTy->castAs<ComplexType>()->getElementType(), | |
CK_IntegralToFloating); | |
return CK_FloatingRealToComplex; | |
case Type::STK_MemberPointer: | |
llvm_unreachable("member pointer type in C"); | |
case Type::STK_FixedPoint: | |
return CK_IntegralToFixedPoint; | |
} | |
llvm_unreachable("Should have returned before this"); | |
case Type::STK_Floating: | |
switch (DestTy->getScalarTypeKind()) { | |
case Type::STK_Floating: | |
return CK_FloatingCast; | |
case Type::STK_Bool: | |
return CK_FloatingToBoolean; | |
case Type::STK_Integral: | |
return CK_FloatingToIntegral; | |
case Type::STK_FloatingComplex: | |
Src = ImpCastExprToType(Src.get(), | |
DestTy->castAs<ComplexType>()->getElementType(), | |
CK_FloatingCast); | |
return CK_FloatingRealToComplex; | |
case Type::STK_IntegralComplex: | |
Src = ImpCastExprToType(Src.get(), | |
DestTy->castAs<ComplexType>()->getElementType(), | |
CK_FloatingToIntegral); | |
return CK_IntegralRealToComplex; | |
case Type::STK_CPointer: | |
case Type::STK_ObjCObjectPointer: | |
case Type::STK_BlockPointer: | |
llvm_unreachable("valid float->pointer cast?"); | |
case Type::STK_MemberPointer: | |
llvm_unreachable("member pointer type in C"); | |
case Type::STK_FixedPoint: | |
Diag(Src.get()->getExprLoc(), | |
diag::err_unimplemented_conversion_with_fixed_point_type) | |
<< SrcTy; | |
return CK_IntegralCast; | |
} | |
llvm_unreachable("Should have returned before this"); | |
case Type::STK_FloatingComplex: | |
switch (DestTy->getScalarTypeKind()) { | |
case Type::STK_FloatingComplex: | |
return CK_FloatingComplexCast; | |
case Type::STK_IntegralComplex: | |
return CK_FloatingComplexToIntegralComplex; | |
case Type::STK_Floating: { | |
QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); | |
if (Context.hasSameType(ET, DestTy)) | |
return CK_FloatingComplexToReal; | |
Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); | |
return CK_FloatingCast; | |
} | |
case Type::STK_Bool: | |
return CK_FloatingComplexToBoolean; | |
case Type::STK_Integral: | |
Src = ImpCastExprToType(Src.get(), | |
SrcTy->castAs<ComplexType>()->getElementType(), | |
CK_FloatingComplexToReal); | |
return CK_FloatingToIntegral; | |
case Type::STK_CPointer: | |
case Type::STK_ObjCObjectPointer: | |
case Type::STK_BlockPointer: | |
llvm_unreachable("valid complex float->pointer cast?"); | |
case Type::STK_MemberPointer: | |
llvm_unreachable("member pointer type in C"); | |
case Type::STK_FixedPoint: | |
Diag(Src.get()->getExprLoc(), | |
diag::err_unimplemented_conversion_with_fixed_point_type) | |
<< SrcTy; | |
return CK_IntegralCast; | |
} | |
llvm_unreachable("Should have returned before this"); | |
case Type::STK_IntegralComplex: | |
switch (DestTy->getScalarTypeKind()) { | |
case Type::STK_FloatingComplex: | |
return CK_IntegralComplexToFloatingComplex; | |
case Type::STK_IntegralComplex: | |
return CK_IntegralComplexCast; | |
case Type::STK_Integral: { | |
QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); | |
if (Context.hasSameType(ET, DestTy)) | |
return CK_IntegralComplexToReal; | |
Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); | |
return CK_IntegralCast; | |
} | |
case Type::STK_Bool: | |
return CK_IntegralComplexToBoolean; | |
case Type::STK_Floating: | |
Src = ImpCastExprToType(Src.get(), | |
SrcTy->castAs<ComplexType>()->getElementType(), | |
CK_IntegralComplexToReal); | |
return CK_IntegralToFloating; | |
case Type::STK_CPointer: | |
case Type::STK_ObjCObjectPointer: | |
case Type::STK_BlockPointer: | |
llvm_unreachable("valid complex int->pointer cast?"); | |
case Type::STK_MemberPointer: | |
llvm_unreachable("member pointer type in C"); | |
case Type::STK_FixedPoint: | |
Diag(Src.get()->getExprLoc(), | |
diag::err_unimplemented_conversion_with_fixed_point_type) | |
<< SrcTy; | |
return CK_IntegralCast; | |
} | |
llvm_unreachable("Should have returned before this"); | |
} | |
llvm_unreachable("Unhandled scalar cast"); | |
} | |
static bool breakDownVectorType(QualType type, uint64_t &len, | |
QualType &eltType) { | |
// Vectors are simple. | |
if (const VectorType *vecType = type->getAs<VectorType>()) { | |
len = vecType->getNumElements(); | |
eltType = vecType->getElementType(); | |
assert(eltType->isScalarType()); | |
return true; | |
} | |
// We allow lax conversion to and from non-vector types, but only if | |
// they're real types (i.e. non-complex, non-pointer scalar types). | |
if (!type->isRealType()) return false; | |
len = 1; | |
eltType = type; | |
return true; | |
} | |
/// Are the two types lax-compatible vector types? That is, given | |
/// that one of them is a vector, do they have equal storage sizes, | |
/// where the storage size is the number of elements times the element | |
/// size? | |
/// | |
/// This will also return false if either of the types is neither a | |
/// vector nor a real type. | |
bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { | |
assert(destTy->isVectorType() || srcTy->isVectorType()); | |
// Disallow lax conversions between scalars and ExtVectors (these | |
// conversions are allowed for other vector types because common headers | |
// depend on them). Most scalar OP ExtVector cases are handled by the | |
// splat path anyway, which does what we want (convert, not bitcast). | |
// What this rules out for ExtVectors is crazy things like char4*float. | |
if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; | |
if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; | |
uint64_t srcLen, destLen; | |
QualType srcEltTy, destEltTy; | |
if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false; | |
if (!breakDownVectorType(destTy, destLen, destEltTy)) return false; | |
// ASTContext::getTypeSize will return the size rounded up to a | |
// power of 2, so instead of using that, we need to use the raw | |
// element size multiplied by the element count. | |
uint64_t srcEltSize = Context.getTypeSize(srcEltTy); | |
uint64_t destEltSize = Context.getTypeSize(destEltTy); | |
return (srcLen * srcEltSize == destLen * destEltSize); | |
} | |
/// Is this a legal conversion between two types, one of which is | |
/// known to be a vector type? | |
bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { | |
assert(destTy->isVectorType() || srcTy->isVectorType()); | |
switch (Context.getLangOpts().getLaxVectorConversions()) { | |
case LangOptions::LaxVectorConversionKind::None: | |
return false; | |
case LangOptions::LaxVectorConversionKind::Integer: | |
if (!srcTy->isIntegralOrEnumerationType()) { | |
auto *Vec = srcTy->getAs<VectorType>(); | |
if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) | |
return false; | |
} | |
if (!destTy->isIntegralOrEnumerationType()) { | |
auto *Vec = destTy->getAs<VectorType>(); | |
if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) | |
return false; | |
} | |
// OK, integer (vector) -> integer (vector) bitcast. | |
break; | |
case LangOptions::LaxVectorConversionKind::All: | |
break; | |
} | |
return areLaxCompatibleVectorTypes(srcTy, destTy); | |
} | |
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, | |
CastKind &Kind) { | |
assert(VectorTy->isVectorType() && "Not a vector type!"); | |
if (Ty->isVectorType() || Ty->isIntegralType(Context)) { | |
if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) | |
return Diag(R.getBegin(), | |
Ty->isVectorType() ? | |
diag::err_invalid_conversion_between_vectors : | |
diag::err_invalid_conversion_between_vector_and_integer) | |
<< VectorTy << Ty << R; | |
} else | |
return Diag(R.getBegin(), | |
diag::err_invalid_conversion_between_vector_and_scalar) | |
<< VectorTy << Ty << R; | |
Kind = CK_BitCast; | |
return false; | |
} | |
ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { | |
QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType(); | |
if (DestElemTy == SplattedExpr->getType()) | |
return SplattedExpr; | |
assert(DestElemTy->isFloatingType() || | |
DestElemTy->isIntegralOrEnumerationType()); | |
CastKind CK; | |
if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { | |
// OpenCL requires that we convert `true` boolean expressions to -1, but | |
// only when splatting vectors. | |
if (DestElemTy->isFloatingType()) { | |
// To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast | |
// in two steps: boolean to signed integral, then to floating. | |
ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, | |
CK_BooleanToSignedIntegral); | |
SplattedExpr = CastExprRes.get(); | |
CK = CK_IntegralToFloating; | |
} else { | |
CK = CK_BooleanToSignedIntegral; | |
} | |
} else { | |
ExprResult CastExprRes = SplattedExpr; | |
CK = PrepareScalarCast(CastExprRes, DestElemTy); | |
if (CastExprRes.isInvalid()) | |
return ExprError(); | |
SplattedExpr = CastExprRes.get(); | |
} | |
return ImpCastExprToType(SplattedExpr, DestElemTy, CK); | |
} | |
ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, | |
Expr *CastExpr, CastKind &Kind) { | |
assert(DestTy->isExtVectorType() && "Not an extended vector type!"); | |
QualType SrcTy = CastExpr->getType(); | |
// If SrcTy is a VectorType, the total size must match to explicitly cast to | |
// an ExtVectorType. | |
// In OpenCL, casts between vectors of different types are not allowed. | |
// (See OpenCL 6.2). | |
if (SrcTy->isVectorType()) { | |
if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || | |
(getLangOpts().OpenCL && | |
!Context.hasSameUnqualifiedType(DestTy, SrcTy))) { | |
Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) | |
<< DestTy << SrcTy << R; | |
return ExprError(); | |
} | |
Kind = CK_BitCast; | |
return CastExpr; | |
} | |
// All non-pointer scalars can be cast to ExtVector type. The appropriate | |
// conversion will take place first from scalar to elt type, and then | |
// splat from elt type to vector. | |
if (SrcTy->isPointerType()) | |
return Diag(R.getBegin(), | |
diag::err_invalid_conversion_between_vector_and_scalar) | |
<< DestTy << SrcTy << R; | |
Kind = CK_VectorSplat; | |
return prepareVectorSplat(DestTy, CastExpr); | |
} | |
ExprResult | |
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, | |
Declarator &D, ParsedType &Ty, | |
SourceLocation RParenLoc, Expr *CastExpr) { | |
assert(!D.isInvalidType() && (CastExpr != nullptr) && | |
"ActOnCastExpr(): missing type or expr"); | |
TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); | |
if (D.isInvalidType()) | |
return ExprError(); | |
if (getLangOpts().CPlusPlus) { | |
// Check that there are no default arguments (C++ only). | |
CheckExtraCXXDefaultArguments(D); | |
} else { | |
// Make sure any TypoExprs have been dealt with. | |
ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); | |
if (!Res.isUsable()) | |
return ExprError(); | |
CastExpr = Res.get(); | |
} | |
checkUnusedDeclAttributes(D); | |
QualType castType = castTInfo->getType(); | |
Ty = CreateParsedType(castType, castTInfo); | |
bool isVectorLiteral = false; | |
// Check for an altivec or OpenCL literal, | |
// i.e. all the elements are integer constants. | |
ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr); | |
ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr); | |
if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) | |
&& castType->isVectorType() && (PE || PLE)) { | |
if (PLE && PLE->getNumExprs() == 0) { | |
Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); | |
return ExprError(); | |
} | |
if (PE || PLE->getNumExprs() == 1) { | |
Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); | |
if (!E->getType()->isVectorType()) | |
isVectorLiteral = true; | |
} | |
else | |
isVectorLiteral = true; | |
} | |
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')' | |
// then handle it as such. | |
if (isVectorLiteral) | |
return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); | |
// If the Expr being casted is a ParenListExpr, handle it specially. | |
// This is not an AltiVec-style cast, so turn the ParenListExpr into a | |
// sequence of BinOp comma operators. | |
if (isa<ParenListExpr>(CastExpr)) { | |
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); | |
if (Result.isInvalid()) return ExprError(); | |
CastExpr = Result.get(); | |
} | |
if (getLangOpts().CPlusPlus && !castType->isVoidType() && | |
!getSourceManager().isInSystemMacro(LParenLoc)) | |
Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); | |
CheckTollFreeBridgeCast(castType, CastExpr); | |
CheckObjCBridgeRelatedCast(castType, CastExpr); | |
DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); | |
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); | |
} | |
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, | |
SourceLocation RParenLoc, Expr *E, | |
TypeSourceInfo *TInfo) { | |
assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && | |
"Expected paren or paren list expression"); | |
Expr **exprs; | |
unsigned numExprs; | |
Expr *subExpr; | |
SourceLocation LiteralLParenLoc, LiteralRParenLoc; | |
if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { | |
LiteralLParenLoc = PE->getLParenLoc(); | |
LiteralRParenLoc = PE->getRParenLoc(); | |
exprs = PE->getExprs(); | |
numExprs = PE->getNumExprs(); | |
} else { // isa<ParenExpr> by assertion at function entrance | |
LiteralLParenLoc = cast<ParenExpr>(E)->getLParen(); | |
LiteralRParenLoc = cast<ParenExpr>(E)->getRParen(); | |
subExpr = cast<ParenExpr>(E)->getSubExpr(); | |
exprs = &subExpr; | |
numExprs = 1; | |
} | |
QualType Ty = TInfo->getType(); | |
assert(Ty->isVectorType() && "Expected vector type"); | |
SmallVector<Expr *, 8> initExprs; | |
const VectorType *VTy = Ty->castAs<VectorType>(); | |
unsigned numElems = VTy->getNumElements(); | |
// '(...)' form of vector initialization in AltiVec: the number of | |
// initializers must be one or must match the size of the vector. | |
// If a single value is specified in the initializer then it will be | |
// replicated to all the components of the vector | |
if (VTy->getVectorKind() == VectorType::AltiVecVector) { | |
// The number of initializers must be one or must match the size of the | |
// vector. If a single value is specified in the initializer then it will | |
// be replicated to all the components of the vector | |
if (numExprs == 1) { | |
QualType ElemTy = VTy->getElementType(); | |
ExprResult Literal = DefaultLvalueConversion(exprs[0]); | |
if (Literal.isInvalid()) | |
return ExprError(); | |
Literal = ImpCastExprToType(Literal.get(), ElemTy, | |
PrepareScalarCast(Literal, ElemTy)); | |
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); | |
} | |
else if (numExprs < numElems) { | |
Diag(E->getExprLoc(), | |
diag::err_incorrect_number_of_vector_initializers); | |
return ExprError(); | |
} | |
else | |
initExprs.append(exprs, exprs + numExprs); | |
} | |
else { | |
// For OpenCL, when the number of initializers is a single value, | |
// it will be replicated to all components of the vector. | |
if (getLangOpts().OpenCL && | |
VTy->getVectorKind() == VectorType::GenericVector && | |
numExprs == 1) { | |
QualType ElemTy = VTy->getElementType(); | |
ExprResult Literal = DefaultLvalueConversion(exprs[0]); | |
if (Literal.isInvalid()) | |
return ExprError(); | |
Literal = ImpCastExprToType(Literal.get(), ElemTy, | |
PrepareScalarCast(Literal, ElemTy)); | |
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); | |
} | |
initExprs.append(exprs, exprs + numExprs); | |
} | |
// FIXME: This means that pretty-printing the final AST will produce curly | |
// braces instead of the original commas. | |
InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, | |
initExprs, LiteralRParenLoc); | |
initE->setType(Ty); | |
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); | |
} | |
/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn | |
/// the ParenListExpr into a sequence of comma binary operators. | |
ExprResult | |
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { | |
ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr); | |
if (!E) | |
return OrigExpr; | |
ExprResult Result(E->getExpr(0)); | |
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) | |
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), | |
E->getExpr(i)); | |
if (Result.isInvalid()) return ExprError(); | |
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); | |
} | |
ExprResult Sema::ActOnParenListExpr(SourceLocation L, | |
SourceLocation R, | |
MultiExprArg Val) { | |
return ParenListExpr::Create(Context, L, Val, R); | |
} | |
/// Emit a specialized diagnostic when one expression is a null pointer | |
/// constant and the other is not a pointer. Returns true if a diagnostic is | |
/// emitted. | |
bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, | |
SourceLocation QuestionLoc) { | |
Expr *NullExpr = LHSExpr; | |
Expr *NonPointerExpr = RHSExpr; | |
Expr::NullPointerConstantKind NullKind = | |
NullExpr->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNotNull); | |
if (NullKind == Expr::NPCK_NotNull) { | |
NullExpr = RHSExpr; | |
NonPointerExpr = LHSExpr; | |
NullKind = | |
NullExpr->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNotNull); | |
} | |
if (NullKind == Expr::NPCK_NotNull) | |
return false; | |
if (NullKind == Expr::NPCK_ZeroExpression) | |
return false; | |
if (NullKind == Expr::NPCK_ZeroLiteral) { | |
// In this case, check to make sure that we got here from a "NULL" | |
// string in the source code. | |
NullExpr = NullExpr->IgnoreParenImpCasts(); | |
SourceLocation loc = NullExpr->getExprLoc(); | |
if (!findMacroSpelling(loc, "NULL")) | |
return false; | |
} | |
int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); | |
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) | |
<< NonPointerExpr->getType() << DiagType | |
<< NonPointerExpr->getSourceRange(); | |
return true; | |
} | |
/// Return false if the condition expression is valid, true otherwise. | |
static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { | |
QualType CondTy = Cond->getType(); | |
// OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. | |
if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { | |
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) | |
<< CondTy << Cond->getSourceRange(); | |
return true; | |
} | |
// C99 6.5.15p2 | |
if (CondTy->isScalarType()) return false; | |
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) | |
<< CondTy << Cond->getSourceRange(); | |
return true; | |
} | |
/// Handle when one or both operands are void type. | |
static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS, | |
ExprResult &RHS) { | |
Expr *LHSExpr = LHS.get(); | |
Expr *RHSExpr = RHS.get(); | |
if (!LHSExpr->getType()->isVoidType()) | |
S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void) | |
<< RHSExpr->getSourceRange(); | |
if (!RHSExpr->getType()->isVoidType()) | |
S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void) | |
<< LHSExpr->getSourceRange(); | |
LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid); | |
RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid); | |
return S.Context.VoidTy; | |
} | |
/// Return false if the NullExpr can be promoted to PointerTy, | |
/// true otherwise. | |
static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, | |
QualType PointerTy) { | |
if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || | |
!NullExpr.get()->isNullPointerConstant(S.Context, | |
Expr::NPC_ValueDependentIsNull)) | |
return true; | |
NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); | |
return false; | |
} | |
/// Checks compatibility between two pointers and return the resulting | |
/// type. | |
static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation Loc) { | |
QualType LHSTy = LHS.get()->getType(); | |
QualType RHSTy = RHS.get()->getType(); | |
if (S.Context.hasSameType(LHSTy, RHSTy)) { | |
// Two identical pointers types are always compatible. | |
return LHSTy; | |
} | |
QualType lhptee, rhptee; | |
// Get the pointee types. | |
bool IsBlockPointer = false; | |
if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) { | |
lhptee = LHSBTy->getPointeeType(); | |
rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType(); | |
IsBlockPointer = true; | |
} else { | |
lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | |
rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | |
} | |
// C99 6.5.15p6: If both operands are pointers to compatible types or to | |
// differently qualified versions of compatible types, the result type is | |
// a pointer to an appropriately qualified version of the composite | |
// type. | |
// Only CVR-qualifiers exist in the standard, and the differently-qualified | |
// clause doesn't make sense for our extensions. E.g. address space 2 should | |
// be incompatible with address space 3: they may live on different devices or | |
// anything. | |
Qualifiers lhQual = lhptee.getQualifiers(); | |
Qualifiers rhQual = rhptee.getQualifiers(); | |
LangAS ResultAddrSpace = LangAS::Default; | |
LangAS LAddrSpace = lhQual.getAddressSpace(); | |
LangAS RAddrSpace = rhQual.getAddressSpace(); | |
// OpenCL v1.1 s6.5 - Conversion between pointers to distinct address | |
// spaces is disallowed. | |
if (lhQual.isAddressSpaceSupersetOf(rhQual)) | |
ResultAddrSpace = LAddrSpace; | |
else if (rhQual.isAddressSpaceSupersetOf(lhQual)) | |
ResultAddrSpace = RAddrSpace; | |
else { | |
S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | |
<< LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); | |
auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; | |
lhQual.removeCVRQualifiers(); | |
rhQual.removeCVRQualifiers(); | |
// OpenCL v2.0 specification doesn't extend compatibility of type qualifiers | |
// (C99 6.7.3) for address spaces. We assume that the check should behave in | |
// the same manner as it's defined for CVR qualifiers, so for OpenCL two | |
// qual types are compatible iff | |
// * corresponded types are compatible | |
// * CVR qualifiers are equal | |
// * address spaces are equal | |
// Thus for conditional operator we merge CVR and address space unqualified | |
// pointees and if there is a composite type we return a pointer to it with | |
// merged qualifiers. | |
LHSCastKind = | |
LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; | |
RHSCastKind = | |
RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; | |
lhQual.removeAddressSpace(); | |
rhQual.removeAddressSpace(); | |
lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); | |
rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); | |
QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee); | |
if (CompositeTy.isNull()) { | |
// In this situation, we assume void* type. No especially good | |
// reason, but this is what gcc does, and we do have to pick | |
// to get a consistent AST. | |
QualType incompatTy; | |
incompatTy = S.Context.getPointerType( | |
S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); | |
LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); | |
RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); | |
// FIXME: For OpenCL the warning emission and cast to void* leaves a room | |
// for casts between types with incompatible address space qualifiers. | |
// For the following code the compiler produces casts between global and | |
// local address spaces of the corresponded innermost pointees: | |
// local int *global *a; | |
// global int *global *b; | |
// a = (0 ? a : b); // see C99 6.5.16.1.p1. | |
S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) | |
<< LHSTy << RHSTy << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
return incompatTy; | |
} | |
// The pointer types are compatible. | |
// In case of OpenCL ResultTy should have the address space qualifier | |
// which is a superset of address spaces of both the 2nd and the 3rd | |
// operands of the conditional operator. | |
QualType ResultTy = [&, ResultAddrSpace]() { | |
if (S.getLangOpts().OpenCL) { | |
Qualifiers CompositeQuals = CompositeTy.getQualifiers(); | |
CompositeQuals.setAddressSpace(ResultAddrSpace); | |
return S.Context | |
.getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) | |
.withCVRQualifiers(MergedCVRQual); | |
} | |
return CompositeTy.withCVRQualifiers(MergedCVRQual); | |
}(); | |
if (IsBlockPointer) | |
ResultTy = S.Context.getBlockPointerType(ResultTy); | |
else | |
ResultTy = S.Context.getPointerType(ResultTy); | |
LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); | |
RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); | |
return ResultTy; | |
} | |
/// Return the resulting type when the operands are both block pointers. | |
static QualType checkConditionalBlockPointerCompatibility(Sema &S, | |
ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation Loc) { | |
QualType LHSTy = LHS.get()->getType(); | |
QualType RHSTy = RHS.get()->getType(); | |
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { | |
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { | |
QualType destType = S.Context.getPointerType(S.Context.VoidTy); | |
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); | |
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); | |
return destType; | |
} | |
S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) | |
<< LHSTy << RHSTy << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
// We have 2 block pointer types. | |
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); | |
} | |
/// Return the resulting type when the operands are both pointers. | |
static QualType | |
checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation Loc) { | |
// get the pointer types | |
QualType LHSTy = LHS.get()->getType(); | |
QualType RHSTy = RHS.get()->getType(); | |
// get the "pointed to" types | |
QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | |
QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | |
// ignore qualifiers on void (C99 6.5.15p3, clause 6) | |
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { | |
// Figure out necessary qualifiers (C99 6.5.15p6) | |
QualType destPointee | |
= S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | |
QualType destType = S.Context.getPointerType(destPointee); | |
// Add qualifiers if necessary. | |
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); | |
// Promote to void*. | |
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); | |
return destType; | |
} | |
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { | |
QualType destPointee | |
= S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | |
QualType destType = S.Context.getPointerType(destPointee); | |
// Add qualifiers if necessary. | |
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); | |
// Promote to void*. | |
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); | |
return destType; | |
} | |
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); | |
} | |
/// Return false if the first expression is not an integer and the second | |
/// expression is not a pointer, true otherwise. | |
static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, | |
Expr* PointerExpr, SourceLocation Loc, | |
bool IsIntFirstExpr) { | |
if (!PointerExpr->getType()->isPointerType() || | |
!Int.get()->getType()->isIntegerType()) | |
return false; | |
Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; | |
Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); | |
S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) | |
<< Expr1->getType() << Expr2->getType() | |
<< Expr1->getSourceRange() << Expr2->getSourceRange(); | |
Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), | |
CK_IntegralToPointer); | |
return true; | |
} | |
/// Simple conversion between integer and floating point types. | |
/// | |
/// Used when handling the OpenCL conditional operator where the | |
/// condition is a vector while the other operands are scalar. | |
/// | |
/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar | |
/// types are either integer or floating type. Between the two | |
/// operands, the type with the higher rank is defined as the "result | |
/// type". The other operand needs to be promoted to the same type. No | |
/// other type promotion is allowed. We cannot use | |
/// UsualArithmeticConversions() for this purpose, since it always | |
/// promotes promotable types. | |
static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation QuestionLoc) { | |
LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
// For conversion purposes, we ignore any qualifiers. | |
// For example, "const float" and "float" are equivalent. | |
QualType LHSType = | |
S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); | |
QualType RHSType = | |
S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); | |
if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { | |
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) | |
<< LHSType << LHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { | |
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) | |
<< RHSType << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
// If both types are identical, no conversion is needed. | |
if (LHSType == RHSType) | |
return LHSType; | |
// Now handle "real" floating types (i.e. float, double, long double). | |
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | |
return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, | |
/*IsCompAssign = */ false); | |
// Finally, we have two differing integer types. | |
return handleIntegerConversion<doIntegralCast, doIntegralCast> | |
(S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); | |
} | |
/// Convert scalar operands to a vector that matches the | |
/// condition in length. | |
/// | |
/// Used when handling the OpenCL conditional operator where the | |
/// condition is a vector while the other operands are scalar. | |
/// | |
/// We first compute the "result type" for the scalar operands | |
/// according to OpenCL v1.1 s6.3.i. Both operands are then converted | |
/// into a vector of that type where the length matches the condition | |
/// vector type. s6.11.6 requires that the element types of the result | |
/// and the condition must have the same number of bits. | |
static QualType | |
OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, | |
QualType CondTy, SourceLocation QuestionLoc) { | |
QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); | |
if (ResTy.isNull()) return QualType(); | |
const VectorType *CV = CondTy->getAs<VectorType>(); | |
assert(CV); | |
// Determine the vector result type | |
unsigned NumElements = CV->getNumElements(); | |
QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); | |
// Ensure that all types have the same number of bits | |
if (S.Context.getTypeSize(CV->getElementType()) | |
!= S.Context.getTypeSize(ResTy)) { | |
// Since VectorTy is created internally, it does not pretty print | |
// with an OpenCL name. Instead, we just print a description. | |
std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); | |
SmallString<64> Str; | |
llvm::raw_svector_ostream OS(Str); | |
OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; | |
S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) | |
<< CondTy << OS.str(); | |
return QualType(); | |
} | |
// Convert operands to the vector result type | |
LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); | |
RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); | |
return VectorTy; | |
} | |
/// Return false if this is a valid OpenCL condition vector | |
static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, | |
SourceLocation QuestionLoc) { | |
// OpenCL v1.1 s6.11.6 says the elements of the vector must be of | |
// integral type. | |
const VectorType *CondTy = Cond->getType()->getAs<VectorType>(); | |
assert(CondTy); | |
QualType EleTy = CondTy->getElementType(); | |
if (EleTy->isIntegerType()) return false; | |
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) | |
<< Cond->getType() << Cond->getSourceRange(); | |
return true; | |
} | |
/// Return false if the vector condition type and the vector | |
/// result type are compatible. | |
/// | |
/// OpenCL v1.1 s6.11.6 requires that both vector types have the same | |
/// number of elements, and their element types have the same number | |
/// of bits. | |
static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, | |
SourceLocation QuestionLoc) { | |
const VectorType *CV = CondTy->getAs<VectorType>(); | |
const VectorType *RV = VecResTy->getAs<VectorType>(); | |
assert(CV && RV); | |
if (CV->getNumElements() != RV->getNumElements()) { | |
S.Diag(QuestionLoc, diag::err_conditional_vector_size) | |
<< CondTy << VecResTy; | |
return true; | |
} | |
QualType CVE = CV->getElementType(); | |
QualType RVE = RV->getElementType(); | |
if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { | |
S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) | |
<< CondTy << VecResTy; | |
return true; | |
} | |
return false; | |
} | |
/// Return the resulting type for the conditional operator in | |
/// OpenCL (aka "ternary selection operator", OpenCL v1.1 | |
/// s6.3.i) when the condition is a vector type. | |
static QualType | |
OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, | |
ExprResult &LHS, ExprResult &RHS, | |
SourceLocation QuestionLoc) { | |
Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); | |
if (Cond.isInvalid()) | |
return QualType(); | |
QualType CondTy = Cond.get()->getType(); | |
if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) | |
return QualType(); | |
// If either operand is a vector then find the vector type of the | |
// result as specified in OpenCL v1.1 s6.3.i. | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) { | |
QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc, | |
/*isCompAssign*/false, | |
/*AllowBothBool*/true, | |
/*AllowBoolConversions*/false); | |
if (VecResTy.isNull()) return QualType(); | |
// The result type must match the condition type as specified in | |
// OpenCL v1.1 s6.11.6. | |
if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) | |
return QualType(); | |
return VecResTy; | |
} | |
// Both operands are scalar. | |
return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); | |
} | |
/// Return true if the Expr is block type | |
static bool checkBlockType(Sema &S, const Expr *E) { | |
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | |
QualType Ty = CE->getCallee()->getType(); | |
if (Ty->isBlockPointerType()) { | |
S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); | |
return true; | |
} | |
} | |
return false; | |
} | |
/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. | |
/// In that case, LHS = cond. | |
/// C99 6.5.15 | |
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, | |
ExprResult &RHS, ExprValueKind &VK, | |
ExprObjectKind &OK, | |
SourceLocation QuestionLoc) { | |
ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); | |
if (!LHSResult.isUsable()) return QualType(); | |
LHS = LHSResult; | |
ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); | |
if (!RHSResult.isUsable()) return QualType(); | |
RHS = RHSResult; | |
// C++ is sufficiently different to merit its own checker. | |
if (getLangOpts().CPlusPlus) | |
return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); | |
VK = VK_RValue; | |
OK = OK_Ordinary; | |
// The OpenCL operator with a vector condition is sufficiently | |
// different to merit its own checker. | |
if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) | |
return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); | |
// First, check the condition. | |
Cond = UsualUnaryConversions(Cond.get()); | |
if (Cond.isInvalid()) | |
return QualType(); | |
if (checkCondition(*this, Cond.get(), QuestionLoc)) | |
return QualType(); | |
// Now check the two expressions. | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) | |
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, | |
/*AllowBothBool*/true, | |
/*AllowBoolConversions*/false); | |
QualType ResTy = | |
UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
QualType LHSTy = LHS.get()->getType(); | |
QualType RHSTy = RHS.get()->getType(); | |
// Diagnose attempts to convert between __float128 and long double where | |
// such conversions currently can't be handled. | |
if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { | |
Diag(QuestionLoc, | |
diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
// OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary | |
// selection operator (?:). | |
if (getLangOpts().OpenCL && | |
(checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) { | |
return QualType(); | |
} | |
// If both operands have arithmetic type, do the usual arithmetic conversions | |
// to find a common type: C99 6.5.15p3,5. | |
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { | |
LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); | |
RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); | |
return ResTy; | |
} | |
// If both operands are the same structure or union type, the result is that | |
// type. | |
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 | |
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) | |
if (LHSRT->getDecl() == RHSRT->getDecl()) | |
// "If both the operands have structure or union type, the result has | |
// that type." This implies that CV qualifiers are dropped. | |
return LHSTy.getUnqualifiedType(); | |
// FIXME: Type of conditional expression must be complete in C mode. | |
} | |
// C99 6.5.15p5: "If both operands have void type, the result has void type." | |
// The following || allows only one side to be void (a GCC-ism). | |
if (LHSTy->isVoidType() || RHSTy->isVoidType()) { | |
return checkConditionalVoidType(*this, LHS, RHS); | |
} | |
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has | |
// the type of the other operand." | |
if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; | |
if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; | |
// All objective-c pointer type analysis is done here. | |
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, | |
QuestionLoc); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
if (!compositeType.isNull()) | |
return compositeType; | |
// Handle block pointer types. | |
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) | |
return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, | |
QuestionLoc); | |
// Check constraints for C object pointers types (C99 6.5.15p3,6). | |
if (LHSTy->isPointerType() && RHSTy->isPointerType()) | |
return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, | |
QuestionLoc); | |
// GCC compatibility: soften pointer/integer mismatch. Note that | |
// null pointers have been filtered out by this point. | |
if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, | |
/*IsIntFirstExpr=*/true)) | |
return RHSTy; | |
if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, | |
/*IsIntFirstExpr=*/false)) | |
return LHSTy; | |
// Allow ?: operations in which both operands have the same | |
// built-in sizeless type. | |
if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy) | |
return LHSTy; | |
// Emit a better diagnostic if one of the expressions is a null pointer | |
// constant and the other is not a pointer type. In this case, the user most | |
// likely forgot to take the address of the other expression. | |
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | |
return QualType(); | |
// Otherwise, the operands are not compatible. | |
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | |
<< LHSTy << RHSTy << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
/// FindCompositeObjCPointerType - Helper method to find composite type of | |
/// two objective-c pointer types of the two input expressions. | |
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation QuestionLoc) { | |
QualType LHSTy = LHS.get()->getType(); | |
QualType RHSTy = RHS.get()->getType(); | |
// Handle things like Class and struct objc_class*. Here we case the result | |
// to the pseudo-builtin, because that will be implicitly cast back to the | |
// redefinition type if an attempt is made to access its fields. | |
if (LHSTy->isObjCClassType() && | |
(Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { | |
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); | |
return LHSTy; | |
} | |
if (RHSTy->isObjCClassType() && | |
(Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { | |
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); | |
return RHSTy; | |
} | |
// And the same for struct objc_object* / id | |
if (LHSTy->isObjCIdType() && | |
(Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { | |
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); | |
return LHSTy; | |
} | |
if (RHSTy->isObjCIdType() && | |
(Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { | |
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); | |
return RHSTy; | |
} | |
// And the same for struct objc_selector* / SEL | |
if (Context.isObjCSelType(LHSTy) && | |
(Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { | |
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); | |
return LHSTy; | |
} | |
if (Context.isObjCSelType(RHSTy) && | |
(Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { | |
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); | |
return RHSTy; | |
} | |
// Check constraints for Objective-C object pointers types. | |
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { | |
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { | |
// Two identical object pointer types are always compatible. | |
return LHSTy; | |
} | |
const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>(); | |
const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>(); | |
QualType compositeType = LHSTy; | |
// If both operands are interfaces and either operand can be | |
// assigned to the other, use that type as the composite | |
// type. This allows | |
// xxx ? (A*) a : (B*) b | |
// where B is a subclass of A. | |
// | |
// Additionally, as for assignment, if either type is 'id' | |
// allow silent coercion. Finally, if the types are | |
// incompatible then make sure to use 'id' as the composite | |
// type so the result is acceptable for sending messages to. | |
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'. | |
// It could return the composite type. | |
if (!(compositeType = | |
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { | |
// Nothing more to do. | |
} else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { | |
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; | |
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { | |
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; | |
} else if ((LHSOPT->isObjCQualifiedIdType() || | |
RHSOPT->isObjCQualifiedIdType()) && | |
Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, | |
true)) { | |
// Need to handle "id<xx>" explicitly. | |
// GCC allows qualified id and any Objective-C type to devolve to | |
// id. Currently localizing to here until clear this should be | |
// part of ObjCQualifiedIdTypesAreCompatible. | |
compositeType = Context.getObjCIdType(); | |
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { | |
compositeType = Context.getObjCIdType(); | |
} else { | |
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) | |
<< LHSTy << RHSTy | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
QualType incompatTy = Context.getObjCIdType(); | |
LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); | |
RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); | |
return incompatTy; | |
} | |
// The object pointer types are compatible. | |
LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); | |
RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); | |
return compositeType; | |
} | |
// Check Objective-C object pointer types and 'void *' | |
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { | |
if (getLangOpts().ObjCAutoRefCount) { | |
// ARC forbids the implicit conversion of object pointers to 'void *', | |
// so these types are not compatible. | |
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
LHS = RHS = true; | |
return QualType(); | |
} | |
QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | |
QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); | |
QualType destPointee | |
= Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | |
QualType destType = Context.getPointerType(destPointee); | |
// Add qualifiers if necessary. | |
LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); | |
// Promote to void*. | |
RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); | |
return destType; | |
} | |
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { | |
if (getLangOpts().ObjCAutoRefCount) { | |
// ARC forbids the implicit conversion of object pointers to 'void *', | |
// so these types are not compatible. | |
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
LHS = RHS = true; | |
return QualType(); | |
} | |
QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); | |
QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | |
QualType destPointee | |
= Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | |
QualType destType = Context.getPointerType(destPointee); | |
// Add qualifiers if necessary. | |
RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); | |
// Promote to void*. | |
LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); | |
return destType; | |
} | |
return QualType(); | |
} | |
/// SuggestParentheses - Emit a note with a fixit hint that wraps | |
/// ParenRange in parentheses. | |
static void SuggestParentheses(Sema &Self, SourceLocation Loc, | |
const PartialDiagnostic &Note, | |
SourceRange ParenRange) { | |
SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); | |
if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && | |
EndLoc.isValid()) { | |
Self.Diag(Loc, Note) | |
<< FixItHint::CreateInsertion(ParenRange.getBegin(), "(") | |
<< FixItHint::CreateInsertion(EndLoc, ")"); | |
} else { | |
// We can't display the parentheses, so just show the bare note. | |
Self.Diag(Loc, Note) << ParenRange; | |
} | |
} | |
static bool IsArithmeticOp(BinaryOperatorKind Opc) { | |
return BinaryOperator::isAdditiveOp(Opc) || | |
BinaryOperator::isMultiplicativeOp(Opc) || | |
BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or; | |
// This only checks for bitwise-or and bitwise-and, but not bitwise-xor and | |
// not any of the logical operators. Bitwise-xor is commonly used as a | |
// logical-xor because there is no logical-xor operator. The logical | |
// operators, including uses of xor, have a high false positive rate for | |
// precedence warnings. | |
} | |
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary | |
/// expression, either using a built-in or overloaded operator, | |
/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side | |
/// expression. | |
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, | |
Expr **RHSExprs) { | |
// Don't strip parenthesis: we should not warn if E is in parenthesis. | |
E = E->IgnoreImpCasts(); | |
E = E->IgnoreConversionOperator(); | |
E = E->IgnoreImpCasts(); | |
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { | |
E = MTE->getSubExpr(); | |
E = E->IgnoreImpCasts(); | |
} | |
// Built-in binary operator. | |
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { | |
if (IsArithmeticOp(OP->getOpcode())) { | |
*Opcode = OP->getOpcode(); | |
*RHSExprs = OP->getRHS(); | |
return true; | |
} | |
} | |
// Overloaded operator. | |
if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { | |
if (Call->getNumArgs() != 2) | |
return false; | |
// Make sure this is really a binary operator that is safe to pass into | |
// BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. | |
OverloadedOperatorKind OO = Call->getOperator(); | |
if (OO < OO_Plus || OO > OO_Arrow || | |
OO == OO_PlusPlus || OO == OO_MinusMinus) | |
return false; | |
BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); | |
if (IsArithmeticOp(OpKind)) { | |
*Opcode = OpKind; | |
*RHSExprs = Call->getArg(1); | |
return true; | |
} | |
} | |
return false; | |
} | |
/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type | |
/// or is a logical expression such as (x==y) which has int type, but is | |
/// commonly interpreted as boolean. | |
static bool ExprLooksBoolean(Expr *E) { | |
E = E->IgnoreParenImpCasts(); | |
if (E->getType()->isBooleanType()) | |
return true; | |
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) | |
return OP->isComparisonOp() || OP->isLogicalOp(); | |
if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) | |
return OP->getOpcode() == UO_LNot; | |
if (E->getType()->isPointerType()) | |
return true; | |
// FIXME: What about overloaded operator calls returning "unspecified boolean | |
// type"s (commonly pointer-to-members)? | |
return false; | |
} | |
/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator | |
/// and binary operator are mixed in a way that suggests the programmer assumed | |
/// the conditional operator has higher precedence, for example: | |
/// "int x = a + someBinaryCondition ? 1 : 2". | |
static void DiagnoseConditionalPrecedence(Sema &Self, | |
SourceLocation OpLoc, | |
Expr *Condition, | |
Expr *LHSExpr, | |
Expr *RHSExpr) { | |
BinaryOperatorKind CondOpcode; | |
Expr *CondRHS; | |
if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) | |
return; | |
if (!ExprLooksBoolean(CondRHS)) | |
return; | |
// The condition is an arithmetic binary expression, with a right- | |
// hand side that looks boolean, so warn. | |
unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode) | |
? diag::warn_precedence_bitwise_conditional | |
: diag::warn_precedence_conditional; | |
Self.Diag(OpLoc, DiagID) | |
<< Condition->getSourceRange() | |
<< BinaryOperator::getOpcodeStr(CondOpcode); | |
SuggestParentheses( | |
Self, OpLoc, | |
Self.PDiag(diag::note_precedence_silence) | |
<< BinaryOperator::getOpcodeStr(CondOpcode), | |
SourceRange(Condition->getBeginLoc(), Condition->getEndLoc())); | |
SuggestParentheses(Self, OpLoc, | |
Self.PDiag(diag::note_precedence_conditional_first), | |
SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc())); | |
} | |
/// Compute the nullability of a conditional expression. | |
static QualType computeConditionalNullability(QualType ResTy, bool IsBin, | |
QualType LHSTy, QualType RHSTy, | |
ASTContext &Ctx) { | |
if (!ResTy->isAnyPointerType()) | |
return ResTy; | |
auto GetNullability = [&Ctx](QualType Ty) { | |
Optional<NullabilityKind> Kind = Ty->getNullability(Ctx); | |
if (Kind) | |
return *Kind; | |
return NullabilityKind::Unspecified; | |
}; | |
auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); | |
NullabilityKind MergedKind; | |
// Compute nullability of a binary conditional expression. | |
if (IsBin) { | |
if (LHSKind == NullabilityKind::NonNull) | |
MergedKind = NullabilityKind::NonNull; | |
else | |
MergedKind = RHSKind; | |
// Compute nullability of a normal conditional expression. | |
} else { | |
if (LHSKind == NullabilityKind::Nullable || | |
RHSKind == NullabilityKind::Nullable) | |
MergedKind = NullabilityKind::Nullable; | |
else if (LHSKind == NullabilityKind::NonNull) | |
MergedKind = RHSKind; | |
else if (RHSKind == NullabilityKind::NonNull) | |
MergedKind = LHSKind; | |
else | |
MergedKind = NullabilityKind::Unspecified; | |
} | |
// Return if ResTy already has the correct nullability. | |
if (GetNullability(ResTy) == MergedKind) | |
return ResTy; | |
// Strip all nullability from ResTy. | |
while (ResTy->getNullability(Ctx)) | |
ResTy = ResTy.getSingleStepDesugaredType(Ctx); | |
// Create a new AttributedType with the new nullability kind. | |
auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); | |
return Ctx.getAttributedType(NewAttr, ResTy, ResTy); | |
} | |
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null | |
/// in the case of a the GNU conditional expr extension. | |
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, | |
SourceLocation ColonLoc, | |
Expr *CondExpr, Expr *LHSExpr, | |
Expr *RHSExpr) { | |
if (!getLangOpts().CPlusPlus) { | |
// C cannot handle TypoExpr nodes in the condition because it | |
// doesn't handle dependent types properly, so make sure any TypoExprs have | |
// been dealt with before checking the operands. | |
ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); | |
ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); | |
ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); | |
if (!CondResult.isUsable()) | |
return ExprError(); | |
if (LHSExpr) { | |
if (!LHSResult.isUsable()) | |
return ExprError(); | |
} | |
if (!RHSResult.isUsable()) | |
return ExprError(); | |
CondExpr = CondResult.get(); | |
LHSExpr = LHSResult.get(); | |
RHSExpr = RHSResult.get(); | |
} | |
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS | |
// was the condition. | |
OpaqueValueExpr *opaqueValue = nullptr; | |
Expr *commonExpr = nullptr; | |
if (!LHSExpr) { | |
commonExpr = CondExpr; | |
// Lower out placeholder types first. This is important so that we don't | |
// try to capture a placeholder. This happens in few cases in C++; such | |
// as Objective-C++'s dictionary subscripting syntax. | |
if (commonExpr->hasPlaceholderType()) { | |
ExprResult result = CheckPlaceholderExpr(commonExpr); | |
if (!result.isUsable()) return ExprError(); | |
commonExpr = result.get(); | |
} | |
// We usually want to apply unary conversions *before* saving, except | |
// in the special case of a C++ l-value conditional. | |
if (!(getLangOpts().CPlusPlus | |
&& !commonExpr->isTypeDependent() | |
&& commonExpr->getValueKind() == RHSExpr->getValueKind() | |
&& commonExpr->isGLValue() | |
&& commonExpr->isOrdinaryOrBitFieldObject() | |
&& RHSExpr->isOrdinaryOrBitFieldObject() | |
&& Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { | |
ExprResult commonRes = UsualUnaryConversions(commonExpr); | |
if (commonRes.isInvalid()) | |
return ExprError(); | |
commonExpr = commonRes.get(); | |
} | |
// If the common expression is a class or array prvalue, materialize it | |
// so that we can safely refer to it multiple times. | |
if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() || | |
commonExpr->getType()->isArrayType())) { | |
ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); | |
if (MatExpr.isInvalid()) | |
return ExprError(); | |
commonExpr = MatExpr.get(); | |
} | |
opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), | |
commonExpr->getType(), | |
commonExpr->getValueKind(), | |
commonExpr->getObjectKind(), | |
commonExpr); | |
LHSExpr = CondExpr = opaqueValue; | |
} | |
QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); | |
ExprValueKind VK = VK_RValue; | |
ExprObjectKind OK = OK_Ordinary; | |
ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; | |
QualType result = CheckConditionalOperands(Cond, LHS, RHS, | |
VK, OK, QuestionLoc); | |
if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || | |
RHS.isInvalid()) | |
return ExprError(); | |
DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), | |
RHS.get()); | |
CheckBoolLikeConversion(Cond.get(), QuestionLoc); | |
result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, | |
Context); | |
if (!commonExpr) | |
return new (Context) | |
ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, | |
RHS.get(), result, VK, OK); | |
return new (Context) BinaryConditionalOperator( | |
commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, | |
ColonLoc, result, VK, OK); | |
} | |
// Check if we have a conversion between incompatible cmse function pointer | |
// types, that is, a conversion between a function pointer with the | |
// cmse_nonsecure_call attribute and one without. | |
static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType, | |
QualType ToType) { | |
if (const auto *ToFn = | |
dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) { | |
if (const auto *FromFn = | |
dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) { | |
FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | |
FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | |
return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall(); | |
} | |
} | |
return false; | |
} | |
// checkPointerTypesForAssignment - This is a very tricky routine (despite | |
// being closely modeled after the C99 spec:-). The odd characteristic of this | |
// routine is it effectively iqnores the qualifiers on the top level pointee. | |
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. | |
// FIXME: add a couple examples in this comment. | |
static Sema::AssignConvertType | |
checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { | |
assert(LHSType.isCanonical() && "LHS not canonicalized!"); | |
assert(RHSType.isCanonical() && "RHS not canonicalized!"); | |
// get the "pointed to" type (ignoring qualifiers at the top level) | |
const Type *lhptee, *rhptee; | |
Qualifiers lhq, rhq; | |
std::tie(lhptee, lhq) = | |
cast<PointerType>(LHSType)->getPointeeType().split().asPair(); | |
std::tie(rhptee, rhq) = | |
cast<PointerType>(RHSType)->getPointeeType().split().asPair(); | |
Sema::AssignConvertType ConvTy = Sema::Compatible; | |
// C99 6.5.16.1p1: This following citation is common to constraints | |
// 3 & 4 (below). ...and the type *pointed to* by the left has all the | |
// qualifiers of the type *pointed to* by the right; | |
// As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. | |
if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && | |
lhq.compatiblyIncludesObjCLifetime(rhq)) { | |
// Ignore lifetime for further calculation. | |
lhq.removeObjCLifetime(); | |
rhq.removeObjCLifetime(); | |
} | |
if (!lhq.compatiblyIncludes(rhq)) { | |
// Treat address-space mismatches as fatal. | |
if (!lhq.isAddressSpaceSupersetOf(rhq)) | |
return Sema::IncompatiblePointerDiscardsQualifiers; | |
// It's okay to add or remove GC or lifetime qualifiers when converting to | |
// and from void*. | |
else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() | |
.compatiblyIncludes( | |
rhq.withoutObjCGCAttr().withoutObjCLifetime()) | |
&& (lhptee->isVoidType() || rhptee->isVoidType())) | |
; // keep old | |
// Treat lifetime mismatches as fatal. | |
else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) | |
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; | |
// For GCC/MS compatibility, other qualifier mismatches are treated | |
// as still compatible in C. | |
else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; | |
} | |
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or | |
// incomplete type and the other is a pointer to a qualified or unqualified | |
// version of void... | |
if (lhptee->isVoidType()) { | |
if (rhptee->isIncompleteOrObjectType()) | |
return ConvTy; | |
// As an extension, we allow cast to/from void* to function pointer. | |
assert(rhptee->isFunctionType()); | |
return Sema::FunctionVoidPointer; | |
} | |
if (rhptee->isVoidType()) { | |
if (lhptee->isIncompleteOrObjectType()) | |
return ConvTy; | |
// As an extension, we allow cast to/from void* to function pointer. | |
assert(lhptee->isFunctionType()); | |
return Sema::FunctionVoidPointer; | |
} | |
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or | |
// unqualified versions of compatible types, ... | |
QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); | |
if (!S.Context.typesAreCompatible(ltrans, rtrans)) { | |
// Check if the pointee types are compatible ignoring the sign. | |
// We explicitly check for char so that we catch "char" vs | |
// "unsigned char" on systems where "char" is unsigned. | |
if (lhptee->isCharType()) | |
ltrans = S.Context.UnsignedCharTy; | |
else if (lhptee->hasSignedIntegerRepresentation()) | |
ltrans = S.Context.getCorrespondingUnsignedType(ltrans); | |
if (rhptee->isCharType()) | |
rtrans = S.Context.UnsignedCharTy; | |
else if (rhptee->hasSignedIntegerRepresentation()) | |
rtrans = S.Context.getCorrespondingUnsignedType(rtrans); | |
if (ltrans == rtrans) { | |
// Types are compatible ignoring the sign. Qualifier incompatibility | |
// takes priority over sign incompatibility because the sign | |
// warning can be disabled. | |
if (ConvTy != Sema::Compatible) | |
return ConvTy; | |
return Sema::IncompatiblePointerSign; | |
} | |
// If we are a multi-level pointer, it's possible that our issue is simply | |
// one of qualification - e.g. char ** -> const char ** is not allowed. If | |
// the eventual target type is the same and the pointers have the same | |
// level of indirection, this must be the issue. | |
if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { | |
do { | |
std::tie(lhptee, lhq) = | |
cast<PointerType>(lhptee)->getPointeeType().split().asPair(); | |
std::tie(rhptee, rhq) = | |
cast<PointerType>(rhptee)->getPointeeType().split().asPair(); | |
// Inconsistent address spaces at this point is invalid, even if the | |
// address spaces would be compatible. | |
// FIXME: This doesn't catch address space mismatches for pointers of | |
// different nesting levels, like: | |
// __local int *** a; | |
// int ** b = a; | |
// It's not clear how to actually determine when such pointers are | |
// invalidly incompatible. | |
if (lhq.getAddressSpace() != rhq.getAddressSpace()) | |
return Sema::IncompatibleNestedPointerAddressSpaceMismatch; | |
} while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); | |
if (lhptee == rhptee) | |
return Sema::IncompatibleNestedPointerQualifiers; | |
} | |
// General pointer incompatibility takes priority over qualifiers. | |
if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType()) | |
return Sema::IncompatibleFunctionPointer; | |
return Sema::IncompatiblePointer; | |
} | |
if (!S.getLangOpts().CPlusPlus && | |
S.IsFunctionConversion(ltrans, rtrans, ltrans)) | |
return Sema::IncompatibleFunctionPointer; | |
if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans)) | |
return Sema::IncompatibleFunctionPointer; | |
return ConvTy; | |
} | |
/// checkBlockPointerTypesForAssignment - This routine determines whether two | |
/// block pointer types are compatible or whether a block and normal pointer | |
/// are compatible. It is more restrict than comparing two function pointer | |
// types. | |
static Sema::AssignConvertType | |
checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, | |
QualType RHSType) { | |
assert(LHSType.isCanonical() && "LHS not canonicalized!"); | |
assert(RHSType.isCanonical() && "RHS not canonicalized!"); | |
QualType lhptee, rhptee; | |
// get the "pointed to" type (ignoring qualifiers at the top level) | |
lhptee = cast<BlockPointerType>(LHSType)->getPointeeType(); | |
rhptee = cast<BlockPointerType>(RHSType)->getPointeeType(); | |
// In C++, the types have to match exactly. | |
if (S.getLangOpts().CPlusPlus) | |
return Sema::IncompatibleBlockPointer; | |
Sema::AssignConvertType ConvTy = Sema::Compatible; | |
// For blocks we enforce that qualifiers are identical. | |
Qualifiers LQuals = lhptee.getLocalQualifiers(); | |
Qualifiers RQuals = rhptee.getLocalQualifiers(); | |
if (S.getLangOpts().OpenCL) { | |
LQuals.removeAddressSpace(); | |
RQuals.removeAddressSpace(); | |
} | |
if (LQuals != RQuals) | |
ConvTy = Sema::CompatiblePointerDiscardsQualifiers; | |
// FIXME: OpenCL doesn't define the exact compile time semantics for a block | |
// assignment. | |
// The current behavior is similar to C++ lambdas. A block might be | |
// assigned to a variable iff its return type and parameters are compatible | |
// (C99 6.2.7) with the corresponding return type and parameters of the LHS of | |
// an assignment. Presumably it should behave in way that a function pointer | |
// assignment does in C, so for each parameter and return type: | |
// * CVR and address space of LHS should be a superset of CVR and address | |
// space of RHS. | |
// * unqualified types should be compatible. | |
if (S.getLangOpts().OpenCL) { | |
if (!S.Context.typesAreBlockPointerCompatible( | |
S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), | |
S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) | |
return Sema::IncompatibleBlockPointer; | |
} else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) | |
return Sema::IncompatibleBlockPointer; | |
return ConvTy; | |
} | |
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types | |
/// for assignment compatibility. | |
static Sema::AssignConvertType | |
checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, | |
QualType RHSType) { | |
assert(LHSType.isCanonical() && "LHS was not canonicalized!"); | |
assert(RHSType.isCanonical() && "RHS was not canonicalized!"); | |
if (LHSType->isObjCBuiltinType()) { | |
// Class is not compatible with ObjC object pointers. | |
if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && | |
!RHSType->isObjCQualifiedClassType()) | |
return Sema::IncompatiblePointer; | |
return Sema::Compatible; | |
} | |
if (RHSType->isObjCBuiltinType()) { | |
if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && | |
!LHSType->isObjCQualifiedClassType()) | |
return Sema::IncompatiblePointer; | |
return Sema::Compatible; | |
} | |
QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); | |
QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); | |
if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && | |
// make an exception for id<P> | |
!LHSType->isObjCQualifiedIdType()) | |
return Sema::CompatiblePointerDiscardsQualifiers; | |
if (S.Context.typesAreCompatible(LHSType, RHSType)) | |
return Sema::Compatible; | |
if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) | |
return Sema::IncompatibleObjCQualifiedId; | |
return Sema::IncompatiblePointer; | |
} | |
Sema::AssignConvertType | |
Sema::CheckAssignmentConstraints(SourceLocation Loc, | |
QualType LHSType, QualType RHSType) { | |
// Fake up an opaque expression. We don't actually care about what | |
// cast operations are required, so if CheckAssignmentConstraints | |
// adds casts to this they'll be wasted, but fortunately that doesn't | |
// usually happen on valid code. | |
OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue); | |
ExprResult RHSPtr = &RHSExpr; | |
CastKind K; | |
return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); | |
} | |
/// This helper function returns true if QT is a vector type that has element | |
/// type ElementType. | |
static bool isVector(QualType QT, QualType ElementType) { | |
if (const VectorType *VT = QT->getAs<VectorType>()) | |
return VT->getElementType().getCanonicalType() == ElementType; | |
return false; | |
} | |
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently | |
/// has code to accommodate several GCC extensions when type checking | |
/// pointers. Here are some objectionable examples that GCC considers warnings: | |
/// | |
/// int a, *pint; | |
/// short *pshort; | |
/// struct foo *pfoo; | |
/// | |
/// pint = pshort; // warning: assignment from incompatible pointer type | |
/// a = pint; // warning: assignment makes integer from pointer without a cast | |
/// pint = a; // warning: assignment makes pointer from integer without a cast | |
/// pint = pfoo; // warning: assignment from incompatible pointer type | |
/// | |
/// As a result, the code for dealing with pointers is more complex than the | |
/// C99 spec dictates. | |
/// | |
/// Sets 'Kind' for any result kind except Incompatible. | |
Sema::AssignConvertType | |
Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, | |
CastKind &Kind, bool ConvertRHS) { | |
QualType RHSType = RHS.get()->getType(); | |
QualType OrigLHSType = LHSType; | |
// Get canonical types. We're not formatting these types, just comparing | |
// them. | |
LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); | |
RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); | |
// Common case: no conversion required. | |
if (LHSType == RHSType) { | |
Kind = CK_NoOp; | |
return Compatible; | |
} | |
// If we have an atomic type, try a non-atomic assignment, then just add an | |
// atomic qualification step. | |
if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) { | |
Sema::AssignConvertType result = | |
CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); | |
if (result != Compatible) | |
return result; | |
if (Kind != CK_NoOp && ConvertRHS) | |
RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); | |
Kind = CK_NonAtomicToAtomic; | |
return Compatible; | |
} | |
// If the left-hand side is a reference type, then we are in a | |
// (rare!) case where we've allowed the use of references in C, | |
// e.g., as a parameter type in a built-in function. In this case, | |
// just make sure that the type referenced is compatible with the | |
// right-hand side type. The caller is responsible for adjusting | |
// LHSType so that the resulting expression does not have reference | |
// type. | |
if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) { | |
if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { | |
Kind = CK_LValueBitCast; | |
return Compatible; | |
} | |
return Incompatible; | |
} | |
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type | |
// to the same ExtVector type. | |
if (LHSType->isExtVectorType()) { | |
if (RHSType->isExtVectorType()) | |
return Incompatible; | |
if (RHSType->isArithmeticType()) { | |
// CK_VectorSplat does T -> vector T, so first cast to the element type. | |
if (ConvertRHS) | |
RHS = prepareVectorSplat(LHSType, RHS.get()); | |
Kind = CK_VectorSplat; | |
return Compatible; | |
} | |
} | |
// Conversions to or from vector type. | |
if (LHSType->isVectorType() || RHSType->isVectorType()) { | |
if (LHSType->isVectorType() && RHSType->isVectorType()) { | |
// Allow assignments of an AltiVec vector type to an equivalent GCC | |
// vector type and vice versa | |
if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { | |
Kind = CK_BitCast; | |
return Compatible; | |
} | |
// If we are allowing lax vector conversions, and LHS and RHS are both | |
// vectors, the total size only needs to be the same. This is a bitcast; | |
// no bits are changed but the result type is different. | |
if (isLaxVectorConversion(RHSType, LHSType)) { | |
Kind = CK_BitCast; | |
return IncompatibleVectors; | |
} | |
} | |
// When the RHS comes from another lax conversion (e.g. binops between | |
// scalars and vectors) the result is canonicalized as a vector. When the | |
// LHS is also a vector, the lax is allowed by the condition above. Handle | |
// the case where LHS is a scalar. | |
if (LHSType->isScalarType()) { | |
const VectorType *VecType = RHSType->getAs<VectorType>(); | |
if (VecType && VecType->getNumElements() == 1 && | |
isLaxVectorConversion(RHSType, LHSType)) { | |
ExprResult *VecExpr = &RHS; | |
*VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); | |
Kind = CK_BitCast; | |
return Compatible; | |
} | |
} | |
return Incompatible; | |
} | |
// Diagnose attempts to convert between __float128 and long double where | |
// such conversions currently can't be handled. | |
if (unsupportedTypeConversion(*this, LHSType, RHSType)) | |
return Incompatible; | |
// Disallow assigning a _Complex to a real type in C++ mode since it simply | |
// discards the imaginary part. | |
if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() && | |
!LHSType->getAs<ComplexType>()) | |
return Incompatible; | |
// Arithmetic conversions. | |
if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && | |
!(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { | |
if (ConvertRHS) | |
Kind = PrepareScalarCast(RHS, LHSType); | |
return Compatible; | |
} | |
// Conversions to normal pointers. | |
if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) { | |
// U* -> T* | |
if (isa<PointerType>(RHSType)) { | |
LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); | |
LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); | |
if (AddrSpaceL != AddrSpaceR) | |
Kind = CK_AddressSpaceConversion; | |
else if (Context.hasCvrSimilarType(RHSType, LHSType)) | |
Kind = CK_NoOp; | |
else | |
Kind = CK_BitCast; | |
return checkPointerTypesForAssignment(*this, LHSType, RHSType); | |
} | |
// int -> T* | |
if (RHSType->isIntegerType()) { | |
Kind = CK_IntegralToPointer; // FIXME: null? | |
return IntToPointer; | |
} | |
// C pointers are not compatible with ObjC object pointers, | |
// with two exceptions: | |
if (isa<ObjCObjectPointerType>(RHSType)) { | |
// - conversions to void* | |
if (LHSPointer->getPointeeType()->isVoidType()) { | |
Kind = CK_BitCast; | |
return Compatible; | |
} | |
// - conversions from 'Class' to the redefinition type | |
if (RHSType->isObjCClassType() && | |
Context.hasSameType(LHSType, | |
Context.getObjCClassRedefinitionType())) { | |
Kind = CK_BitCast; | |
return Compatible; | |
} | |
Kind = CK_BitCast; | |
return IncompatiblePointer; | |
} | |
// U^ -> void* | |
if (RHSType->getAs<BlockPointerType>()) { | |
if (LHSPointer->getPointeeType()->isVoidType()) { | |
LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); | |
LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() | |
->getPointeeType() | |
.getAddressSpace(); | |
Kind = | |
AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | |
return Compatible; | |
} | |
} | |
return Incompatible; | |
} | |
// Conversions to block pointers. | |
if (isa<BlockPointerType>(LHSType)) { | |
// U^ -> T^ | |
if (RHSType->isBlockPointerType()) { | |
LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>() | |
->getPointeeType() | |
.getAddressSpace(); | |
LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() | |
->getPointeeType() | |
.getAddressSpace(); | |
Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | |
return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); | |
} | |
// int or null -> T^ | |
if (RHSType->isIntegerType()) { | |
Kind = CK_IntegralToPointer; // FIXME: null | |
return IntToBlockPointer; | |
} | |
// id -> T^ | |
if (getLangOpts().ObjC && RHSType->isObjCIdType()) { | |
Kind = CK_AnyPointerToBlockPointerCast; | |
return Compatible; | |
} | |
// void* -> T^ | |
if (const PointerType *RHSPT = RHSType->getAs<PointerType>()) | |
if (RHSPT->getPointeeType()->isVoidType()) { | |
Kind = CK_AnyPointerToBlockPointerCast; | |
return Compatible; | |
} | |
return Incompatible; | |
} | |
// Conversions to Objective-C pointers. | |
if (isa<ObjCObjectPointerType>(LHSType)) { | |
// A* -> B* | |
if (RHSType->isObjCObjectPointerType()) { | |
Kind = CK_BitCast; | |
Sema::AssignConvertType result = | |
checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); | |
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |
result == Compatible && | |
!CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) | |
result = IncompatibleObjCWeakRef; | |
return result; | |
} | |
// int or null -> A* | |
if (RHSType->isIntegerType()) { | |
Kind = CK_IntegralToPointer; // FIXME: null | |
return IntToPointer; | |
} | |
// In general, C pointers are not compatible with ObjC object pointers, | |
// with two exceptions: | |
if (isa<PointerType>(RHSType)) { | |
Kind = CK_CPointerToObjCPointerCast; | |
// - conversions from 'void*' | |
if (RHSType->isVoidPointerType()) { | |
return Compatible; | |
} | |
// - conversions to 'Class' from its redefinition type | |
if (LHSType->isObjCClassType() && | |
Context.hasSameType(RHSType, | |
Context.getObjCClassRedefinitionType())) { | |
return Compatible; | |
} | |
return IncompatiblePointer; | |
} | |
// Only under strict condition T^ is compatible with an Objective-C pointer. | |
if (RHSType->isBlockPointerType() && | |
LHSType->isBlockCompatibleObjCPointerType(Context)) { | |
if (ConvertRHS) | |
maybeExtendBlockObject(RHS); | |
Kind = CK_BlockPointerToObjCPointerCast; | |
return Compatible; | |
} | |
return Incompatible; | |
} | |
// Conversions from pointers that are not covered by the above. | |
if (isa<PointerType>(RHSType)) { | |
// T* -> _Bool | |
if (LHSType == Context.BoolTy) { | |
Kind = CK_PointerToBoolean; | |
return Compatible; | |
} | |
// T* -> int | |
if (LHSType->isIntegerType()) { | |
Kind = CK_PointerToIntegral; | |
return PointerToInt; | |
} | |
return Incompatible; | |
} | |
// Conversions from Objective-C pointers that are not covered by the above. | |
if (isa<ObjCObjectPointerType>(RHSType)) { | |
// T* -> _Bool | |
if (LHSType == Context.BoolTy) { | |
Kind = CK_PointerToBoolean; | |
return Compatible; | |
} | |
// T* -> int | |
if (LHSType->isIntegerType()) { | |
Kind = CK_PointerToIntegral; | |
return PointerToInt; | |
} | |
return Incompatible; | |
} | |
// struct A -> struct B | |
if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) { | |
if (Context.typesAreCompatible(LHSType, RHSType)) { | |
Kind = CK_NoOp; | |
return Compatible; | |
} | |
} | |
if (LHSType->isSamplerT() && RHSType->isIntegerType()) { | |
Kind = CK_IntToOCLSampler; | |
return Compatible; | |
} | |
return Incompatible; | |
} | |
/// Constructs a transparent union from an expression that is | |
/// used to initialize the transparent union. | |
static void ConstructTransparentUnion(Sema &S, ASTContext &C, | |
ExprResult &EResult, QualType UnionType, | |
FieldDecl *Field) { | |
// Build an initializer list that designates the appropriate member | |
// of the transparent union. | |
Expr *E = EResult.get(); | |
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), | |
E, SourceLocation()); | |
Initializer->setType(UnionType); | |
Initializer->setInitializedFieldInUnion(Field); | |
// Build a compound literal constructing a value of the transparent | |
// union type from this initializer list. | |
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); | |
EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, | |
VK_RValue, Initializer, false); | |
} | |
Sema::AssignConvertType | |
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, | |
ExprResult &RHS) { | |
QualType RHSType = RHS.get()->getType(); | |
// If the ArgType is a Union type, we want to handle a potential | |
// transparent_union GCC extension. | |
const RecordType *UT = ArgType->getAsUnionType(); | |
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | |
return Incompatible; | |
// The field to initialize within the transparent union. | |
RecordDecl *UD = UT->getDecl(); | |
FieldDecl *InitField = nullptr; | |
// It's compatible if the expression matches any of the fields. | |
for (auto *it : UD->fields()) { | |
if (it->getType()->isPointerType()) { | |
// If the transparent union contains a pointer type, we allow: | |
// 1) void pointer | |
// 2) null pointer constant | |
if (RHSType->isPointerType()) | |
if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | |
RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); | |
InitField = it; | |
break; | |
} | |
if (RHS.get()->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNull)) { | |
RHS = ImpCastExprToType(RHS.get(), it->getType(), | |
CK_NullToPointer); | |
InitField = it; | |
break; | |
} | |
} | |
CastKind Kind; | |
if (CheckAssignmentConstraints(it->getType(), RHS, Kind) | |
== Compatible) { | |
RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); | |
InitField = it; | |
break; | |
} | |
} | |
if (!InitField) | |
return Incompatible; | |
ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); | |
return Compatible; | |
} | |
Sema::AssignConvertType | |
Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, | |
bool Diagnose, | |
bool DiagnoseCFAudited, | |
bool ConvertRHS) { | |
// We need to be able to tell the caller whether we diagnosed a problem, if | |
// they ask us to issue diagnostics. | |
assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed"); | |
// If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, | |
// we can't avoid *all* modifications at the moment, so we need some somewhere | |
// to put the updated value. | |
ExprResult LocalRHS = CallerRHS; | |
ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; | |
if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) { | |
if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) { | |
if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) && | |
!LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { | |
Diag(RHS.get()->getExprLoc(), | |
diag::warn_noderef_to_dereferenceable_pointer) | |
<< RHS.get()->getSourceRange(); | |
} | |
} | |
} | |
if (getLangOpts().CPlusPlus) { | |
if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { | |
// C++ 5.17p3: If the left operand is not of class type, the | |
// expression is implicitly converted (C++ 4) to the | |
// cv-unqualified type of the left operand. | |
QualType RHSType = RHS.get()->getType(); | |
if (Diagnose) { | |
RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | |
AA_Assigning); | |
} else { | |
ImplicitConversionSequence ICS = | |
TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | |
/*SuppressUserConversions=*/false, | |
AllowedExplicit::None, | |
/*InOverloadResolution=*/false, | |
/*CStyle=*/false, | |
/*AllowObjCWritebackConversion=*/false); | |
if (ICS.isFailure()) | |
return Incompatible; | |
RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | |
ICS, AA_Assigning); | |
} | |
if (RHS.isInvalid()) | |
return Incompatible; | |
Sema::AssignConvertType result = Compatible; | |
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |
!CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) | |
result = IncompatibleObjCWeakRef; | |
return result; | |
} | |
// FIXME: Currently, we fall through and treat C++ classes like C | |
// structures. | |
// FIXME: We also fall through for atomics; not sure what should | |
// happen there, though. | |
} else if (RHS.get()->getType() == Context.OverloadTy) { | |
// As a set of extensions to C, we support overloading on functions. These | |
// functions need to be resolved here. | |
DeclAccessPair DAP; | |
if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( | |
RHS.get(), LHSType, /*Complain=*/false, DAP)) | |
RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); | |
else | |
return Incompatible; | |
} | |
// C99 6.5.16.1p1: the left operand is a pointer and the right is | |
// a null pointer constant. | |
if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() || | |
LHSType->isBlockPointerType()) && | |
RHS.get()->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNull)) { | |
if (Diagnose || ConvertRHS) { | |
CastKind Kind; | |
CXXCastPath Path; | |
CheckPointerConversion(RHS.get(), LHSType, Kind, Path, | |
/*IgnoreBaseAccess=*/false, Diagnose); | |
if (ConvertRHS) | |
RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path); | |
} | |
return Compatible; | |
} | |
// OpenCL queue_t type assignment. | |
if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant( | |
Context, Expr::NPC_ValueDependentIsNull)) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |
return Compatible; | |
} | |
// This check seems unnatural, however it is necessary to ensure the proper | |
// conversion of functions/arrays. If the conversion were done for all | |
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary | |
// expressions that suppress this implicit conversion (&, sizeof). | |
// | |
// Suppress this for references: C++ 8.5.3p5. | |
if (!LHSType->isReferenceType()) { | |
// FIXME: We potentially allocate here even if ConvertRHS is false. | |
RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); | |
if (RHS.isInvalid()) | |
return Incompatible; | |
} | |
CastKind Kind; | |
Sema::AssignConvertType result = | |
CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); | |
// C99 6.5.16.1p2: The value of the right operand is converted to the | |
// type of the assignment expression. | |
// CheckAssignmentConstraints allows the left-hand side to be a reference, | |
// so that we can use references in built-in functions even in C. | |
// The getNonReferenceType() call makes sure that the resulting expression | |
// does not have reference type. | |
if (result != Incompatible && RHS.get()->getType() != LHSType) { | |
QualType Ty = LHSType.getNonLValueExprType(Context); | |
Expr *E = RHS.get(); | |
// Check for various Objective-C errors. If we are not reporting | |
// diagnostics and just checking for errors, e.g., during overload | |
// resolution, return Incompatible to indicate the failure. | |
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |
CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, | |
Diagnose, DiagnoseCFAudited) != ACR_okay) { | |
if (!Diagnose) | |
return Incompatible; | |
} | |
if (getLangOpts().ObjC && | |
(CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType, | |
E->getType(), E, Diagnose) || | |
CheckConversionToObjCLiteral(LHSType, E, Diagnose))) { | |
if (!Diagnose) | |
return Incompatible; | |
// Replace the expression with a corrected version and continue so we | |
// can find further errors. | |
RHS = E; | |
return Compatible; | |
} | |
if (ConvertRHS) | |
RHS = ImpCastExprToType(E, Ty, Kind); | |
} | |
return result; | |
} | |
namespace { | |
/// The original operand to an operator, prior to the application of the usual | |
/// arithmetic conversions and converting the arguments of a builtin operator | |
/// candidate. | |
struct OriginalOperand { | |
explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { | |
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op)) | |
Op = MTE->getSubExpr(); | |
if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op)) | |
Op = BTE->getSubExpr(); | |
if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) { | |
Orig = ICE->getSubExprAsWritten(); | |
Conversion = ICE->getConversionFunction(); | |
} | |
} | |
QualType getType() const { return Orig->getType(); } | |
Expr *Orig; | |
NamedDecl *Conversion; | |
}; | |
} | |
QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, | |
ExprResult &RHS) { | |
OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); | |
Diag(Loc, diag::err_typecheck_invalid_operands) | |
<< OrigLHS.getType() << OrigRHS.getType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
// If a user-defined conversion was applied to either of the operands prior | |
// to applying the built-in operator rules, tell the user about it. | |
if (OrigLHS.Conversion) { | |
Diag(OrigLHS.Conversion->getLocation(), | |
diag::note_typecheck_invalid_operands_converted) | |
<< 0 << LHS.get()->getType(); | |
} | |
if (OrigRHS.Conversion) { | |
Diag(OrigRHS.Conversion->getLocation(), | |
diag::note_typecheck_invalid_operands_converted) | |
<< 1 << RHS.get()->getType(); | |
} | |
return QualType(); | |
} | |
// Diagnose cases where a scalar was implicitly converted to a vector and | |
// diagnose the underlying types. Otherwise, diagnose the error | |
// as invalid vector logical operands for non-C++ cases. | |
QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, | |
ExprResult &RHS) { | |
QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); | |
QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); | |
bool LHSNatVec = LHSType->isVectorType(); | |
bool RHSNatVec = RHSType->isVectorType(); | |
if (!(LHSNatVec && RHSNatVec)) { | |
Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); | |
Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); | |
Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) | |
<< 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() | |
<< Vector->getSourceRange(); | |
return QualType(); | |
} | |
Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) | |
<< 1 << LHSType << RHSType << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
/// Try to convert a value of non-vector type to a vector type by converting | |
/// the type to the element type of the vector and then performing a splat. | |
/// If the language is OpenCL, we only use conversions that promote scalar | |
/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except | |
/// for float->int. | |
/// | |
/// OpenCL V2.0 6.2.6.p2: | |
/// An error shall occur if any scalar operand type has greater rank | |
/// than the type of the vector element. | |
/// | |
/// \param scalar - if non-null, actually perform the conversions | |
/// \return true if the operation fails (but without diagnosing the failure) | |
static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, | |
QualType scalarTy, | |
QualType vectorEltTy, | |
QualType vectorTy, | |
unsigned &DiagID) { | |
// The conversion to apply to the scalar before splatting it, | |
// if necessary. | |
CastKind scalarCast = CK_NoOp; | |
if (vectorEltTy->isIntegralType(S.Context)) { | |
if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || | |
(scalarTy->isIntegerType() && | |
S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { | |
DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; | |
return true; | |
} | |
if (!scalarTy->isIntegralType(S.Context)) | |
return true; | |
scalarCast = CK_IntegralCast; | |
} else if (vectorEltTy->isRealFloatingType()) { | |
if (scalarTy->isRealFloatingType()) { | |
if (S.getLangOpts().OpenCL && | |
S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { | |
DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; | |
return true; | |
} | |
scalarCast = CK_FloatingCast; | |
} | |
else if (scalarTy->isIntegralType(S.Context)) | |
scalarCast = CK_IntegralToFloating; | |
else | |
return true; | |
} else { | |
return true; | |
} | |
// Adjust scalar if desired. | |
if (scalar) { | |
if (scalarCast != CK_NoOp) | |
*scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); | |
*scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); | |
} | |
return false; | |
} | |
/// Convert vector E to a vector with the same number of elements but different | |
/// element type. | |
static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { | |
const auto *VecTy = E->getType()->getAs<VectorType>(); | |
assert(VecTy && "Expression E must be a vector"); | |
QualType NewVecTy = S.Context.getVectorType(ElementType, | |
VecTy->getNumElements(), | |
VecTy->getVectorKind()); | |
// Look through the implicit cast. Return the subexpression if its type is | |
// NewVecTy. | |
if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) | |
if (ICE->getSubExpr()->getType() == NewVecTy) | |
return ICE->getSubExpr(); | |
auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; | |
return S.ImpCastExprToType(E, NewVecTy, Cast); | |
} | |
/// Test if a (constant) integer Int can be casted to another integer type | |
/// IntTy without losing precision. | |
static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, | |
QualType OtherIntTy) { | |
QualType IntTy = Int->get()->getType().getUnqualifiedType(); | |
// Reject cases where the value of the Int is unknown as that would | |
// possibly cause truncation, but accept cases where the scalar can be | |
// demoted without loss of precision. | |
Expr::EvalResult EVResult; | |
bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); | |
int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); | |
bool IntSigned = IntTy->hasSignedIntegerRepresentation(); | |
bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); | |
if (CstInt) { | |
// If the scalar is constant and is of a higher order and has more active | |
// bits that the vector element type, reject it. | |
llvm::APSInt Result = EVResult.Val.getInt(); | |
unsigned NumBits = IntSigned | |
? (Result.isNegative() ? Result.getMinSignedBits() | |
: Result.getActiveBits()) | |
: Result.getActiveBits(); | |
if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) | |
return true; | |
// If the signedness of the scalar type and the vector element type | |
// differs and the number of bits is greater than that of the vector | |
// element reject it. | |
return (IntSigned != OtherIntSigned && | |
NumBits > S.Context.getIntWidth(OtherIntTy)); | |
} | |
// Reject cases where the value of the scalar is not constant and it's | |
// order is greater than that of the vector element type. | |
return (Order < 0); | |
} | |
/// Test if a (constant) integer Int can be casted to floating point type | |
/// FloatTy without losing precision. | |
static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, | |
QualType FloatTy) { | |
QualType IntTy = Int->get()->getType().getUnqualifiedType(); | |
// Determine if the integer constant can be expressed as a floating point | |
// number of the appropriate type. | |
Expr::EvalResult EVResult; | |
bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); | |
uint64_t Bits = 0; | |
if (CstInt) { | |
// Reject constants that would be truncated if they were converted to | |
// the floating point type. Test by simple to/from conversion. | |
// FIXME: Ideally the conversion to an APFloat and from an APFloat | |
// could be avoided if there was a convertFromAPInt method | |
// which could signal back if implicit truncation occurred. | |
llvm::APSInt Result = EVResult.Val.getInt(); | |
llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); | |
Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), | |
llvm::APFloat::rmTowardZero); | |
llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), | |
!IntTy->hasSignedIntegerRepresentation()); | |
bool Ignored = false; | |
Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, | |
&Ignored); | |
if (Result != ConvertBack) | |
return true; | |
} else { | |
// Reject types that cannot be fully encoded into the mantissa of | |
// the float. | |
Bits = S.Context.getTypeSize(IntTy); | |
unsigned FloatPrec = llvm::APFloat::semanticsPrecision( | |
S.Context.getFloatTypeSemantics(FloatTy)); | |
if (Bits > FloatPrec) | |
return true; | |
} | |
return false; | |
} | |
/// Attempt to convert and splat Scalar into a vector whose types matches | |
/// Vector following GCC conversion rules. The rule is that implicit | |
/// conversion can occur when Scalar can be casted to match Vector's element | |
/// type without causing truncation of Scalar. | |
static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, | |
ExprResult *Vector) { | |
QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); | |
QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); | |
const VectorType *VT = VectorTy->getAs<VectorType>(); | |
assert(!isa<ExtVectorType>(VT) && | |
"ExtVectorTypes should not be handled here!"); | |
QualType VectorEltTy = VT->getElementType(); | |
// Reject cases where the vector element type or the scalar element type are | |
// not integral or floating point types. | |
if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) | |
return true; | |
// The conversion to apply to the scalar before splatting it, | |
// if necessary. | |
CastKind ScalarCast = CK_NoOp; | |
// Accept cases where the vector elements are integers and the scalar is | |
// an integer. | |
// FIXME: Notionally if the scalar was a floating point value with a precise | |
// integral representation, we could cast it to an appropriate integer | |
// type and then perform the rest of the checks here. GCC will perform | |
// this conversion in some cases as determined by the input language. | |
// We should accept it on a language independent basis. | |
if (VectorEltTy->isIntegralType(S.Context) && | |
ScalarTy->isIntegralType(S.Context) && | |
S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { | |
if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) | |
return true; | |
ScalarCast = CK_IntegralCast; | |
} else if (VectorEltTy->isIntegralType(S.Context) && | |
ScalarTy->isRealFloatingType()) { | |
if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy)) | |
ScalarCast = CK_FloatingToIntegral; | |
else | |
return true; | |
} else if (VectorEltTy->isRealFloatingType()) { | |
if (ScalarTy->isRealFloatingType()) { | |
// Reject cases where the scalar type is not a constant and has a higher | |
// Order than the vector element type. | |
llvm::APFloat Result(0.0); | |
// Determine whether this is a constant scalar. In the event that the | |
// value is dependent (and thus cannot be evaluated by the constant | |
// evaluator), skip the evaluation. This will then diagnose once the | |
// expression is instantiated. | |
bool CstScalar = Scalar->get()->isValueDependent() || | |
Scalar->get()->EvaluateAsFloat(Result, S.Context); | |
int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); | |
if (!CstScalar && Order < 0) | |
return true; | |
// If the scalar cannot be safely casted to the vector element type, | |
// reject it. | |
if (CstScalar) { | |
bool Truncated = false; | |
Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), | |
llvm::APFloat::rmNearestTiesToEven, &Truncated); | |
if (Truncated) | |
return true; | |
} | |
ScalarCast = CK_FloatingCast; | |
} else if (ScalarTy->isIntegralType(S.Context)) { | |
if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) | |
return true; | |
ScalarCast = CK_IntegralToFloating; | |
} else | |
return true; | |
} | |
// Adjust scalar if desired. | |
if (Scalar) { | |
if (ScalarCast != CK_NoOp) | |
*Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); | |
*Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); | |
} | |
return false; | |
} | |
QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, bool IsCompAssign, | |
bool AllowBothBool, | |
bool AllowBoolConversions) { | |
if (!IsCompAssign) { | |
LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
} | |
RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
// For conversion purposes, we ignore any qualifiers. | |
// For example, "const float" and "float" are equivalent. | |
QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | |
QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | |
const VectorType *LHSVecType = LHSType->getAs<VectorType>(); | |
const VectorType *RHSVecType = RHSType->getAs<VectorType>(); | |
assert(LHSVecType || RHSVecType); | |
// AltiVec-style "vector bool op vector bool" combinations are allowed | |
// for some operators but not others. | |
if (!AllowBothBool && | |
LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && | |
RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) | |
return InvalidOperands(Loc, LHS, RHS); | |
// If the vector types are identical, return. | |
if (Context.hasSameType(LHSType, RHSType)) | |
return LHSType; | |
// If we have compatible AltiVec and GCC vector types, use the AltiVec type. | |
if (LHSVecType && RHSVecType && | |
Context.areCompatibleVectorTypes(LHSType, RHSType)) { | |
if (isa<ExtVectorType>(LHSVecType)) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |
return LHSType; | |
} | |
if (!IsCompAssign) | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | |
return RHSType; | |
} | |
// AllowBoolConversions says that bool and non-bool AltiVec vectors | |
// can be mixed, with the result being the non-bool type. The non-bool | |
// operand must have integer element type. | |
if (AllowBoolConversions && LHSVecType && RHSVecType && | |
LHSVecType->getNumElements() == RHSVecType->getNumElements() && | |
(Context.getTypeSize(LHSVecType->getElementType()) == | |
Context.getTypeSize(RHSVecType->getElementType()))) { | |
if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && | |
LHSVecType->getElementType()->isIntegerType() && | |
RHSVecType->getVectorKind() == VectorType::AltiVecBool) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |
return LHSType; | |
} | |
if (!IsCompAssign && | |
LHSVecType->getVectorKind() == VectorType::AltiVecBool && | |
RHSVecType->getVectorKind() == VectorType::AltiVecVector && | |
RHSVecType->getElementType()->isIntegerType()) { | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | |
return RHSType; | |
} | |
} | |
// If there's a vector type and a scalar, try to convert the scalar to | |
// the vector element type and splat. | |
unsigned DiagID = diag::err_typecheck_vector_not_convertable; | |
if (!RHSVecType) { | |
if (isa<ExtVectorType>(LHSVecType)) { | |
if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, | |
LHSVecType->getElementType(), LHSType, | |
DiagID)) | |
return LHSType; | |
} else { | |
if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) | |
return LHSType; | |
} | |
} | |
if (!LHSVecType) { | |
if (isa<ExtVectorType>(RHSVecType)) { | |
if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), | |
LHSType, RHSVecType->getElementType(), | |
RHSType, DiagID)) | |
return RHSType; | |
} else { | |
if (LHS.get()->getValueKind() == VK_LValue || | |
!tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) | |
return RHSType; | |
} | |
} | |
// FIXME: The code below also handles conversion between vectors and | |
// non-scalars, we should break this down into fine grained specific checks | |
// and emit proper diagnostics. | |
QualType VecType = LHSVecType ? LHSType : RHSType; | |
const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; | |
QualType OtherType = LHSVecType ? RHSType : LHSType; | |
ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; | |
if (isLaxVectorConversion(OtherType, VecType)) { | |
// If we're allowing lax vector conversions, only the total (data) size | |
// needs to be the same. For non compound assignment, if one of the types is | |
// scalar, the result is always the vector type. | |
if (!IsCompAssign) { | |
*OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); | |
return VecType; | |
// In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding | |
// any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' | |
// type. Note that this is already done by non-compound assignments in | |
// CheckAssignmentConstraints. If it's a scalar type, only bitcast for | |
// <1 x T> -> T. The result is also a vector type. | |
} else if (OtherType->isExtVectorType() || OtherType->isVectorType() || | |
(OtherType->isScalarType() && VT->getNumElements() == 1)) { | |
ExprResult *RHSExpr = &RHS; | |
*RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); | |
return VecType; | |
} | |
} | |
// Okay, the expression is invalid. | |
// If there's a non-vector, non-real operand, diagnose that. | |
if ((!RHSVecType && !RHSType->isRealType()) || | |
(!LHSVecType && !LHSType->isRealType())) { | |
Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) | |
<< LHSType << RHSType | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
// OpenCL V1.1 6.2.6.p1: | |
// If the operands are of more than one vector type, then an error shall | |
// occur. Implicit conversions between vector types are not permitted, per | |
// section 6.2.1. | |
if (getLangOpts().OpenCL && | |
RHSVecType && isa<ExtVectorType>(RHSVecType) && | |
LHSVecType && isa<ExtVectorType>(LHSVecType)) { | |
Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType | |
<< RHSType; | |
return QualType(); | |
} | |
// If there is a vector type that is not a ExtVector and a scalar, we reach | |
// this point if scalar could not be converted to the vector's element type | |
// without truncation. | |
if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) || | |
(LHSVecType && !isa<ExtVectorType>(LHSVecType))) { | |
QualType Scalar = LHSVecType ? RHSType : LHSType; | |
QualType Vector = LHSVecType ? LHSType : RHSType; | |
unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; | |
Diag(Loc, | |
diag::err_typecheck_vector_not_convertable_implict_truncation) | |
<< ScalarOrVector << Scalar << Vector; | |
return QualType(); | |
} | |
// Otherwise, use the generic diagnostic. | |
Diag(Loc, DiagID) | |
<< LHSType << RHSType | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
// checkArithmeticNull - Detect when a NULL constant is used improperly in an | |
// expression. These are mainly cases where the null pointer is used as an | |
// integer instead of a pointer. | |
static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, bool IsCompare) { | |
// The canonical way to check for a GNU null is with isNullPointerConstant, | |
// but we use a bit of a hack here for speed; this is a relatively | |
// hot path, and isNullPointerConstant is slow. | |
bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts()); | |
bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts()); | |
QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); | |
// Avoid analyzing cases where the result will either be invalid (and | |
// diagnosed as such) or entirely valid and not something to warn about. | |
if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || | |
NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) | |
return; | |
// Comparison operations would not make sense with a null pointer no matter | |
// what the other expression is. | |
if (!IsCompare) { | |
S.Diag(Loc, diag::warn_null_in_arithmetic_operation) | |
<< (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) | |
<< (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); | |
return; | |
} | |
// The rest of the operations only make sense with a null pointer | |
// if the other expression is a pointer. | |
if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || | |
NonNullType->canDecayToPointerType()) | |
return; | |
S.Diag(Loc, diag::warn_null_in_comparison_operation) | |
<< LHSNull /* LHS is NULL */ << NonNullType | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
} | |
static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS, | |
SourceLocation Loc) { | |
const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS); | |
const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS); | |
if (!LUE || !RUE) | |
return; | |
if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() || | |
RUE->getKind() != UETT_SizeOf) | |
return; | |
const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens(); | |
QualType LHSTy = LHSArg->getType(); | |
QualType RHSTy; | |
if (RUE->isArgumentType()) | |
RHSTy = RUE->getArgumentType(); | |
else | |
RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType(); | |
if (LHSTy->isPointerType() && !RHSTy->isPointerType()) { | |
if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy)) | |
return; | |
S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange(); | |
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { | |
if (const ValueDecl *LHSArgDecl = DRE->getDecl()) | |
S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here) | |
<< LHSArgDecl; | |
} | |
} else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) { | |
QualType ArrayElemTy = ArrayTy->getElementType(); | |
if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) || | |
ArrayElemTy->isDependentType() || RHSTy->isDependentType() || | |
ArrayElemTy->isCharType() || | |
S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy)) | |
return; | |
S.Diag(Loc, diag::warn_division_sizeof_array) | |
<< LHSArg->getSourceRange() << ArrayElemTy << RHSTy; | |
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { | |
if (const ValueDecl *LHSArgDecl = DRE->getDecl()) | |
S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here) | |
<< LHSArgDecl; | |
} | |
S.Diag(Loc, diag::note_precedence_silence) << RHS; | |
} | |
} | |
static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation Loc, bool IsDiv) { | |
// Check for division/remainder by zero. | |
Expr::EvalResult RHSValue; | |
if (!RHS.get()->isValueDependent() && | |
RHS.get()->EvaluateAsInt(RHSValue, S.Context) && | |
RHSValue.Val.getInt() == 0) | |
S.DiagRuntimeBehavior(Loc, RHS.get(), | |
S.PDiag(diag::warn_remainder_division_by_zero) | |
<< IsDiv << RHS.get()->getSourceRange()); | |
} | |
QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
bool IsCompAssign, bool IsDiv) { | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) | |
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | |
/*AllowBothBool*/getLangOpts().AltiVec, | |
/*AllowBoolConversions*/false); | |
QualType compType = UsualArithmeticConversions( | |
LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
if (compType.isNull() || !compType->isArithmeticType()) | |
return InvalidOperands(Loc, LHS, RHS); | |
if (IsDiv) { | |
DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); | |
DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc); | |
} | |
return compType; | |
} | |
QualType Sema::CheckRemainderOperands( | |
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) { | |
if (LHS.get()->getType()->hasIntegerRepresentation() && | |
RHS.get()->getType()->hasIntegerRepresentation()) | |
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | |
/*AllowBothBool*/getLangOpts().AltiVec, | |
/*AllowBoolConversions*/false); | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
QualType compType = UsualArithmeticConversions( | |
LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
if (compType.isNull() || !compType->isIntegerType()) | |
return InvalidOperands(Loc, LHS, RHS); | |
DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); | |
return compType; | |
} | |
/// Diagnose invalid arithmetic on two void pointers. | |
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
S.Diag(Loc, S.getLangOpts().CPlusPlus | |
? diag::err_typecheck_pointer_arith_void_type | |
: diag::ext_gnu_void_ptr) | |
<< 1 /* two pointers */ << LHSExpr->getSourceRange() | |
<< RHSExpr->getSourceRange(); | |
} | |
/// Diagnose invalid arithmetic on a void pointer. | |
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, | |
Expr *Pointer) { | |
S.Diag(Loc, S.getLangOpts().CPlusPlus | |
? diag::err_typecheck_pointer_arith_void_type | |
: diag::ext_gnu_void_ptr) | |
<< 0 /* one pointer */ << Pointer->getSourceRange(); | |
} | |
/// Diagnose invalid arithmetic on a null pointer. | |
/// | |
/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' | |
/// idiom, which we recognize as a GNU extension. | |
/// | |
static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, | |
Expr *Pointer, bool IsGNUIdiom) { | |
if (IsGNUIdiom) | |
S.Diag(Loc, diag::warn_gnu_null_ptr_arith) | |
<< Pointer->getSourceRange(); | |
else | |
S.Diag(Loc, diag::warn_pointer_arith_null_ptr) | |
<< S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); | |
} | |
/// Diagnose invalid arithmetic on two function pointers. | |
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, | |
Expr *LHS, Expr *RHS) { | |
assert(LHS->getType()->isAnyPointerType()); | |
assert(RHS->getType()->isAnyPointerType()); | |
S.Diag(Loc, S.getLangOpts().CPlusPlus | |
? diag::err_typecheck_pointer_arith_function_type | |
: diag::ext_gnu_ptr_func_arith) | |
<< 1 /* two pointers */ << LHS->getType()->getPointeeType() | |
// We only show the second type if it differs from the first. | |
<< (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), | |
RHS->getType()) | |
<< RHS->getType()->getPointeeType() | |
<< LHS->getSourceRange() << RHS->getSourceRange(); | |
} | |
/// Diagnose invalid arithmetic on a function pointer. | |
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, | |
Expr *Pointer) { | |
assert(Pointer->getType()->isAnyPointerType()); | |
S.Diag(Loc, S.getLangOpts().CPlusPlus | |
? diag::err_typecheck_pointer_arith_function_type | |
: diag::ext_gnu_ptr_func_arith) | |
<< 0 /* one pointer */ << Pointer->getType()->getPointeeType() | |
<< 0 /* one pointer, so only one type */ | |
<< Pointer->getSourceRange(); | |
} | |
/// Emit error if Operand is incomplete pointer type | |
/// | |
/// \returns True if pointer has incomplete type | |
static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, | |
Expr *Operand) { | |
QualType ResType = Operand->getType(); | |
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | |
ResType = ResAtomicType->getValueType(); | |
assert(ResType->isAnyPointerType() && !ResType->isDependentType()); | |
QualType PointeeTy = ResType->getPointeeType(); | |
return S.RequireCompleteSizedType( | |
Loc, PointeeTy, | |
diag::err_typecheck_arithmetic_incomplete_or_sizeless_type, | |
Operand->getSourceRange()); | |
} | |
/// Check the validity of an arithmetic pointer operand. | |
/// | |
/// If the operand has pointer type, this code will check for pointer types | |
/// which are invalid in arithmetic operations. These will be diagnosed | |
/// appropriately, including whether or not the use is supported as an | |
/// extension. | |
/// | |
/// \returns True when the operand is valid to use (even if as an extension). | |
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, | |
Expr *Operand) { | |
QualType ResType = Operand->getType(); | |
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | |
ResType = ResAtomicType->getValueType(); | |
if (!ResType->isAnyPointerType()) return true; | |
QualType PointeeTy = ResType->getPointeeType(); | |
if (PointeeTy->isVoidType()) { | |
diagnoseArithmeticOnVoidPointer(S, Loc, Operand); | |
return !S.getLangOpts().CPlusPlus; | |
} | |
if (PointeeTy->isFunctionType()) { | |
diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); | |
return !S.getLangOpts().CPlusPlus; | |
} | |
if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; | |
return true; | |
} | |
/// Check the validity of a binary arithmetic operation w.r.t. pointer | |
/// operands. | |
/// | |
/// This routine will diagnose any invalid arithmetic on pointer operands much | |
/// like \see checkArithmeticOpPointerOperand. However, it has special logic | |
/// for emitting a single diagnostic even for operations where both LHS and RHS | |
/// are (potentially problematic) pointers. | |
/// | |
/// \returns True when the operand is valid to use (even if as an extension). | |
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); | |
bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); | |
if (!isLHSPointer && !isRHSPointer) return true; | |
QualType LHSPointeeTy, RHSPointeeTy; | |
if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); | |
if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); | |
// if both are pointers check if operation is valid wrt address spaces | |
if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) { | |
const PointerType *lhsPtr = LHSExpr->getType()->castAs<PointerType>(); | |
const PointerType *rhsPtr = RHSExpr->getType()->castAs<PointerType>(); | |
if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) { | |
S.Diag(Loc, | |
diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | |
<< LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ | |
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); | |
return false; | |
} | |
} | |
// Check for arithmetic on pointers to incomplete types. | |
bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); | |
bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); | |
if (isLHSVoidPtr || isRHSVoidPtr) { | |
if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); | |
else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); | |
else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); | |
return !S.getLangOpts().CPlusPlus; | |
} | |
bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); | |
bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); | |
if (isLHSFuncPtr || isRHSFuncPtr) { | |
if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); | |
else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, | |
RHSExpr); | |
else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); | |
return !S.getLangOpts().CPlusPlus; | |
} | |
if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) | |
return false; | |
if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) | |
return false; | |
return true; | |
} | |
/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string | |
/// literal. | |
static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts()); | |
Expr* IndexExpr = RHSExpr; | |
if (!StrExpr) { | |
StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts()); | |
IndexExpr = LHSExpr; | |
} | |
bool IsStringPlusInt = StrExpr && | |
IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); | |
if (!IsStringPlusInt || IndexExpr->isValueDependent()) | |
return; | |
SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |
Self.Diag(OpLoc, diag::warn_string_plus_int) | |
<< DiagRange << IndexExpr->IgnoreImpCasts()->getType(); | |
// Only print a fixit for "str" + int, not for int + "str". | |
if (IndexExpr == RHSExpr) { | |
SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); | |
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) | |
<< FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") | |
<< FixItHint::CreateReplacement(SourceRange(OpLoc), "[") | |
<< FixItHint::CreateInsertion(EndLoc, "]"); | |
} else | |
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); | |
} | |
/// Emit a warning when adding a char literal to a string. | |
static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
const Expr *StringRefExpr = LHSExpr; | |
const CharacterLiteral *CharExpr = | |
dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts()); | |
if (!CharExpr) { | |
CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts()); | |
StringRefExpr = RHSExpr; | |
} | |
if (!CharExpr || !StringRefExpr) | |
return; | |
const QualType StringType = StringRefExpr->getType(); | |
// Return if not a PointerType. | |
if (!StringType->isAnyPointerType()) | |
return; | |
// Return if not a CharacterType. | |
if (!StringType->getPointeeType()->isAnyCharacterType()) | |
return; | |
ASTContext &Ctx = Self.getASTContext(); | |
SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |
const QualType CharType = CharExpr->getType(); | |
if (!CharType->isAnyCharacterType() && | |
CharType->isIntegerType() && | |
llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { | |
Self.Diag(OpLoc, diag::warn_string_plus_char) | |
<< DiagRange << Ctx.CharTy; | |
} else { | |
Self.Diag(OpLoc, diag::warn_string_plus_char) | |
<< DiagRange << CharExpr->getType(); | |
} | |
// Only print a fixit for str + char, not for char + str. | |
if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) { | |
SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); | |
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) | |
<< FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") | |
<< FixItHint::CreateReplacement(SourceRange(OpLoc), "[") | |
<< FixItHint::CreateInsertion(EndLoc, "]"); | |
} else { | |
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); | |
} | |
} | |
/// Emit error when two pointers are incompatible. | |
static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
assert(LHSExpr->getType()->isAnyPointerType()); | |
assert(RHSExpr->getType()->isAnyPointerType()); | |
S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) | |
<< LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() | |
<< RHSExpr->getSourceRange(); | |
} | |
// C99 6.5.6 | |
QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, BinaryOperatorKind Opc, | |
QualType* CompLHSTy) { | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) { | |
QualType compType = CheckVectorOperands( | |
LHS, RHS, Loc, CompLHSTy, | |
/*AllowBothBool*/getLangOpts().AltiVec, | |
/*AllowBoolConversions*/getLangOpts().ZVector); | |
if (CompLHSTy) *CompLHSTy = compType; | |
return compType; | |
} | |
QualType compType = UsualArithmeticConversions( | |
LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
// Diagnose "string literal" '+' int and string '+' "char literal". | |
if (Opc == BO_Add) { | |
diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); | |
diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); | |
} | |
// handle the common case first (both operands are arithmetic). | |
if (!compType.isNull() && compType->isArithmeticType()) { | |
if (CompLHSTy) *CompLHSTy = compType; | |
return compType; | |
} | |
// Type-checking. Ultimately the pointer's going to be in PExp; | |
// note that we bias towards the LHS being the pointer. | |
Expr *PExp = LHS.get(), *IExp = RHS.get(); | |
bool isObjCPointer; | |
if (PExp->getType()->isPointerType()) { | |
isObjCPointer = false; | |
} else if (PExp->getType()->isObjCObjectPointerType()) { | |
isObjCPointer = true; | |
} else { | |
std::swap(PExp, IExp); | |
if (PExp->getType()->isPointerType()) { | |
isObjCPointer = false; | |
} else if (PExp->getType()->isObjCObjectPointerType()) { | |
isObjCPointer = true; | |
} else { | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
} | |
assert(PExp->getType()->isAnyPointerType()); | |
if (!IExp->getType()->isIntegerType()) | |
return InvalidOperands(Loc, LHS, RHS); | |
// Adding to a null pointer results in undefined behavior. | |
if (PExp->IgnoreParenCasts()->isNullPointerConstant( | |
Context, Expr::NPC_ValueDependentIsNotNull)) { | |
// In C++ adding zero to a null pointer is defined. | |
Expr::EvalResult KnownVal; | |
if (!getLangOpts().CPlusPlus || | |
(!IExp->isValueDependent() && | |
(!IExp->EvaluateAsInt(KnownVal, Context) || | |
KnownVal.Val.getInt() != 0))) { | |
// Check the conditions to see if this is the 'p = nullptr + n' idiom. | |
bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( | |
Context, BO_Add, PExp, IExp); | |
diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); | |
} | |
} | |
if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) | |
return QualType(); | |
if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) | |
return QualType(); | |
// Check array bounds for pointer arithemtic | |
CheckArrayAccess(PExp, IExp); | |
if (CompLHSTy) { | |
QualType LHSTy = Context.isPromotableBitField(LHS.get()); | |
if (LHSTy.isNull()) { | |
LHSTy = LHS.get()->getType(); | |
if (LHSTy->isPromotableIntegerType()) | |
LHSTy = Context.getPromotedIntegerType(LHSTy); | |
} | |
*CompLHSTy = LHSTy; | |
} | |
return PExp->getType(); | |
} | |
// C99 6.5.6 | |
QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
QualType* CompLHSTy) { | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) { | |
QualType compType = CheckVectorOperands( | |
LHS, RHS, Loc, CompLHSTy, | |
/*AllowBothBool*/getLangOpts().AltiVec, | |
/*AllowBoolConversions*/getLangOpts().ZVector); | |
if (CompLHSTy) *CompLHSTy = compType; | |
return compType; | |
} | |
QualType compType = UsualArithmeticConversions( | |
LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
// Enforce type constraints: C99 6.5.6p3. | |
// Handle the common case first (both operands are arithmetic). | |
if (!compType.isNull() && compType->isArithmeticType()) { | |
if (CompLHSTy) *CompLHSTy = compType; | |
return compType; | |
} | |
// Either ptr - int or ptr - ptr. | |
if (LHS.get()->getType()->isAnyPointerType()) { | |
QualType lpointee = LHS.get()->getType()->getPointeeType(); | |
// Diagnose bad cases where we step over interface counts. | |
if (LHS.get()->getType()->isObjCObjectPointerType() && | |
checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) | |
return QualType(); | |
// The result type of a pointer-int computation is the pointer type. | |
if (RHS.get()->getType()->isIntegerType()) { | |
// Subtracting from a null pointer should produce a warning. | |
// The last argument to the diagnose call says this doesn't match the | |
// GNU int-to-pointer idiom. | |
if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNotNull)) { | |
// In C++ adding zero to a null pointer is defined. | |
Expr::EvalResult KnownVal; | |
if (!getLangOpts().CPlusPlus || | |
(!RHS.get()->isValueDependent() && | |
(!RHS.get()->EvaluateAsInt(KnownVal, Context) || | |
KnownVal.Val.getInt() != 0))) { | |
diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); | |
} | |
} | |
if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) | |
return QualType(); | |
// Check array bounds for pointer arithemtic | |
CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, | |
/*AllowOnePastEnd*/true, /*IndexNegated*/true); | |
if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); | |
return LHS.get()->getType(); | |
} | |
// Handle pointer-pointer subtractions. | |
if (const PointerType *RHSPTy | |
= RHS.get()->getType()->getAs<PointerType>()) { | |
QualType rpointee = RHSPTy->getPointeeType(); | |
if (getLangOpts().CPlusPlus) { | |
// Pointee types must be the same: C++ [expr.add] | |
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { | |
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); | |
} | |
} else { | |
// Pointee types must be compatible C99 6.5.6p3 | |
if (!Context.typesAreCompatible( | |
Context.getCanonicalType(lpointee).getUnqualifiedType(), | |
Context.getCanonicalType(rpointee).getUnqualifiedType())) { | |
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); | |
return QualType(); | |
} | |
} | |
if (!checkArithmeticBinOpPointerOperands(*this, Loc, | |
LHS.get(), RHS.get())) | |
return QualType(); | |
// FIXME: Add warnings for nullptr - ptr. | |
// The pointee type may have zero size. As an extension, a structure or | |
// union may have zero size or an array may have zero length. In this | |
// case subtraction does not make sense. | |
if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { | |
CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); | |
if (ElementSize.isZero()) { | |
Diag(Loc,diag::warn_sub_ptr_zero_size_types) | |
<< rpointee.getUnqualifiedType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
} | |
} | |
if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); | |
return Context.getPointerDiffType(); | |
} | |
} | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
static bool isScopedEnumerationType(QualType T) { | |
if (const EnumType *ET = T->getAs<EnumType>()) | |
return ET->getDecl()->isScoped(); | |
return false; | |
} | |
static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, BinaryOperatorKind Opc, | |
QualType LHSType) { | |
// OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), | |
// so skip remaining warnings as we don't want to modify values within Sema. | |
if (S.getLangOpts().OpenCL) | |
return; | |
// Check right/shifter operand | |
Expr::EvalResult RHSResult; | |
if (RHS.get()->isValueDependent() || | |
!RHS.get()->EvaluateAsInt(RHSResult, S.Context)) | |
return; | |
llvm::APSInt Right = RHSResult.Val.getInt(); | |
if (Right.isNegative()) { | |
S.DiagRuntimeBehavior(Loc, RHS.get(), | |
S.PDiag(diag::warn_shift_negative) | |
<< RHS.get()->getSourceRange()); | |
return; | |
} | |
QualType LHSExprType = LHS.get()->getType(); | |
uint64_t LeftSize = LHSExprType->isExtIntType() | |
? S.Context.getIntWidth(LHSExprType) | |
: S.Context.getTypeSize(LHSExprType); | |
llvm::APInt LeftBits(Right.getBitWidth(), LeftSize); | |
if (Right.uge(LeftBits)) { | |
S.DiagRuntimeBehavior(Loc, RHS.get(), | |
S.PDiag(diag::warn_shift_gt_typewidth) | |
<< RHS.get()->getSourceRange()); | |
return; | |
} | |
if (Opc != BO_Shl) | |
return; | |
// When left shifting an ICE which is signed, we can check for overflow which | |
// according to C++ standards prior to C++2a has undefined behavior | |
// ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one | |
// more than the maximum value representable in the result type, so never | |
// warn for those. (FIXME: Unsigned left-shift overflow in a constant | |
// expression is still probably a bug.) | |
Expr::EvalResult LHSResult; | |
if (LHS.get()->isValueDependent() || | |
LHSType->hasUnsignedIntegerRepresentation() || | |
!LHS.get()->EvaluateAsInt(LHSResult, S.Context)) | |
return; | |
llvm::APSInt Left = LHSResult.Val.getInt(); | |
// If LHS does not have a signed type and non-negative value | |
// then, the behavior is undefined before C++2a. Warn about it. | |
if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() && | |
!S.getLangOpts().CPlusPlus20) { | |
S.DiagRuntimeBehavior(Loc, LHS.get(), | |
S.PDiag(diag::warn_shift_lhs_negative) | |
<< LHS.get()->getSourceRange()); | |
return; | |
} | |
llvm::APInt ResultBits = | |
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits(); | |
if (LeftBits.uge(ResultBits)) | |
return; | |
llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); | |
Result = Result.shl(Right); | |
// Print the bit representation of the signed integer as an unsigned | |
// hexadecimal number. | |
SmallString<40> HexResult; | |
Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); | |
// If we are only missing a sign bit, this is less likely to result in actual | |
// bugs -- if the result is cast back to an unsigned type, it will have the | |
// expected value. Thus we place this behind a different warning that can be | |
// turned off separately if needed. | |
if (LeftBits == ResultBits - 1) { | |
S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) | |
<< HexResult << LHSType | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
return; | |
} | |
S.Diag(Loc, diag::warn_shift_result_gt_typewidth) | |
<< HexResult.str() << Result.getMinSignedBits() << LHSType | |
<< Left.getBitWidth() << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
} | |
/// Return the resulting type when a vector is shifted | |
/// by a scalar or vector shift amount. | |
static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, bool IsCompAssign) { | |
// OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. | |
if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && | |
!LHS.get()->getType()->isVectorType()) { | |
S.Diag(Loc, diag::err_shift_rhs_only_vector) | |
<< RHS.get()->getType() << LHS.get()->getType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
if (!IsCompAssign) { | |
LHS = S.UsualUnaryConversions(LHS.get()); | |
if (LHS.isInvalid()) return QualType(); | |
} | |
RHS = S.UsualUnaryConversions(RHS.get()); | |
if (RHS.isInvalid()) return QualType(); | |
QualType LHSType = LHS.get()->getType(); | |
// Note that LHS might be a scalar because the routine calls not only in | |
// OpenCL case. | |
const VectorType *LHSVecTy = LHSType->getAs<VectorType>(); | |
QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; | |
// Note that RHS might not be a vector. | |
QualType RHSType = RHS.get()->getType(); | |
const VectorType *RHSVecTy = RHSType->getAs<VectorType>(); | |
QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; | |
// The operands need to be integers. | |
if (!LHSEleType->isIntegerType()) { | |
S.Diag(Loc, diag::err_typecheck_expect_int) | |
<< LHS.get()->getType() << LHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
if (!RHSEleType->isIntegerType()) { | |
S.Diag(Loc, diag::err_typecheck_expect_int) | |
<< RHS.get()->getType() << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
if (!LHSVecTy) { | |
assert(RHSVecTy); | |
if (IsCompAssign) | |
return RHSType; | |
if (LHSEleType != RHSEleType) { | |
LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); | |
LHSEleType = RHSEleType; | |
} | |
QualType VecTy = | |
S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); | |
LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); | |
LHSType = VecTy; | |
} else if (RHSVecTy) { | |
// OpenCL v1.1 s6.3.j says that for vector types, the operators | |
// are applied component-wise. So if RHS is a vector, then ensure | |
// that the number of elements is the same as LHS... | |
if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { | |
S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | |
<< LHS.get()->getType() << RHS.get()->getType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
return QualType(); | |
} | |
if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { | |
const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>(); | |
const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>(); | |
if (LHSBT != RHSBT && | |
S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { | |
S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) | |
<< LHS.get()->getType() << RHS.get()->getType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
} | |
} | |
} else { | |
// ...else expand RHS to match the number of elements in LHS. | |
QualType VecTy = | |
S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); | |
RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); | |
} | |
return LHSType; | |
} | |
// C99 6.5.7 | |
QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, BinaryOperatorKind Opc, | |
bool IsCompAssign) { | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |
// Vector shifts promote their scalar inputs to vector type. | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) { | |
if (LangOpts.ZVector) { | |
// The shift operators for the z vector extensions work basically | |
// like general shifts, except that neither the LHS nor the RHS is | |
// allowed to be a "vector bool". | |
if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>()) | |
if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) | |
return InvalidOperands(Loc, LHS, RHS); | |
if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>()) | |
if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); | |
} | |
// Shifts don't perform usual arithmetic conversions, they just do integer | |
// promotions on each operand. C99 6.5.7p3 | |
// For the LHS, do usual unary conversions, but then reset them away | |
// if this is a compound assignment. | |
ExprResult OldLHS = LHS; | |
LHS = UsualUnaryConversions(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
QualType LHSType = LHS.get()->getType(); | |
if (IsCompAssign) LHS = OldLHS; | |
// The RHS is simpler. | |
RHS = UsualUnaryConversions(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
QualType RHSType = RHS.get()->getType(); | |
// C99 6.5.7p2: Each of the operands shall have integer type. | |
if (!LHSType->hasIntegerRepresentation() || | |
!RHSType->hasIntegerRepresentation()) | |
return InvalidOperands(Loc, LHS, RHS); | |
// C++0x: Don't allow scoped enums. FIXME: Use something better than | |
// hasIntegerRepresentation() above instead of this. | |
if (isScopedEnumerationType(LHSType) || | |
isScopedEnumerationType(RHSType)) { | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
// Sanity-check shift operands | |
DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); | |
// "The type of the result is that of the promoted left operand." | |
return LHSType; | |
} | |
/// Diagnose bad pointer comparisons. | |
static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, | |
ExprResult &LHS, ExprResult &RHS, | |
bool IsError) { | |
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers | |
: diag::ext_typecheck_comparison_of_distinct_pointers) | |
<< LHS.get()->getType() << RHS.get()->getType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
} | |
/// Returns false if the pointers are converted to a composite type, | |
/// true otherwise. | |
static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, | |
ExprResult &LHS, ExprResult &RHS) { | |
// C++ [expr.rel]p2: | |
// [...] Pointer conversions (4.10) and qualification | |
// conversions (4.4) are performed on pointer operands (or on | |
// a pointer operand and a null pointer constant) to bring | |
// them to their composite pointer type. [...] | |
// | |
// C++ [expr.eq]p1 uses the same notion for (in)equality | |
// comparisons of pointers. | |
QualType LHSType = LHS.get()->getType(); | |
QualType RHSType = RHS.get()->getType(); | |
assert(LHSType->isPointerType() || RHSType->isPointerType() || | |
LHSType->isMemberPointerType() || RHSType->isMemberPointerType()); | |
QualType T = S.FindCompositePointerType(Loc, LHS, RHS); | |
if (T.isNull()) { | |
if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) && | |
(RHSType->isAnyPointerType() || RHSType->isMemberPointerType())) | |
diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); | |
else | |
S.InvalidOperands(Loc, LHS, RHS); | |
return true; | |
} | |
return false; | |
} | |
static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, | |
ExprResult &LHS, | |
ExprResult &RHS, | |
bool IsError) { | |
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void | |
: diag::ext_typecheck_comparison_of_fptr_to_void) | |
<< LHS.get()->getType() << RHS.get()->getType() | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
} | |
static bool isObjCObjectLiteral(ExprResult &E) { | |
switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { | |
case Stmt::ObjCArrayLiteralClass: | |
case Stmt::ObjCDictionaryLiteralClass: | |
case Stmt::ObjCStringLiteralClass: | |
case Stmt::ObjCBoxedExprClass: | |
return true; | |
default: | |
// Note that ObjCBoolLiteral is NOT an object literal! | |
return false; | |
} | |
} | |
static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { | |
const ObjCObjectPointerType *Type = | |
LHS->getType()->getAs<ObjCObjectPointerType>(); | |
// If this is not actually an Objective-C object, bail out. | |
if (!Type) | |
return false; | |
// Get the LHS object's interface type. | |
QualType InterfaceType = Type->getPointeeType(); | |
// If the RHS isn't an Objective-C object, bail out. | |
if (!RHS->getType()->isObjCObjectPointerType()) | |
return false; | |
// Try to find the -isEqual: method. | |
Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); | |
ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, | |
InterfaceType, | |
/*IsInstance=*/true); | |
if (!Method) { | |
if (Type->isObjCIdType()) { | |
// For 'id', just check the global pool. | |
Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), | |
/*receiverId=*/true); | |
} else { | |
// Check protocols. | |
Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, | |
/*IsInstance=*/true); | |
} | |
} | |
if (!Method) | |
return false; | |
QualType T = Method->parameters()[0]->getType(); | |
if (!T->isObjCObjectPointerType()) | |
return false; | |
QualType R = Method->getReturnType(); | |
if (!R->isScalarType()) | |
return false; | |
return true; | |
} | |
Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { | |
FromE = FromE->IgnoreParenImpCasts(); | |
switch (FromE->getStmtClass()) { | |
default: | |
break; | |
case Stmt::ObjCStringLiteralClass: | |
// "string literal" | |
return LK_String; | |
case Stmt::ObjCArrayLiteralClass: | |
// "array literal" | |
return LK_Array; | |
case Stmt::ObjCDictionaryLiteralClass: | |
// "dictionary literal" | |
return LK_Dictionary; | |
case Stmt::BlockExprClass: | |
return LK_Block; | |
case Stmt::ObjCBoxedExprClass: { | |
Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens(); | |
switch (Inner->getStmtClass()) { | |
case Stmt::IntegerLiteralClass: | |
case Stmt::FloatingLiteralClass: | |
case Stmt::CharacterLiteralClass: | |
case Stmt::ObjCBoolLiteralExprClass: | |
case Stmt::CXXBoolLiteralExprClass: | |
// "numeric literal" | |
return LK_Numeric; | |
case Stmt::ImplicitCastExprClass: { | |
CastKind CK = cast<CastExpr>(Inner)->getCastKind(); | |
// Boolean literals can be represented by implicit casts. | |
if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) | |
return LK_Numeric; | |
break; | |
} | |
default: | |
break; | |
} | |
return LK_Boxed; | |
} | |
} | |
return LK_None; | |
} | |
static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, | |
ExprResult &LHS, ExprResult &RHS, | |
BinaryOperator::Opcode Opc){ | |
Expr *Literal; | |
Expr *Other; | |
if (isObjCObjectLiteral(LHS)) { | |
Literal = LHS.get(); | |
Other = RHS.get(); | |
} else { | |
Literal = RHS.get(); | |
Other = LHS.get(); | |
} | |
// Don't warn on comparisons against nil. | |
Other = Other->IgnoreParenCasts(); | |
if (Other->isNullPointerConstant(S.getASTContext(), | |
Expr::NPC_ValueDependentIsNotNull)) | |
return; | |
// This should be kept in sync with warn_objc_literal_comparison. | |
// LK_String should always be after the other literals, since it has its own | |
// warning flag. | |
Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); | |
assert(LiteralKind != Sema::LK_Block); | |
if (LiteralKind == Sema::LK_None) { | |
llvm_unreachable("Unknown Objective-C object literal kind"); | |
} | |
if (LiteralKind == Sema::LK_String) | |
S.Diag(Loc, diag::warn_objc_string_literal_comparison) | |
<< Literal->getSourceRange(); | |
else | |
S.Diag(Loc, diag::warn_objc_literal_comparison) | |
<< LiteralKind << Literal->getSourceRange(); | |
if (BinaryOperator::isEqualityOp(Opc) && | |
hasIsEqualMethod(S, LHS.get(), RHS.get())) { | |
SourceLocation Start = LHS.get()->getBeginLoc(); | |
SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc()); | |
CharSourceRange OpRange = | |
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | |
S.Diag(Loc, diag::note_objc_literal_comparison_isequal) | |
<< FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") | |
<< FixItHint::CreateReplacement(OpRange, " isEqual:") | |
<< FixItHint::CreateInsertion(End, "]"); | |
} | |
} | |
/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. | |
static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, SourceLocation Loc, | |
BinaryOperatorKind Opc) { | |
// Check that left hand side is !something. | |
UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts()); | |
if (!UO || UO->getOpcode() != UO_LNot) return; | |
// Only check if the right hand side is non-bool arithmetic type. | |
if (RHS.get()->isKnownToHaveBooleanValue()) return; | |
// Make sure that the something in !something is not bool. | |
Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); | |
if (SubExpr->isKnownToHaveBooleanValue()) return; | |
// Emit warning. | |
bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; | |
S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) | |
<< Loc << IsBitwiseOp; | |
// First note suggest !(x < y) | |
SourceLocation FirstOpen = SubExpr->getBeginLoc(); | |
SourceLocation FirstClose = RHS.get()->getEndLoc(); | |
FirstClose = S.getLocForEndOfToken(FirstClose); | |
if (FirstClose.isInvalid()) | |
FirstOpen = SourceLocation(); | |
S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) | |
<< IsBitwiseOp | |
<< FixItHint::CreateInsertion(FirstOpen, "(") | |
<< FixItHint::CreateInsertion(FirstClose, ")"); | |
// Second note suggests (!x) < y | |
SourceLocation SecondOpen = LHS.get()->getBeginLoc(); | |
SourceLocation SecondClose = LHS.get()->getEndLoc(); | |
SecondClose = S.getLocForEndOfToken(SecondClose); | |
if (SecondClose.isInvalid()) | |
SecondOpen = SourceLocation(); | |
S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) | |
<< FixItHint::CreateInsertion(SecondOpen, "(") | |
<< FixItHint::CreateInsertion(SecondClose, ")"); | |
} | |
// Returns true if E refers to a non-weak array. | |
static bool checkForArray(const Expr *E) { | |
const ValueDecl *D = nullptr; | |
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { | |
D = DR->getDecl(); | |
} else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) { | |
if (Mem->isImplicitAccess()) | |
D = Mem->getMemberDecl(); | |
} | |
if (!D) | |
return false; | |
return D->getType()->isArrayType() && !D->isWeak(); | |
} | |
/// Diagnose some forms of syntactically-obvious tautological comparison. | |
static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, | |
Expr *LHS, Expr *RHS, | |
BinaryOperatorKind Opc) { | |
Expr *LHSStripped = LHS->IgnoreParenImpCasts(); | |
Expr *RHSStripped = RHS->IgnoreParenImpCasts(); | |
QualType LHSType = LHS->getType(); | |
QualType RHSType = RHS->getType(); | |
if (LHSType->hasFloatingRepresentation() || | |
(LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || | |
S.inTemplateInstantiation()) | |
return; | |
// Comparisons between two array types are ill-formed for operator<=>, so | |
// we shouldn't emit any additional warnings about it. | |
if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) | |
return; | |
// For non-floating point types, check for self-comparisons of the form | |
// x == x, x != x, x < x, etc. These always evaluate to a constant, and | |
// often indicate logic errors in the program. | |
// | |
// NOTE: Don't warn about comparison expressions resulting from macro | |
// expansion. Also don't warn about comparisons which are only self | |
// comparisons within a template instantiation. The warnings should catch | |
// obvious cases in the definition of the template anyways. The idea is to | |
// warn when the typed comparison operator will always evaluate to the same | |
// result. | |
// Used for indexing into %select in warn_comparison_always | |
enum { | |
AlwaysConstant, | |
AlwaysTrue, | |
AlwaysFalse, | |
AlwaysEqual, // std::strong_ordering::equal from operator<=> | |
}; | |
// C++2a [depr.array.comp]: | |
// Equality and relational comparisons ([expr.eq], [expr.rel]) between two | |
// operands of array type are deprecated. | |
if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() && | |
RHSStripped->getType()->isArrayType()) { | |
S.Diag(Loc, diag::warn_depr_array_comparison) | |
<< LHS->getSourceRange() << RHS->getSourceRange() | |
<< LHSStripped->getType() << RHSStripped->getType(); | |
// Carry on to produce the tautological comparison warning, if this | |
// expression is potentially-evaluated, we can resolve the array to a | |
// non-weak declaration, and so on. | |
} | |
if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) { | |
if (Expr::isSameComparisonOperand(LHS, RHS)) { | |
unsigned Result; | |
switch (Opc) { | |
case BO_EQ: | |
case BO_LE: | |
case BO_GE: | |
Result = AlwaysTrue; | |
break; | |
case BO_NE: | |
case BO_LT: | |
case BO_GT: | |
Result = AlwaysFalse; | |
break; | |
case BO_Cmp: | |
Result = AlwaysEqual; | |
break; | |
default: | |
Result = AlwaysConstant; | |
break; | |
} | |
S.DiagRuntimeBehavior(Loc, nullptr, | |
S.PDiag(diag::warn_comparison_always) | |
<< 0 /*self-comparison*/ | |
<< Result); | |
} else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) { | |
// What is it always going to evaluate to? | |
unsigned Result; | |
switch (Opc) { | |
case BO_EQ: // e.g. array1 == array2 | |
Result = AlwaysFalse; | |
break; | |
case BO_NE: // e.g. array1 != array2 | |
Result = AlwaysTrue; | |
break; | |
default: // e.g. array1 <= array2 | |
// The best we can say is 'a constant' | |
Result = AlwaysConstant; | |
break; | |
} | |
S.DiagRuntimeBehavior(Loc, nullptr, | |
S.PDiag(diag::warn_comparison_always) | |
<< 1 /*array comparison*/ | |
<< Result); | |
} | |
} | |
if (isa<CastExpr>(LHSStripped)) | |
LHSStripped = LHSStripped->IgnoreParenCasts(); | |
if (isa<CastExpr>(RHSStripped)) | |
RHSStripped = RHSStripped->IgnoreParenCasts(); | |
// Warn about comparisons against a string constant (unless the other | |
// operand is null); the user probably wants string comparison function. | |
Expr *LiteralString = nullptr; | |
Expr *LiteralStringStripped = nullptr; | |
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && | |
!RHSStripped->isNullPointerConstant(S.Context, | |
Expr::NPC_ValueDependentIsNull)) { | |
LiteralString = LHS; | |
LiteralStringStripped = LHSStripped; | |
} else if ((isa<StringLiteral>(RHSStripped) || | |
isa<ObjCEncodeExpr>(RHSStripped)) && | |
!LHSStripped->isNullPointerConstant(S.Context, | |
Expr::NPC_ValueDependentIsNull)) { | |
LiteralString = RHS; | |
LiteralStringStripped = RHSStripped; | |
} | |
if (LiteralString) { | |
S.DiagRuntimeBehavior(Loc, nullptr, | |
S.PDiag(diag::warn_stringcompare) | |
<< isa<ObjCEncodeExpr>(LiteralStringStripped) | |
<< LiteralString->getSourceRange()); | |
} | |
} | |
static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { | |
switch (CK) { | |
default: { | |
#ifndef NDEBUG | |
llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) | |
<< "\n"; | |
#endif | |
llvm_unreachable("unhandled cast kind"); | |
} | |
case CK_UserDefinedConversion: | |
return ICK_Identity; | |
case CK_LValueToRValue: | |
return ICK_Lvalue_To_Rvalue; | |
case CK_ArrayToPointerDecay: | |
return ICK_Array_To_Pointer; | |
case CK_FunctionToPointerDecay: | |
return ICK_Function_To_Pointer; | |
case CK_IntegralCast: | |
return ICK_Integral_Conversion; | |
case CK_FloatingCast: | |
return ICK_Floating_Conversion; | |
case CK_IntegralToFloating: | |
case CK_FloatingToIntegral: | |
return ICK_Floating_Integral; | |
case CK_IntegralComplexCast: | |
case CK_FloatingComplexCast: | |
case CK_FloatingComplexToIntegralComplex: | |
case CK_IntegralComplexToFloatingComplex: | |
return ICK_Complex_Conversion; | |
case CK_FloatingComplexToReal: | |
case CK_FloatingRealToComplex: | |
case CK_IntegralComplexToReal: | |
case CK_IntegralRealToComplex: | |
return ICK_Complex_Real; | |
} | |
} | |
static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, | |
QualType FromType, | |
SourceLocation Loc) { | |
// Check for a narrowing implicit conversion. | |
StandardConversionSequence SCS; | |
SCS.setAsIdentityConversion(); | |
SCS.setToType(0, FromType); | |
SCS.setToType(1, ToType); | |
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) | |
SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); | |
APValue PreNarrowingValue; | |
QualType PreNarrowingType; | |
switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, | |
PreNarrowingType, | |
/*IgnoreFloatToIntegralConversion*/ true)) { | |
case NK_Dependent_Narrowing: | |
// Implicit conversion to a narrower type, but the expression is | |
// value-dependent so we can't tell whether it's actually narrowing. | |
case NK_Not_Narrowing: | |
return false; | |
case NK_Constant_Narrowing: | |
// Implicit conversion to a narrower type, and the value is not a constant | |
// expression. | |
S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) | |
<< /*Constant*/ 1 | |
<< PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; | |
return true; | |
case NK_Variable_Narrowing: | |
// Implicit conversion to a narrower type, and the value is not a constant | |
// expression. | |
case NK_Type_Narrowing: | |
S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) | |
<< /*Constant*/ 0 << FromType << ToType; | |
// TODO: It's not a constant expression, but what if the user intended it | |
// to be? Can we produce notes to help them figure out why it isn't? | |
return true; | |
} | |
llvm_unreachable("unhandled case in switch"); | |
} | |
static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, | |
ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation Loc) { | |
QualType LHSType = LHS.get()->getType(); | |
QualType RHSType = RHS.get()->getType(); | |
// Dig out the original argument type and expression before implicit casts | |
// were applied. These are the types/expressions we need to check the | |
// [expr.spaceship] requirements against. | |
ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); | |
ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); | |
QualType LHSStrippedType = LHSStripped.get()->getType(); | |
QualType RHSStrippedType = RHSStripped.get()->getType(); | |
// C++2a [expr.spaceship]p3: If one of the operands is of type bool and the | |
// other is not, the program is ill-formed. | |
if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { | |
S.InvalidOperands(Loc, LHSStripped, RHSStripped); | |
return QualType(); | |
} | |
// FIXME: Consider combining this with checkEnumArithmeticConversions. | |
int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + | |
RHSStrippedType->isEnumeralType(); | |
if (NumEnumArgs == 1) { | |
bool LHSIsEnum = LHSStrippedType->isEnumeralType(); | |
QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; | |
if (OtherTy->hasFloatingRepresentation()) { | |
S.InvalidOperands(Loc, LHSStripped, RHSStripped); | |
return QualType(); | |
} | |
} | |
if (NumEnumArgs == 2) { | |
// C++2a [expr.spaceship]p5: If both operands have the same enumeration | |
// type E, the operator yields the result of converting the operands | |
// to the underlying type of E and applying <=> to the converted operands. | |
if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { | |
S.InvalidOperands(Loc, LHS, RHS); | |
return QualType(); | |
} | |
QualType IntType = | |
LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType(); | |
assert(IntType->isArithmeticType()); | |
// We can't use `CK_IntegralCast` when the underlying type is 'bool', so we | |
// promote the boolean type, and all other promotable integer types, to | |
// avoid this. | |
if (IntType->isPromotableIntegerType()) | |
IntType = S.Context.getPromotedIntegerType(IntType); | |
LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); | |
RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); | |
LHSType = RHSType = IntType; | |
} | |
// C++2a [expr.spaceship]p4: If both operands have arithmetic types, the | |
// usual arithmetic conversions are applied to the operands. | |
QualType Type = | |
S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
if (Type.isNull()) | |
return S.InvalidOperands(Loc, LHS, RHS); | |
Optional<ComparisonCategoryType> CCT = | |
getComparisonCategoryForBuiltinCmp(Type); | |
if (!CCT) | |
return S.InvalidOperands(Loc, LHS, RHS); | |
bool HasNarrowing = checkThreeWayNarrowingConversion( | |
S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc()); | |
HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType, | |
RHS.get()->getBeginLoc()); | |
if (HasNarrowing) | |
return QualType(); | |
assert(!Type.isNull() && "composite type for <=> has not been set"); | |
return S.CheckComparisonCategoryType( | |
*CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression); | |
} | |
static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, | |
ExprResult &RHS, | |
SourceLocation Loc, | |
BinaryOperatorKind Opc) { | |
if (Opc == BO_Cmp) | |
return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); | |
// C99 6.5.8p3 / C99 6.5.9p4 | |
QualType Type = | |
S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
if (Type.isNull()) | |
return S.InvalidOperands(Loc, LHS, RHS); | |
assert(Type->isArithmeticType() || Type->isEnumeralType()); | |
if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) | |
return S.InvalidOperands(Loc, LHS, RHS); | |
// Check for comparisons of floating point operands using != and ==. | |
if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc)) | |
S.CheckFloatComparison(Loc, LHS.get(), RHS.get()); | |
// The result of comparisons is 'bool' in C++, 'int' in C. | |
return S.Context.getLogicalOperationType(); | |
} | |
void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) { | |
if (!NullE.get()->getType()->isAnyPointerType()) | |
return; | |
int NullValue = PP.isMacroDefined("NULL") ? 0 : 1; | |
if (!E.get()->getType()->isAnyPointerType() && | |
E.get()->isNullPointerConstant(Context, | |
Expr::NPC_ValueDependentIsNotNull) == | |
Expr::NPCK_ZeroExpression) { | |
if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) { | |
if (CL->getValue() == 0) | |
Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) | |
<< NullValue | |
<< FixItHint::CreateReplacement(E.get()->getExprLoc(), | |
NullValue ? "NULL" : "(void *)0"); | |
} else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) { | |
TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); | |
QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType(); | |
if (T == Context.CharTy) | |
Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) | |
<< NullValue | |
<< FixItHint::CreateReplacement(E.get()->getExprLoc(), | |
NullValue ? "NULL" : "(void *)0"); | |
} | |
} | |
} | |
// C99 6.5.8, C++ [expr.rel] | |
QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
BinaryOperatorKind Opc) { | |
bool IsRelational = BinaryOperator::isRelationalOp(Opc); | |
bool IsThreeWay = Opc == BO_Cmp; | |
bool IsOrdered = IsRelational || IsThreeWay; | |
auto IsAnyPointerType = [](ExprResult E) { | |
QualType Ty = E.get()->getType(); | |
return Ty->isPointerType() || Ty->isMemberPointerType(); | |
}; | |
// C++2a [expr.spaceship]p6: If at least one of the operands is of pointer | |
// type, array-to-pointer, ..., conversions are performed on both operands to | |
// bring them to their composite type. | |
// Otherwise, all comparisons expect an rvalue, so convert to rvalue before | |
// any type-related checks. | |
if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { | |
LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
} else { | |
LHS = DefaultLvalueConversion(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
RHS = DefaultLvalueConversion(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
} | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true); | |
if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) { | |
CheckPtrComparisonWithNullChar(LHS, RHS); | |
CheckPtrComparisonWithNullChar(RHS, LHS); | |
} | |
// Handle vector comparisons separately. | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) | |
return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); | |
diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); | |
diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | |
QualType LHSType = LHS.get()->getType(); | |
QualType RHSType = RHS.get()->getType(); | |
if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && | |
(RHSType->isArithmeticType() || RHSType->isEnumeralType())) | |
return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); | |
const Expr::NullPointerConstantKind LHSNullKind = | |
LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); | |
const Expr::NullPointerConstantKind RHSNullKind = | |
RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); | |
bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; | |
bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; | |
auto computeResultTy = [&]() { | |
if (Opc != BO_Cmp) | |
return Context.getLogicalOperationType(); | |
assert(getLangOpts().CPlusPlus); | |
assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())); | |
QualType CompositeTy = LHS.get()->getType(); | |
assert(!CompositeTy->isReferenceType()); | |
Optional<ComparisonCategoryType> CCT = | |
getComparisonCategoryForBuiltinCmp(CompositeTy); | |
if (!CCT) | |
return InvalidOperands(Loc, LHS, RHS); | |
if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) { | |
// P0946R0: Comparisons between a null pointer constant and an object | |
// pointer result in std::strong_equality, which is ill-formed under | |
// P1959R0. | |
Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero) | |
<< (LHSIsNull ? LHS.get()->getSourceRange() | |
: RHS.get()->getSourceRange()); | |
return QualType(); | |
} | |
return CheckComparisonCategoryType( | |
*CCT, Loc, ComparisonCategoryUsage::OperatorInExpression); | |
}; | |
if (!IsOrdered && LHSIsNull != RHSIsNull) { | |
bool IsEquality = Opc == BO_EQ; | |
if (RHSIsNull) | |
DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, | |
RHS.get()->getSourceRange()); | |
else | |
DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, | |
LHS.get()->getSourceRange()); | |
} | |
if ((LHSType->isIntegerType() && !LHSIsNull) || | |
(RHSType->isIntegerType() && !RHSIsNull)) { | |
// Skip normal pointer conversion checks in this case; we have better | |
// diagnostics for this below. | |
} else if (getLangOpts().CPlusPlus) { | |
// Equality comparison of a function pointer to a void pointer is invalid, | |
// but we allow it as an extension. | |
// FIXME: If we really want to allow this, should it be part of composite | |
// pointer type computation so it works in conditionals too? | |
if (!IsOrdered && | |
((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || | |
(RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { | |
// This is a gcc extension compatibility comparison. | |
// In a SFINAE context, we treat this as a hard error to maintain | |
// conformance with the C++ standard. | |
diagnoseFunctionPointerToVoidComparison( | |
*this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); | |
if (isSFINAEContext()) | |
return QualType(); | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |
return computeResultTy(); | |
} | |
// C++ [expr.eq]p2: | |
// If at least one operand is a pointer [...] bring them to their | |
// composite pointer type. | |
// C++ [expr.spaceship]p6 | |
// If at least one of the operands is of pointer type, [...] bring them | |
// to their composite pointer type. | |
// C++ [expr.rel]p2: | |
// If both operands are pointers, [...] bring them to their composite | |
// pointer type. | |
// For <=>, the only valid non-pointer types are arrays and functions, and | |
// we already decayed those, so this is really the same as the relational | |
// comparison rule. | |
if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= | |
(IsOrdered ? 2 : 1) && | |
(!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || | |
RHSType->isObjCObjectPointerType()))) { | |
if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) | |
return QualType(); | |
return computeResultTy(); | |
} | |
} else if (LHSType->isPointerType() && | |
RHSType->isPointerType()) { // C99 6.5.8p2 | |
// All of the following pointer-related warnings are GCC extensions, except | |
// when handling null pointer constants. | |
QualType LCanPointeeTy = | |
LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); | |
QualType RCanPointeeTy = | |
RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); | |
// C99 6.5.9p2 and C99 6.5.8p2 | |
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), | |
RCanPointeeTy.getUnqualifiedType())) { | |
// Valid unless a relational comparison of function pointers | |
if (IsRelational && LCanPointeeTy->isFunctionType()) { | |
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) | |
<< LHSType << RHSType << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
} | |
} else if (!IsRelational && | |
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { | |
// Valid unless comparison between non-null pointer and function pointer | |
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) | |
&& !LHSIsNull && !RHSIsNull) | |
diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, | |
/*isError*/false); | |
} else { | |
// Invalid | |
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); | |
} | |
if (LCanPointeeTy != RCanPointeeTy) { | |
// Treat NULL constant as a special case in OpenCL. | |
if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { | |
const PointerType *LHSPtr = LHSType->castAs<PointerType>(); | |
if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->castAs<PointerType>())) { | |
Diag(Loc, | |
diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | |
<< LHSType << RHSType << 0 /* comparison */ | |
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |
} | |
} | |
LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); | |
LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); | |
CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion | |
: CK_BitCast; | |
if (LHSIsNull && !RHSIsNull) | |
LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); | |
else | |
RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); | |
} | |
return computeResultTy(); | |
} | |
if (getLangOpts().CPlusPlus) { | |
// C++ [expr.eq]p4: | |
// Two operands of type std::nullptr_t or one operand of type | |
// std::nullptr_t and the other a null pointer constant compare equal. | |
if (!IsOrdered && LHSIsNull && RHSIsNull) { | |
if (LHSType->isNullPtrType()) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
if (RHSType->isNullPtrType()) { | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
} | |
// Comparison of Objective-C pointers and block pointers against nullptr_t. | |
// These aren't covered by the composite pointer type rules. | |
if (!IsOrdered && RHSType->isNullPtrType() && | |
(LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
if (!IsOrdered && LHSType->isNullPtrType() && | |
(RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
if (IsRelational && | |
((LHSType->isNullPtrType() && RHSType->isPointerType()) || | |
(RHSType->isNullPtrType() && LHSType->isPointerType()))) { | |
// HACK: Relational comparison of nullptr_t against a pointer type is | |
// invalid per DR583, but we allow it within std::less<> and friends, | |
// since otherwise common uses of it break. | |
// FIXME: Consider removing this hack once LWG fixes std::less<> and | |
// friends to have std::nullptr_t overload candidates. | |
DeclContext *DC = CurContext; | |
if (isa<FunctionDecl>(DC)) | |
DC = DC->getParent(); | |
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { | |
if (CTSD->isInStdNamespace() && | |
llvm::StringSwitch<bool>(CTSD->getName()) | |
.Cases("less", "less_equal", "greater", "greater_equal", true) | |
.Default(false)) { | |
if (RHSType->isNullPtrType()) | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |
else | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
} | |
} | |
// C++ [expr.eq]p2: | |
// If at least one operand is a pointer to member, [...] bring them to | |
// their composite pointer type. | |
if (!IsOrdered && | |
(LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { | |
if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) | |
return QualType(); | |
else | |
return computeResultTy(); | |
} | |
} | |
// Handle block pointer types. | |
if (!IsOrdered && LHSType->isBlockPointerType() && | |
RHSType->isBlockPointerType()) { | |
QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType(); | |
QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType(); | |
if (!LHSIsNull && !RHSIsNull && | |
!Context.typesAreCompatible(lpointee, rpointee)) { | |
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | |
<< LHSType << RHSType << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
} | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |
return computeResultTy(); | |
} | |
// Allow block pointers to be compared with null pointer constants. | |
if (!IsOrdered | |
&& ((LHSType->isBlockPointerType() && RHSType->isPointerType()) | |
|| (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { | |
if (!LHSIsNull && !RHSIsNull) { | |
if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>() | |
->getPointeeType()->isVoidType()) | |
|| (LHSType->isPointerType() && LHSType->castAs<PointerType>() | |
->getPointeeType()->isVoidType()))) | |
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | |
<< LHSType << RHSType << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
} | |
if (LHSIsNull && !RHSIsNull) | |
LHS = ImpCastExprToType(LHS.get(), RHSType, | |
RHSType->isPointerType() ? CK_BitCast | |
: CK_AnyPointerToBlockPointerCast); | |
else | |
RHS = ImpCastExprToType(RHS.get(), LHSType, | |
LHSType->isPointerType() ? CK_BitCast | |
: CK_AnyPointerToBlockPointerCast); | |
return computeResultTy(); | |
} | |
if (LHSType->isObjCObjectPointerType() || | |
RHSType->isObjCObjectPointerType()) { | |
const PointerType *LPT = LHSType->getAs<PointerType>(); | |
const PointerType *RPT = RHSType->getAs<PointerType>(); | |
if (LPT || RPT) { | |
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; | |
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; | |
if (!LPtrToVoid && !RPtrToVoid && | |
!Context.typesAreCompatible(LHSType, RHSType)) { | |
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, | |
/*isError*/false); | |
} | |
// FIXME: If LPtrToVoid, we should presumably convert the LHS rather than | |
// the RHS, but we have test coverage for this behavior. | |
// FIXME: Consider using convertPointersToCompositeType in C++. | |
if (LHSIsNull && !RHSIsNull) { | |
Expr *E = LHS.get(); | |
if (getLangOpts().ObjCAutoRefCount) | |
CheckObjCConversion(SourceRange(), RHSType, E, | |
CCK_ImplicitConversion); | |
LHS = ImpCastExprToType(E, RHSType, | |
RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); | |
} | |
else { | |
Expr *E = RHS.get(); | |
if (getLangOpts().ObjCAutoRefCount) | |
CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, | |
/*Diagnose=*/true, | |
/*DiagnoseCFAudited=*/false, Opc); | |
RHS = ImpCastExprToType(E, LHSType, | |
LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); | |
} | |
return computeResultTy(); | |
} | |
if (LHSType->isObjCObjectPointerType() && | |
RHSType->isObjCObjectPointerType()) { | |
if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) | |
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, | |
/*isError*/false); | |
if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) | |
diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); | |
if (LHSIsNull && !RHSIsNull) | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | |
else | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |
return computeResultTy(); | |
} | |
if (!IsOrdered && LHSType->isBlockPointerType() && | |
RHSType->isBlockCompatibleObjCPointerType(Context)) { | |
LHS = ImpCastExprToType(LHS.get(), RHSType, | |
CK_BlockPointerToObjCPointerCast); | |
return computeResultTy(); | |
} else if (!IsOrdered && | |
LHSType->isBlockCompatibleObjCPointerType(Context) && | |
RHSType->isBlockPointerType()) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, | |
CK_BlockPointerToObjCPointerCast); | |
return computeResultTy(); | |
} | |
} | |
if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || | |
(LHSType->isIntegerType() && RHSType->isAnyPointerType())) { | |
unsigned DiagID = 0; | |
bool isError = false; | |
if (LangOpts.DebuggerSupport) { | |
// Under a debugger, allow the comparison of pointers to integers, | |
// since users tend to want to compare addresses. | |
} else if ((LHSIsNull && LHSType->isIntegerType()) || | |
(RHSIsNull && RHSType->isIntegerType())) { | |
if (IsOrdered) { | |
isError = getLangOpts().CPlusPlus; | |
DiagID = | |
isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero | |
: diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; | |
} | |
} else if (getLangOpts().CPlusPlus) { | |
DiagID = diag::err_typecheck_comparison_of_pointer_integer; | |
isError = true; | |
} else if (IsOrdered) | |
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; | |
else | |
DiagID = diag::ext_typecheck_comparison_of_pointer_integer; | |
if (DiagID) { | |
Diag(Loc, DiagID) | |
<< LHSType << RHSType << LHS.get()->getSourceRange() | |
<< RHS.get()->getSourceRange(); | |
if (isError) | |
return QualType(); | |
} | |
if (LHSType->isIntegerType()) | |
LHS = ImpCastExprToType(LHS.get(), RHSType, | |
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); | |
else | |
RHS = ImpCastExprToType(RHS.get(), LHSType, | |
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); | |
return computeResultTy(); | |
} | |
// Handle block pointers. | |
if (!IsOrdered && RHSIsNull | |
&& LHSType->isBlockPointerType() && RHSType->isIntegerType()) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
if (!IsOrdered && LHSIsNull | |
&& LHSType->isIntegerType() && RHSType->isBlockPointerType()) { | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { | |
if (LHSType->isClkEventT() && RHSType->isClkEventT()) { | |
return computeResultTy(); | |
} | |
if (LHSType->isQueueT() && RHSType->isQueueT()) { | |
return computeResultTy(); | |
} | |
if (LHSIsNull && RHSType->isQueueT()) { | |
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
if (LHSType->isQueueT() && RHSIsNull) { | |
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |
return computeResultTy(); | |
} | |
} | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
// Return a signed ext_vector_type that is of identical size and number of | |
// elements. For floating point vectors, return an integer type of identical | |
// size and number of elements. In the non ext_vector_type case, search from | |
// the largest type to the smallest type to avoid cases where long long == long, | |
// where long gets picked over long long. | |
QualType Sema::GetSignedVectorType(QualType V) { | |
const VectorType *VTy = V->castAs<VectorType>(); | |
unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); | |
if (isa<ExtVectorType>(VTy)) { | |
if (TypeSize == Context.getTypeSize(Context.CharTy)) | |
return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); | |
else if (TypeSize == Context.getTypeSize(Context.ShortTy)) | |
return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); | |
else if (TypeSize == Context.getTypeSize(Context.IntTy)) | |
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); | |
else if (TypeSize == Context.getTypeSize(Context.LongTy)) | |
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); | |
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && | |
"Unhandled vector element size in vector compare"); | |
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); | |
} | |
if (TypeSize == Context.getTypeSize(Context.LongLongTy)) | |
return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), | |
VectorType::GenericVector); | |
else if (TypeSize == Context.getTypeSize(Context.LongTy)) | |
return Context.getVectorType(Context.LongTy, VTy->getNumElements(), | |
VectorType::GenericVector); | |
else if (TypeSize == Context.getTypeSize(Context.IntTy)) | |
return Context.getVectorType(Context.IntTy, VTy->getNumElements(), | |
VectorType::GenericVector); | |
else if (TypeSize == Context.getTypeSize(Context.ShortTy)) | |
return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), | |
VectorType::GenericVector); | |
assert(TypeSize == Context.getTypeSize(Context.CharTy) && | |
"Unhandled vector element size in vector compare"); | |
return Context.getVectorType(Context.CharTy, VTy->getNumElements(), | |
VectorType::GenericVector); | |
} | |
/// CheckVectorCompareOperands - vector comparisons are a clang extension that | |
/// operates on extended vector types. Instead of producing an IntTy result, | |
/// like a scalar comparison, a vector comparison produces a vector of integer | |
/// types. | |
QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
BinaryOperatorKind Opc) { | |
if (Opc == BO_Cmp) { | |
Diag(Loc, diag::err_three_way_vector_comparison); | |
return QualType(); | |
} | |
// Check to make sure we're operating on vectors of the same type and width, | |
// Allowing one side to be a scalar of element type. | |
QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false, | |
/*AllowBothBool*/true, | |
/*AllowBoolConversions*/getLangOpts().ZVector); | |
if (vType.isNull()) | |
return vType; | |
QualType LHSType = LHS.get()->getType(); | |
// If AltiVec, the comparison results in a numeric type, i.e. | |
// bool for C++, int for C | |
if (getLangOpts().AltiVec && | |
vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector) | |
return Context.getLogicalOperationType(); | |
// For non-floating point types, check for self-comparisons of the form | |
// x == x, x != x, x < x, etc. These always evaluate to a constant, and | |
// often indicate logic errors in the program. | |
diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | |
// Check for comparisons of floating point operands using != and ==. | |
if (BinaryOperator::isEqualityOp(Opc) && | |
LHSType->hasFloatingRepresentation()) { | |
assert(RHS.get()->getType()->hasFloatingRepresentation()); | |
CheckFloatComparison(Loc, LHS.get(), RHS.get()); | |
} | |
// Return a signed type for the vector. | |
return GetSignedVectorType(vType); | |
} | |
static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS, | |
const ExprResult &XorRHS, | |
const SourceLocation Loc) { | |
// Do not diagnose macros. | |
if (Loc.isMacroID()) | |
return; | |
bool Negative = false; | |
bool ExplicitPlus = false; | |
const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get()); | |
const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get()); | |
if (!LHSInt) | |
return; | |
if (!RHSInt) { | |
// Check negative literals. | |
if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) { | |
UnaryOperatorKind Opc = UO->getOpcode(); | |
if (Opc != UO_Minus && Opc != UO_Plus) | |
return; | |
RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr()); | |
if (!RHSInt) | |
return; | |
Negative = (Opc == UO_Minus); | |
ExplicitPlus = !Negative; | |
} else { | |
return; | |
} | |
} | |
const llvm::APInt &LeftSideValue = LHSInt->getValue(); | |
llvm::APInt RightSideValue = RHSInt->getValue(); | |
if (LeftSideValue != 2 && LeftSideValue != 10) | |
return; | |
if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth()) | |
return; | |
CharSourceRange ExprRange = CharSourceRange::getCharRange( | |
LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation())); | |
llvm::StringRef ExprStr = | |
Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts()); | |
CharSourceRange XorRange = | |
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | |
llvm::StringRef XorStr = | |
Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts()); | |
// Do not diagnose if xor keyword/macro is used. | |
if (XorStr == "xor") | |
return; | |
std::string LHSStr = std::string(Lexer::getSourceText( | |
CharSourceRange::getTokenRange(LHSInt->getSourceRange()), | |
S.getSourceManager(), S.getLangOpts())); | |
std::string RHSStr = std::string(Lexer::getSourceText( | |
CharSourceRange::getTokenRange(RHSInt->getSourceRange()), | |
S.getSourceManager(), S.getLangOpts())); | |
if (Negative) { | |
RightSideValue = -RightSideValue; | |
RHSStr = "-" + RHSStr; | |
} else if (ExplicitPlus) { | |
RHSStr = "+" + RHSStr; | |
} | |
StringRef LHSStrRef = LHSStr; | |
StringRef RHSStrRef = RHSStr; | |
// Do not diagnose literals with digit separators, binary, hexadecimal, octal | |
// literals. | |
if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") || | |
RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") || | |
LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") || | |
RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") || | |
(LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) || | |
(RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) || | |
LHSStrRef.find('\'') != StringRef::npos || | |
RHSStrRef.find('\'') != StringRef::npos) | |
return; | |
bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor"); | |
const llvm::APInt XorValue = LeftSideValue ^ RightSideValue; | |
int64_t RightSideIntValue = RightSideValue.getSExtValue(); | |
if (LeftSideValue == 2 && RightSideIntValue >= 0) { | |
std::string SuggestedExpr = "1 << " + RHSStr; | |
bool Overflow = false; | |
llvm::APInt One = (LeftSideValue - 1); | |
llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow); | |
if (Overflow) { | |
if (RightSideIntValue < 64) | |
S.Diag(Loc, diag::warn_xor_used_as_pow_base) | |
<< ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr) | |
<< FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr); | |
else if (RightSideIntValue == 64) | |
S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true); | |
else | |
return; | |
} else { | |
S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra) | |
<< ExprStr << XorValue.toString(10, true) << SuggestedExpr | |
<< PowValue.toString(10, true) | |
<< FixItHint::CreateReplacement( | |
ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr); | |
} | |
S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor; | |
} else if (LeftSideValue == 10) { | |
std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue); | |
S.Diag(Loc, diag::warn_xor_used_as_pow_base) | |
<< ExprStr << XorValue.toString(10, true) << SuggestedValue | |
<< FixItHint::CreateReplacement(ExprRange, SuggestedValue); | |
S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor; | |
} | |
} | |
QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc) { | |
// Ensure that either both operands are of the same vector type, or | |
// one operand is of a vector type and the other is of its element type. | |
QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, | |
/*AllowBothBool*/true, | |
/*AllowBoolConversions*/false); | |
if (vType.isNull()) | |
return InvalidOperands(Loc, LHS, RHS); | |
if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 && | |
!getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation()) | |
return InvalidOperands(Loc, LHS, RHS); | |
// FIXME: The check for C++ here is for GCC compatibility. GCC rejects the | |
// usage of the logical operators && and || with vectors in C. This | |
// check could be notionally dropped. | |
if (!getLangOpts().CPlusPlus && | |
!(isa<ExtVectorType>(vType->getAs<VectorType>()))) | |
return InvalidLogicalVectorOperands(Loc, LHS, RHS); | |
return GetSignedVectorType(LHS.get()->getType()); | |
} | |
inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
BinaryOperatorKind Opc) { | |
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |
bool IsCompAssign = | |
Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; | |
if (LHS.get()->getType()->isVectorType() || | |
RHS.get()->getType()->isVectorType()) { | |
if (LHS.get()->getType()->hasIntegerRepresentation() && | |
RHS.get()->getType()->hasIntegerRepresentation()) | |
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | |
/*AllowBothBool*/true, | |
/*AllowBoolConversions*/getLangOpts().ZVector); | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
if (Opc == BO_And) | |
diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); | |
if (LHS.get()->getType()->hasFloatingRepresentation() || | |
RHS.get()->getType()->hasFloatingRepresentation()) | |
return InvalidOperands(Loc, LHS, RHS); | |
ExprResult LHSResult = LHS, RHSResult = RHS; | |
QualType compType = UsualArithmeticConversions( | |
LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp); | |
if (LHSResult.isInvalid() || RHSResult.isInvalid()) | |
return QualType(); | |
LHS = LHSResult.get(); | |
RHS = RHSResult.get(); | |
if (Opc == BO_Xor) | |
diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc); | |
if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) | |
return compType; | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
// C99 6.5.[13,14] | |
inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc, | |
BinaryOperatorKind Opc) { | |
// Check vector operands differently. | |
if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) | |
return CheckVectorLogicalOperands(LHS, RHS, Loc); | |
bool EnumConstantInBoolContext = false; | |
for (const ExprResult &HS : {LHS, RHS}) { | |
if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) { | |
const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl()); | |
if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1) | |
EnumConstantInBoolContext = true; | |
} | |
} | |
if (EnumConstantInBoolContext) | |
Diag(Loc, diag::warn_enum_constant_in_bool_context); | |
// Diagnose cases where the user write a logical and/or but probably meant a | |
// bitwise one. We do this when the LHS is a non-bool integer and the RHS | |
// is a constant. | |
if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() && | |
!LHS.get()->getType()->isBooleanType() && | |
RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && | |
// Don't warn in macros or template instantiations. | |
!Loc.isMacroID() && !inTemplateInstantiation()) { | |
// If the RHS can be constant folded, and if it constant folds to something | |
// that isn't 0 or 1 (which indicate a potential logical operation that | |
// happened to fold to true/false) then warn. | |
// Parens on the RHS are ignored. | |
Expr::EvalResult EVResult; | |
if (RHS.get()->EvaluateAsInt(EVResult, Context)) { | |
llvm::APSInt Result = EVResult.Val.getInt(); | |
if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() && | |
!RHS.get()->getExprLoc().isMacroID()) || | |
(Result != 0 && Result != 1)) { | |
Diag(Loc, diag::warn_logical_instead_of_bitwise) | |
<< RHS.get()->getSourceRange() | |
<< (Opc == BO_LAnd ? "&&" : "||"); | |
// Suggest replacing the logical operator with the bitwise version | |
Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) | |
<< (Opc == BO_LAnd ? "&" : "|") | |
<< FixItHint::CreateReplacement(SourceRange( | |
Loc, getLocForEndOfToken(Loc)), | |
Opc == BO_LAnd ? "&" : "|"); | |
if (Opc == BO_LAnd) | |
// Suggest replacing "Foo() && kNonZero" with "Foo()" | |
Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) | |
<< FixItHint::CreateRemoval( | |
SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()), | |
RHS.get()->getEndLoc())); | |
} | |
} | |
} | |
if (!Context.getLangOpts().CPlusPlus) { | |
// OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do | |
// not operate on the built-in scalar and vector float types. | |
if (Context.getLangOpts().OpenCL && | |
Context.getLangOpts().OpenCLVersion < 120) { | |
if (LHS.get()->getType()->isFloatingType() || | |
RHS.get()->getType()->isFloatingType()) | |
return InvalidOperands(Loc, LHS, RHS); | |
} | |
LHS = UsualUnaryConversions(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
RHS = UsualUnaryConversions(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
if (!LHS.get()->getType()->isScalarType() || | |
!RHS.get()->getType()->isScalarType()) | |
return InvalidOperands(Loc, LHS, RHS); | |
return Context.IntTy; | |
} | |
// The following is safe because we only use this method for | |
// non-overloadable operands. | |
// C++ [expr.log.and]p1 | |
// C++ [expr.log.or]p1 | |
// The operands are both contextually converted to type bool. | |
ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); | |
if (LHSRes.isInvalid()) | |
return InvalidOperands(Loc, LHS, RHS); | |
LHS = LHSRes; | |
ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); | |
if (RHSRes.isInvalid()) | |
return InvalidOperands(Loc, LHS, RHS); | |
RHS = RHSRes; | |
// C++ [expr.log.and]p2 | |
// C++ [expr.log.or]p2 | |
// The result is a bool. | |
return Context.BoolTy; | |
} | |
static bool IsReadonlyMessage(Expr *E, Sema &S) { | |
const MemberExpr *ME = dyn_cast<MemberExpr>(E); | |
if (!ME) return false; | |
if (!isa<FieldDecl>(ME->getMemberDecl())) return false; | |
ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>( | |
ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); | |
if (!Base) return false; | |
return Base->getMethodDecl() != nullptr; | |
} | |
/// Is the given expression (which must be 'const') a reference to a | |
/// variable which was originally non-const, but which has become | |
/// 'const' due to being captured within a block? | |
enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; | |
static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { | |
assert(E->isLValue() && E->getType().isConstQualified()); | |
E = E->IgnoreParens(); | |
// Must be a reference to a declaration from an enclosing scope. | |
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | |
if (!DRE) return NCCK_None; | |
if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; | |
// The declaration must be a variable which is not declared 'const'. | |
VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); | |
if (!var) return NCCK_None; | |
if (var->getType().isConstQualified()) return NCCK_None; | |
assert(var->hasLocalStorage() && "capture added 'const' to non-local?"); | |
// Decide whether the first capture was for a block or a lambda. | |
DeclContext *DC = S.CurContext, *Prev = nullptr; | |
// Decide whether the first capture was for a block or a lambda. | |
while (DC) { | |
// For init-capture, it is possible that the variable belongs to the | |
// template pattern of the current context. | |
if (auto *FD = dyn_cast<FunctionDecl>(DC)) | |
if (var->isInitCapture() && | |
FD->getTemplateInstantiationPattern() == var->getDeclContext()) | |
break; | |
if (DC == var->getDeclContext()) | |
break; | |
Prev = DC; | |
DC = DC->getParent(); | |
} | |
// Unless we have an init-capture, we've gone one step too far. | |
if (!var->isInitCapture()) | |
DC = Prev; | |
return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda); | |
} | |
static bool IsTypeModifiable(QualType Ty, bool IsDereference) { | |
Ty = Ty.getNonReferenceType(); | |
if (IsDereference && Ty->isPointerType()) | |
Ty = Ty->getPointeeType(); | |
return !Ty.isConstQualified(); | |
} | |
// Update err_typecheck_assign_const and note_typecheck_assign_const | |
// when this enum is changed. | |
enum { | |
ConstFunction, | |
ConstVariable, | |
ConstMember, | |
ConstMethod, | |
NestedConstMember, | |
ConstUnknown, // Keep as last element | |
}; | |
/// Emit the "read-only variable not assignable" error and print notes to give | |
/// more information about why the variable is not assignable, such as pointing | |
/// to the declaration of a const variable, showing that a method is const, or | |
/// that the function is returning a const reference. | |
static void DiagnoseConstAssignment(Sema &S, const Expr *E, | |
SourceLocation Loc) { | |
SourceRange ExprRange = E->getSourceRange(); | |
// Only emit one error on the first const found. All other consts will emit | |
// a note to the error. | |
bool DiagnosticEmitted = false; | |
// Track if the current expression is the result of a dereference, and if the | |
// next checked expression is the result of a dereference. | |
bool IsDereference = false; | |
bool NextIsDereference = false; | |
// Loop to process MemberExpr chains. | |
while (true) { | |
IsDereference = NextIsDereference; | |
E = E->IgnoreImplicit()->IgnoreParenImpCasts(); | |
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | |
NextIsDereference = ME->isArrow(); | |
const ValueDecl *VD = ME->getMemberDecl(); | |
if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { | |
// Mutable fields can be modified even if the class is const. | |
if (Field->isMutable()) { | |
assert(DiagnosticEmitted && "Expected diagnostic not emitted."); | |
break; | |
} | |
if (!IsTypeModifiable(Field->getType(), IsDereference)) { | |
if (!DiagnosticEmitted) { | |
S.Diag(Loc, diag::err_typecheck_assign_const) | |
<< ExprRange << ConstMember << false /*static*/ << Field | |
<< Field->getType(); | |
DiagnosticEmitted = true; | |
} | |
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | |
<< ConstMember << false /*static*/ << Field << Field->getType() | |
<< Field->getSourceRange(); | |
} | |
E = ME->getBase(); | |
continue; | |
} else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) { | |
if (VDecl->getType().isConstQualified()) { | |
if (!DiagnosticEmitted) { | |
S.Diag(Loc, diag::err_typecheck_assign_const) | |
<< ExprRange << ConstMember << true /*static*/ << VDecl | |
<< VDecl->getType(); | |
DiagnosticEmitted = true; | |
} | |
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | |
<< ConstMember << true /*static*/ << VDecl << VDecl->getType() | |
<< VDecl->getSourceRange(); | |
} | |
// Static fields do not inherit constness from parents. | |
break; | |
} | |
break; // End MemberExpr | |
} else if (const ArraySubscriptExpr *ASE = | |
dyn_cast<ArraySubscriptExpr>(E)) { | |
E = ASE->getBase()->IgnoreParenImpCasts(); | |
continue; | |
} else if (const ExtVectorElementExpr *EVE = | |
dyn_cast<ExtVectorElementExpr>(E)) { | |
E = EVE->getBase()->IgnoreParenImpCasts(); | |
continue; | |
} | |
break; | |
} | |
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | |
// Function calls | |
const FunctionDecl *FD = CE->getDirectCallee(); | |
if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { | |
if (!DiagnosticEmitted) { | |
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange | |
<< ConstFunction << FD; | |
DiagnosticEmitted = true; | |
} | |
S.Diag(FD->getReturnTypeSourceRange().getBegin(), | |
diag::note_typecheck_assign_const) | |
<< ConstFunction << FD << FD->getReturnType() | |
<< FD->getReturnTypeSourceRange(); | |
} | |
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | |
// Point to variable declaration. | |
if (const ValueDecl *VD = DRE->getDecl()) { | |
if (!IsTypeModifiable(VD->getType(), IsDereference)) { | |
if (!DiagnosticEmitted) { | |
S.Diag(Loc, diag::err_typecheck_assign_const) | |
<< ExprRange << ConstVariable << VD << VD->getType(); | |
DiagnosticEmitted = true; | |
} | |
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | |
<< ConstVariable << VD << VD->getType() << VD->getSourceRange(); | |
} | |
} | |
} else if (isa<CXXThisExpr>(E)) { | |
if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { | |
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { | |
if (MD->isConst()) { | |
if (!DiagnosticEmitted) { | |
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange | |
<< ConstMethod << MD; | |
DiagnosticEmitted = true; | |
} | |
S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) | |
<< ConstMethod << MD << MD->getSourceRange(); | |
} | |
} | |
} | |
} | |
if (DiagnosticEmitted) | |
return; | |
// Can't determine a more specific message, so display the generic error. | |
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; | |
} | |
enum OriginalExprKind { | |
OEK_Variable, | |
OEK_Member, | |
OEK_LValue | |
}; | |
static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, | |
const RecordType *Ty, | |
SourceLocation Loc, SourceRange Range, | |
OriginalExprKind OEK, | |
bool &DiagnosticEmitted) { | |
std::vector<const RecordType *> RecordTypeList; | |
RecordTypeList.push_back(Ty); | |
unsigned NextToCheckIndex = 0; | |
// We walk the record hierarchy breadth-first to ensure that we print | |
// diagnostics in field nesting order. | |
while (RecordTypeList.size() > NextToCheckIndex) { | |
bool IsNested = NextToCheckIndex > 0; | |
for (const FieldDecl *Field : | |
RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { | |
// First, check every field for constness. | |
QualType FieldTy = Field->getType(); | |
if (FieldTy.isConstQualified()) { | |
if (!DiagnosticEmitted) { | |
S.Diag(Loc, diag::err_typecheck_assign_const) | |
<< Range << NestedConstMember << OEK << VD | |
<< IsNested << Field; | |
DiagnosticEmitted = true; | |
} | |
S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) | |
<< NestedConstMember << IsNested << Field | |
<< FieldTy << Field->getSourceRange(); | |
} | |
// Then we append it to the list to check next in order. | |
FieldTy = FieldTy.getCanonicalType(); | |
if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { | |
if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end()) | |
RecordTypeList.push_back(FieldRecTy); | |
} | |
} | |
++NextToCheckIndex; | |
} | |
} | |
/// Emit an error for the case where a record we are trying to assign to has a | |
/// const-qualified field somewhere in its hierarchy. | |
static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, | |
SourceLocation Loc) { | |
QualType Ty = E->getType(); | |
assert(Ty->isRecordType() && "lvalue was not record?"); | |
SourceRange Range = E->getSourceRange(); | |
const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>(); | |
bool DiagEmitted = false; | |
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) | |
DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, | |
Range, OEK_Member, DiagEmitted); | |
else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | |
DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, | |
Range, OEK_Variable, DiagEmitted); | |
else | |
DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, | |
Range, OEK_LValue, DiagEmitted); | |
if (!DiagEmitted) | |
DiagnoseConstAssignment(S, E, Loc); | |
} | |
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, | |
/// emit an error and return true. If so, return false. | |
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { | |
assert(!E->hasPlaceholderType(BuiltinType::PseudoObject)); | |
S.CheckShadowingDeclModification(E, Loc); | |
SourceLocation OrigLoc = Loc; | |
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, | |
&Loc); | |
if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) | |
IsLV = Expr::MLV_InvalidMessageExpression; | |
if (IsLV == Expr::MLV_Valid) | |
return false; | |
unsigned DiagID = 0; | |
bool NeedType = false; | |
switch (IsLV) { // C99 6.5.16p2 | |
case Expr::MLV_ConstQualified: | |
// Use a specialized diagnostic when we're assigning to an object | |
// from an enclosing function or block. | |
if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { | |
if (NCCK == NCCK_Block) | |
DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; | |
else | |
DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; | |
break; | |
} | |
// In ARC, use some specialized diagnostics for occasions where we | |
// infer 'const'. These are always pseudo-strong variables. | |
if (S.getLangOpts().ObjCAutoRefCount) { | |
DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); | |
if (declRef && isa<VarDecl>(declRef->getDecl())) { | |
VarDecl *var = cast<VarDecl>(declRef->getDecl()); | |
// Use the normal diagnostic if it's pseudo-__strong but the | |
// user actually wrote 'const'. | |
if (var->isARCPseudoStrong() && | |
(!var->getTypeSourceInfo() || | |
!var->getTypeSourceInfo()->getType().isConstQualified())) { | |
// There are three pseudo-strong cases: | |
// - self | |
ObjCMethodDecl *method = S.getCurMethodDecl(); | |
if (method && var == method->getSelfDecl()) { | |
DiagID = method->isClassMethod() | |
? diag::err_typecheck_arc_assign_self_class_method | |
: diag::err_typecheck_arc_assign_self; | |
// - Objective-C externally_retained attribute. | |
} else if (var->hasAttr<ObjCExternallyRetainedAttr>() || | |
isa<ParmVarDecl>(var)) { | |
DiagID = diag::err_typecheck_arc_assign_externally_retained; | |
// - fast enumeration variables | |
} else { | |
DiagID = diag::err_typecheck_arr_assign_enumeration; | |
} | |
SourceRange Assign; | |
if (Loc != OrigLoc) | |
Assign = SourceRange(OrigLoc, OrigLoc); | |
S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; | |
// We need to preserve the AST regardless, so migration tool | |
// can do its job. | |
return false; | |
} | |
} | |
} | |
// If none of the special cases above are triggered, then this is a | |
// simple const assignment. | |
if (DiagID == 0) { | |
DiagnoseConstAssignment(S, E, Loc); | |
return true; | |
} | |
break; | |
case Expr::MLV_ConstAddrSpace: | |
DiagnoseConstAssignment(S, E, Loc); | |
return true; | |
case Expr::MLV_ConstQualifiedField: | |
DiagnoseRecursiveConstFields(S, E, Loc); | |
return true; | |
case Expr::MLV_ArrayType: | |
case Expr::MLV_ArrayTemporary: | |
DiagID = diag::err_typecheck_array_not_modifiable_lvalue; | |
NeedType = true; | |
break; | |
case Expr::MLV_NotObjectType: | |
DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; | |
NeedType = true; | |
break; | |
case Expr::MLV_LValueCast: | |
DiagID = diag::err_typecheck_lvalue_casts_not_supported; | |
break; | |
case Expr::MLV_Valid: | |
llvm_unreachable("did not take early return for MLV_Valid"); | |
case Expr::MLV_InvalidExpression: | |
case Expr::MLV_MemberFunction: | |
case Expr::MLV_ClassTemporary: | |
DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; | |
break; | |
case Expr::MLV_IncompleteType: | |
case Expr::MLV_IncompleteVoidType: | |
return S.RequireCompleteType(Loc, E->getType(), | |
diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); | |
case Expr::MLV_DuplicateVectorComponents: | |
DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; | |
break; | |
case Expr::MLV_NoSetterProperty: | |
llvm_unreachable("readonly properties should be processed differently"); | |
case Expr::MLV_InvalidMessageExpression: | |
DiagID = diag::err_readonly_message_assignment; | |
break; | |
case Expr::MLV_SubObjCPropertySetting: | |
DiagID = diag::err_no_subobject_property_setting; | |
break; | |
} | |
SourceRange Assign; | |
if (Loc != OrigLoc) | |
Assign = SourceRange(OrigLoc, OrigLoc); | |
if (NeedType) | |
S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; | |
else | |
S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; | |
return true; | |
} | |
static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, | |
SourceLocation Loc, | |
Sema &Sema) { | |
if (Sema.inTemplateInstantiation()) | |
return; | |
if (Sema.isUnevaluatedContext()) | |
return; | |
if (Loc.isInvalid() || Loc.isMacroID()) | |
return; | |
if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) | |
return; | |
// C / C++ fields | |
MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr); | |
MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr); | |
if (ML && MR) { | |
if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))) | |
return; | |
const ValueDecl *LHSDecl = | |
cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl()); | |
const ValueDecl *RHSDecl = | |
cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl()); | |
if (LHSDecl != RHSDecl) | |
return; | |
if (LHSDecl->getType().isVolatileQualified()) | |
return; | |
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) | |
if (RefTy->getPointeeType().isVolatileQualified()) | |
return; | |
Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; | |
} | |
// Objective-C instance variables | |
ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr); | |
ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr); | |
if (OL && OR && OL->getDecl() == OR->getDecl()) { | |
DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts()); | |
DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts()); | |
if (RL && RR && RL->getDecl() == RR->getDecl()) | |
Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; | |
} | |
} | |
// C99 6.5.16.1 | |
QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, | |
SourceLocation Loc, | |
QualType CompoundType) { | |
assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)); | |
// Verify that LHS is a modifiable lvalue, and emit error if not. | |
if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) | |
return QualType(); | |
QualType LHSType = LHSExpr->getType(); | |
QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : | |
CompoundType; | |
// OpenCL v1.2 s6.1.1.1 p2: | |
// The half data type can only be used to declare a pointer to a buffer that | |
// contains half values | |
if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") && | |
LHSType->isHalfType()) { | |
Diag(Loc, diag::err_opencl_half_load_store) << 1 | |
<< LHSType.getUnqualifiedType(); | |
return QualType(); | |
} | |
AssignConvertType ConvTy; | |
if (CompoundType.isNull()) { | |
Expr *RHSCheck = RHS.get(); | |
CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); | |
QualType LHSTy(LHSType); | |
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); | |
if (RHS.isInvalid()) | |
return QualType(); | |
// Special case of NSObject attributes on c-style pointer types. | |
if (ConvTy == IncompatiblePointer && | |
((Context.isObjCNSObjectType(LHSType) && | |
RHSType->isObjCObjectPointerType()) || | |
(Context.isObjCNSObjectType(RHSType) && | |
LHSType->isObjCObjectPointerType()))) | |
ConvTy = Compatible; | |
if (ConvTy == Compatible && | |
LHSType->isObjCObjectType()) | |
Diag(Loc, diag::err_objc_object_assignment) | |
<< LHSType; | |
// If the RHS is a unary plus or minus, check to see if they = and + are | |
// right next to each other. If so, the user may have typo'd "x =+ 4" | |
// instead of "x += 4". | |
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) | |
RHSCheck = ICE->getSubExpr(); | |
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { | |
if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && | |
Loc.isFileID() && UO->getOperatorLoc().isFileID() && | |
// Only if the two operators are exactly adjacent. | |
Loc.getLocWithOffset(1) == UO->getOperatorLoc() && | |
// And there is a space or other character before the subexpr of the | |
// unary +/-. We don't want to warn on "x=-1". | |
Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() && | |
UO->getSubExpr()->getBeginLoc().isFileID()) { | |
Diag(Loc, diag::warn_not_compound_assign) | |
<< (UO->getOpcode() == UO_Plus ? "+" : "-") | |
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); | |
} | |
} | |
if (ConvTy == Compatible) { | |
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) { | |
// Warn about retain cycles where a block captures the LHS, but | |
// not if the LHS is a simple variable into which the block is | |
// being stored...unless that variable can be captured by reference! | |
const Expr *InnerLHS = LHSExpr->IgnoreParenCasts(); | |
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS); | |
if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>()) | |
checkRetainCycles(LHSExpr, RHS.get()); | |
} | |
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong || | |
LHSType.isNonWeakInMRRWithObjCWeak(Context)) { | |
// It is safe to assign a weak reference into a strong variable. | |
// Although this code can still have problems: | |
// id x = self.weakProp; | |
// id y = self.weakProp; | |
// we do not warn to warn spuriously when 'x' and 'y' are on separate | |
// paths through the function. This should be revisited if | |
// -Wrepeated-use-of-weak is made flow-sensitive. | |
// For ObjCWeak only, we do not warn if the assign is to a non-weak | |
// variable, which will be valid for the current autorelease scope. | |
if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, | |
RHS.get()->getBeginLoc())) | |
getCurFunction()->markSafeWeakUse(RHS.get()); | |
} else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) { | |
checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); | |
} | |
} | |
} else { | |
// Compound assignment "x += y" | |
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); | |
} | |
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, | |
RHS.get(), AA_Assigning)) | |
return QualType(); | |
CheckForNullPointerDereference(*this, LHSExpr); | |
if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) { | |
if (CompoundType.isNull()) { | |
// C++2a [expr.ass]p5: | |
// A simple-assignment whose left operand is of a volatile-qualified | |
// type is deprecated unless the assignment is either a discarded-value | |
// expression or an unevaluated operand | |
ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr); | |
} else { | |
// C++2a [expr.ass]p6: | |
// [Compound-assignment] expressions are deprecated if E1 has | |
// volatile-qualified type | |
Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType; | |
} | |
} | |
// C99 6.5.16p3: The type of an assignment expression is the type of the | |
// left operand unless the left operand has qualified type, in which case | |
// it is the unqualified version of the type of the left operand. | |
// C99 6.5.16.1p2: In simple assignment, the value of the right operand | |
// is converted to the type of the assignment expression (above). | |
// C++ 5.17p1: the type of the assignment expression is that of its left | |
// operand. | |
return (getLangOpts().CPlusPlus | |
? LHSType : LHSType.getUnqualifiedType()); | |
} | |
// Only ignore explicit casts to void. | |
static bool IgnoreCommaOperand(const Expr *E) { | |
E = E->IgnoreParens(); | |
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { | |
if (CE->getCastKind() == CK_ToVoid) { | |
return true; | |
} | |
// static_cast<void> on a dependent type will not show up as CK_ToVoid. | |
if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() && | |
CE->getSubExpr()->getType()->isDependentType()) { | |
return true; | |
} | |
} | |
return false; | |
} | |
// Look for instances where it is likely the comma operator is confused with | |
// another operator. There is a whitelist of acceptable expressions for the | |
// left hand side of the comma operator, otherwise emit a warning. | |
void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) { | |
// No warnings in macros | |
if (Loc.isMacroID()) | |
return; | |
// Don't warn in template instantiations. | |
if (inTemplateInstantiation()) | |
return; | |
// Scope isn't fine-grained enough to whitelist the specific cases, so | |
// instead, skip more than needed, then call back into here with the | |
// CommaVisitor in SemaStmt.cpp. | |
// The whitelisted locations are the initialization and increment portions | |
// of a for loop. The additional checks are on the condition of | |
// if statements, do/while loops, and for loops. | |
// Differences in scope flags for C89 mode requires the extra logic. | |
const unsigned ForIncrementFlags = | |
getLangOpts().C99 || getLangOpts().CPlusPlus | |
? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope | |
: Scope::ContinueScope | Scope::BreakScope; | |
const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope; | |
const unsigned ScopeFlags = getCurScope()->getFlags(); | |
if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags || | |
(ScopeFlags & ForInitFlags) == ForInitFlags) | |
return; | |
// If there are multiple comma operators used together, get the RHS of the | |
// of the comma operator as the LHS. | |
while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) { | |
if (BO->getOpcode() != BO_Comma) | |
break; | |
LHS = BO->getRHS(); | |
} | |
// Only allow some expressions on LHS to not warn. | |
if (IgnoreCommaOperand(LHS)) | |
return; | |
Diag(Loc, diag::warn_comma_operator); | |
Diag(LHS->getBeginLoc(), diag::note_cast_to_void) | |
<< LHS->getSourceRange() | |
<< FixItHint::CreateInsertion(LHS->getBeginLoc(), | |
LangOpts.CPlusPlus ? "static_cast<void>(" | |
: "(void)(") | |
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()), | |
")"); | |
} | |
// C99 6.5.17 | |
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, | |
SourceLocation Loc) { | |
LHS = S.CheckPlaceholderExpr(LHS.get()); | |
RHS = S.CheckPlaceholderExpr(RHS.get()); | |
if (LHS.isInvalid() || RHS.isInvalid()) | |
return QualType(); | |
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its | |
// operands, but not unary promotions. | |
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1). | |
// So we treat the LHS as a ignored value, and in C++ we allow the | |
// containing site to determine what should be done with the RHS. | |
LHS = S.IgnoredValueConversions(LHS.get()); | |
if (LHS.isInvalid()) | |
return QualType(); | |
S.DiagnoseUnusedExprResult(LHS.get()); | |
if (!S.getLangOpts().CPlusPlus) { | |
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); | |
if (RHS.isInvalid()) | |
return QualType(); | |
if (!RHS.get()->getType()->isVoidType()) | |
S.RequireCompleteType(Loc, RHS.get()->getType(), | |
diag::err_incomplete_type); | |
} | |
if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc)) | |
S.DiagnoseCommaOperator(LHS.get(), Loc); | |
return RHS.get()->getType(); | |
} | |
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine | |
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. | |
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, | |
ExprValueKind &VK, | |
ExprObjectKind &OK, | |
SourceLocation OpLoc, | |
bool IsInc, bool IsPrefix) { | |
if (Op->isTypeDependent()) | |
return S.Context.DependentTy; | |
QualType ResType = Op->getType(); | |
// Atomic types can be used for increment / decrement where the non-atomic | |
// versions can, so ignore the _Atomic() specifier for the purpose of | |
// checking. | |
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | |
ResType = ResAtomicType->getValueType(); | |
assert(!ResType.isNull() && "no type for increment/decrement expression"); | |
if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) { | |
// Decrement of bool is not allowed. | |
if (!IsInc) { | |
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); | |
return QualType(); | |
} | |
// Increment of bool sets it to true, but is deprecated. | |
S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool | |
: diag::warn_increment_bool) | |
<< Op->getSourceRange(); | |
} else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) { | |
// Error on enum increments and decrements in C++ mode | |
S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType; | |
return QualType(); | |
} else if (ResType->isRealType()) { | |
// OK! | |
} else if (ResType->isPointerType()) { | |
// C99 6.5.2.4p2, 6.5.6p2 | |
if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) | |
return QualType(); | |
} else if (ResType->isObjCObjectPointerType()) { | |
// On modern runtimes, ObjC pointer arithmetic is forbidden. | |
// Otherwise, we just need a complete type. | |
if (checkArithmeticIncompletePointerType(S, OpLoc, Op) || | |
checkArithmeticOnObjCPointer(S, OpLoc, Op)) | |
return QualType(); | |
} else if (ResType->isAnyComplexType()) { | |
// C99 does not support ++/-- on complex types, we allow as an extension. | |
S.Diag(OpLoc, diag::ext_integer_increment_complex) | |
<< ResType << Op->getSourceRange(); | |
} else if (ResType->isPlaceholderType()) { | |
ExprResult PR = S.CheckPlaceholderExpr(Op); | |
if (PR.isInvalid()) return QualType(); | |
return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc, | |
IsInc, IsPrefix); | |
} else if (S.getLangOpts().AltiVec && ResType->isVectorType()) { | |
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) | |
} else if (S.getLangOpts().ZVector && ResType->isVectorType() && | |
(ResType->castAs<VectorType>()->getVectorKind() != | |
VectorType::AltiVecBool)) { | |
// The z vector extensions allow ++ and -- for non-bool vectors. | |
} else if(S.getLangOpts().OpenCL && ResType->isVectorType() && | |
ResType->castAs<VectorType>()->getElementType()->isIntegerType()) { | |
// OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types. | |
} else { | |
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) | |
<< ResType << int(IsInc) << Op->getSourceRange(); | |
return QualType(); | |
} | |
// At this point, we know we have a real, complex or pointer type. | |
// Now make sure the operand is a modifiable lvalue. | |
if (CheckForModifiableLvalue(Op, OpLoc, S)) | |
return QualType(); | |
if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) { | |
// C++2a [expr.pre.inc]p1, [expr.post.inc]p1: | |
// An operand with volatile-qualified type is deprecated | |
S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile) | |
<< IsInc << ResType; | |
} | |
// In C++, a prefix increment is the same type as the operand. Otherwise | |
// (in C or with postfix), the increment is the unqualified type of the | |
// operand. | |
if (IsPrefix && S.getLangOpts().CPlusPlus) { | |
VK = VK_LValue; | |
OK = Op->getObjectKind(); | |
return ResType; | |
} else { | |
VK = VK_RValue; | |
return ResType.getUnqualifiedType(); | |
} | |
} | |
/// getPrimaryDecl - Helper function for CheckAddressOfOperand(). | |
/// This routine allows us to typecheck complex/recursive expressions | |
/// where the declaration is needed for type checking. We only need to | |
/// handle cases when the expression references a function designator | |
/// or is an lvalue. Here are some examples: | |
/// - &(x) => x | |
/// - &*****f => f for f a function designator. | |
/// - &s.xx => s | |
/// - &s.zz[1].yy -> s, if zz is an array | |
/// - *(x + 1) -> x, if x is an array | |
/// - &"123"[2] -> 0 | |
/// - & __real__ x -> x | |
/// | |
/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to | |
/// members. | |
static ValueDecl *getPrimaryDecl(Expr *E) { | |
switch (E->getStmtClass()) { | |
case Stmt::DeclRefExprClass: | |
return cast<DeclRefExpr>(E)->getDecl(); | |
case Stmt::MemberExprClass: | |
// If this is an arrow operator, the address is an offset from | |
// the base's value, so the object the base refers to is | |
// irrelevant. | |
if (cast<MemberExpr>(E)->isArrow()) | |
return nullptr; | |
// Otherwise, the expression refers to a part of the base | |
return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); | |
case Stmt::ArraySubscriptExprClass: { | |
// FIXME: This code shouldn't be necessary! We should catch the implicit | |
// promotion of register arrays earlier. | |
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); | |
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { | |
if (ICE->getSubExpr()->getType()->isArrayType()) | |
return getPrimaryDecl(ICE->getSubExpr()); | |
} | |
return nullptr; | |
} | |
case Stmt::UnaryOperatorClass: { | |
UnaryOperator *UO = cast<UnaryOperator>(E); | |
switch(UO->getOpcode()) { | |
case UO_Real: | |
case UO_Imag: | |
case UO_Extension: | |
return getPrimaryDecl(UO->getSubExpr()); | |
default: | |
return nullptr; | |
} | |
} | |
case Stmt::ParenExprClass: | |
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); | |
case Stmt::ImplicitCastExprClass: | |
// If the result of an implicit cast is an l-value, we care about | |
// the sub-expression; otherwise, the result here doesn't matter. | |
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); | |
case Stmt::CXXUuidofExprClass: | |
return cast<CXXUuidofExpr>(E)->getGuidDecl(); | |
default: | |
return nullptr; | |
} | |
} | |
namespace { | |
enum { | |
AO_Bit_Field = 0, | |
AO_Vector_Element = 1, | |
AO_Property_Expansion = 2, | |
AO_Register_Variable = 3, | |
AO_No_Error = 4 | |
}; | |
} | |
/// Diagnose invalid operand for address of operations. | |
/// | |
/// \param Type The type of operand which cannot have its address taken. | |
static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, | |
Expr *E, unsigned Type) { | |
S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); | |
} | |
/// CheckAddressOfOperand - The operand of & must be either a function | |
/// designator or an lvalue designating an object. If it is an lvalue, the | |
/// object cannot be declared with storage class register or be a bit field. | |
/// Note: The usual conversions are *not* applied to the operand of the & | |
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. | |
/// In C++, the operand might be an overloaded function name, in which case | |
/// we allow the '&' but retain the overloaded-function type. | |
QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) { | |
if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ | |
if (PTy->getKind() == BuiltinType::Overload) { | |
Expr *E = OrigOp.get()->IgnoreParens(); | |
if (!isa<OverloadExpr>(E)) { | |
assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf); | |
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function) | |
<< OrigOp.get()->getSourceRange(); | |
return QualType(); | |
} | |
OverloadExpr *Ovl = cast<OverloadExpr>(E); | |
if (isa<UnresolvedMemberExpr>(Ovl)) | |
if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) { | |
Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | |
<< OrigOp.get()->getSourceRange(); | |
return QualType(); | |
} | |
return Context.OverloadTy; | |
} | |
if (PTy->getKind() == BuiltinType::UnknownAny) | |
return Context.UnknownAnyTy; | |
if (PTy->getKind() == BuiltinType::BoundMember) { | |
Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | |
<< OrigOp.get()->getSourceRange(); | |
return QualType(); | |
} | |
OrigOp = CheckPlaceholderExpr(OrigOp.get()); | |
if (OrigOp.isInvalid()) return QualType(); | |
} | |
if (OrigOp.get()->isTypeDependent()) | |
return Context.DependentTy; | |
assert(!OrigOp.get()->getType()->isPlaceholderType()); | |
// Make sure to ignore parentheses in subsequent checks | |
Expr *op = OrigOp.get()->IgnoreParens(); | |
// In OpenCL captures for blocks called as lambda functions | |
// are located in the private address space. Blocks used in | |
// enqueue_kernel can be located in a different address space | |
// depending on a vendor implementation. Thus preventing | |
// taking an address of the capture to avoid invalid AS casts. | |
if (LangOpts.OpenCL) { | |
auto* VarRef = dyn_cast<DeclRefExpr>(op); | |
if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) { | |
Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture); | |
return QualType(); | |
} | |
} | |
if (getLangOpts().C99) { | |
// Implement C99-only parts of addressof rules. | |
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { | |
if (uOp->getOpcode() == UO_Deref) | |
// Per C99 6.5.3.2, the address of a deref always returns a valid result | |
// (assuming the deref expression is valid). | |
return uOp->getSubExpr()->getType(); | |
} | |
// Technically, there should be a check for array subscript | |
// expressions here, but the result of one is always an lvalue anyway. | |
} | |
ValueDecl *dcl = getPrimaryDecl(op); | |
if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl)) | |
if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, | |
op->getBeginLoc())) | |
return QualType(); | |
Expr::LValueClassification lval = op->ClassifyLValue(Context); | |
unsigned AddressOfError = AO_No_Error; | |
if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) { | |
bool sfinae = (bool)isSFINAEContext(); | |
Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary | |
: diag::ext_typecheck_addrof_temporary) | |
<< op->getType() << op->getSourceRange(); | |
if (sfinae) | |
return QualType(); | |
// Materialize the temporary as an lvalue so that we can take its address. | |
OrigOp = op = | |
CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true); | |
} else if (isa<ObjCSelectorExpr>(op)) { | |
return Context.getPointerType(op->getType()); | |
} else if (lval == Expr::LV_MemberFunction) { | |
// If it's an instance method, make a member pointer. | |
// The expression must have exactly the form &A::foo. | |
// If the underlying expression isn't a decl ref, give up. | |
if (!isa<DeclRefExpr>(op)) { | |
Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | |
<< OrigOp.get()->getSourceRange(); | |
return QualType(); | |
} | |
DeclRefExpr *DRE = cast<DeclRefExpr>(op); | |
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); | |
// The id-expression was parenthesized. | |
if (OrigOp.get() != DRE) { | |
Diag(OpLoc, diag::err_parens_pointer_member_function) | |
<< OrigOp.get()->getSourceRange(); | |
// The method was named without a qualifier. | |
} else if (!DRE->getQualifier()) { | |
if (MD->getParent()->getName().empty()) | |
Diag(OpLoc, diag::err_unqualified_pointer_member_function) | |
<< op->getSourceRange(); | |
else { | |
SmallString<32> Str; | |
StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str); | |
Diag(OpLoc, diag::err_unqualified_pointer_member_function) | |
<< op->getSourceRange() | |
<< FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual); | |
} | |
} | |
// Taking the address of a dtor is illegal per C++ [class.dtor]p2. | |
if (isa<CXXDestructorDecl>(MD)) | |
Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange(); | |
QualType MPTy = Context.getMemberPointerType( | |
op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); | |
// Under the MS ABI, lock down the inheritance model now. | |
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | |
(void)isCompleteType(OpLoc, MPTy); | |
return MPTy; | |
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { | |
// C99 6.5.3.2p1 | |
// The operand must be either an l-value or a function designator | |
if (!op->getType()->isFunctionType()) { | |
// Use a special diagnostic for loads from property references. | |
if (isa<PseudoObjectExpr>(op)) { | |
AddressOfError = AO_Property_Expansion; | |
} else { | |
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) | |
<< op->getType() << op->getSourceRange(); | |
return QualType(); | |
} | |
} | |
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 | |
// The operand cannot be a bit-field | |
AddressOfError = AO_Bit_Field; | |
} else if (op->getObjectKind() == OK_VectorComponent) { | |
// The operand cannot be an element of a vector | |
AddressOfError = AO_Vector_Element; | |
} else if (dcl) { // C99 6.5.3.2p1 | |
// We have an lvalue with a decl. Make sure the decl is not declared | |
// with the register storage-class specifier. | |
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { | |
// in C++ it is not error to take address of a register | |
// variable (c++03 7.1.1P3) | |
if (vd->getStorageClass() == SC_Register && | |
!getLangOpts().CPlusPlus) { | |
AddressOfError = AO_Register_Variable; | |
} | |
} else if (isa<MSPropertyDecl>(dcl)) { | |
AddressOfError = AO_Property_Expansion; | |
} else if (isa<FunctionTemplateDecl>(dcl)) { | |
return Context.OverloadTy; | |
} else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { | |
// Okay: we can take the address of a field. | |
// Could be a pointer to member, though, if there is an explicit | |
// scope qualifier for the class. | |
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { | |
DeclContext *Ctx = dcl->getDeclContext(); | |
if (Ctx && Ctx->isRecord()) { | |
if (dcl->getType()->isReferenceType()) { | |
Diag(OpLoc, | |
diag::err_cannot_form_pointer_to_member_of_reference_type) | |
<< dcl->getDeclName() << dcl->getType(); | |
return QualType(); | |
} | |
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) | |
Ctx = Ctx->getParent(); | |
QualType MPTy = Context.getMemberPointerType( | |
op->getType(), | |
Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); | |
// Under the MS ABI, lock down the inheritance model now. | |
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | |
(void)isCompleteType(OpLoc, MPTy); | |
return MPTy; | |
} | |
} | |
} else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) && | |
!isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl)) | |
llvm_unreachable("Unknown/unexpected decl type"); | |
} | |
if (AddressOfError != AO_No_Error) { | |
diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError); | |
return QualType(); | |
} | |
if (lval == Expr::LV_IncompleteVoidType) { | |
// Taking the address of a void variable is technically illegal, but we | |
// allow it in cases which are otherwise valid. | |
// Example: "extern void x; void* y = &x;". | |
Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); | |
} | |
// If the operand has type "type", the result has type "pointer to type". | |
if (op->getType()->isObjCObjectType()) | |
return Context.getObjCObjectPointerType(op->getType()); | |
CheckAddressOfPackedMember(op); | |
return Context.getPointerType(op->getType()); | |
} | |
static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) { | |
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp); | |
if (!DRE) | |
return; | |
const Decl *D = DRE->getDecl(); | |
if (!D) | |
return; | |
const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D); | |
if (!Param) | |
return; | |
if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext())) | |
if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>()) | |
return; | |
if (FunctionScopeInfo *FD = S.getCurFunction()) | |
if (!FD->ModifiedNonNullParams.count(Param)) | |
FD->ModifiedNonNullParams.insert(Param); | |
} | |
/// CheckIndirectionOperand - Type check unary indirection (prefix '*'). | |
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, | |
SourceLocation OpLoc) { | |
if (Op->isTypeDependent()) | |
return S.Context.DependentTy; | |
ExprResult ConvResult = S.UsualUnaryConversions(Op); | |
if (ConvResult.isInvalid()) | |
return QualType(); | |
Op = ConvResult.get(); | |
QualType OpTy = Op->getType(); | |
QualType Result; | |
if (isa<CXXReinterpretCastExpr>(Op)) { | |
QualType OpOrigType = Op->IgnoreParenCasts()->getType(); | |
S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, | |
Op->getSourceRange()); | |
} | |
if (const PointerType *PT = OpTy->getAs<PointerType>()) | |
{ | |
Result = PT->getPointeeType(); | |
} | |
else if (const ObjCObjectPointerType *OPT = | |
OpTy->getAs<ObjCObjectPointerType>()) | |
Result = OPT->getPointeeType(); | |
else { | |
ExprResult PR = S.CheckPlaceholderExpr(Op); | |
if (PR.isInvalid()) return QualType(); | |
if (PR.get() != Op) | |
return CheckIndirectionOperand(S, PR.get(), VK, OpLoc); | |
} | |
if (Result.isNull()) { | |
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) | |
<< OpTy << Op->getSourceRange(); | |
return QualType(); | |
} | |
// Note that per both C89 and C99, indirection is always legal, even if Result | |
// is an incomplete type or void. It would be possible to warn about | |
// dereferencing a void pointer, but it's completely well-defined, and such a | |
// warning is unlikely to catch any mistakes. In C++, indirection is not valid | |
// for pointers to 'void' but is fine for any other pointer type: | |
// | |
// C++ [expr.unary.op]p1: | |
// [...] the expression to which [the unary * operator] is applied shall | |
// be a pointer to an object type, or a pointer to a function type | |
if (S.getLangOpts().CPlusPlus && Result->isVoidType()) | |
S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer) | |
<< OpTy << Op->getSourceRange(); | |
// Dereferences are usually l-values... | |
VK = VK_LValue; | |
// ...except that certain expressions are never l-values in C. | |
if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType()) | |
VK = VK_RValue; | |
return Result; | |
} | |
BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) { | |
BinaryOperatorKind Opc; | |
switch (Kind) { | |
default: llvm_unreachable("Unknown binop!"); | |
case tok::periodstar: Opc = BO_PtrMemD; break; | |
case tok::arrowstar: Opc = BO_PtrMemI; break; | |
case tok::star: Opc = BO_Mul; break; | |
case tok::slash: Opc = BO_Div; break; | |
case tok::percent: Opc = BO_Rem; break; | |
case tok::plus: Opc = BO_Add; break; | |
case tok::minus: Opc = BO_Sub; break; | |
case tok::lessless: Opc = BO_Shl; break; | |
case tok::greatergreater: Opc = BO_Shr; break; | |
case tok::lessequal: Opc = BO_LE; break; | |
case tok::less: Opc = BO_LT; break; | |
case tok::greaterequal: Opc = BO_GE; break; | |
case tok::greater: Opc = BO_GT; break; | |
case tok::exclaimequal: Opc = BO_NE; break; | |
case tok::equalequal: Opc = BO_EQ; break; | |
case tok::spaceship: Opc = BO_Cmp; break; | |
case tok::amp: Opc = BO_And; break; | |
case tok::caret: Opc = BO_Xor; break; | |
case tok::pipe: Opc = BO_Or; break; | |
case tok::ampamp: Opc = BO_LAnd; break; | |
case tok::pipepipe: Opc = BO_LOr; break; | |
case tok::equal: Opc = BO_Assign; break; | |
case tok::starequal: Opc = BO_MulAssign; break; | |
case tok::slashequal: Opc = BO_DivAssign; break; | |
case tok::percentequal: Opc = BO_RemAssign; break; | |
case tok::plusequal: Opc = BO_AddAssign; break; | |
case tok::minusequal: Opc = BO_SubAssign; break; | |
case tok::lesslessequal: Opc = BO_ShlAssign; break; | |
case tok::greatergreaterequal: Opc = BO_ShrAssign; break; | |
case tok::ampequal: Opc = BO_AndAssign; break; | |
case tok::caretequal: Opc = BO_XorAssign; break; | |
case tok::pipeequal: Opc = BO_OrAssign; break; | |
case tok::comma: Opc = BO_Comma; break; | |
} | |
return Opc; | |
} | |
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( | |
tok::TokenKind Kind) { | |
UnaryOperatorKind Opc; | |
switch (Kind) { | |
default: llvm_unreachable("Unknown unary op!"); | |
case tok::plusplus: Opc = UO_PreInc; break; | |
case tok::minusminus: Opc = UO_PreDec; break; | |
case tok::amp: Opc = UO_AddrOf; break; | |
case tok::star: Opc = UO_Deref; break; | |
case tok::plus: Opc = UO_Plus; break; | |
case tok::minus: Opc = UO_Minus; break; | |
case tok::tilde: Opc = UO_Not; break; | |
case tok::exclaim: Opc = UO_LNot; break; | |
case tok::kw___real: Opc = UO_Real; break; | |
case tok::kw___imag: Opc = UO_Imag; break; | |
case tok::kw___extension__: Opc = UO_Extension; break; | |
} | |
return Opc; | |
} | |
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. | |
/// This warning suppressed in the event of macro expansions. | |
static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, | |
SourceLocation OpLoc, bool IsBuiltin) { | |
if (S.inTemplateInstantiation()) | |
return; | |
if (S.isUnevaluatedContext()) | |
return; | |
if (OpLoc.isInvalid() || OpLoc.isMacroID()) | |
return; | |
LHSExpr = LHSExpr->IgnoreParenImpCasts(); | |
RHSExpr = RHSExpr->IgnoreParenImpCasts(); | |
const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); | |
const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); | |
if (!LHSDeclRef || !RHSDeclRef || | |
LHSDeclRef->getLocation().isMacroID() || | |
RHSDeclRef->getLocation().isMacroID()) | |
return; | |
const ValueDecl *LHSDecl = | |
cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl()); | |
const ValueDecl *RHSDecl = | |
cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl()); | |
if (LHSDecl != RHSDecl) | |
return; | |
if (LHSDecl->getType().isVolatileQualified()) | |
return; | |
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) | |
if (RefTy->getPointeeType().isVolatileQualified()) | |
return; | |
S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin | |
: diag::warn_self_assignment_overloaded) | |
<< LHSDeclRef->getType() << LHSExpr->getSourceRange() | |
<< RHSExpr->getSourceRange(); | |
} | |
/// Check if a bitwise-& is performed on an Objective-C pointer. This | |
/// is usually indicative of introspection within the Objective-C pointer. | |
static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R, | |
SourceLocation OpLoc) { | |
if (!S.getLangOpts().ObjC) | |
return; | |
const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr; | |
const Expr *LHS = L.get(); | |
const Expr *RHS = R.get(); | |
if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { | |
ObjCPointerExpr = LHS; | |
OtherExpr = RHS; | |
} | |
else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { | |
ObjCPointerExpr = RHS; | |
OtherExpr = LHS; | |
} | |
// This warning is deliberately made very specific to reduce false | |
// positives with logic that uses '&' for hashing. This logic mainly | |
// looks for code trying to introspect into tagged pointers, which | |
// code should generally never do. | |
if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) { | |
unsigned Diag = diag::warn_objc_pointer_masking; | |
// Determine if we are introspecting the result of performSelectorXXX. | |
const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts(); | |
// Special case messages to -performSelector and friends, which | |
// can return non-pointer values boxed in a pointer value. | |
// Some clients may wish to silence warnings in this subcase. | |
if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) { | |
Selector S = ME->getSelector(); | |
StringRef SelArg0 = S.getNameForSlot(0); | |
if (SelArg0.startswith("performSelector")) | |
Diag = diag::warn_objc_pointer_masking_performSelector; | |
} | |
S.Diag(OpLoc, Diag) | |
<< ObjCPointerExpr->getSourceRange(); | |
} | |
} | |
static NamedDecl *getDeclFromExpr(Expr *E) { | |
if (!E) | |
return nullptr; | |
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | |
return DRE->getDecl(); | |
if (auto *ME = dyn_cast<MemberExpr>(E)) | |
return ME->getMemberDecl(); | |
if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) | |
return IRE->getDecl(); | |
return nullptr; | |
} | |
// This helper function promotes a binary operator's operands (which are of a | |
// half vector type) to a vector of floats and then truncates the result to | |
// a vector of either half or short. | |
static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS, | |
BinaryOperatorKind Opc, QualType ResultTy, | |
ExprValueKind VK, ExprObjectKind OK, | |
bool IsCompAssign, SourceLocation OpLoc, | |
FPOptions FPFeatures) { | |
auto &Context = S.getASTContext(); | |
assert((isVector(ResultTy, Context.HalfTy) || | |
isVector(ResultTy, Context.ShortTy)) && | |
"Result must be a vector of half or short"); | |
assert(isVector(LHS.get()->getType(), Context.HalfTy) && | |
isVector(RHS.get()->getType(), Context.HalfTy) && | |
"both operands expected to be a half vector"); | |
RHS = convertVector(RHS.get(), Context.FloatTy, S); | |
QualType BinOpResTy = RHS.get()->getType(); | |
// If Opc is a comparison, ResultType is a vector of shorts. In that case, | |
// change BinOpResTy to a vector of ints. | |
if (isVector(ResultTy, Context.ShortTy)) | |
BinOpResTy = S.GetSignedVectorType(BinOpResTy); | |
if (IsCompAssign) | |
return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc, | |
ResultTy, VK, OK, OpLoc, FPFeatures, | |
BinOpResTy, BinOpResTy); | |
LHS = convertVector(LHS.get(), Context.FloatTy, S); | |
auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, | |
BinOpResTy, VK, OK, OpLoc, FPFeatures); | |
return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S); | |
} | |
static std::pair<ExprResult, ExprResult> | |
CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr, | |
Expr *RHSExpr) { | |
ExprResult LHS = LHSExpr, RHS = RHSExpr; | |
if (!S.getLangOpts().CPlusPlus) { | |
// C cannot handle TypoExpr nodes on either side of a binop because it | |
// doesn't handle dependent types properly, so make sure any TypoExprs have | |
// been dealt with before checking the operands. | |
LHS = S.CorrectDelayedTyposInExpr(LHS); | |
RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) { | |
if (Opc != BO_Assign) | |
return ExprResult(E); | |
// Avoid correcting the RHS to the same Expr as the LHS. | |
Decl *D = getDeclFromExpr(E); | |
return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E; | |
}); | |
} | |
return std::make_pair(LHS, RHS); | |
} | |
/// Returns true if conversion between vectors of halfs and vectors of floats | |
/// is needed. | |
static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx, | |
Expr *E0, Expr *E1 = nullptr) { | |
if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType || | |
Ctx.getTargetInfo().useFP16ConversionIntrinsics()) | |
return false; | |
auto HasVectorOfHalfType = [&Ctx](Expr *E) { | |
QualType Ty = E->IgnoreImplicit()->getType(); | |
// Don't promote half precision neon vectors like float16x4_t in arm_neon.h | |
// to vectors of floats. Although the element type of the vectors is __fp16, | |
// the vectors shouldn't be treated as storage-only types. See the | |
// discussion here: https://reviews.llvm.org/rG825235c140e7 | |
if (const VectorType *VT = Ty->getAs<VectorType>()) { | |
if (VT->getVectorKind() == VectorType::NeonVector) | |
return false; | |
return VT->getElementType().getCanonicalType() == Ctx.HalfTy; | |
} | |
return false; | |
}; | |
return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1)); | |
} | |
/// CreateBuiltinBinOp - Creates a new built-in binary operation with | |
/// operator @p Opc at location @c TokLoc. This routine only supports | |
/// built-in operations; ActOnBinOp handles overloaded operators. | |
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, | |
BinaryOperatorKind Opc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) { | |
// The syntax only allows initializer lists on the RHS of assignment, | |
// so we don't need to worry about accepting invalid code for | |
// non-assignment operators. | |
// C++11 5.17p9: | |
// The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning | |
// of x = {} is x = T(). | |
InitializationKind Kind = InitializationKind::CreateDirectList( | |
RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |
InitializedEntity Entity = | |
InitializedEntity::InitializeTemporary(LHSExpr->getType()); | |
InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr); | |
ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr); | |
if (Init.isInvalid()) | |
return Init; | |
RHSExpr = Init.get(); | |
} | |
ExprResult LHS = LHSExpr, RHS = RHSExpr; | |
QualType ResultTy; // Result type of the binary operator. | |
// The following two variables are used for compound assignment operators | |
QualType CompLHSTy; // Type of LHS after promotions for computation | |
QualType CompResultTy; // Type of computation result | |
ExprValueKind VK = VK_RValue; | |
ExprObjectKind OK = OK_Ordinary; | |
bool ConvertHalfVec = false; | |
std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); | |
if (!LHS.isUsable() || !RHS.isUsable()) | |
return ExprError(); | |
if (getLangOpts().OpenCL) { | |
QualType LHSTy = LHSExpr->getType(); | |
QualType RHSTy = RHSExpr->getType(); | |
// OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by | |
// the ATOMIC_VAR_INIT macro. | |
if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) { | |
SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |
if (BO_Assign == Opc) | |
Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR; | |
else | |
ResultTy = InvalidOperands(OpLoc, LHS, RHS); | |
return ExprError(); | |
} | |
// OpenCL special types - image, sampler, pipe, and blocks are to be used | |
// only with a builtin functions and therefore should be disallowed here. | |
if (LHSTy->isImageType() || RHSTy->isImageType() || | |
LHSTy->isSamplerT() || RHSTy->isSamplerT() || | |
LHSTy->isPipeType() || RHSTy->isPipeType() || | |
LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { | |
ResultTy = InvalidOperands(OpLoc, LHS, RHS); | |
return ExprError(); | |
} | |
} | |
// Diagnose operations on the unsupported types for OpenMP device compilation. | |
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) { | |
if (Opc != BO_Assign && Opc != BO_Comma) { | |
checkOpenMPDeviceExpr(LHSExpr); | |
checkOpenMPDeviceExpr(RHSExpr); | |
} | |
} | |
switch (Opc) { | |
case BO_Assign: | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType()); | |
if (getLangOpts().CPlusPlus && | |
LHS.get()->getObjectKind() != OK_ObjCProperty) { | |
VK = LHS.get()->getValueKind(); | |
OK = LHS.get()->getObjectKind(); | |
} | |
if (!ResultTy.isNull()) { | |
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); | |
DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc); | |
// Avoid copying a block to the heap if the block is assigned to a local | |
// auto variable that is declared in the same scope as the block. This | |
// optimization is unsafe if the local variable is declared in an outer | |
// scope. For example: | |
// | |
// BlockTy b; | |
// { | |
// b = ^{...}; | |
// } | |
// // It is unsafe to invoke the block here if it wasn't copied to the | |
// // heap. | |
// b(); | |
if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens())) | |
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens())) | |
if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | |
if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD)) | |
BE->getBlockDecl()->setCanAvoidCopyToHeap(); | |
if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |
checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(), | |
NTCUC_Assignment, NTCUK_Copy); | |
} | |
RecordModifiableNonNullParam(*this, LHS.get()); | |
break; | |
case BO_PtrMemD: | |
case BO_PtrMemI: | |
ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, | |
Opc == BO_PtrMemI); | |
break; | |
case BO_Mul: | |
case BO_Div: | |
ConvertHalfVec = true; | |
ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, | |
Opc == BO_Div); | |
break; | |
case BO_Rem: | |
ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); | |
break; | |
case BO_Add: | |
ConvertHalfVec = true; | |
ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc); | |
break; | |
case BO_Sub: | |
ConvertHalfVec = true; | |
ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); | |
break; | |
case BO_Shl: | |
case BO_Shr: | |
ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); | |
break; | |
case BO_LE: | |
case BO_LT: | |
case BO_GE: | |
case BO_GT: | |
ConvertHalfVec = true; | |
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | |
break; | |
case BO_EQ: | |
case BO_NE: | |
ConvertHalfVec = true; | |
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | |
break; | |
case BO_Cmp: | |
ConvertHalfVec = true; | |
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | |
assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()); | |
break; | |
case BO_And: | |
checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc); | |
LLVM_FALLTHROUGH; | |
case BO_Xor: | |
case BO_Or: | |
ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); | |
break; | |
case BO_LAnd: | |
case BO_LOr: | |
ConvertHalfVec = true; | |
ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); | |
break; | |
case BO_MulAssign: | |
case BO_DivAssign: | |
ConvertHalfVec = true; | |
CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, | |
Opc == BO_DivAssign); | |
CompLHSTy = CompResultTy; | |
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); | |
break; | |
case BO_RemAssign: | |
CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); | |
CompLHSTy = CompResultTy; | |
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); | |
break; | |
case BO_AddAssign: | |
ConvertHalfVec = true; | |
CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy); | |
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); | |
break; | |
case BO_SubAssign: | |
ConvertHalfVec = true; | |
CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); | |
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); | |
break; | |
case BO_ShlAssign: | |
case BO_ShrAssign: | |
CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); | |
CompLHSTy = CompResultTy; | |
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); | |
break; | |
case BO_AndAssign: | |
case BO_OrAssign: // fallthrough | |
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); | |
LLVM_FALLTHROUGH; | |
case BO_XorAssign: | |
CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); | |
CompLHSTy = CompResultTy; | |
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); | |
break; | |
case BO_Comma: | |
ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); | |
if (getLangOpts().CPlusPlus && !RHS.isInvalid()) { | |
VK = RHS.get()->getValueKind(); | |
OK = RHS.get()->getObjectKind(); | |
} | |
break; | |
} | |
if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) | |
return ExprError(); | |
if (ResultTy->isRealFloatingType() && | |
(getLangOpts().getFPRoundingMode() != RoundingMode::NearestTiesToEven || | |
getLangOpts().getFPExceptionMode() != LangOptions::FPE_Ignore)) | |
// Mark the current function as usng floating point constrained intrinsics | |
if (FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) { | |
F->setUsesFPIntrin(true); | |
} | |
// Some of the binary operations require promoting operands of half vector to | |
// float vectors and truncating the result back to half vector. For now, we do | |
// this only when HalfArgsAndReturn is set (that is, when the target is arm or | |
// arm64). | |
assert(isVector(RHS.get()->getType(), Context.HalfTy) == | |
isVector(LHS.get()->getType(), Context.HalfTy) && | |
"both sides are half vectors or neither sides are"); | |
ConvertHalfVec = | |
needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get()); | |
// Check for array bounds violations for both sides of the BinaryOperator | |
CheckArrayAccess(LHS.get()); | |
CheckArrayAccess(RHS.get()); | |
if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) { | |
NamedDecl *ObjectSetClass = LookupSingleName(TUScope, | |
&Context.Idents.get("object_setClass"), | |
SourceLocation(), LookupOrdinaryName); | |
if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) { | |
SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc()); | |
Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) | |
<< FixItHint::CreateInsertion(LHS.get()->getBeginLoc(), | |
"object_setClass(") | |
<< FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), | |
",") | |
<< FixItHint::CreateInsertion(RHSLocEnd, ")"); | |
} | |
else | |
Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign); | |
} | |
else if (const ObjCIvarRefExpr *OIRE = | |
dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts())) | |
DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get()); | |
// Opc is not a compound assignment if CompResultTy is null. | |
if (CompResultTy.isNull()) { | |
if (ConvertHalfVec) | |
return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false, | |
OpLoc, CurFPFeatures); | |
return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy, | |
VK, OK, OpLoc, CurFPFeatures); | |
} | |
// Handle compound assignments. | |
if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != | |
OK_ObjCProperty) { | |
VK = VK_LValue; | |
OK = LHS.get()->getObjectKind(); | |
} | |
// The LHS is not converted to the result type for fixed-point compound | |
// assignment as the common type is computed on demand. Reset the CompLHSTy | |
// to the LHS type we would have gotten after unary conversions. | |
if (CompResultTy->isFixedPointType()) | |
CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType(); | |
if (ConvertHalfVec) | |
return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true, | |
OpLoc, CurFPFeatures); | |
return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc, | |
ResultTy, VK, OK, OpLoc, CurFPFeatures, | |
CompLHSTy, CompResultTy); | |
} | |
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison | |
/// operators are mixed in a way that suggests that the programmer forgot that | |
/// comparison operators have higher precedence. The most typical example of | |
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". | |
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, | |
SourceLocation OpLoc, Expr *LHSExpr, | |
Expr *RHSExpr) { | |
BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr); | |
BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr); | |
// Check that one of the sides is a comparison operator and the other isn't. | |
bool isLeftComp = LHSBO && LHSBO->isComparisonOp(); | |
bool isRightComp = RHSBO && RHSBO->isComparisonOp(); | |
if (isLeftComp == isRightComp) | |
return; | |
// Bitwise operations are sometimes used as eager logical ops. | |
// Don't diagnose this. | |
bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp(); | |
bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp(); | |
if (isLeftBitwise || isRightBitwise) | |
return; | |
SourceRange DiagRange = isLeftComp | |
? SourceRange(LHSExpr->getBeginLoc(), OpLoc) | |
: SourceRange(OpLoc, RHSExpr->getEndLoc()); | |
StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr(); | |
SourceRange ParensRange = | |
isLeftComp | |
? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc()) | |
: SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc()); | |
Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) | |
<< DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr; | |
SuggestParentheses(Self, OpLoc, | |
Self.PDiag(diag::note_precedence_silence) << OpStr, | |
(isLeftComp ? LHSExpr : RHSExpr)->getSourceRange()); | |
SuggestParentheses(Self, OpLoc, | |
Self.PDiag(diag::note_precedence_bitwise_first) | |
<< BinaryOperator::getOpcodeStr(Opc), | |
ParensRange); | |
} | |
/// It accepts a '&&' expr that is inside a '||' one. | |
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression | |
/// in parentheses. | |
static void | |
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, | |
BinaryOperator *Bop) { | |
assert(Bop->getOpcode() == BO_LAnd); | |
Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) | |
<< Bop->getSourceRange() << OpLoc; | |
SuggestParentheses(Self, Bop->getOperatorLoc(), | |
Self.PDiag(diag::note_precedence_silence) | |
<< Bop->getOpcodeStr(), | |
Bop->getSourceRange()); | |
} | |
/// Returns true if the given expression can be evaluated as a constant | |
/// 'true'. | |
static bool EvaluatesAsTrue(Sema &S, Expr *E) { | |
bool Res; | |
return !E->isValueDependent() && | |
E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; | |
} | |
/// Returns true if the given expression can be evaluated as a constant | |
/// 'false'. | |
static bool EvaluatesAsFalse(Sema &S, Expr *E) { | |
bool Res; | |
return !E->isValueDependent() && | |
E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; | |
} | |
/// Look for '&&' in the left hand of a '||' expr. | |
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) { | |
if (Bop->getOpcode() == BO_LAnd) { | |
// If it's "a && b || 0" don't warn since the precedence doesn't matter. | |
if (EvaluatesAsFalse(S, RHSExpr)) | |
return; | |
// If it's "1 && a || b" don't warn since the precedence doesn't matter. | |
if (!EvaluatesAsTrue(S, Bop->getLHS())) | |
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); | |
} else if (Bop->getOpcode() == BO_LOr) { | |
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { | |
// If it's "a || b && 1 || c" we didn't warn earlier for | |
// "a || b && 1", but warn now. | |
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) | |
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); | |
} | |
} | |
} | |
} | |
/// Look for '&&' in the right hand of a '||' expr. | |
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) { | |
if (Bop->getOpcode() == BO_LAnd) { | |
// If it's "0 || a && b" don't warn since the precedence doesn't matter. | |
if (EvaluatesAsFalse(S, LHSExpr)) | |
return; | |
// If it's "a || b && 1" don't warn since the precedence doesn't matter. | |
if (!EvaluatesAsTrue(S, Bop->getRHS())) | |
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); | |
} | |
} | |
} | |
/// Look for bitwise op in the left or right hand of a bitwise op with | |
/// lower precedence and emit a diagnostic together with a fixit hint that wraps | |
/// the '&' expression in parentheses. | |
static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc, | |
SourceLocation OpLoc, Expr *SubExpr) { | |
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { | |
if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) { | |
S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op) | |
<< Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc) | |
<< Bop->getSourceRange() << OpLoc; | |
SuggestParentheses(S, Bop->getOperatorLoc(), | |
S.PDiag(diag::note_precedence_silence) | |
<< Bop->getOpcodeStr(), | |
Bop->getSourceRange()); | |
} | |
} | |
} | |
static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc, | |
Expr *SubExpr, StringRef Shift) { | |
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { | |
if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) { | |
StringRef Op = Bop->getOpcodeStr(); | |
S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift) | |
<< Bop->getSourceRange() << OpLoc << Shift << Op; | |
SuggestParentheses(S, Bop->getOperatorLoc(), | |
S.PDiag(diag::note_precedence_silence) << Op, | |
Bop->getSourceRange()); | |
} | |
} | |
} | |
static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr); | |
if (!OCE) | |
return; | |
FunctionDecl *FD = OCE->getDirectCallee(); | |
if (!FD || !FD->isOverloadedOperator()) | |
return; | |
OverloadedOperatorKind Kind = FD->getOverloadedOperator(); | |
if (Kind != OO_LessLess && Kind != OO_GreaterGreater) | |
return; | |
S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison) | |
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange() | |
<< (Kind == OO_LessLess); | |
SuggestParentheses(S, OCE->getOperatorLoc(), | |
S.PDiag(diag::note_precedence_silence) | |
<< (Kind == OO_LessLess ? "<<" : ">>"), | |
OCE->getSourceRange()); | |
SuggestParentheses( | |
S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first), | |
SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc())); | |
} | |
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky | |
/// precedence. | |
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, | |
SourceLocation OpLoc, Expr *LHSExpr, | |
Expr *RHSExpr){ | |
// Diagnose "arg1 'bitwise' arg2 'eq' arg3". | |
if (BinaryOperator::isBitwiseOp(Opc)) | |
DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); | |
// Diagnose "arg1 & arg2 | arg3" | |
if ((Opc == BO_Or || Opc == BO_Xor) && | |
!OpLoc.isMacroID()/* Don't warn in macros. */) { | |
DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr); | |
DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr); | |
} | |
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. | |
// We don't warn for 'assert(a || b && "bad")' since this is safe. | |
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { | |
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); | |
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); | |
} | |
if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext())) | |
|| Opc == BO_Shr) { | |
StringRef Shift = BinaryOperator::getOpcodeStr(Opc); | |
DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift); | |
DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift); | |
} | |
// Warn on overloaded shift operators and comparisons, such as: | |
// cout << 5 == 4; | |
if (BinaryOperator::isComparisonOp(Opc)) | |
DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr); | |
} | |
// Binary Operators. 'Tok' is the token for the operator. | |
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, | |
tok::TokenKind Kind, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); | |
assert(LHSExpr && "ActOnBinOp(): missing left expression"); | |
assert(RHSExpr && "ActOnBinOp(): missing right expression"); | |
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" | |
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); | |
return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); | |
} | |
/// Build an overloaded binary operator expression in the given scope. | |
static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, | |
BinaryOperatorKind Opc, | |
Expr *LHS, Expr *RHS) { | |
switch (Opc) { | |
case BO_Assign: | |
case BO_DivAssign: | |
case BO_RemAssign: | |
case BO_SubAssign: | |
case BO_AndAssign: | |
case BO_OrAssign: | |
case BO_XorAssign: | |
DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false); | |
CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S); | |
break; | |
default: | |
break; | |
} | |
// Find all of the overloaded operators visible from this | |
// point. We perform both an operator-name lookup from the local | |
// scope and an argument-dependent lookup based on the types of | |
// the arguments. | |
UnresolvedSet<16> Functions; | |
OverloadedOperatorKind OverOp | |
= BinaryOperator::getOverloadedOperator(Opc); | |
if (Sc && OverOp != OO_None && OverOp != OO_Equal) | |
S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(), | |
RHS->getType(), Functions); | |
// In C++20 onwards, we may have a second operator to look up. | |
if (S.getLangOpts().CPlusPlus20) { | |
if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp)) | |
S.LookupOverloadedOperatorName(ExtraOp, Sc, LHS->getType(), | |
RHS->getType(), Functions); | |
} | |
// Build the (potentially-overloaded, potentially-dependent) | |
// binary operation. | |
return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); | |
} | |
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, | |
BinaryOperatorKind Opc, | |
Expr *LHSExpr, Expr *RHSExpr) { | |
ExprResult LHS, RHS; | |
std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); | |
if (!LHS.isUsable() || !RHS.isUsable()) | |
return ExprError(); | |
LHSExpr = LHS.get(); | |
RHSExpr = RHS.get(); | |
// We want to end up calling one of checkPseudoObjectAssignment | |
// (if the LHS is a pseudo-object), BuildOverloadedBinOp (if | |
// both expressions are overloadable or either is type-dependent), | |
// or CreateBuiltinBinOp (in any other case). We also want to get | |
// any placeholder types out of the way. | |
// Handle pseudo-objects in the LHS. | |
if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { | |
// Assignments with a pseudo-object l-value need special analysis. | |
if (pty->getKind() == BuiltinType::PseudoObject && | |
BinaryOperator::isAssignmentOp(Opc)) | |
return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); | |
// Don't resolve overloads if the other type is overloadable. | |
if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) { | |
// We can't actually test that if we still have a placeholder, | |
// though. Fortunately, none of the exceptions we see in that | |
// code below are valid when the LHS is an overload set. Note | |
// that an overload set can be dependently-typed, but it never | |
// instantiates to having an overloadable type. | |
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); | |
if (resolvedRHS.isInvalid()) return ExprError(); | |
RHSExpr = resolvedRHS.get(); | |
if (RHSExpr->isTypeDependent() || | |
RHSExpr->getType()->isOverloadableType()) | |
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |
} | |
// If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function | |
// template, diagnose the missing 'template' keyword instead of diagnosing | |
// an invalid use of a bound member function. | |
// | |
// Note that "A::x < b" might be valid if 'b' has an overloadable type due | |
// to C++1z [over.over]/1.4, but we already checked for that case above. | |
if (Opc == BO_LT && inTemplateInstantiation() && | |
(pty->getKind() == BuiltinType::BoundMember || | |
pty->getKind() == BuiltinType::Overload)) { | |
auto *OE = dyn_cast<OverloadExpr>(LHSExpr); | |
if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() && | |
std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) { | |
return isa<FunctionTemplateDecl>(ND); | |
})) { | |
Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc() | |
: OE->getNameLoc(), | |
diag::err_template_kw_missing) | |
<< OE->getName().getAsString() << ""; | |
return ExprError(); | |
} | |
} | |
ExprResult LHS = CheckPlaceholderExpr(LHSExpr); | |
if (LHS.isInvalid()) return ExprError(); | |
LHSExpr = LHS.get(); | |
} | |
// Handle pseudo-objects in the RHS. | |
if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { | |
// An overload in the RHS can potentially be resolved by the type | |
// being assigned to. | |
if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { | |
if (getLangOpts().CPlusPlus && | |
(LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() || | |
LHSExpr->getType()->isOverloadableType())) | |
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); | |
} | |
// Don't resolve overloads if the other type is overloadable. | |
if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload && | |
LHSExpr->getType()->isOverloadableType()) | |
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); | |
if (!resolvedRHS.isUsable()) return ExprError(); | |
RHSExpr = resolvedRHS.get(); | |
} | |
if (getLangOpts().CPlusPlus) { | |
// If either expression is type-dependent, always build an | |
// overloaded op. | |
if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) | |
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |
// Otherwise, build an overloaded op if either expression has an | |
// overloadable type. | |
if (LHSExpr->getType()->isOverloadableType() || | |
RHSExpr->getType()->isOverloadableType()) | |
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |
} | |
// Build a built-in binary operation. | |
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); | |
} | |
static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { | |
if (T.isNull() || T->isDependentType()) | |
return false; | |
if (!T->isPromotableIntegerType()) | |
return true; | |
return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); | |
} | |
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, | |
UnaryOperatorKind Opc, | |
Expr *InputExpr) { | |
ExprResult Input = InputExpr; | |
ExprValueKind VK = VK_RValue; | |
ExprObjectKind OK = OK_Ordinary; | |
QualType resultType; | |
bool CanOverflow = false; | |
bool ConvertHalfVec = false; | |
if (getLangOpts().OpenCL) { | |
QualType Ty = InputExpr->getType(); | |
// The only legal unary operation for atomics is '&'. | |
if ((Opc != UO_AddrOf && Ty->isAtomicType()) || | |
// OpenCL special types - image, sampler, pipe, and blocks are to be used | |
// only with a builtin functions and therefore should be disallowed here. | |
(Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType() | |
|| Ty->isBlockPointerType())) { | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< InputExpr->getType() | |
<< Input.get()->getSourceRange()); | |
} | |
} | |
// Diagnose operations on the unsupported types for OpenMP device compilation. | |
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) { | |
if (UnaryOperator::isIncrementDecrementOp(Opc) || | |
UnaryOperator::isArithmeticOp(Opc)) | |
checkOpenMPDeviceExpr(InputExpr); | |
} | |
switch (Opc) { | |
case UO_PreInc: | |
case UO_PreDec: | |
case UO_PostInc: | |
case UO_PostDec: | |
resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, | |
OpLoc, | |
Opc == UO_PreInc || | |
Opc == UO_PostInc, | |
Opc == UO_PreInc || | |
Opc == UO_PreDec); | |
CanOverflow = isOverflowingIntegerType(Context, resultType); | |
break; | |
case UO_AddrOf: | |
resultType = CheckAddressOfOperand(Input, OpLoc); | |
CheckAddressOfNoDeref(InputExpr); | |
RecordModifiableNonNullParam(*this, InputExpr); | |
break; | |
case UO_Deref: { | |
Input = DefaultFunctionArrayLvalueConversion(Input.get()); | |
if (Input.isInvalid()) return ExprError(); | |
resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc); | |
break; | |
} | |
case UO_Plus: | |
case UO_Minus: | |
CanOverflow = Opc == UO_Minus && | |
isOverflowingIntegerType(Context, Input.get()->getType()); | |
Input = UsualUnaryConversions(Input.get()); | |
if (Input.isInvalid()) return ExprError(); | |
// Unary plus and minus require promoting an operand of half vector to a | |
// float vector and truncating the result back to a half vector. For now, we | |
// do this only when HalfArgsAndReturns is set (that is, when the target is | |
// arm or arm64). | |
ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get()); | |
// If the operand is a half vector, promote it to a float vector. | |
if (ConvertHalfVec) | |
Input = convertVector(Input.get(), Context.FloatTy, *this); | |
resultType = Input.get()->getType(); | |
if (resultType->isDependentType()) | |
break; | |
if (resultType->isArithmeticType()) // C99 6.5.3.3p1 | |
break; | |
else if (resultType->isVectorType() && | |
// The z vector extensions don't allow + or - with bool vectors. | |
(!Context.getLangOpts().ZVector || | |
resultType->castAs<VectorType>()->getVectorKind() != | |
VectorType::AltiVecBool)) | |
break; | |
else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6 | |
Opc == UO_Plus && | |
resultType->isPointerType()) | |
break; | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< resultType << Input.get()->getSourceRange()); | |
case UO_Not: // bitwise complement | |
Input = UsualUnaryConversions(Input.get()); | |
if (Input.isInvalid()) | |
return ExprError(); | |
resultType = Input.get()->getType(); | |
if (resultType->isDependentType()) | |
break; | |
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension. | |
if (resultType->isComplexType() || resultType->isComplexIntegerType()) | |
// C99 does not support '~' for complex conjugation. | |
Diag(OpLoc, diag::ext_integer_complement_complex) | |
<< resultType << Input.get()->getSourceRange(); | |
else if (resultType->hasIntegerRepresentation()) | |
break; | |
else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) { | |
// OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate | |
// on vector float types. | |
QualType T = resultType->castAs<ExtVectorType>()->getElementType(); | |
if (!T->isIntegerType()) | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< resultType << Input.get()->getSourceRange()); | |
} else { | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< resultType << Input.get()->getSourceRange()); | |
} | |
break; | |
case UO_LNot: // logical negation | |
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). | |
Input = DefaultFunctionArrayLvalueConversion(Input.get()); | |
if (Input.isInvalid()) return ExprError(); | |
resultType = Input.get()->getType(); | |
// Though we still have to promote half FP to float... | |
if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) { | |
Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get(); | |
resultType = Context.FloatTy; | |
} | |
if (resultType->isDependentType()) | |
break; | |
if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) { | |
// C99 6.5.3.3p1: ok, fallthrough; | |
if (Context.getLangOpts().CPlusPlus) { | |
// C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: | |
// operand contextually converted to bool. | |
Input = ImpCastExprToType(Input.get(), Context.BoolTy, | |
ScalarTypeToBooleanCastKind(resultType)); | |
} else if (Context.getLangOpts().OpenCL && | |
Context.getLangOpts().OpenCLVersion < 120) { | |
// OpenCL v1.1 6.3.h: The logical operator not (!) does not | |
// operate on scalar float types. | |
if (!resultType->isIntegerType() && !resultType->isPointerType()) | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< resultType << Input.get()->getSourceRange()); | |
} | |
} else if (resultType->isExtVectorType()) { | |
if (Context.getLangOpts().OpenCL && | |
Context.getLangOpts().OpenCLVersion < 120 && | |
!Context.getLangOpts().OpenCLCPlusPlus) { | |
// OpenCL v1.1 6.3.h: The logical operator not (!) does not | |
// operate on vector float types. | |
QualType T = resultType->castAs<ExtVectorType>()->getElementType(); | |
if (!T->isIntegerType()) | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< resultType << Input.get()->getSourceRange()); | |
} | |
// Vector logical not returns the signed variant of the operand type. | |
resultType = GetSignedVectorType(resultType); | |
break; | |
} else { | |
// FIXME: GCC's vector extension permits the usage of '!' with a vector | |
// type in C++. We should allow that here too. | |
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |
<< resultType << Input.get()->getSourceRange()); | |
} | |
// LNot always has type int. C99 6.5.3.3p5. | |
// In C++, it's bool. C++ 5.3.1p8 | |
resultType = Context.getLogicalOperationType(); | |
break; | |
case UO_Real: | |
case UO_Imag: | |
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); | |
// _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary | |
// complex l-values to ordinary l-values and all other values to r-values. | |
if (Input.isInvalid()) return ExprError(); | |
if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) { | |
if (Input.get()->getValueKind() != VK_RValue && | |
Input.get()->getObjectKind() == OK_Ordinary) | |
VK = Input.get()->getValueKind(); | |
} else if (!getLangOpts().CPlusPlus) { | |
// In C, a volatile scalar is read by __imag. In C++, it is not. | |
Input = DefaultLvalueConversion(Input.get()); | |
} | |
break; | |
case UO_Extension: | |
resultType = Input.get()->getType(); | |
VK = Input.get()->getValueKind(); | |
OK = Input.get()->getObjectKind(); | |
break; | |
case UO_Coawait: | |
// It's unnecessary to represent the pass-through operator co_await in the | |
// AST; just return the input expression instead. | |
assert(!Input.get()->getType()->isDependentType() && | |
"the co_await expression must be non-dependant before " | |
"building operator co_await"); | |
return Input; | |
} | |
if (resultType.isNull() || Input.isInvalid()) | |
return ExprError(); | |
// Check for array bounds violations in the operand of the UnaryOperator, | |
// except for the '*' and '&' operators that have to be handled specially | |
// by CheckArrayAccess (as there are special cases like &array[arraysize] | |
// that are explicitly defined as valid by the standard). | |
if (Opc != UO_AddrOf && Opc != UO_Deref) | |
CheckArrayAccess(Input.get()); | |
auto *UO = new (Context) | |
UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow); | |
if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) && | |
!isa<ArrayType>(UO->getType().getDesugaredType(Context))) | |
ExprEvalContexts.back().PossibleDerefs.insert(UO); | |
// Convert the result back to a half vector. | |
if (ConvertHalfVec) | |
return convertVector(UO, Context.HalfTy, *this); | |
return UO; | |
} | |
/// Determine whether the given expression is a qualified member | |
/// access expression, of a form that could be turned into a pointer to member | |
/// with the address-of operator. | |
bool Sema::isQualifiedMemberAccess(Expr *E) { | |
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | |
if (!DRE->getQualifier()) | |
return false; | |
ValueDecl *VD = DRE->getDecl(); | |
if (!VD->isCXXClassMember()) | |
return false; | |
if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD)) | |
return true; | |
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD)) | |
return Method->isInstance(); | |
return false; | |
} | |
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | |
if (!ULE->getQualifier()) | |
return false; | |
for (NamedDecl *D : ULE->decls()) { | |
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | |
if (Method->isInstance()) | |
return true; | |
} else { | |
// Overload set does not contain methods. | |
break; | |
} | |
} | |
return false; | |
} | |
return false; | |
} | |
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, | |
UnaryOperatorKind Opc, Expr *Input) { | |
// First things first: handle placeholders so that the | |
// overloaded-operator check considers the right type. | |
if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { | |
// Increment and decrement of pseudo-object references. | |
if (pty->getKind() == BuiltinType::PseudoObject && | |
UnaryOperator::isIncrementDecrementOp(Opc)) | |
return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); | |
// extension is always a builtin operator. | |
if (Opc == UO_Extension) | |
return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | |
// & gets special logic for several kinds of placeholder. | |
// The builtin code knows what to do. | |
if (Opc == UO_AddrOf && | |
(pty->getKind() == BuiltinType::Overload || | |
pty->getKind() == BuiltinType::UnknownAny || | |
pty->getKind() == BuiltinType::BoundMember)) | |
return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | |
// Anything else needs to be handled now. | |
ExprResult Result = CheckPlaceholderExpr(Input); | |
if (Result.isInvalid()) return ExprError(); | |
Input = Result.get(); | |
} | |
if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() && | |
UnaryOperator::getOverloadedOperator(Opc) != OO_None && | |
!(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { | |
// Find all of the overloaded operators visible from this | |
// point. We perform both an operator-name lookup from the local | |
// scope and an argument-dependent lookup based on the types of | |
// the arguments. | |
UnresolvedSet<16> Functions; | |
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); | |
if (S && OverOp != OO_None) | |
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), | |
Functions); | |
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); | |
} | |
return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | |
} | |
// Unary Operators. 'Tok' is the token for the operator. | |
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, | |
tok::TokenKind Op, Expr *Input) { | |
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); | |
} | |
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". | |
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, | |
LabelDecl *TheDecl) { | |
TheDecl->markUsed(Context); | |
// Create the AST node. The address of a label always has type 'void*'. | |
return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, | |
Context.getPointerType(Context.VoidTy)); | |
} | |
void Sema::ActOnStartStmtExpr() { | |
PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | |
} | |
void Sema::ActOnStmtExprError() { | |
// Note that function is also called by TreeTransform when leaving a | |
// StmtExpr scope without rebuilding anything. | |
DiscardCleanupsInEvaluationContext(); | |
PopExpressionEvaluationContext(); | |
} | |
ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, | |
SourceLocation RPLoc) { | |
return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S)); | |
} | |
ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, | |
SourceLocation RPLoc, unsigned TemplateDepth) { | |
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); | |
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); | |
if (hasAnyUnrecoverableErrorsInThisFunction()) | |
DiscardCleanupsInEvaluationContext(); | |
assert(!Cleanup.exprNeedsCleanups() && | |
"cleanups within StmtExpr not correctly bound!"); | |
PopExpressionEvaluationContext(); | |
// FIXME: there are a variety of strange constraints to enforce here, for | |
// example, it is not possible to goto into a stmt expression apparently. | |
// More semantic analysis is needed. | |
// If there are sub-stmts in the compound stmt, take the type of the last one | |
// as the type of the stmtexpr. | |
QualType Ty = Context.VoidTy; | |
bool StmtExprMayBindToTemp = false; | |
if (!Compound->body_empty()) { | |
// For GCC compatibility we get the last Stmt excluding trailing NullStmts. | |
if (const auto *LastStmt = | |
dyn_cast<ValueStmt>(Compound->getStmtExprResult())) { | |
if (const Expr *Value = LastStmt->getExprStmt()) { | |
StmtExprMayBindToTemp = true; | |
Ty = Value->getType(); | |
} | |
} | |
} | |
// FIXME: Check that expression type is complete/non-abstract; statement | |
// expressions are not lvalues. | |
Expr *ResStmtExpr = | |
new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth); | |
if (StmtExprMayBindToTemp) | |
return MaybeBindToTemporary(ResStmtExpr); | |
return ResStmtExpr; | |
} | |
ExprResult Sema::ActOnStmtExprResult(ExprResult ER) { | |
if (ER.isInvalid()) | |
return ExprError(); | |
// Do function/array conversion on the last expression, but not | |
// lvalue-to-rvalue. However, initialize an unqualified type. | |
ER = DefaultFunctionArrayConversion(ER.get()); | |
if (ER.isInvalid()) | |
return ExprError(); | |
Expr *E = ER.get(); | |
if (E->isTypeDependent()) | |
return E; | |
// In ARC, if the final expression ends in a consume, splice | |
// the consume out and bind it later. In the alternate case | |
// (when dealing with a retainable type), the result | |
// initialization will create a produce. In both cases the | |
// result will be +1, and we'll need to balance that out with | |
// a bind. | |
auto *Cast = dyn_cast<ImplicitCastExpr>(E); | |
if (Cast && Cast->getCastKind() == CK_ARCConsumeObject) | |
return Cast->getSubExpr(); | |
// FIXME: Provide a better location for the initialization. | |
return PerformCopyInitialization( | |
InitializedEntity::InitializeStmtExprResult( | |
E->getBeginLoc(), E->getType().getUnqualifiedType()), | |
SourceLocation(), E); | |
} | |
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, | |
TypeSourceInfo *TInfo, | |
ArrayRef<OffsetOfComponent> Components, | |
SourceLocation RParenLoc) { | |
QualType ArgTy = TInfo->getType(); | |
bool Dependent = ArgTy->isDependentType(); | |
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); | |
// We must have at least one component that refers to the type, and the first | |
// one is known to be a field designator. Verify that the ArgTy represents | |
// a struct/union/class. | |
if (!Dependent && !ArgTy->isRecordType()) | |
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) | |
<< ArgTy << TypeRange); | |
// Type must be complete per C99 7.17p3 because a declaring a variable | |
// with an incomplete type would be ill-formed. | |
if (!Dependent | |
&& RequireCompleteType(BuiltinLoc, ArgTy, | |
diag::err_offsetof_incomplete_type, TypeRange)) | |
return ExprError(); | |
bool DidWarnAboutNonPOD = false; | |
QualType CurrentType = ArgTy; | |
SmallVector<OffsetOfNode, 4> Comps; | |
SmallVector<Expr*, 4> Exprs; | |
for (const OffsetOfComponent &OC : Components) { | |
if (OC.isBrackets) { | |
// Offset of an array sub-field. TODO: Should we allow vector elements? | |
if (!CurrentType->isDependentType()) { | |
const ArrayType *AT = Context.getAsArrayType(CurrentType); | |
if(!AT) | |
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) | |
<< CurrentType); | |
CurrentType = AT->getElementType(); | |
} else | |
CurrentType = Context.DependentTy; | |
ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E)); | |
if (IdxRval.isInvalid()) | |
return ExprError(); | |
Expr *Idx = IdxRval.get(); | |
// The expression must be an integral expression. | |
// FIXME: An integral constant expression? | |
if (!Idx->isTypeDependent() && !Idx->isValueDependent() && | |
!Idx->getType()->isIntegerType()) | |
return ExprError( | |
Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer) | |
<< Idx->getSourceRange()); | |
// Record this array index. | |
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); | |
Exprs.push_back(Idx); | |
continue; | |
} | |
// Offset of a field. | |
if (CurrentType->isDependentType()) { | |
// We have the offset of a field, but we can't look into the dependent | |
// type. Just record the identifier of the field. | |
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); | |
CurrentType = Context.DependentTy; | |
continue; | |
} | |
// We need to have a complete type to look into. | |
if (RequireCompleteType(OC.LocStart, CurrentType, | |
diag::err_offsetof_incomplete_type)) | |
return ExprError(); | |
// Look for the designated field. | |
const RecordType *RC = CurrentType->getAs<RecordType>(); | |
if (!RC) | |
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) | |
<< CurrentType); | |
RecordDecl *RD = RC->getDecl(); | |
// C++ [lib.support.types]p5: | |
// The macro offsetof accepts a restricted set of type arguments in this | |
// International Standard. type shall be a POD structure or a POD union | |
// (clause 9). | |
// C++11 [support.types]p4: | |
// If type is not a standard-layout class (Clause 9), the results are | |
// undefined. | |
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { | |
bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD(); | |
unsigned DiagID = | |
LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type | |
: diag::ext_offsetof_non_pod_type; | |
if (!IsSafe && !DidWarnAboutNonPOD && | |
DiagRuntimeBehavior(BuiltinLoc, nullptr, | |
PDiag(DiagID) | |
<< SourceRange(Components[0].LocStart, OC.LocEnd) | |
<< CurrentType)) | |
DidWarnAboutNonPOD = true; | |
} | |
// Look for the field. | |
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); | |
LookupQualifiedName(R, RD); | |
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); | |
IndirectFieldDecl *IndirectMemberDecl = nullptr; | |
if (!MemberDecl) { | |
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) | |
MemberDecl = IndirectMemberDecl->getAnonField(); | |
} | |
if (!MemberDecl) | |
return ExprError(Diag(BuiltinLoc, diag::err_no_member) | |
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart, | |
OC.LocEnd)); | |
// C99 7.17p3: | |
// (If the specified member is a bit-field, the behavior is undefined.) | |
// | |
// We diagnose this as an error. | |
if (MemberDecl->isBitField()) { | |
Diag(OC.LocEnd, diag::err_offsetof_bitfield) | |
<< MemberDecl->getDeclName() | |
<< SourceRange(BuiltinLoc, RParenLoc); | |
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); | |
return ExprError(); | |
} | |
RecordDecl *Parent = MemberDecl->getParent(); | |
if (IndirectMemberDecl) | |
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); | |
// If the member was found in a base class, introduce OffsetOfNodes for | |
// the base class indirections. | |
CXXBasePaths Paths; | |
if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent), | |
Paths)) { | |
if (Paths.getDetectedVirtual()) { | |
Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base) | |
<< MemberDecl->getDeclName() | |
<< SourceRange(BuiltinLoc, RParenLoc); | |
return ExprError(); | |
} | |
CXXBasePath &Path = Paths.front(); | |
for (const CXXBasePathElement &B : Path) | |
Comps.push_back(OffsetOfNode(B.Base)); | |
} | |
if (IndirectMemberDecl) { | |
for (auto *FI : IndirectMemberDecl->chain()) { | |
assert(isa<FieldDecl>(FI)); | |
Comps.push_back(OffsetOfNode(OC.LocStart, | |
cast<FieldDecl>(FI), OC.LocEnd)); | |
} | |
} else | |
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); | |
CurrentType = MemberDecl->getType().getNonReferenceType(); | |
} | |
return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, | |
Comps, Exprs, RParenLoc); | |
} | |
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, | |
SourceLocation BuiltinLoc, | |
SourceLocation TypeLoc, | |
ParsedType ParsedArgTy, | |
ArrayRef<OffsetOfComponent> Components, | |
SourceLocation RParenLoc) { | |
TypeSourceInfo *ArgTInfo; | |
QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); | |
if (ArgTy.isNull()) | |
return ExprError(); | |
if (!ArgTInfo) | |
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); | |
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc); | |
} | |
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, | |
Expr *CondExpr, | |
Expr *LHSExpr, Expr *RHSExpr, | |
SourceLocation RPLoc) { | |
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); | |
ExprValueKind VK = VK_RValue; | |
ExprObjectKind OK = OK_Ordinary; | |
QualType resType; | |
bool CondIsTrue = false; | |
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { | |
resType = Context.DependentTy; | |
} else { | |
// The conditional expression is required to be a constant expression. | |
llvm::APSInt condEval(32); | |
ExprResult CondICE | |
= VerifyIntegerConstantExpression(CondExpr, &condEval, | |
diag::err_typecheck_choose_expr_requires_constant, false); | |
if (CondICE.isInvalid()) | |
return ExprError(); | |
CondExpr = CondICE.get(); | |
CondIsTrue = condEval.getZExtValue(); | |
// If the condition is > zero, then the AST type is the same as the LHSExpr. | |
Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr; | |
resType = ActiveExpr->getType(); | |
VK = ActiveExpr->getValueKind(); | |
OK = ActiveExpr->getObjectKind(); | |
} | |
return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, | |
resType, VK, OK, RPLoc, CondIsTrue); | |
} | |
//===----------------------------------------------------------------------===// | |
// Clang Extensions. | |
//===----------------------------------------------------------------------===// | |
/// ActOnBlockStart - This callback is invoked when a block literal is started. | |
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { | |
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); | |
if (LangOpts.CPlusPlus) { | |
MangleNumberingContext *MCtx; | |
Decl *ManglingContextDecl; | |
std::tie(MCtx, ManglingContextDecl) = | |
getCurrentMangleNumberContext(Block->getDeclContext()); | |
if (MCtx) { | |
unsigned ManglingNumber = MCtx->getManglingNumber(Block); | |
Block->setBlockMangling(ManglingNumber, ManglingContextDecl); | |
} | |
} | |
PushBlockScope(CurScope, Block); | |
CurContext->addDecl(Block); | |
if (CurScope) | |
PushDeclContext(CurScope, Block); | |
else | |
CurContext = Block; | |
getCurBlock()->HasImplicitReturnType = true; | |
// Enter a new evaluation context to insulate the block from any | |
// cleanups from the enclosing full-expression. | |
PushExpressionEvaluationContext( | |
ExpressionEvaluationContext::PotentiallyEvaluated); | |
} | |
void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, | |
Scope *CurScope) { | |
assert(ParamInfo.getIdentifier() == nullptr && | |
"block-id should have no identifier!"); | |
assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext); | |
BlockScopeInfo *CurBlock = getCurBlock(); | |
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); | |
QualType T = Sig->getType(); | |
// FIXME: We should allow unexpanded parameter packs here, but that would, | |
// in turn, make the block expression contain unexpanded parameter packs. | |
if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) { | |
// Drop the parameters. | |
FunctionProtoType::ExtProtoInfo EPI; | |
EPI.HasTrailingReturn = false; | |
EPI.TypeQuals.addConst(); | |
T = Context.getFunctionType(Context.DependentTy, None, EPI); | |
Sig = Context.getTrivialTypeSourceInfo(T); | |
} | |
// GetTypeForDeclarator always produces a function type for a block | |
// literal signature. Furthermore, it is always a FunctionProtoType | |
// unless the function was written with a typedef. | |
assert(T->isFunctionType() && | |
"GetTypeForDeclarator made a non-function block signature"); | |
// Look for an explicit signature in that function type. | |
FunctionProtoTypeLoc ExplicitSignature; | |
if ((ExplicitSignature = Sig->getTypeLoc() | |
.getAsAdjusted<FunctionProtoTypeLoc>())) { | |
// Check whether that explicit signature was synthesized by | |
// GetTypeForDeclarator. If so, don't save that as part of the | |
// written signature. | |
if (ExplicitSignature.getLocalRangeBegin() == | |
ExplicitSignature.getLocalRangeEnd()) { | |
// This would be much cheaper if we stored TypeLocs instead of | |
// TypeSourceInfos. | |
TypeLoc Result = ExplicitSignature.getReturnLoc(); | |
unsigned Size = Result.getFullDataSize(); | |
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); | |
Sig->getTypeLoc().initializeFullCopy(Result, Size); | |
ExplicitSignature = FunctionProtoTypeLoc(); | |
} | |
} | |
CurBlock->TheDecl->setSignatureAsWritten(Sig); | |
CurBlock->FunctionType = T; | |
const FunctionType *Fn = T->getAs<FunctionType>(); | |
QualType RetTy = Fn->getReturnType(); | |
bool isVariadic = | |
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); | |
CurBlock->TheDecl->setIsVariadic(isVariadic); | |
// Context.DependentTy is used as a placeholder for a missing block | |
// return type. TODO: what should we do with declarators like: | |
// ^ * { ... } | |
// If the answer is "apply template argument deduction".... | |
if (RetTy != Context.DependentTy) { | |
CurBlock->ReturnType = RetTy; | |
CurBlock->TheDecl->setBlockMissingReturnType(false); | |
CurBlock->HasImplicitReturnType = false; | |
} | |
// Push block parameters from the declarator if we had them. | |
SmallVector<ParmVarDecl*, 8> Params; | |
if (ExplicitSignature) { | |
for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) { | |
ParmVarDecl *Param = ExplicitSignature.getParam(I); | |
if (Param->getIdentifier() == nullptr && !Param->isImplicit() && | |
!Param->isInvalidDecl() && !getLangOpts().CPlusPlus) { | |
// Diagnose this as an extension in C17 and earlier. | |
if (!getLangOpts().C2x) | |
Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); | |
} | |
Params.push_back(Param); | |
} | |
// Fake up parameter variables if we have a typedef, like | |
// ^ fntype { ... } | |
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { | |
for (const auto &I : Fn->param_types()) { | |
ParmVarDecl *Param = BuildParmVarDeclForTypedef( | |
CurBlock->TheDecl, ParamInfo.getBeginLoc(), I); | |
Params.push_back(Param); | |
} | |
} | |
// Set the parameters on the block decl. | |
if (!Params.empty()) { | |
CurBlock->TheDecl->setParams(Params); | |
CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(), | |
/*CheckParameterNames=*/false); | |
} | |
// Finally we can process decl attributes. | |
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); | |
// Put the parameter variables in scope. | |
for (auto AI : CurBlock->TheDecl->parameters()) { | |
AI->setOwningFunction(CurBlock->TheDecl); | |
// If this has an identifier, add it to the scope stack. | |
if (AI->getIdentifier()) { | |
CheckShadow(CurBlock->TheScope, AI); | |
PushOnScopeChains(AI, CurBlock->TheScope); | |
} | |
} | |
} | |
/// ActOnBlockError - If there is an error parsing a block, this callback | |
/// is invoked to pop the information about the block from the action impl. | |
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { | |
// Leave the expression-evaluation context. | |
DiscardCleanupsInEvaluationContext(); | |
PopExpressionEvaluationContext(); | |
// Pop off CurBlock, handle nested blocks. | |
PopDeclContext(); | |
PopFunctionScopeInfo(); | |
} | |
/// ActOnBlockStmtExpr - This is called when the body of a block statement | |
/// literal was successfully completed. ^(int x){...} | |
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, | |
Stmt *Body, Scope *CurScope) { | |
// If blocks are disabled, emit an error. | |
if (!LangOpts.Blocks) | |
Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL; | |
// Leave the expression-evaluation context. | |
if (hasAnyUnrecoverableErrorsInThisFunction()) | |
DiscardCleanupsInEvaluationContext(); | |
assert(!Cleanup.exprNeedsCleanups() && | |
"cleanups within block not correctly bound!"); | |
PopExpressionEvaluationContext(); | |
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); | |
BlockDecl *BD = BSI->TheDecl; | |
if (BSI->HasImplicitReturnType) | |
deduceClosureReturnType(*BSI); | |
QualType RetTy = Context.VoidTy; | |
if (!BSI->ReturnType.isNull()) | |
RetTy = BSI->ReturnType; | |
bool NoReturn = BD->hasAttr<NoReturnAttr>(); | |
QualType BlockTy; | |
// If the user wrote a function type in some form, try to use that. | |
if (!BSI->FunctionType.isNull()) { | |
const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>(); | |
FunctionType::ExtInfo Ext = FTy->getExtInfo(); | |
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); | |
// Turn protoless block types into nullary block types. | |
if (isa<FunctionNoProtoType>(FTy)) { | |
FunctionProtoType::ExtProtoInfo EPI; | |
EPI.ExtInfo = Ext; | |
BlockTy = Context.getFunctionType(RetTy, None, EPI); | |
// Otherwise, if we don't need to change anything about the function type, | |
// preserve its sugar structure. | |
} else if (FTy->getReturnType() == RetTy && | |
(!NoReturn || FTy->getNoReturnAttr())) { | |
BlockTy = BSI->FunctionType; | |
// Otherwise, make the minimal modifications to the function type. | |
} else { | |
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); | |
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |
EPI.TypeQuals = Qualifiers(); | |
EPI.ExtInfo = Ext; | |
BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI); | |
} | |
// If we don't have a function type, just build one from nothing. | |
} else { | |
FunctionProtoType::ExtProtoInfo EPI; | |
EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); | |
BlockTy = Context.getFunctionType(RetTy, None, EPI); | |
} | |
DiagnoseUnusedParameters(BD->parameters()); | |
BlockTy = Context.getBlockPointerType(BlockTy); | |
// If needed, diagnose invalid gotos and switches in the block. | |
if (getCurFunction()->NeedsScopeChecking() && | |
!PP.isCodeCompletionEnabled()) | |
DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); | |
BD->setBody(cast<CompoundStmt>(Body)); | |
if (Body && getCurFunction()->HasPotentialAvailabilityViolations) | |
DiagnoseUnguardedAvailabilityViolations(BD); | |
// Try to apply the named return value optimization. We have to check again | |
// if we can do this, though, because blocks keep return statements around | |
// to deduce an implicit return type. | |
if (getLangOpts().CPlusPlus && RetTy->isRecordType() && | |
!BD->isDependentContext()) | |
computeNRVO(Body, BSI); | |
if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() || | |
RetTy.hasNonTrivialToPrimitiveCopyCUnion()) | |
checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn, | |
NTCUK_Destruct|NTCUK_Copy); | |
PopDeclContext(); | |
// Pop the block scope now but keep it alive to the end of this function. | |
AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | |
PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy); | |
// Set the captured variables on the block. | |
SmallVector<BlockDecl::Capture, 4> Captures; | |
for (Capture &Cap : BSI->Captures) { | |
if (Cap.isInvalid() || Cap.isThisCapture()) | |
continue; | |
VarDecl *Var = Cap.getVariable(); | |
Expr *CopyExpr = nullptr; | |
if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) { | |
if (const RecordType *Record = | |
Cap.getCaptureType()->getAs<RecordType>()) { | |
// The capture logic needs the destructor, so make sure we mark it. | |
// Usually this is unnecessary because most local variables have | |
// their destructors marked at declaration time, but parameters are | |
// an exception because it's technically only the call site that | |
// actually requires the destructor. | |
if (isa<ParmVarDecl>(Var)) | |
FinalizeVarWithDestructor(Var, Record); | |
// Enter a separate potentially-evaluated context while building block | |
// initializers to isolate their cleanups from those of the block | |
// itself. | |
// FIXME: Is this appropriate even when the block itself occurs in an | |
// unevaluated operand? | |
EnterExpressionEvaluationContext EvalContext( | |
*this, ExpressionEvaluationContext::PotentiallyEvaluated); | |
SourceLocation Loc = Cap.getLocation(); | |
ExprResult Result = BuildDeclarationNameExpr( | |
CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); | |
// According to the blocks spec, the capture of a variable from | |
// the stack requires a const copy constructor. This is not true | |
// of the copy/move done to move a __block variable to the heap. | |
if (!Result.isInvalid() && | |
!Result.get()->getType().isConstQualified()) { | |
Result = ImpCastExprToType(Result.get(), | |
Result.get()->getType().withConst(), | |
CK_NoOp, VK_LValue); | |
} | |
if (!Result.isInvalid()) { | |
Result = PerformCopyInitialization( | |
InitializedEntity::InitializeBlock(Var->getLocation(), | |
Cap.getCaptureType(), false), | |
Loc, Result.get()); | |
} | |
// Build a full-expression copy expression if initialization | |
// succeeded and used a non-trivial constructor. Recover from | |
// errors by pretending that the copy isn't necessary. | |
if (!Result.isInvalid() && | |
!cast<CXXConstructExpr>(Result.get())->getConstructor() | |
->isTrivial()) { | |
Result = MaybeCreateExprWithCleanups(Result); | |
CopyExpr = Result.get(); | |
} | |
} | |
} | |
BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(), | |
CopyExpr); | |
Captures.push_back(NewCap); | |
} | |
BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0); | |
BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy); | |
// If the block isn't obviously global, i.e. it captures anything at | |
// all, then we need to do a few things in the surrounding context: | |
if (Result->getBlockDecl()->hasCaptures()) { | |
// First, this expression has a new cleanup object. | |
ExprCleanupObjects.push_back(Result->getBlockDecl()); | |
Cleanup.setExprNeedsCleanups(true); | |
// It also gets a branch-protected scope if any of the captured | |
// variables needs destruction. | |
for (const auto &CI : Result->getBlockDecl()->captures()) { | |
const VarDecl *var = CI.getVariable(); | |
if (var->getType().isDestructedType() != QualType::DK_none) { | |
setFunctionHasBranchProtectedScope(); | |
break; | |
} | |
} | |
} | |
if (getCurFunction()) | |
getCurFunction()->addBlock(BD); | |
return Result; | |
} | |
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, | |
SourceLocation RPLoc) { | |
TypeSourceInfo *TInfo; | |
GetTypeFromParser(Ty, &TInfo); | |
return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); | |
} | |
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, | |
Expr *E, TypeSourceInfo *TInfo, | |
SourceLocation RPLoc) { | |
Expr *OrigExpr = E; | |
bool IsMS = false; | |
// CUDA device code does not support varargs. | |
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { | |
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) { | |
CUDAFunctionTarget T = IdentifyCUDATarget(F); | |
if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice) | |
return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device)); | |
} | |
} | |
// NVPTX does not support va_arg expression. | |
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && | |
Context.getTargetInfo().getTriple().isNVPTX()) | |
targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device); | |
// It might be a __builtin_ms_va_list. (But don't ever mark a va_arg() | |
// as Microsoft ABI on an actual Microsoft platform, where | |
// __builtin_ms_va_list and __builtin_va_list are the same.) | |
if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() && | |
Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) { | |
QualType MSVaListType = Context.getBuiltinMSVaListType(); | |
if (Context.hasSameType(MSVaListType, E->getType())) { | |
if (CheckForModifiableLvalue(E, BuiltinLoc, *this)) | |
return ExprError(); | |
IsMS = true; | |
} | |
} | |
// Get the va_list type | |
QualType VaListType = Context.getBuiltinVaListType(); | |
if (!IsMS) { | |
if (VaListType->isArrayType()) { | |
// Deal with implicit array decay; for example, on x86-64, | |
// va_list is an array, but it's supposed to decay to | |
// a pointer for va_arg. | |
VaListType = Context.getArrayDecayedType(VaListType); | |
// Make sure the input expression also decays appropriately. | |
ExprResult Result = UsualUnaryConversions(E); | |
if (Result.isInvalid()) | |
return ExprError(); | |
E = Result.get(); | |
} else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) { | |
// If va_list is a record type and we are compiling in C++ mode, | |
// check the argument using reference binding. | |
InitializedEntity Entity = InitializedEntity::InitializeParameter( | |
Context, Context.getLValueReferenceType(VaListType), false); | |
ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E); | |
if (Init.isInvalid()) | |
return ExprError(); | |
E = Init.getAs<Expr>(); | |
} else { | |
// Otherwise, the va_list argument must be an l-value because | |
// it is modified by va_arg. | |
if (!E->isTypeDependent() && | |
CheckForModifiableLvalue(E, BuiltinLoc, *this)) | |
return ExprError(); | |
} | |
} | |
if (!IsMS && !E->isTypeDependent() && | |
!Context.hasSameType(VaListType, E->getType())) | |
return ExprError( | |
Diag(E->getBeginLoc(), | |
diag::err_first_argument_to_va_arg_not_of_type_va_list) | |
<< OrigExpr->getType() << E->getSourceRange()); | |
if (!TInfo->getType()->isDependentType()) { | |
if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), | |
diag::err_second_parameter_to_va_arg_incomplete, | |
TInfo->getTypeLoc())) | |
return ExprError(); | |
if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), | |
TInfo->getType(), | |
diag::err_second_parameter_to_va_arg_abstract, | |
TInfo->getTypeLoc())) | |
return ExprError(); | |
if (!TInfo->getType().isPODType(Context)) { | |
Diag(TInfo->getTypeLoc().getBeginLoc(), | |
TInfo->getType()->isObjCLifetimeType() | |
? diag::warn_second_parameter_to_va_arg_ownership_qualified | |
: diag::warn_second_parameter_to_va_arg_not_pod) | |
<< TInfo->getType() | |
<< TInfo->getTypeLoc().getSourceRange(); | |
} | |
// Check for va_arg where arguments of the given type will be promoted | |
// (i.e. this va_arg is guaranteed to have undefined behavior). | |
QualType PromoteType; | |
if (TInfo->getType()->isPromotableIntegerType()) { | |
PromoteType = Context.getPromotedIntegerType(TInfo->getType()); | |
if (Context.typesAreCompatible(PromoteType, TInfo->getType())) | |
PromoteType = QualType(); | |
} | |
if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) | |
PromoteType = Context.DoubleTy; | |
if (!PromoteType.isNull()) | |
DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E, | |
PDiag(diag::warn_second_parameter_to_va_arg_never_compatible) | |
<< TInfo->getType() | |
<< PromoteType | |
<< TInfo->getTypeLoc().getSourceRange()); | |
} | |
QualType T = TInfo->getType().getNonLValueExprType(Context); | |
return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS); | |
} | |
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { | |
// The type of __null will be int or long, depending on the size of | |
// pointers on the target. | |
QualType Ty; | |
unsigned pw = Context.getTargetInfo().getPointerWidth(0); | |
if (pw == Context.getTargetInfo().getIntWidth()) | |
Ty = Context.IntTy; | |
else if (pw == Context.getTargetInfo().getLongWidth()) | |
Ty = Context.LongTy; | |
else if (pw == Context.getTargetInfo().getLongLongWidth()) | |
Ty = Context.LongLongTy; | |
else { | |
llvm_unreachable("I don't know size of pointer!"); | |
} | |
return new (Context) GNUNullExpr(Ty, TokenLoc); | |
} | |
ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, | |
SourceLocation BuiltinLoc, | |
SourceLocation RPLoc) { | |
return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext); | |
} | |
ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, | |
SourceLocation BuiltinLoc, | |
SourceLocation RPLoc, | |
DeclContext *ParentContext) { | |
return new (Context) | |
SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext); | |
} | |
bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp, | |
bool Diagnose) { | |
if (!getLangOpts().ObjC) | |
return false; | |
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); | |
if (!PT) | |
return false; | |
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); | |
// Ignore any parens, implicit casts (should only be | |
// array-to-pointer decays), and not-so-opaque values. The last is | |
// important for making this trigger for property assignments. | |
Expr *SrcExpr = Exp->IgnoreParenImpCasts(); | |
if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr)) | |
if (OV->getSourceExpr()) | |
SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); | |
if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) { | |
if (!PT->isObjCIdType() && | |
!(ID && ID->getIdentifier()->isStr("NSString"))) | |
return false; | |
if (!SL->isAscii()) | |
return false; | |
if (Diagnose) { | |
Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix) | |
<< /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@"); | |
Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get(); | |
} | |
return true; | |
} | |
if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) || | |
isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) || | |
isa<CXXBoolLiteralExpr>(SrcExpr)) && | |
!SrcExpr->isNullPointerConstant( | |
getASTContext(), Expr::NPC_NeverValueDependent)) { | |
if (!ID || !ID->getIdentifier()->isStr("NSNumber")) | |
return false; | |
if (Diagnose) { | |
Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix) | |
<< /*number*/1 | |
<< FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@"); | |
Expr *NumLit = | |
BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get(); | |
if (NumLit) | |
Exp = NumLit; | |
} | |
return true; | |
} | |
return false; | |
} | |
static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType, | |
const Expr *SrcExpr) { | |
if (!DstType->isFunctionPointerType() || | |
!SrcExpr->getType()->isFunctionType()) | |
return false; | |
auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts()); | |
if (!DRE) | |
return false; | |
auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | |
if (!FD) | |
return false; | |
return !S.checkAddressOfFunctionIsAvailable(FD, | |
/*Complain=*/true, | |
SrcExpr->getBeginLoc()); | |
} | |
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, | |
SourceLocation Loc, | |
QualType DstType, QualType SrcType, | |
Expr *SrcExpr, AssignmentAction Action, | |
bool *Complained) { | |
if (Complained) | |
*Complained = false; | |
// Decode the result (notice that AST's are still created for extensions). | |
bool CheckInferredResultType = false; | |
bool isInvalid = false; | |
unsigned DiagKind = 0; | |
FixItHint Hint; | |
ConversionFixItGenerator ConvHints; | |
bool MayHaveConvFixit = false; | |
bool MayHaveFunctionDiff = false; | |
const ObjCInterfaceDecl *IFace = nullptr; | |
const ObjCProtocolDecl *PDecl = nullptr; | |
switch (ConvTy) { | |
case Compatible: | |
DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr); | |
return false; | |
case PointerToInt: | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_pointer_int; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_pointer_int; | |
} | |
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |
MayHaveConvFixit = true; | |
break; | |
case IntToPointer: | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_int_pointer; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_int_pointer; | |
} | |
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |
MayHaveConvFixit = true; | |
break; | |
case IncompatibleFunctionPointer: | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_incompatible_function_pointer; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer; | |
} | |
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |
MayHaveConvFixit = true; | |
break; | |
case IncompatiblePointer: | |
if (Action == AA_Passing_CFAudited) { | |
DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer; | |
} else if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_incompatible_pointer; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_incompatible_pointer; | |
} | |
CheckInferredResultType = DstType->isObjCObjectPointerType() && | |
SrcType->isObjCObjectPointerType(); | |
if (Hint.isNull() && !CheckInferredResultType) { | |
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |
} | |
else if (CheckInferredResultType) { | |
SrcType = SrcType.getUnqualifiedType(); | |
DstType = DstType.getUnqualifiedType(); | |
} | |
MayHaveConvFixit = true; | |
break; | |
case IncompatiblePointerSign: | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; | |
} | |
break; | |
case FunctionVoidPointer: | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_pointer_void_func; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_pointer_void_func; | |
} | |
break; | |
case IncompatiblePointerDiscardsQualifiers: { | |
// Perform array-to-pointer decay if necessary. | |
if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); | |
isInvalid = true; | |
Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); | |
Qualifiers rhq = DstType->getPointeeType().getQualifiers(); | |
if (lhq.getAddressSpace() != rhq.getAddressSpace()) { | |
DiagKind = diag::err_typecheck_incompatible_address_space; | |
break; | |
} else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { | |
DiagKind = diag::err_typecheck_incompatible_ownership; | |
break; | |
} | |
llvm_unreachable("unknown error case for discarding qualifiers!"); | |
// fallthrough | |
} | |
case CompatiblePointerDiscardsQualifiers: | |
// If the qualifiers lost were because we were applying the | |
// (deprecated) C++ conversion from a string literal to a char* | |
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: | |
// Ideally, this check would be performed in | |
// checkPointerTypesForAssignment. However, that would require a | |
// bit of refactoring (so that the second argument is an | |
// expression, rather than a type), which should be done as part | |
// of a larger effort to fix checkPointerTypesForAssignment for | |
// C++ semantics. | |
if (getLangOpts().CPlusPlus && | |
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) | |
return false; | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_typecheck_convert_discards_qualifiers; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::ext_typecheck_convert_discards_qualifiers; | |
} | |
break; | |
case IncompatibleNestedPointerQualifiers: | |
if (getLangOpts().CPlusPlus) { | |
isInvalid = true; | |
DiagKind = diag::err_nested_pointer_qualifier_mismatch; | |
} else { | |
DiagKind = diag::ext_nested_pointer_qualifier_mismatch; | |
} | |
break; | |
case IncompatibleNestedPointerAddressSpaceMismatch: | |
DiagKind = diag::err_typecheck_incompatible_nested_address_space; | |
isInvalid = true; | |
break; | |
case IntToBlockPointer: | |
DiagKind = diag::err_int_to_block_pointer; | |
isInvalid = true; | |
break; | |
case IncompatibleBlockPointer: | |
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; | |
isInvalid = true; | |
break; | |
case IncompatibleObjCQualifiedId: { | |
if (SrcType->isObjCQualifiedIdType()) { | |
const ObjCObjectPointerType *srcOPT = | |
SrcType->castAs<ObjCObjectPointerType>(); | |
for (auto *srcProto : srcOPT->quals()) { | |
PDecl = srcProto; | |
break; | |
} | |
if (const ObjCInterfaceType *IFaceT = | |
DstType->castAs<ObjCObjectPointerType>()->getInterfaceType()) | |
IFace = IFaceT->getDecl(); | |
} | |
else if (DstType->isObjCQualifiedIdType()) { | |
const ObjCObjectPointerType *dstOPT = | |
DstType->castAs<ObjCObjectPointerType>(); | |
for (auto *dstProto : dstOPT->quals()) { | |
PDecl = dstProto; | |
break; | |
} | |
if (const ObjCInterfaceType *IFaceT = | |
SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType()) | |
IFace = IFaceT->getDecl(); | |
} | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_incompatible_qualified_id; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::warn_incompatible_qualified_id; | |
} | |
break; | |
} | |
case IncompatibleVectors: | |
if (getLangOpts().CPlusPlus) { | |
DiagKind = diag::err_incompatible_vectors; | |
isInvalid = true; | |
} else { | |
DiagKind = diag::warn_incompatible_vectors; | |
} | |
break; | |
case IncompatibleObjCWeakRef: | |
DiagKind = diag::err_arc_weak_unavailable_assign; | |
isInvalid = true; | |
break; | |
case Incompatible: | |
if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) { | |
if (Complained) | |
*Complained = true; | |
return true; | |
} | |
DiagKind = diag::err_typecheck_convert_incompatible; | |
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |
MayHaveConvFixit = true; | |
isInvalid = true; | |
MayHaveFunctionDiff = true; | |
break; | |
} | |
QualType FirstType, SecondType; | |
switch (Action) { | |
case AA_Assigning: | |
case AA_Initializing: | |
// The destination type comes first. | |
FirstType = DstType; | |
SecondType = SrcType; | |
break; | |
case AA_Returning: | |
case AA_Passing: | |
case AA_Passing_CFAudited: | |
case AA_Converting: | |
case AA_Sending: | |
case AA_Casting: | |
// The source type comes first. | |
FirstType = SrcType; | |
SecondType = DstType; | |
break; | |
} | |
PartialDiagnostic FDiag = PDiag(DiagKind); | |
if (Action == AA_Passing_CFAudited) | |
FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange(); | |
else | |
FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange(); | |
// If we can fix the conversion, suggest the FixIts. | |
assert(ConvHints.isNull() || Hint.isNull()); | |
if (!ConvHints.isNull()) { | |
for (FixItHint &H : ConvHints.Hints) | |
FDiag << H; | |
} else { | |
FDiag << Hint; | |
} | |
if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } | |
if (MayHaveFunctionDiff) | |
HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); | |
Diag(Loc, FDiag); | |
if ((DiagKind == diag::warn_incompatible_qualified_id || | |
DiagKind == diag::err_incompatible_qualified_id) && | |
PDecl && IFace && !IFace->hasDefinition()) | |
Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id) | |
<< IFace << PDecl; | |
if (SecondType == Context.OverloadTy) | |
NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, | |
FirstType, /*TakingAddress=*/true); | |
if (CheckInferredResultType) | |
EmitRelatedResultTypeNote(SrcExpr); | |
if (Action == AA_Returning && ConvTy == IncompatiblePointer) | |
EmitRelatedResultTypeNoteForReturn(DstType); | |
if (Complained) | |
*Complained = true; | |
return isInvalid; | |
} | |
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, | |
llvm::APSInt *Result) { | |
class SimpleICEDiagnoser : public VerifyICEDiagnoser { | |
public: | |
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override { | |
S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR; | |
} | |
} Diagnoser; | |
return VerifyIntegerConstantExpression(E, Result, Diagnoser); | |
} | |
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, | |
llvm::APSInt *Result, | |
unsigned DiagID, | |
bool AllowFold) { | |
class IDDiagnoser : public VerifyICEDiagnoser { | |
unsigned DiagID; | |
public: | |
IDDiagnoser(unsigned DiagID) | |
: VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { } | |
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override { | |
S.Diag(Loc, DiagID) << SR; | |
} | |
} Diagnoser(DiagID); | |
return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold); | |
} | |
void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc, | |
SourceRange SR) { | |
S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus; | |
} | |
ExprResult | |
Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, | |
VerifyICEDiagnoser &Diagnoser, | |
bool AllowFold) { | |
SourceLocation DiagLoc = E->getBeginLoc(); | |
if (getLangOpts().CPlusPlus11) { | |
// C++11 [expr.const]p5: | |
// If an expression of literal class type is used in a context where an | |
// integral constant expression is required, then that class type shall | |
// have a single non-explicit conversion function to an integral or | |
// unscoped enumeration type | |
ExprResult Converted; | |
class CXX11ConvertDiagnoser : public ICEConvertDiagnoser { | |
public: | |
CXX11ConvertDiagnoser(bool Silent) | |
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, | |
Silent, true) {} | |
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, | |
QualType T) override { | |
return S.Diag(Loc, diag::err_ice_not_integral) << T; | |
} | |
SemaDiagnosticBuilder diagnoseIncomplete( | |
Sema &S, SourceLocation Loc, QualType T) override { | |
return S.Diag(Loc, diag::err_ice_incomplete_type) << T; | |
} | |
SemaDiagnosticBuilder diagnoseExplicitConv( | |
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | |
return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy; | |
} | |
SemaDiagnosticBuilder noteExplicitConv( | |
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | |
return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) | |
<< ConvTy->isEnumeralType() << ConvTy; | |
} | |
SemaDiagnosticBuilder diagnoseAmbiguous( | |
Sema &S, SourceLocation Loc, QualType T) override { | |
return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T; | |
} | |
SemaDiagnosticBuilder noteAmbiguous( | |
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | |
return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) | |
<< ConvTy->isEnumeralType() << ConvTy; | |
} | |
SemaDiagnosticBuilder diagnoseConversion( | |
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | |
llvm_unreachable("conversion functions are permitted"); | |
} | |
} ConvertDiagnoser(Diagnoser.Suppress); | |
Converted = PerformContextualImplicitConversion(DiagLoc, E, | |
ConvertDiagnoser); | |
if (Converted.isInvalid()) | |
return Converted; | |
E = Converted.get(); | |
if (!E->getType()->isIntegralOrUnscopedEnumerationType()) | |
return ExprError(); | |
} else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { | |
// An ICE must be of integral or unscoped enumeration type. | |
if (!Diagnoser.Suppress) | |
Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange()); | |
return ExprError(); | |
} | |
ExprResult RValueExpr = DefaultLvalueConversion(E); | |
if (RValueExpr.isInvalid()) | |
return ExprError(); | |
E = RValueExpr.get(); | |
// Circumvent ICE checking in C++11 to avoid evaluating the expression twice | |
// in the non-ICE case. | |
if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) { | |
if (Result) | |
*Result = E->EvaluateKnownConstIntCheckOverflow(Context); | |
if (!isa<ConstantExpr>(E)) | |
E = ConstantExpr::Create(Context, E); | |
return E; | |
} | |
Expr::EvalResult EvalResult; | |
SmallVector<PartialDiagnosticAt, 8> Notes; | |
EvalResult.Diag = &Notes; | |
// Try to evaluate the expression, and produce diagnostics explaining why it's | |
// not a constant expression as a side-effect. | |
bool Folded = | |
E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) && | |
EvalResult.Val.isInt() && !EvalResult.HasSideEffects; | |
if (!isa<ConstantExpr>(E)) | |
E = ConstantExpr::Create(Context, E, EvalResult.Val); | |
// In C++11, we can rely on diagnostics being produced for any expression | |
// which is not a constant expression. If no diagnostics were produced, then | |
// this is a constant expression. | |
if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) { | |
if (Result) | |
*Result = EvalResult.Val.getInt(); | |
return E; | |
} | |
// If our only note is the usual "invalid subexpression" note, just point | |
// the caret at its location rather than producing an essentially | |
// redundant note. | |
if (Notes.size() == 1 && Notes[0].second.getDiagID() == | |
diag::note_invalid_subexpr_in_const_expr) { | |
DiagLoc = Notes[0].first; | |
Notes.clear(); | |
} | |
if (!Folded || !AllowFold) { | |
if (!Diagnoser.Suppress) { | |
Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange()); | |
for (const PartialDiagnosticAt &Note : Notes) | |
Diag(Note.first, Note.second); | |
} | |
return ExprError(); | |
} | |
Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange()); | |
for (const PartialDiagnosticAt &Note : Notes) | |
Diag(Note.first, Note.second); | |
if (Result) | |
*Result = EvalResult.Val.getInt(); | |
return E; | |
} | |
namespace { | |
// Handle the case where we conclude a expression which we speculatively | |
// considered to be unevaluated is actually evaluated. | |
class TransformToPE : public TreeTransform<TransformToPE> { | |
typedef TreeTransform<TransformToPE> BaseTransform; | |
public: | |
TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { } | |
// Make sure we redo semantic analysis | |
bool AlwaysRebuild() { return true; } | |
bool ReplacingOriginal() { return true; } | |
// We need to special-case DeclRefExprs referring to FieldDecls which | |
// are not part of a member pointer formation; normal TreeTransforming | |
// doesn't catch this case because of the way we represent them in the AST. | |
// FIXME: This is a bit ugly; is it really the best way to handle this | |
// case? | |
// | |
// Error on DeclRefExprs referring to FieldDecls. | |
ExprResult TransformDeclRefExpr(DeclRefExpr *E) { | |
if (isa<FieldDecl>(E->getDecl()) && | |
!SemaRef.isUnevaluatedContext()) | |
return SemaRef.Diag(E->getLocation(), | |
diag::err_invalid_non_static_member_use) | |
<< E->getDecl() << E->getSourceRange(); | |
return BaseTransform::TransformDeclRefExpr(E); | |
} | |
// Exception: filter out member pointer formation | |
ExprResult TransformUnaryOperator(UnaryOperator *E) { | |
if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType()) | |
return E; | |
return BaseTransform::TransformUnaryOperator(E); | |
} | |
// The body of a lambda-expression is in a separate expression evaluation | |
// context so never needs to be transformed. | |
// FIXME: Ideally we wouldn't transform the closure type either, and would | |
// just recreate the capture expressions and lambda expression. | |
StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) { | |
return SkipLambdaBody(E, Body); | |
} | |
}; | |
} | |
ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) { | |
assert(isUnevaluatedContext() && | |
"Should only transform unevaluated expressions"); | |
ExprEvalContexts.back().Context = | |
ExprEvalContexts[ExprEvalContexts.size()-2].Context; | |
if (isUnevaluatedContext()) | |
return E; | |
return TransformToPE(*this).TransformExpr(E); | |
} | |
void | |
Sema::PushExpressionEvaluationContext( | |
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl, | |
ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { | |
ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup, | |
LambdaContextDecl, ExprContext); | |
Cleanup.reset(); | |
if (!MaybeODRUseExprs.empty()) | |
std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs); | |
} | |
void | |
Sema::PushExpressionEvaluationContext( | |
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, | |
ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { | |
Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl; | |
PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext); | |
} | |
namespace { | |
const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) { | |
PossibleDeref = PossibleDeref->IgnoreParenImpCasts(); | |
if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) { | |
if (E->getOpcode() == UO_Deref) | |
return CheckPossibleDeref(S, E->getSubExpr()); | |
} else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) { | |
return CheckPossibleDeref(S, E->getBase()); | |
} else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) { | |
return CheckPossibleDeref(S, E->getBase()); | |
} else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) { | |
QualType Inner; | |
QualType Ty = E->getType(); | |
if (const auto *Ptr = Ty->getAs<PointerType>()) | |
Inner = Ptr->getPointeeType(); | |
else if (const auto *Arr = S.Context.getAsArrayType(Ty)) | |
Inner = Arr->getElementType(); | |
else | |
return nullptr; | |
if (Inner->hasAttr(attr::NoDeref)) | |
return E; | |
} | |
return nullptr; | |
} | |
} // namespace | |
void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) { | |
for (const Expr *E : Rec.PossibleDerefs) { | |
const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E); | |
if (DeclRef) { | |
const ValueDecl *Decl = DeclRef->getDecl(); | |
Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type) | |
<< Decl->getName() << E->getSourceRange(); | |
Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName(); | |
} else { | |
Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl) | |
<< E->getSourceRange(); | |
} | |
} | |
Rec.PossibleDerefs.clear(); | |
} | |
/// Check whether E, which is either a discarded-value expression or an | |
/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue, | |
/// and if so, remove it from the list of volatile-qualified assignments that | |
/// we are going to warn are deprecated. | |
void Sema::CheckUnusedVolatileAssignment(Expr *E) { | |
if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20) | |
return; | |
// Note: ignoring parens here is not justified by the standard rules, but | |
// ignoring parentheses seems like a more reasonable approach, and this only | |
// drives a deprecation warning so doesn't affect conformance. | |
if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) { | |
if (BO->getOpcode() == BO_Assign) { | |
auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs; | |
LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()), | |
LHSs.end()); | |
} | |
} | |
} | |
ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) { | |
if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() || | |
RebuildingImmediateInvocation) | |
return E; | |
/// Opportunistically remove the callee from ReferencesToConsteval if we can. | |
/// It's OK if this fails; we'll also remove this in | |
/// HandleImmediateInvocations, but catching it here allows us to avoid | |
/// walking the AST looking for it in simple cases. | |
if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit())) | |
if (auto *DeclRef = | |
dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit())) | |
ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef); | |
E = MaybeCreateExprWithCleanups(E); | |
ConstantExpr *Res = ConstantExpr::Create( | |
getASTContext(), E.get(), | |
ConstantExpr::getStorageKind(E.get()->getType().getTypePtr(), | |
getASTContext()), | |
/*IsImmediateInvocation*/ true); | |
ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0); | |
return Res; | |
} | |
static void EvaluateAndDiagnoseImmediateInvocation( | |
Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) { | |
llvm::SmallVector<PartialDiagnosticAt, 8> Notes; | |
Expr::EvalResult Eval; | |
Eval.Diag = &Notes; | |
ConstantExpr *CE = Candidate.getPointer(); | |
bool Result = CE->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen, | |
SemaRef.getASTContext(), true); | |
if (!Result || !Notes.empty()) { | |
Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit(); | |
if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr)) | |
InnerExpr = FunctionalCast->getSubExpr(); | |
FunctionDecl *FD = nullptr; | |
if (auto *Call = dyn_cast<CallExpr>(InnerExpr)) | |
FD = cast<FunctionDecl>(Call->getCalleeDecl()); | |
else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr)) | |
FD = Call->getConstructor(); | |
else | |
llvm_unreachable("unhandled decl kind"); | |
assert(FD->isConsteval()); | |
SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD; | |
for (auto &Note : Notes) | |
SemaRef.Diag(Note.first, Note.second); | |
return; | |
} | |
CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext()); | |
} | |
static void RemoveNestedImmediateInvocation( | |
Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec, | |
SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) { | |
struct ComplexRemove : TreeTransform<ComplexRemove> { | |
using Base = TreeTransform<ComplexRemove>; | |
llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet; | |
SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet; | |
SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator | |
CurrentII; | |
ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR, | |
SmallVector<Sema::ImmediateInvocationCandidate, 4> &II, | |
SmallVector<Sema::ImmediateInvocationCandidate, | |
4>::reverse_iterator Current) | |
: Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {} | |
void RemoveImmediateInvocation(ConstantExpr* E) { | |
auto It = std::find_if(CurrentII, IISet.rend(), | |
[E](Sema::ImmediateInvocationCandidate Elem) { | |
return Elem.getPointer() == E; | |
}); | |
assert(It != IISet.rend() && | |
"ConstantExpr marked IsImmediateInvocation should " | |
"be present"); | |
It->setInt(1); // Mark as deleted | |
} | |
ExprResult TransformConstantExpr(ConstantExpr *E) { | |
if (!E->isImmediateInvocation()) | |
return Base::TransformConstantExpr(E); | |
RemoveImmediateInvocation(E); | |
return Base::TransformExpr(E->getSubExpr()); | |
} | |
/// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so | |
/// we need to remove its DeclRefExpr from the DRSet. | |
ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | |
DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit())); | |
return Base::TransformCXXOperatorCallExpr(E); | |
} | |
/// Base::TransformInitializer skip ConstantExpr so we need to visit them | |
/// here. | |
ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) { | |
if (!Init) | |
return Init; | |
/// ConstantExpr are the first layer of implicit node to be removed so if | |
/// Init isn't a ConstantExpr, no ConstantExpr will be skipped. | |
if (auto *CE = dyn_cast<ConstantExpr>(Init)) | |
if (CE->isImmediateInvocation()) | |
RemoveImmediateInvocation(CE); | |
return Base::TransformInitializer(Init, NotCopyInit); | |
} | |
ExprResult TransformDeclRefExpr(DeclRefExpr *E) { | |
DRSet.erase(E); | |
return E; | |
} | |
bool AlwaysRebuild() { return false; } | |
bool ReplacingOriginal() { return true; } | |
bool AllowSkippingCXXConstructExpr() { | |
bool Res = AllowSkippingFirstCXXConstructExpr; | |
AllowSkippingFirstCXXConstructExpr = true; | |
return Res; | |
} | |
bool AllowSkippingFirstCXXConstructExpr = true; | |
} Transformer(SemaRef, Rec.ReferenceToConsteval, | |
Rec.ImmediateInvocationCandidates, It); | |
/// CXXConstructExpr with a single argument are getting skipped by | |
/// TreeTransform in some situtation because they could be implicit. This | |
/// can only occur for the top-level CXXConstructExpr because it is used | |
/// nowhere in the expression being transformed therefore will not be rebuilt. | |
/// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from | |
/// skipping the first CXXConstructExpr. | |
if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit())) | |
Transformer.AllowSkippingFirstCXXConstructExpr = false; | |
ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr()); | |
assert(Res.isUsable()); | |
Res = SemaRef.MaybeCreateExprWithCleanups(Res); | |
It->getPointer()->setSubExpr(Res.get()); | |
} | |
static void | |
HandleImmediateInvocations(Sema &SemaRef, | |
Sema::ExpressionEvaluationContextRecord &Rec) { | |
if ((Rec.ImmediateInvocationCandidates.size() == 0 && | |
Rec.ReferenceToConsteval.size() == 0) || | |
SemaRef.RebuildingImmediateInvocation) | |
return; | |
/// When we have more then 1 ImmediateInvocationCandidates we need to check | |
/// for nested ImmediateInvocationCandidates. when we have only 1 we only | |
/// need to remove ReferenceToConsteval in the immediate invocation. | |
if (Rec.ImmediateInvocationCandidates.size() > 1) { | |
/// Prevent sema calls during the tree transform from adding pointers that | |
/// are already in the sets. | |
llvm::SaveAndRestore<bool> DisableIITracking( | |
SemaRef.RebuildingImmediateInvocation, true); | |
/// Prevent diagnostic during tree transfrom as they are duplicates | |
Sema::TentativeAnalysisScope DisableDiag(SemaRef); | |
for (auto It = Rec.ImmediateInvocationCandidates.rbegin(); | |
It != Rec.ImmediateInvocationCandidates.rend(); It++) | |
if (!It->getInt()) | |
RemoveNestedImmediateInvocation(SemaRef, Rec, It); | |
} else if (Rec.ImmediateInvocationCandidates.size() == 1 && | |
Rec.ReferenceToConsteval.size()) { | |
struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> { | |
llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet; | |
SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {} | |
bool VisitDeclRefExpr(DeclRefExpr *E) { | |
DRSet.erase(E); | |
return DRSet.size(); | |
} | |
} Visitor(Rec.ReferenceToConsteval); | |
Visitor.TraverseStmt( | |
Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr()); | |
} | |
for (auto CE : Rec.ImmediateInvocationCandidates) | |
if (!CE.getInt()) | |
EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE); | |
for (auto DR : Rec.ReferenceToConsteval) { | |
auto *FD = cast<FunctionDecl>(DR->getDecl()); | |
SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address) | |
<< FD; | |
SemaRef.Diag(FD->getLocation(), diag::note_declared_at); | |
} | |
} | |
void Sema::PopExpressionEvaluationContext() { | |
ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back(); | |
unsigned NumTypos = Rec.NumTypos; | |
if (!Rec.Lambdas.empty()) { | |
using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind; | |
if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() || | |
(Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) { | |
unsigned D; | |
if (Rec.isUnevaluated()) { | |
// C++11 [expr.prim.lambda]p2: | |
// A lambda-expression shall not appear in an unevaluated operand | |
// (Clause 5). | |
D = diag::err_lambda_unevaluated_operand; | |
} else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) { | |
// C++1y [expr.const]p2: | |
// A conditional-expression e is a core constant expression unless the | |
// evaluation of e, following the rules of the abstract machine, would | |
// evaluate [...] a lambda-expression. | |
D = diag::err_lambda_in_constant_expression; | |
} else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) { | |
// C++17 [expr.prim.lamda]p2: | |
// A lambda-expression shall not appear [...] in a template-argument. | |
D = diag::err_lambda_in_invalid_context; | |
} else | |
llvm_unreachable("Couldn't infer lambda error message."); | |
for (const auto *L : Rec.Lambdas) | |
Diag(L->getBeginLoc(), D); | |
} | |
} | |
WarnOnPendingNoDerefs(Rec); | |
HandleImmediateInvocations(*this, Rec); | |
// Warn on any volatile-qualified simple-assignments that are not discarded- | |
// value expressions nor unevaluated operands (those cases get removed from | |
// this list by CheckUnusedVolatileAssignment). | |
for (auto *BO : Rec.VolatileAssignmentLHSs) | |
Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile) | |
<< BO->getType(); | |
// When are coming out of an unevaluated context, clear out any | |
// temporaries that we may have created as part of the evaluation of | |
// the expression in that context: they aren't relevant because they | |
// will never be constructed. | |
if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) { | |
ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, | |
ExprCleanupObjects.end()); | |
Cleanup = Rec.ParentCleanup; | |
CleanupVarDeclMarking(); | |
std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs); | |
// Otherwise, merge the contexts together. | |
} else { | |
Cleanup.mergeFrom(Rec.ParentCleanup); | |
MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(), | |
Rec.SavedMaybeODRUseExprs.end()); | |
} | |
// Pop the current expression evaluation context off the stack. | |
ExprEvalContexts.pop_back(); | |
// The global expression evaluation context record is never popped. | |
ExprEvalContexts.back().NumTypos += NumTypos; | |
} | |
void Sema::DiscardCleanupsInEvaluationContext() { | |
ExprCleanupObjects.erase( | |
ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, | |
ExprCleanupObjects.end()); | |
Cleanup.reset(); | |
MaybeODRUseExprs.clear(); | |
} | |
ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) { | |
ExprResult Result = CheckPlaceholderExpr(E); | |
if (Result.isInvalid()) | |
return ExprError(); | |
E = Result.get(); | |
if (!E->getType()->isVariablyModifiedType()) | |
return E; | |
return TransformToPotentiallyEvaluated(E); | |
} | |
/// Are we in a context that is potentially constant evaluated per C++20 | |
/// [expr.const]p12? | |
static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) { | |
/// C++2a [expr.const]p12: | |
// An expression or conversion is potentially constant evaluated if it is | |
switch (SemaRef.ExprEvalContexts.back().Context) { | |
case Sema::ExpressionEvaluationContext::ConstantEvaluated: | |
// -- a manifestly constant-evaluated expression, | |
case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | |
case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | |
case Sema::ExpressionEvaluationContext::DiscardedStatement: | |
// -- a potentially-evaluated expression, | |
case Sema::ExpressionEvaluationContext::UnevaluatedList: | |
// -- an immediate subexpression of a braced-init-list, | |
// -- [FIXME] an expression of the form & cast-expression that occurs | |
// within a templated entity | |
// -- a subexpression of one of the above that is not a subexpression of | |
// a nested unevaluated operand. | |
return true; | |
case Sema::ExpressionEvaluationContext::Unevaluated: | |
case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | |
// Expressions in this context are never evaluated. | |
return false; | |
} | |
llvm_unreachable("Invalid context"); | |
} | |
/// Return true if this function has a calling convention that requires mangling | |
/// in the size of the parameter pack. | |
static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) { | |
// These manglings don't do anything on non-Windows or non-x86 platforms, so | |
// we don't need parameter type sizes. | |
const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); | |
if (!TT.isOSWindows() || !TT.isX86()) | |
return false; | |
// If this is C++ and this isn't an extern "C" function, parameters do not | |
// need to be complete. In this case, C++ mangling will apply, which doesn't | |
// use the size of the parameters. | |
if (S.getLangOpts().CPlusPlus && !FD->isExternC()) | |
return false; | |
// Stdcall, fastcall, and vectorcall need this special treatment. | |
CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); | |
switch (CC) { | |
case CC_X86StdCall: | |
case CC_X86FastCall: | |
case CC_X86VectorCall: | |
return true; | |
default: | |
break; | |
} | |
return false; | |
} | |
/// Require that all of the parameter types of function be complete. Normally, | |
/// parameter types are only required to be complete when a function is called | |
/// or defined, but to mangle functions with certain calling conventions, the | |
/// mangler needs to know the size of the parameter list. In this situation, | |
/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles | |
/// the function as _foo@0, i.e. zero bytes of parameters, which will usually | |
/// result in a linker error. Clang doesn't implement this behavior, and instead | |
/// attempts to error at compile time. | |
static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD, | |
SourceLocation Loc) { | |
class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser { | |
FunctionDecl *FD; | |
ParmVarDecl *Param; | |
public: | |
ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param) | |
: FD(FD), Param(Param) {} | |
void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |
CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); | |
StringRef CCName; | |
switch (CC) { | |
case CC_X86StdCall: | |
CCName = "stdcall"; | |
break; | |
case CC_X86FastCall: | |
CCName = "fastcall"; | |
break; | |
case CC_X86VectorCall: | |
CCName = "vectorcall"; | |
break; | |
default: | |
llvm_unreachable("CC does not need mangling"); | |
} | |
S.Diag(Loc, diag::err_cconv_incomplete_param_type) | |
<< Param->getDeclName() << FD->getDeclName() << CCName; | |
} | |
}; | |
for (ParmVarDecl *Param : FD->parameters()) { | |
ParamIncompleteTypeDiagnoser Diagnoser(FD, Param); | |
S.RequireCompleteType(Loc, Param->getType(), Diagnoser); | |
} | |
} | |
namespace { | |
enum class OdrUseContext { | |
/// Declarations in this context are not odr-used. | |
None, | |
/// Declarations in this context are formally odr-used, but this is a | |
/// dependent context. | |
Dependent, | |
/// Declarations in this context are odr-used but not actually used (yet). | |
FormallyOdrUsed, | |
/// Declarations in this context are used. | |
Used | |
}; | |
} | |
/// Are we within a context in which references to resolved functions or to | |
/// variables result in odr-use? | |
static OdrUseContext isOdrUseContext(Sema &SemaRef) { | |
OdrUseContext Result; | |
switch (SemaRef.ExprEvalContexts.back().Context) { | |
case Sema::ExpressionEvaluationContext::Unevaluated: | |
case Sema::ExpressionEvaluationContext::UnevaluatedList: | |
case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | |
return OdrUseContext::None; | |
case Sema::ExpressionEvaluationContext::ConstantEvaluated: | |
case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | |
Result = OdrUseContext::Used; | |
break; | |
case Sema::ExpressionEvaluationContext::DiscardedStatement: | |
Result = OdrUseContext::FormallyOdrUsed; | |
break; | |
case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | |
// A default argument formally results in odr-use, but doesn't actually | |
// result in a use in any real sense until it itself is used. | |
Result = OdrUseContext::FormallyOdrUsed; | |
break; | |
} | |
if (SemaRef.CurContext->isDependentContext()) | |
return OdrUseContext::Dependent; | |
return Result; | |
} | |
static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) { | |
return Func->isConstexpr() && | |
(Func->isImplicitlyInstantiable() || !Func->isUserProvided()); | |
} | |
/// Mark a function referenced, and check whether it is odr-used | |
/// (C++ [basic.def.odr]p2, C99 6.9p3) | |
void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, | |
bool MightBeOdrUse) { | |
assert(Func && "No function?"); | |
Func->setReferenced(); | |
// Recursive functions aren't really used until they're used from some other | |
// context. | |
bool IsRecursiveCall = CurContext == Func; | |
// C++11 [basic.def.odr]p3: | |
// A function whose name appears as a potentially-evaluated expression is | |
// odr-used if it is the unique lookup result or the selected member of a | |
// set of overloaded functions [...]. | |
// | |
// We (incorrectly) mark overload resolution as an unevaluated context, so we | |
// can just check that here. | |
OdrUseContext OdrUse = | |
MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None; | |
if (IsRecursiveCall && OdrUse == OdrUseContext::Used) | |
OdrUse = OdrUseContext::FormallyOdrUsed; | |
// Trivial default constructors and destructors are never actually used. | |
// FIXME: What about other special members? | |
if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() && | |
OdrUse == OdrUseContext::Used) { | |
if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func)) | |
if (Constructor->isDefaultConstructor()) | |
OdrUse = OdrUseContext::FormallyOdrUsed; | |
if (isa<CXXDestructorDecl>(Func)) | |
OdrUse = OdrUseContext::FormallyOdrUsed; | |
} | |
// C++20 [expr.const]p12: | |
// A function [...] is needed for constant evaluation if it is [...] a | |
// constexpr function that is named by an expression that is potentially | |
// constant evaluated | |
bool NeededForConstantEvaluation = | |
isPotentiallyConstantEvaluatedContext(*this) && | |
isImplicitlyDefinableConstexprFunction(Func); | |
// Determine whether we require a function definition to exist, per | |
// C++11 [temp.inst]p3: | |
// Unless a function template specialization has been explicitly | |
// instantiated or explicitly specialized, the function template | |
// specialization is implicitly instantiated when the specialization is | |
// referenced in a context that requires a function definition to exist. | |
// C++20 [temp.inst]p7: | |
// The existence of a definition of a [...] function is considered to | |
// affect the semantics of the program if the [...] function is needed for | |
// constant evaluation by an expression | |
// C++20 [basic.def.odr]p10: | |
// Every program shall contain exactly one definition of every non-inline | |
// function or variable that is odr-used in that program outside of a | |
// discarded statement | |
// C++20 [special]p1: | |
// The implementation will implicitly define [defaulted special members] | |
// if they are odr-used or needed for constant evaluation. | |
// | |
// Note that we skip the implicit instantiation of templates that are only | |
// used in unused default arguments or by recursive calls to themselves. | |
// This is formally non-conforming, but seems reasonable in practice. | |
bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used || | |
NeededForConstantEvaluation); | |
// C++14 [temp.expl.spec]p6: | |
// If a template [...] is explicitly specialized then that specialization | |
// shall be declared before the first use of that specialization that would | |
// cause an implicit instantiation to take place, in every translation unit | |
// in which such a use occurs | |
if (NeedDefinition && | |
(Func->getTemplateSpecializationKind() != TSK_Undeclared || | |
Func->getMemberSpecializationInfo())) | |
checkSpecializationVisibility(Loc, Func); | |
if (getLangOpts().CUDA) | |
CheckCUDACall(Loc, Func); | |
// If we need a definition, try to create one. | |
if (NeedDefinition && !Func->getBody()) { | |
runWithSufficientStackSpace(Loc, [&] { | |
if (CXXConstructorDecl *Constructor = | |
dyn_cast<CXXConstructorDecl>(Func)) { | |
Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl()); | |
if (Constructor->isDefaulted() && !Constructor->isDeleted()) { | |
if (Constructor->isDefaultConstructor()) { | |
if (Constructor->isTrivial() && | |
!Constructor->hasAttr<DLLExportAttr>()) | |
return; | |
DefineImplicitDefaultConstructor(Loc, Constructor); | |
} else if (Constructor->isCopyConstructor()) { | |
DefineImplicitCopyConstructor(Loc, Constructor); | |
} else if (Constructor->isMoveConstructor()) { | |
DefineImplicitMoveConstructor(Loc, Constructor); | |
} | |
} else if (Constructor->getInheritedConstructor()) { | |
DefineInheritingConstructor(Loc, Constructor); | |
} | |
} else if (CXXDestructorDecl *Destructor = | |
dyn_cast<CXXDestructorDecl>(Func)) { | |
Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl()); | |
if (Destructor->isDefaulted() && !Destructor->isDeleted()) { | |
if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>()) | |
return; | |
DefineImplicitDestructor(Loc, Destructor); | |
} | |
if (Destructor->isVirtual() && getLangOpts().AppleKext) | |
MarkVTableUsed(Loc, Destructor->getParent()); | |
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) { | |
if (MethodDecl->isOverloadedOperator() && | |
MethodDecl->getOverloadedOperator() == OO_Equal) { | |
MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl()); | |
if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) { | |
if (MethodDecl->isCopyAssignmentOperator()) | |
DefineImplicitCopyAssignment(Loc, MethodDecl); | |
else if (MethodDecl->isMoveAssignmentOperator()) | |
DefineImplicitMoveAssignment(Loc, MethodDecl); | |
} | |
} else if (isa<CXXConversionDecl>(MethodDecl) && | |
MethodDecl->getParent()->isLambda()) { | |
CXXConversionDecl *Conversion = | |
cast<CXXConversionDecl>(MethodDecl->getFirstDecl()); | |
if (Conversion->isLambdaToBlockPointerConversion()) | |
DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion); | |
else | |
DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion); | |
} else if (MethodDecl->isVirtual() && getLangOpts().AppleKext) | |
MarkVTableUsed(Loc, MethodDecl->getParent()); | |
} | |
if (Func->isDefaulted() && !Func->isDeleted()) { | |
DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func); | |
if (DCK != DefaultedComparisonKind::None) | |
DefineDefaultedComparison(Loc, Func, DCK); | |
} | |
// Implicit instantiation of function templates and member functions of | |
// class templates. | |
if (Func->isImplicitlyInstantiable()) { | |
TemplateSpecializationKind TSK = | |
Func->getTemplateSpecializationKindForInstantiation(); | |
SourceLocation PointOfInstantiation = Func->getPointOfInstantiation(); | |
bool FirstInstantiation = PointOfInstantiation.isInvalid(); | |
if (FirstInstantiation) { | |
PointOfInstantiation = Loc; | |
Func->setTemplateSpecializationKind(TSK, PointOfInstantiation); | |
} else if (TSK != TSK_ImplicitInstantiation) { | |
// Use the point of use as the point of instantiation, instead of the | |
// point of explicit instantiation (which we track as the actual point | |
// of instantiation). This gives better backtraces in diagnostics. | |
PointOfInstantiation = Loc; | |
} | |
if (FirstInstantiation || TSK != TSK_ImplicitInstantiation || | |
Func->isConstexpr()) { | |
if (isa<CXXRecordDecl>(Func->getDeclContext()) && | |
cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() && | |
CodeSynthesisContexts.size()) | |
PendingLocalImplicitInstantiations.push_back( | |
std::make_pair(Func, PointOfInstantiation)); | |
else if (Func->isConstexpr()) | |
// Do not defer instantiations of constexpr functions, to avoid the | |
// expression evaluator needing to call back into Sema if it sees a | |
// call to such a function. | |
InstantiateFunctionDefinition(PointOfInstantiation, Func); | |
else { | |
Func->setInstantiationIsPending(true); | |
PendingInstantiations.push_back( | |
std::make_pair(Func, PointOfInstantiation)); | |
// Notify the consumer that a function was implicitly instantiated. | |
Consumer.HandleCXXImplicitFunctionInstantiation(Func); | |
} | |
} | |
} else { | |
// Walk redefinitions, as some of them may be instantiable. | |
for (auto i : Func->redecls()) { | |
if (!i->isUsed(false) && i->isImplicitlyInstantiable()) | |
MarkFunctionReferenced(Loc, i, MightBeOdrUse); | |
} | |
} | |
}); | |
} | |
// C++14 [except.spec]p17: | |
// An exception-specification is considered to be needed when: | |
// - the function is odr-used or, if it appears in an unevaluated operand, | |
// would be odr-used if the expression were potentially-evaluated; | |
// | |
// Note, we do this even if MightBeOdrUse is false. That indicates that the | |
// function is a pure virtual function we're calling, and in that case the | |
// function was selected by overload resolution and we need to resolve its | |
// exception specification for a different reason. | |
const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>(); | |
if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) | |
ResolveExceptionSpec(Loc, FPT); | |
// If this is the first "real" use, act on that. | |
if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) { | |
// Keep track of used but undefined functions. | |
if (!Func->isDefined()) { | |
if (mightHaveNonExternalLinkage(Func)) | |
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | |
else if (Func->getMostRecentDecl()->isInlined() && | |
!LangOpts.GNUInline && | |
!Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>()) | |
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | |
else if (isExternalWithNoLinkageType(Func)) | |
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | |
} | |
// Some x86 Windows calling conventions mangle the size of the parameter | |
// pack into the name. Computing the size of the parameters requires the | |
// parameter types to be complete. Check that now. | |
if (funcHasParameterSizeMangling(*this, Func)) | |
CheckCompleteParameterTypesForMangler(*this, Func, Loc); | |
// In the MS C++ ABI, the compiler emits destructor variants where they are | |
// used. If the destructor is used here but defined elsewhere, mark the | |
// virtual base destructors referenced. If those virtual base destructors | |
// are inline, this will ensure they are defined when emitting the complete | |
// destructor variant. This checking may be redundant if the destructor is | |
// provided later in this TU. | |
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |
if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) { | |
CXXRecordDecl *Parent = Dtor->getParent(); | |
if (Parent->getNumVBases() > 0 && !Dtor->getBody()) | |
CheckCompleteDestructorVariant(Loc, Dtor); | |
} | |
} | |
Func->markUsed(Context); | |
} | |
} | |
/// Directly mark a variable odr-used. Given a choice, prefer to use | |
/// MarkVariableReferenced since it does additional checks and then | |
/// calls MarkVarDeclODRUsed. | |
/// If the variable must be captured: | |
/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext | |
/// - else capture it in the DeclContext that maps to the | |
/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack. | |
static void | |
MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef, | |
const unsigned *const FunctionScopeIndexToStopAt = nullptr) { | |
// Keep track of used but undefined variables. | |
// FIXME: We shouldn't suppress this warning for static data members. | |
if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly && | |
(!Var->isExternallyVisible() || Var->isInline() || | |
SemaRef.isExternalWithNoLinkageType(Var)) && | |
!(Var->isStaticDataMember() && Var->hasInit())) { | |
SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()]; | |
if (old.isInvalid()) | |
old = Loc; | |
} | |
QualType CaptureType, DeclRefType; | |
if (SemaRef.LangOpts.OpenMP) | |
SemaRef.tryCaptureOpenMPLambdas(Var); | |
SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit, | |
/*EllipsisLoc*/ SourceLocation(), | |
/*BuildAndDiagnose*/ true, | |
CaptureType, DeclRefType, | |
FunctionScopeIndexToStopAt); | |
Var->markUsed(SemaRef.Context); | |
} | |
void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture, | |
SourceLocation Loc, | |
unsigned CapturingScopeIndex) { | |
MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex); | |
} | |
static void | |
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, | |
ValueDecl *var, DeclContext *DC) { | |
DeclContext *VarDC = var->getDeclContext(); | |
// If the parameter still belongs to the translation unit, then | |
// we're actually just using one parameter in the declaration of | |
// the next. | |
if (isa<ParmVarDecl>(var) && | |
isa<TranslationUnitDecl>(VarDC)) | |
return; | |
// For C code, don't diagnose about capture if we're not actually in code | |
// right now; it's impossible to write a non-constant expression outside of | |
// function context, so we'll get other (more useful) diagnostics later. | |
// | |
// For C++, things get a bit more nasty... it would be nice to suppress this | |
// diagnostic for certain cases like using a local variable in an array bound | |
// for a member of a local class, but the correct predicate is not obvious. | |
if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod()) | |
return; | |
unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0; | |
unsigned ContextKind = 3; // unknown | |
if (isa<CXXMethodDecl>(VarDC) && | |
cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) { | |
ContextKind = 2; | |
} else if (isa<FunctionDecl>(VarDC)) { | |
ContextKind = 0; | |
} else if (isa<BlockDecl>(VarDC)) { | |
ContextKind = 1; | |
} | |
S.Diag(loc, diag::err_reference_to_local_in_enclosing_context) | |
<< var << ValueKind << ContextKind << VarDC; | |
S.Diag(var->getLocation(), diag::note_entity_declared_at) | |
<< var; | |
// FIXME: Add additional diagnostic info about class etc. which prevents | |
// capture. | |
} | |
static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var, | |
bool &SubCapturesAreNested, | |
QualType &CaptureType, | |
QualType &DeclRefType) { | |
// Check whether we've already captured it. | |
if (CSI->CaptureMap.count(Var)) { | |
// If we found a capture, any subcaptures are nested. | |
SubCapturesAreNested = true; | |
// Retrieve the capture type for this variable. | |
CaptureType = CSI->getCapture(Var).getCaptureType(); | |
// Compute the type of an expression that refers to this variable. | |
DeclRefType = CaptureType.getNonReferenceType(); | |
// Similarly to mutable captures in lambda, all the OpenMP captures by copy | |
// are mutable in the sense that user can change their value - they are | |
// private instances of the captured declarations. | |
const Capture &Cap = CSI->getCapture(Var); | |
if (Cap.isCopyCapture() && | |
!(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) && | |
!(isa<CapturedRegionScopeInfo>(CSI) && | |
cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP)) | |
DeclRefType.addConst(); | |
return true; | |
} | |
return false; | |
} | |
// Only block literals, captured statements, and lambda expressions can | |
// capture; other scopes don't work. | |
static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var, | |
SourceLocation Loc, | |
const bool Diagnose, Sema &S) { | |
if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC)) | |
return getLambdaAwareParentOfDeclContext(DC); | |
else if (Var->hasLocalStorage()) { | |
if (Diagnose) | |
diagnoseUncapturableValueReference(S, Loc, Var, DC); | |
} | |
return nullptr; | |
} | |
// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture | |
// certain types of variables (unnamed, variably modified types etc.) | |
// so check for eligibility. | |
static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var, | |
SourceLocation Loc, | |
const bool Diagnose, Sema &S) { | |
bool IsBlock = isa<BlockScopeInfo>(CSI); | |
bool IsLambda = isa<LambdaScopeInfo>(CSI); | |
// Lambdas are not allowed to capture unnamed variables | |
// (e.g. anonymous unions). | |
// FIXME: The C++11 rule don't actually state this explicitly, but I'm | |
// assuming that's the intent. | |
if (IsLambda && !Var->getDeclName()) { | |
if (Diagnose) { | |
S.Diag(Loc, diag::err_lambda_capture_anonymous_var); | |
S.Diag(Var->getLocation(), diag::note_declared_at); | |
} | |
return false; | |
} | |
// Prohibit variably-modified types in blocks; they're difficult to deal with. | |
if (Var->getType()->isVariablyModifiedType() && IsBlock) { | |
if (Diagnose) { | |
S.Diag(Loc, diag::err_ref_vm_type); | |
S.Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
} | |
return false; | |
} | |
// Prohibit structs with flexible array members too. | |
// We cannot capture what is in the tail end of the struct. | |
if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) { | |
if (VTTy->getDecl()->hasFlexibleArrayMember()) { | |
if (Diagnose) { | |
if (IsBlock) | |
S.Diag(Loc, diag::err_ref_flexarray_type); | |
else | |
S.Diag(Loc, diag::err_lambda_capture_flexarray_type) | |
<< Var->getDeclName(); | |
S.Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
} | |
return false; | |
} | |
} | |
const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); | |
// Lambdas and captured statements are not allowed to capture __block | |
// variables; they don't support the expected semantics. | |
if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) { | |
if (Diagnose) { | |
S.Diag(Loc, diag::err_capture_block_variable) | |
<< Var->getDeclName() << !IsLambda; | |
S.Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
} | |
return false; | |
} | |
// OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks | |
if (S.getLangOpts().OpenCL && IsBlock && | |
Var->getType()->isBlockPointerType()) { | |
if (Diagnose) | |
S.Diag(Loc, diag::err_opencl_block_ref_block); | |
return false; | |
} | |
return true; | |
} | |
// Returns true if the capture by block was successful. | |
static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var, | |
SourceLocation Loc, | |
const bool BuildAndDiagnose, | |
QualType &CaptureType, | |
QualType &DeclRefType, | |
const bool Nested, | |
Sema &S, bool Invalid) { | |
bool ByRef = false; | |
// Blocks are not allowed to capture arrays, excepting OpenCL. | |
// OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference | |
// (decayed to pointers). | |
if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) { | |
if (BuildAndDiagnose) { | |
S.Diag(Loc, diag::err_ref_array_type); | |
S.Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
Invalid = true; | |
} else { | |
return false; | |
} | |
} | |
// Forbid the block-capture of autoreleasing variables. | |
if (!Invalid && | |
CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { | |
if (BuildAndDiagnose) { | |
S.Diag(Loc, diag::err_arc_autoreleasing_capture) | |
<< /*block*/ 0; | |
S.Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
Invalid = true; | |
} else { | |
return false; | |
} | |
} | |
// Warn about implicitly autoreleasing indirect parameters captured by blocks. | |
if (const auto *PT = CaptureType->getAs<PointerType>()) { | |
QualType PointeeTy = PT->getPointeeType(); | |
if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() && | |
PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing && | |
!S.Context.hasDirectOwnershipQualifier(PointeeTy)) { | |
if (BuildAndDiagnose) { | |
SourceLocation VarLoc = Var->getLocation(); | |
S.Diag(Loc, diag::warn_block_capture_autoreleasing); | |
S.Diag(VarLoc, diag::note_declare_parameter_strong); | |
} | |
} | |
} | |
const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); | |
if (HasBlocksAttr || CaptureType->isReferenceType() || | |
(S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) { | |
// Block capture by reference does not change the capture or | |
// declaration reference types. | |
ByRef = true; | |
} else { | |
// Block capture by copy introduces 'const'. | |
CaptureType = CaptureType.getNonReferenceType().withConst(); | |
DeclRefType = CaptureType; | |
} | |
// Actually capture the variable. | |
if (BuildAndDiagnose) | |
BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(), | |
CaptureType, Invalid); | |
return !Invalid; | |
} | |
/// Capture the given variable in the captured region. | |
static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI, | |
VarDecl *Var, | |
SourceLocation Loc, | |
const bool BuildAndDiagnose, | |
QualType &CaptureType, | |
QualType &DeclRefType, | |
const bool RefersToCapturedVariable, | |
Sema &S, bool Invalid) { | |
// By default, capture variables by reference. | |
bool ByRef = true; | |
// Using an LValue reference type is consistent with Lambdas (see below). | |
if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) { | |
if (S.isOpenMPCapturedDecl(Var)) { | |
bool HasConst = DeclRefType.isConstQualified(); | |
DeclRefType = DeclRefType.getUnqualifiedType(); | |
// Don't lose diagnostics about assignments to const. | |
if (HasConst) | |
DeclRefType.addConst(); | |
} | |
// Do not capture firstprivates in tasks. | |
if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) != | |
OMPC_unknown) | |
return true; | |
ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel, | |
RSI->OpenMPCaptureLevel); | |
} | |
if (ByRef) | |
CaptureType = S.Context.getLValueReferenceType(DeclRefType); | |
else | |
CaptureType = DeclRefType; | |
// Actually capture the variable. | |
if (BuildAndDiagnose) | |
RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable, | |
Loc, SourceLocation(), CaptureType, Invalid); | |
return !Invalid; | |
} | |
/// Capture the given variable in the lambda. | |
static bool captureInLambda(LambdaScopeInfo *LSI, | |
VarDecl *Var, | |
SourceLocation Loc, | |
const bool BuildAndDiagnose, | |
QualType &CaptureType, | |
QualType &DeclRefType, | |
const bool RefersToCapturedVariable, | |
const Sema::TryCaptureKind Kind, | |
SourceLocation EllipsisLoc, | |
const bool IsTopScope, | |
Sema &S, bool Invalid) { | |
// Determine whether we are capturing by reference or by value. | |
bool ByRef = false; | |
if (IsTopScope && Kind != Sema::TryCapture_Implicit) { | |
ByRef = (Kind == Sema::TryCapture_ExplicitByRef); | |
} else { | |
ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref); | |
} | |
// Compute the type of the field that will capture this variable. | |
if (ByRef) { | |
// C++11 [expr.prim.lambda]p15: | |
// An entity is captured by reference if it is implicitly or | |
// explicitly captured but not captured by copy. It is | |
// unspecified whether additional unnamed non-static data | |
// members are declared in the closure type for entities | |
// captured by reference. | |
// | |
// FIXME: It is not clear whether we want to build an lvalue reference | |
// to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears | |
// to do the former, while EDG does the latter. Core issue 1249 will | |
// clarify, but for now we follow GCC because it's a more permissive and | |
// easily defensible position. | |
CaptureType = S.Context.getLValueReferenceType(DeclRefType); | |
} else { | |
// C++11 [expr.prim.lambda]p14: | |
// For each entity captured by copy, an unnamed non-static | |
// data member is declared in the closure type. The | |
// declaration order of these members is unspecified. The type | |
// of such a data member is the type of the corresponding | |
// captured entity if the entity is not a reference to an | |
// object, or the referenced type otherwise. [Note: If the | |
// captured entity is a reference to a function, the | |
// corresponding data member is also a reference to a | |
// function. - end note ] | |
if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){ | |
if (!RefType->getPointeeType()->isFunctionType()) | |
CaptureType = RefType->getPointeeType(); | |
} | |
// Forbid the lambda copy-capture of autoreleasing variables. | |
if (!Invalid && | |
CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { | |
if (BuildAndDiagnose) { | |
S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1; | |
S.Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
Invalid = true; | |
} else { | |
return false; | |
} | |
} | |
// Make sure that by-copy captures are of a complete and non-abstract type. | |
if (!Invalid && BuildAndDiagnose) { | |
if (!CaptureType->isDependentType() && | |
S.RequireCompleteSizedType( | |
Loc, CaptureType, | |
diag::err_capture_of_incomplete_or_sizeless_type, | |
Var->getDeclName())) | |
Invalid = true; | |
else if (S.RequireNonAbstractType(Loc, CaptureType, | |
diag::err_capture_of_abstract_type)) | |
Invalid = true; | |
} | |
} | |
// Compute the type of a reference to this captured variable. | |
if (ByRef) | |
DeclRefType = CaptureType.getNonReferenceType(); | |
else { | |
// C++ [expr.prim.lambda]p5: | |
// The closure type for a lambda-expression has a public inline | |
// function call operator [...]. This function call operator is | |
// declared const (9.3.1) if and only if the lambda-expression's | |
// parameter-declaration-clause is not followed by mutable. | |
DeclRefType = CaptureType.getNonReferenceType(); | |
if (!LSI->Mutable && !CaptureType->isReferenceType()) | |
DeclRefType.addConst(); | |
} | |
// Add the capture. | |
if (BuildAndDiagnose) | |
LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable, | |
Loc, EllipsisLoc, CaptureType, Invalid); | |
return !Invalid; | |
} | |
bool Sema::tryCaptureVariable( | |
VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind, | |
SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, | |
QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) { | |
// An init-capture is notionally from the context surrounding its | |
// declaration, but its parent DC is the lambda class. | |
DeclContext *VarDC = Var->getDeclContext(); | |
if (Var->isInitCapture()) | |
VarDC = VarDC->getParent(); | |
DeclContext *DC = CurContext; | |
const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt | |
? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; | |
// We need to sync up the Declaration Context with the | |
// FunctionScopeIndexToStopAt | |
if (FunctionScopeIndexToStopAt) { | |
unsigned FSIndex = FunctionScopes.size() - 1; | |
while (FSIndex != MaxFunctionScopesIndex) { | |
DC = getLambdaAwareParentOfDeclContext(DC); | |
--FSIndex; | |
} | |
} | |
// If the variable is declared in the current context, there is no need to | |
// capture it. | |
if (VarDC == DC) return true; | |
// Capture global variables if it is required to use private copy of this | |
// variable. | |
bool IsGlobal = !Var->hasLocalStorage(); | |
if (IsGlobal && | |
!(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true, | |
MaxFunctionScopesIndex))) | |
return true; | |
Var = Var->getCanonicalDecl(); | |
// Walk up the stack to determine whether we can capture the variable, | |
// performing the "simple" checks that don't depend on type. We stop when | |
// we've either hit the declared scope of the variable or find an existing | |
// capture of that variable. We start from the innermost capturing-entity | |
// (the DC) and ensure that all intervening capturing-entities | |
// (blocks/lambdas etc.) between the innermost capturer and the variable`s | |
// declcontext can either capture the variable or have already captured | |
// the variable. | |
CaptureType = Var->getType(); | |
DeclRefType = CaptureType.getNonReferenceType(); | |
bool Nested = false; | |
bool Explicit = (Kind != TryCapture_Implicit); | |
unsigned FunctionScopesIndex = MaxFunctionScopesIndex; | |
do { | |
// Only block literals, captured statements, and lambda expressions can | |
// capture; other scopes don't work. | |
DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var, | |
ExprLoc, | |
BuildAndDiagnose, | |
*this); | |
// We need to check for the parent *first* because, if we *have* | |
// private-captured a global variable, we need to recursively capture it in | |
// intermediate blocks, lambdas, etc. | |
if (!ParentDC) { | |
if (IsGlobal) { | |
FunctionScopesIndex = MaxFunctionScopesIndex - 1; | |
break; | |
} | |
return true; | |
} | |
FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex]; | |
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI); | |
// Check whether we've already captured it. | |
if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType, | |
DeclRefType)) { | |
CSI->getCapture(Var).markUsed(BuildAndDiagnose); | |
break; | |
} | |
// If we are instantiating a generic lambda call operator body, | |
// we do not want to capture new variables. What was captured | |
// during either a lambdas transformation or initial parsing | |
// should be used. | |
if (isGenericLambdaCallOperatorSpecialization(DC)) { | |
if (BuildAndDiagnose) { | |
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); | |
if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) { | |
Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName(); | |
Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); | |
} else | |
diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC); | |
} | |
return true; | |
} | |
// Try to capture variable-length arrays types. | |
if (Var->getType()->isVariablyModifiedType()) { | |
// We're going to walk down into the type and look for VLA | |
// expressions. | |
QualType QTy = Var->getType(); | |
if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) | |
QTy = PVD->getOriginalType(); | |
captureVariablyModifiedType(Context, QTy, CSI); | |
} | |
if (getLangOpts().OpenMP) { | |
if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { | |
// OpenMP private variables should not be captured in outer scope, so | |
// just break here. Similarly, global variables that are captured in a | |
// target region should not be captured outside the scope of the region. | |
if (RSI->CapRegionKind == CR_OpenMP) { | |
OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl( | |
Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); | |
// If the variable is private (i.e. not captured) and has variably | |
// modified type, we still need to capture the type for correct | |
// codegen in all regions, associated with the construct. Currently, | |
// it is captured in the innermost captured region only. | |
if (IsOpenMPPrivateDecl != OMPC_unknown && | |
Var->getType()->isVariablyModifiedType()) { | |
QualType QTy = Var->getType(); | |
if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) | |
QTy = PVD->getOriginalType(); | |
for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel); | |
I < E; ++I) { | |
auto *OuterRSI = cast<CapturedRegionScopeInfo>( | |
FunctionScopes[FunctionScopesIndex - I]); | |
assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel && | |
"Wrong number of captured regions associated with the " | |
"OpenMP construct."); | |
captureVariablyModifiedType(Context, QTy, OuterRSI); | |
} | |
} | |
bool IsTargetCap = | |
IsOpenMPPrivateDecl != OMPC_private && | |
isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel, | |
RSI->OpenMPCaptureLevel); | |
// Do not capture global if it is not privatized in outer regions. | |
bool IsGlobalCap = | |
IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel, | |
RSI->OpenMPCaptureLevel); | |
// When we detect target captures we are looking from inside the | |
// target region, therefore we need to propagate the capture from the | |
// enclosing region. Therefore, the capture is not initially nested. | |
if (IsTargetCap) | |
adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel); | |
if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private || | |
(IsGlobal && !IsGlobalCap)) { | |
Nested = !IsTargetCap; | |
DeclRefType = DeclRefType.getUnqualifiedType(); | |
CaptureType = Context.getLValueReferenceType(DeclRefType); | |
break; | |
} | |
} | |
} | |
} | |
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) { | |
// No capture-default, and this is not an explicit capture | |
// so cannot capture this variable. | |
if (BuildAndDiagnose) { | |
Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName(); | |
Diag(Var->getLocation(), diag::note_previous_decl) | |
<< Var->getDeclName(); | |
if (cast<LambdaScopeInfo>(CSI)->Lambda) | |
Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(), | |
diag::note_lambda_decl); | |
// FIXME: If we error out because an outer lambda can not implicitly | |
// capture a variable that an inner lambda explicitly captures, we | |
// should have the inner lambda do the explicit capture - because | |
// it makes for cleaner diagnostics later. This would purely be done | |
// so that the diagnostic does not misleadingly claim that a variable | |
// can not be captured by a lambda implicitly even though it is captured | |
// explicitly. Suggestion: | |
// - create const bool VariableCaptureWasInitiallyExplicit = Explicit | |
// at the function head | |
// - cache the StartingDeclContext - this must be a lambda | |
// - captureInLambda in the innermost lambda the variable. | |
} | |
return true; | |
} | |
FunctionScopesIndex--; | |
DC = ParentDC; | |
Explicit = false; | |
} while (!VarDC->Equals(DC)); | |
// Walk back down the scope stack, (e.g. from outer lambda to inner lambda) | |
// computing the type of the capture at each step, checking type-specific | |
// requirements, and adding captures if requested. | |
// If the variable had already been captured previously, we start capturing | |
// at the lambda nested within that one. | |
bool Invalid = false; | |
for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N; | |
++I) { | |
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]); | |
// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture | |
// certain types of variables (unnamed, variably modified types etc.) | |
// so check for eligibility. | |
if (!Invalid) | |
Invalid = | |
!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this); | |
// After encountering an error, if we're actually supposed to capture, keep | |
// capturing in nested contexts to suppress any follow-on diagnostics. | |
if (Invalid && !BuildAndDiagnose) | |
return true; | |
if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) { | |
Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, | |
DeclRefType, Nested, *this, Invalid); | |
Nested = true; | |
} else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { | |
Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose, | |
CaptureType, DeclRefType, Nested, | |
*this, Invalid); | |
Nested = true; | |
} else { | |
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); | |
Invalid = | |
!captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, | |
DeclRefType, Nested, Kind, EllipsisLoc, | |
/*IsTopScope*/ I == N - 1, *this, Invalid); | |
Nested = true; | |
} | |
if (Invalid && !BuildAndDiagnose) | |
return true; | |
} | |
return Invalid; | |
} | |
bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc, | |
TryCaptureKind Kind, SourceLocation EllipsisLoc) { | |
QualType CaptureType; | |
QualType DeclRefType; | |
return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc, | |
/*BuildAndDiagnose=*/true, CaptureType, | |
DeclRefType, nullptr); | |
} | |
bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) { | |
QualType CaptureType; | |
QualType DeclRefType; | |
return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), | |
/*BuildAndDiagnose=*/false, CaptureType, | |
DeclRefType, nullptr); | |
} | |
QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) { | |
QualType CaptureType; | |
QualType DeclRefType; | |
// Determine whether we can capture this variable. | |
if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), | |
/*BuildAndDiagnose=*/false, CaptureType, | |
DeclRefType, nullptr)) | |
return QualType(); | |
return DeclRefType; | |
} | |
namespace { | |
// Helper to copy the template arguments from a DeclRefExpr or MemberExpr. | |
// The produced TemplateArgumentListInfo* points to data stored within this | |
// object, so should only be used in contexts where the pointer will not be | |
// used after the CopiedTemplateArgs object is destroyed. | |
class CopiedTemplateArgs { | |
bool HasArgs; | |
TemplateArgumentListInfo TemplateArgStorage; | |
public: | |
template<typename RefExpr> | |
CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) { | |
if (HasArgs) | |
E->copyTemplateArgumentsInto(TemplateArgStorage); | |
} | |
operator TemplateArgumentListInfo*() | |
#ifdef __has_cpp_attribute | |
#if __has_cpp_attribute(clang::lifetimebound) | |
[[clang::lifetimebound]] | |
#endif | |
#endif | |
{ | |
return HasArgs ? &TemplateArgStorage : nullptr; | |
} | |
}; | |
} | |
/// Walk the set of potential results of an expression and mark them all as | |
/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason. | |
/// | |
/// \return A new expression if we found any potential results, ExprEmpty() if | |
/// not, and ExprError() if we diagnosed an error. | |
static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E, | |
NonOdrUseReason NOUR) { | |
// Per C++11 [basic.def.odr], a variable is odr-used "unless it is | |
// an object that satisfies the requirements for appearing in a | |
// constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) | |
// is immediately applied." This function handles the lvalue-to-rvalue | |
// conversion part. | |
// | |
// If we encounter a node that claims to be an odr-use but shouldn't be, we | |
// transform it into the relevant kind of non-odr-use node and rebuild the | |
// tree of nodes leading to it. | |
// | |
// This is a mini-TreeTransform that only transforms a restricted subset of | |
// nodes (and only certain operands of them). | |
// Rebuild a subexpression. | |
auto Rebuild = [&](Expr *Sub) { | |
return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR); | |
}; | |
// Check whether a potential result satisfies the requirements of NOUR. | |
auto IsPotentialResultOdrUsed = [&](NamedDecl *D) { | |
// Any entity other than a VarDecl is always odr-used whenever it's named | |
// in a potentially-evaluated expression. | |
auto *VD = dyn_cast<VarDecl>(D); | |
if (!VD) | |
return true; | |
// C++2a [basic.def.odr]p4: | |
// A variable x whose name appears as a potentially-evalauted expression | |
// e is odr-used by e unless | |
// -- x is a reference that is usable in constant expressions, or | |
// -- x is a variable of non-reference type that is usable in constant | |
// expressions and has no mutable subobjects, and e is an element of | |
// the set of potential results of an expression of | |
// non-volatile-qualified non-class type to which the lvalue-to-rvalue | |
// conversion is applied, or | |
// -- x is a variable of non-reference type, and e is an element of the | |
// set of potential results of a discarded-value expression to which | |
// the lvalue-to-rvalue conversion is not applied | |
// | |
// We check the first bullet and the "potentially-evaluated" condition in | |
// BuildDeclRefExpr. We check the type requirements in the second bullet | |
// in CheckLValueToRValueConversionOperand below. | |
switch (NOUR) { | |
case NOUR_None: | |
case NOUR_Unevaluated: | |
llvm_unreachable("unexpected non-odr-use-reason"); | |
case NOUR_Constant: | |
// Constant references were handled when they were built. | |
if (VD->getType()->isReferenceType()) | |
return true; | |
if (auto *RD = VD->getType()->getAsCXXRecordDecl()) | |
if (RD->hasMutableFields()) | |
return true; | |
if (!VD->isUsableInConstantExpressions(S.Context)) | |
return true; | |
break; | |
case NOUR_Discarded: | |
if (VD->getType()->isReferenceType()) | |
return true; | |
break; | |
} | |
return false; | |
}; | |
// Mark that this expression does not constitute an odr-use. | |
auto MarkNotOdrUsed = [&] { | |
S.MaybeODRUseExprs.erase(E); | |
if (LambdaScopeInfo *LSI = S.getCurLambda()) | |
LSI->markVariableExprAsNonODRUsed(E); | |
}; | |
// C++2a [basic.def.odr]p2: | |
// The set of potential results of an expression e is defined as follows: | |
switch (E->getStmtClass()) { | |
// -- If e is an id-expression, ... | |
case Expr::DeclRefExprClass: { | |
auto *DRE = cast<DeclRefExpr>(E); | |
if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl())) | |
break; | |
// Rebuild as a non-odr-use DeclRefExpr. | |
MarkNotOdrUsed(); | |
return DeclRefExpr::Create( | |
S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(), | |
DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(), | |
DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(), | |
DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR); | |
} | |
case Expr::FunctionParmPackExprClass: { | |
auto *FPPE = cast<FunctionParmPackExpr>(E); | |
// If any of the declarations in the pack is odr-used, then the expression | |
// as a whole constitutes an odr-use. | |
for (VarDecl *D : *FPPE) | |
if (IsPotentialResultOdrUsed(D)) | |
return ExprEmpty(); | |
// FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice, | |
// nothing cares about whether we marked this as an odr-use, but it might | |
// be useful for non-compiler tools. | |
MarkNotOdrUsed(); | |
break; | |
} | |
// -- If e is a subscripting operation with an array operand... | |
case Expr::ArraySubscriptExprClass: { | |
auto *ASE = cast<ArraySubscriptExpr>(E); | |
Expr *OldBase = ASE->getBase()->IgnoreImplicit(); | |
if (!OldBase->getType()->isArrayType()) | |
break; | |
ExprResult Base = Rebuild(OldBase); | |
if (!Base.isUsable()) | |
return Base; | |
Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS(); | |
Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS(); | |
SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored. | |
return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS, | |
ASE->getRBracketLoc()); | |
} | |
case Expr::MemberExprClass: { | |
auto *ME = cast<MemberExpr>(E); | |
// -- If e is a class member access expression [...] naming a non-static | |
// data member... | |
if (isa<FieldDecl>(ME->getMemberDecl())) { | |
ExprResult Base = Rebuild(ME->getBase()); | |
if (!Base.isUsable()) | |
return Base; | |
return MemberExpr::Create( | |
S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(), | |
ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), | |
ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(), | |
CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(), | |
ME->getObjectKind(), ME->isNonOdrUse()); | |
} | |
if (ME->getMemberDecl()->isCXXInstanceMember()) | |
break; | |
// -- If e is a class member access expression naming a static data member, | |
// ... | |
if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl())) | |
break; | |
// Rebuild as a non-odr-use MemberExpr. | |
MarkNotOdrUsed(); | |
return MemberExpr::Create( | |
S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(), | |
ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(), | |
ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME), | |
ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR); | |
return ExprEmpty(); | |
} | |
case Expr::BinaryOperatorClass: { | |
auto *BO = cast<BinaryOperator>(E); | |
Expr *LHS = BO->getLHS(); | |
Expr *RHS = BO->getRHS(); | |
// -- If e is a pointer-to-member expression of the form e1 .* e2 ... | |
if (BO->getOpcode() == BO_PtrMemD) { | |
ExprResult Sub = Rebuild(LHS); | |
if (!Sub.isUsable()) | |
return Sub; | |
LHS = Sub.get(); | |
// -- If e is a comma expression, ... | |
} else if (BO->getOpcode() == BO_Comma) { | |
ExprResult Sub = Rebuild(RHS); | |
if (!Sub.isUsable()) | |
return Sub; | |
RHS = Sub.get(); | |
} else { | |
break; | |
} | |
return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(), | |
LHS, RHS); | |
} | |
// -- If e has the form (e1)... | |
case Expr::ParenExprClass: { | |
auto *PE = cast<ParenExpr>(E); | |
ExprResult Sub = Rebuild(PE->getSubExpr()); | |
if (!Sub.isUsable()) | |
return Sub; | |
return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get()); | |
} | |
// -- If e is a glvalue conditional expression, ... | |
// We don't apply this to a binary conditional operator. FIXME: Should we? | |
case Expr::ConditionalOperatorClass: { | |
auto *CO = cast<ConditionalOperator>(E); | |
ExprResult LHS = Rebuild(CO->getLHS()); | |
if (LHS.isInvalid()) | |
return ExprError(); | |
ExprResult RHS = Rebuild(CO->getRHS()); | |
if (RHS.isInvalid()) | |
return ExprError(); | |
if (!LHS.isUsable() && !RHS.isUsable()) | |
return ExprEmpty(); | |
if (!LHS.isUsable()) | |
LHS = CO->getLHS(); | |
if (!RHS.isUsable()) | |
RHS = CO->getRHS(); | |
return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(), | |
CO->getCond(), LHS.get(), RHS.get()); | |
} | |
// [Clang extension] | |
// -- If e has the form __extension__ e1... | |
case Expr::UnaryOperatorClass: { | |
auto *UO = cast<UnaryOperator>(E); | |
if (UO->getOpcode() != UO_Extension) | |
break; | |
ExprResult Sub = Rebuild(UO->getSubExpr()); | |
if (!Sub.isUsable()) | |
return Sub; | |
return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension, | |
Sub.get()); | |
} | |
// [Clang extension] | |
// -- If e has the form _Generic(...), the set of potential results is the | |
// union of the sets of potential results of the associated expressions. | |
case Expr::GenericSelectionExprClass: { | |
auto *GSE = cast<GenericSelectionExpr>(E); | |
SmallVector<Expr *, 4> AssocExprs; | |
bool AnyChanged = false; | |
for (Expr *OrigAssocExpr : GSE->getAssocExprs()) { | |
ExprResult AssocExpr = Rebuild(OrigAssocExpr); | |
if (AssocExpr.isInvalid()) | |
return ExprError(); | |
if (AssocExpr.isUsable()) { | |
AssocExprs.push_back(AssocExpr.get()); | |
AnyChanged = true; | |
} else { | |
AssocExprs.push_back(OrigAssocExpr); | |
} | |
} | |
return AnyChanged ? S.CreateGenericSelectionExpr( | |
GSE->getGenericLoc(), GSE->getDefaultLoc(), | |
GSE->getRParenLoc(), GSE->getControllingExpr(), | |
GSE->getAssocTypeSourceInfos(), AssocExprs) | |
: ExprEmpty(); | |
} | |
// [Clang extension] | |
// -- If e has the form __builtin_choose_expr(...), the set of potential | |
// results is the union of the sets of potential results of the | |
// second and third subexpressions. | |
case Expr::ChooseExprClass: { | |
auto *CE = cast<ChooseExpr>(E); | |
ExprResult LHS = Rebuild(CE->getLHS()); | |
if (LHS.isInvalid()) | |
return ExprError(); | |
ExprResult RHS = Rebuild(CE->getLHS()); | |
if (RHS.isInvalid()) | |
return ExprError(); | |
if (!LHS.get() && !RHS.get()) | |
return ExprEmpty(); | |
if (!LHS.isUsable()) | |
LHS = CE->getLHS(); | |
if (!RHS.isUsable()) | |
RHS = CE->getRHS(); | |
return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(), | |
RHS.get(), CE->getRParenLoc()); | |
} | |
// Step through non-syntactic nodes. | |
case Expr::ConstantExprClass: { | |
auto *CE = cast<ConstantExpr>(E); | |
ExprResult Sub = Rebuild(CE->getSubExpr()); | |
if (!Sub.isUsable()) | |
return Sub; | |
return ConstantExpr::Create(S.Context, Sub.get()); | |
} | |
// We could mostly rely on the recursive rebuilding to rebuild implicit | |
// casts, but not at the top level, so rebuild them here. | |
case Expr::ImplicitCastExprClass: { | |
auto *ICE = cast<ImplicitCastExpr>(E); | |
// Only step through the narrow set of cast kinds we expect to encounter. | |
// Anything else suggests we've left the region in which potential results | |
// can be found. | |
switch (ICE->getCastKind()) { | |
case CK_NoOp: | |
case CK_DerivedToBase: | |
case CK_UncheckedDerivedToBase: { | |
ExprResult Sub = Rebuild(ICE->getSubExpr()); | |
if (!Sub.isUsable()) | |
return Sub; | |
CXXCastPath Path(ICE->path()); | |
return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(), | |
ICE->getValueKind(), &Path); | |
} | |
default: | |
break; | |
} | |
break; | |
} | |
default: | |
break; | |
} | |
// Can't traverse through this node. Nothing to do. | |
return ExprEmpty(); | |
} | |
ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) { | |
// Check whether the operand is or contains an object of non-trivial C union | |
// type. | |
if (E->getType().isVolatileQualified() && | |
(E->getType().hasNonTrivialToPrimitiveDestructCUnion() || | |
E->getType().hasNonTrivialToPrimitiveCopyCUnion())) | |
checkNonTrivialCUnion(E->getType(), E->getExprLoc(), | |
Sema::NTCUC_LValueToRValueVolatile, | |
NTCUK_Destruct|NTCUK_Copy); | |
// C++2a [basic.def.odr]p4: | |
// [...] an expression of non-volatile-qualified non-class type to which | |
// the lvalue-to-rvalue conversion is applied [...] | |
if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>()) | |
return E; | |
ExprResult Result = | |
rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant); | |
if (Result.isInvalid()) | |
return ExprError(); | |
return Result.get() ? Result : E; | |
} | |
ExprResult Sema::ActOnConstantExpression(ExprResult Res) { | |
Res = CorrectDelayedTyposInExpr(Res); | |
if (!Res.isUsable()) | |
return Res; | |
// If a constant-expression is a reference to a variable where we delay | |
// deciding whether it is an odr-use, just assume we will apply the | |
// lvalue-to-rvalue conversion. In the one case where this doesn't happen | |
// (a non-type template argument), we have special handling anyway. | |
return CheckLValueToRValueConversionOperand(Res.get()); | |
} | |
void Sema::CleanupVarDeclMarking() { | |
// Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive | |
// call. | |
MaybeODRUseExprSet LocalMaybeODRUseExprs; | |
std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs); | |
for (Expr *E : LocalMaybeODRUseExprs) { | |
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { | |
MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()), | |
DRE->getLocation(), *this); | |
} else if (auto *ME = dyn_cast<MemberExpr>(E)) { | |
MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(), | |
*this); | |
} else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) { | |
for (VarDecl *VD : *FP) | |
MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this); | |
} else { | |
llvm_unreachable("Unexpected expression"); | |
} | |
} | |
assert(MaybeODRUseExprs.empty() && | |
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?"); | |
} | |
static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc, | |
VarDecl *Var, Expr *E) { | |
assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || | |
isa<FunctionParmPackExpr>(E)) && | |
"Invalid Expr argument to DoMarkVarDeclReferenced"); | |
Var->setReferenced(); | |
if (Var->isInvalidDecl()) | |
return; | |
auto *MSI = Var->getMemberSpecializationInfo(); | |
TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind() | |
: Var->getTemplateSpecializationKind(); | |
OdrUseContext OdrUse = isOdrUseContext(SemaRef); | |
bool UsableInConstantExpr = | |
Var->mightBeUsableInConstantExpressions(SemaRef.Context); | |
// C++20 [expr.const]p12: | |
// A variable [...] is needed for constant evaluation if it is [...] a | |
// variable whose name appears as a potentially constant evaluated | |
// expression that is either a contexpr variable or is of non-volatile | |
// const-qualified integral type or of reference type | |
bool NeededForConstantEvaluation = | |
isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr; | |
bool NeedDefinition = | |
OdrUse == OdrUseContext::Used || NeededForConstantEvaluation; | |
VarTemplateSpecializationDecl *VarSpec = | |
dyn_cast<VarTemplateSpecializationDecl>(Var); | |
assert(!isa<VarTemplatePartialSpecializationDecl>(Var) && | |
"Can't instantiate a partial template specialization."); | |
// If this might be a member specialization of a static data member, check | |
// the specialization is visible. We already did the checks for variable | |
// template specializations when we created them. | |
if (NeedDefinition && TSK != TSK_Undeclared && | |
!isa<VarTemplateSpecializationDecl>(Var)) | |
SemaRef.checkSpecializationVisibility(Loc, Var); | |
// Perform implicit instantiation of static data members, static data member | |
// templates of class templates, and variable template specializations. Delay | |
// instantiations of variable templates, except for those that could be used | |
// in a constant expression. | |
if (NeedDefinition && isTemplateInstantiation(TSK)) { | |
// Per C++17 [temp.explicit]p10, we may instantiate despite an explicit | |
// instantiation declaration if a variable is usable in a constant | |
// expression (among other cases). | |
bool TryInstantiating = | |
TSK == TSK_ImplicitInstantiation || | |
(TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr); | |
if (TryInstantiating) { | |
SourceLocation PointOfInstantiation = | |
MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation(); | |
bool FirstInstantiation = PointOfInstantiation.isInvalid(); | |
if (FirstInstantiation) { | |
PointOfInstantiation = Loc; | |
if (MSI) | |
MSI->setPointOfInstantiation(PointOfInstantiation); | |
else | |
Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); | |
} | |
bool InstantiationDependent = false; | |
bool IsNonDependent = | |
VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments( | |
VarSpec->getTemplateArgsInfo(), InstantiationDependent) | |
: true; | |
// Do not instantiate specializations that are still type-dependent. | |
if (IsNonDependent) { | |
if (UsableInConstantExpr) { | |
// Do not defer instantiations of variables that could be used in a | |
// constant expression. | |
SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] { | |
SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var); | |
}); | |
} else if (FirstInstantiation || | |
isa<VarTemplateSpecializationDecl>(Var)) { | |
// FIXME: For a specialization of a variable template, we don't | |
// distinguish between "declaration and type implicitly instantiated" | |
// and "implicit instantiation of definition requested", so we have | |
// no direct way to avoid enqueueing the pending instantiation | |
// multiple times. | |
SemaRef.PendingInstantiations | |
.push_back(std::make_pair(Var, PointOfInstantiation)); | |
} | |
} | |
} | |
} | |
// C++2a [basic.def.odr]p4: | |
// A variable x whose name appears as a potentially-evaluated expression e | |
// is odr-used by e unless | |
// -- x is a reference that is usable in constant expressions | |
// -- x is a variable of non-reference type that is usable in constant | |
// expressions and has no mutable subobjects [FIXME], and e is an | |
// element of the set of potential results of an expression of | |
// non-volatile-qualified non-class type to which the lvalue-to-rvalue | |
// conversion is applied | |
// -- x is a variable of non-reference type, and e is an element of the set | |
// of potential results of a discarded-value expression to which the | |
// lvalue-to-rvalue conversion is not applied [FIXME] | |
// | |
// We check the first part of the second bullet here, and | |
// Sema::CheckLValueToRValueConversionOperand deals with the second part. | |
// FIXME: To get the third bullet right, we need to delay this even for | |
// variables that are not usable in constant expressions. | |
// If we already know this isn't an odr-use, there's nothing more to do. | |
if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E)) | |
if (DRE->isNonOdrUse()) | |
return; | |
if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E)) | |
if (ME->isNonOdrUse()) | |
return; | |
switch (OdrUse) { | |
case OdrUseContext::None: | |
assert((!E || isa<FunctionParmPackExpr>(E)) && | |
"missing non-odr-use marking for unevaluated decl ref"); | |
break; | |
case OdrUseContext::FormallyOdrUsed: | |
// FIXME: Ignoring formal odr-uses results in incorrect lambda capture | |
// behavior. | |
break; | |
case OdrUseContext::Used: | |
// If we might later find that this expression isn't actually an odr-use, | |
// delay the marking. | |
if (E && Var->isUsableInConstantExpressions(SemaRef.Context)) | |
SemaRef.MaybeODRUseExprs.insert(E); | |
else | |
MarkVarDeclODRUsed(Var, Loc, SemaRef); | |
break; | |
case OdrUseContext::Dependent: | |
// If this is a dependent context, we don't need to mark variables as | |
// odr-used, but we may still need to track them for lambda capture. | |
// FIXME: Do we also need to do this inside dependent typeid expressions | |
// (which are modeled as unevaluated at this point)? | |
const bool RefersToEnclosingScope = | |
(SemaRef.CurContext != Var->getDeclContext() && | |
Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage()); | |
if (RefersToEnclosingScope) { | |
LambdaScopeInfo *const LSI = | |
SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true); | |
if (LSI && (!LSI->CallOperator || | |
!LSI->CallOperator->Encloses(Var->getDeclContext()))) { | |
// If a variable could potentially be odr-used, defer marking it so | |
// until we finish analyzing the full expression for any | |
// lvalue-to-rvalue | |
// or discarded value conversions that would obviate odr-use. | |
// Add it to the list of potential captures that will be analyzed | |
// later (ActOnFinishFullExpr) for eventual capture and odr-use marking | |
// unless the variable is a reference that was initialized by a constant | |
// expression (this will never need to be captured or odr-used). | |
// | |
// FIXME: We can simplify this a lot after implementing P0588R1. | |
assert(E && "Capture variable should be used in an expression."); | |
if (!Var->getType()->isReferenceType() || | |
!Var->isUsableInConstantExpressions(SemaRef.Context)) | |
LSI->addPotentialCapture(E->IgnoreParens()); | |
} | |
} | |
break; | |
} | |
} | |
/// Mark a variable referenced, and check whether it is odr-used | |
/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be | |
/// used directly for normal expressions referring to VarDecl. | |
void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) { | |
DoMarkVarDeclReferenced(*this, Loc, Var, nullptr); | |
} | |
static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, | |
Decl *D, Expr *E, bool MightBeOdrUse) { | |
if (SemaRef.isInOpenMPDeclareTargetContext()) | |
SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D); | |
if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | |
DoMarkVarDeclReferenced(SemaRef, Loc, Var, E); | |
return; | |
} | |
SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse); | |
// If this is a call to a method via a cast, also mark the method in the | |
// derived class used in case codegen can devirtualize the call. | |
const MemberExpr *ME = dyn_cast<MemberExpr>(E); | |
if (!ME) | |
return; | |
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); | |
if (!MD) | |
return; | |
// Only attempt to devirtualize if this is truly a virtual call. | |
bool IsVirtualCall = MD->isVirtual() && | |
ME->performsVirtualDispatch(SemaRef.getLangOpts()); | |
if (!IsVirtualCall) | |
return; | |
// If it's possible to devirtualize the call, mark the called function | |
// referenced. | |
CXXMethodDecl *DM = MD->getDevirtualizedMethod( | |
ME->getBase(), SemaRef.getLangOpts().AppleKext); | |
if (DM) | |
SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse); | |
} | |
/// Perform reference-marking and odr-use handling for a DeclRefExpr. | |
void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) { | |
// TODO: update this with DR# once a defect report is filed. | |
// C++11 defect. The address of a pure member should not be an ODR use, even | |
// if it's a qualified reference. | |
bool OdrUse = true; | |
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl())) | |
if (Method->isVirtual() && | |
!Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) | |
OdrUse = false; | |
if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) | |
if (!isConstantEvaluated() && FD->isConsteval() && | |
!RebuildingImmediateInvocation) | |
ExprEvalContexts.back().ReferenceToConsteval.insert(E); | |
MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse); | |
} | |
/// Perform reference-marking and odr-use handling for a MemberExpr. | |
void Sema::MarkMemberReferenced(MemberExpr *E) { | |
// C++11 [basic.def.odr]p2: | |
// A non-overloaded function whose name appears as a potentially-evaluated | |
// expression or a member of a set of candidate functions, if selected by | |
// overload resolution when referred to from a potentially-evaluated | |
// expression, is odr-used, unless it is a pure virtual function and its | |
// name is not explicitly qualified. | |
bool MightBeOdrUse = true; | |
if (E->performsVirtualDispatch(getLangOpts())) { | |
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) | |
if (Method->isPure()) | |
MightBeOdrUse = false; | |
} | |
SourceLocation Loc = | |
E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc(); | |
MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse); | |
} | |
/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr. | |
void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) { | |
for (VarDecl *VD : *E) | |
MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true); | |
} | |
/// Perform marking for a reference to an arbitrary declaration. It | |
/// marks the declaration referenced, and performs odr-use checking for | |
/// functions and variables. This method should not be used when building a | |
/// normal expression which refers to a variable. | |
void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, | |
bool MightBeOdrUse) { | |
if (MightBeOdrUse) { | |
if (auto *VD = dyn_cast<VarDecl>(D)) { | |
MarkVariableReferenced(Loc, VD); | |
return; | |
} | |
} | |
if (auto *FD = dyn_cast<FunctionDecl>(D)) { | |
MarkFunctionReferenced(Loc, FD, MightBeOdrUse); | |
return; | |
} | |
D->setReferenced(); | |
} | |
namespace { | |
// Mark all of the declarations used by a type as referenced. | |
// FIXME: Not fully implemented yet! We need to have a better understanding | |
// of when we're entering a context we should not recurse into. | |
// FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to | |
// TreeTransforms rebuilding the type in a new context. Rather than | |
// duplicating the TreeTransform logic, we should consider reusing it here. | |
// Currently that causes problems when rebuilding LambdaExprs. | |
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { | |
Sema &S; | |
SourceLocation Loc; | |
public: | |
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; | |
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } | |
bool TraverseTemplateArgument(const TemplateArgument &Arg); | |
}; | |
} | |
bool MarkReferencedDecls::TraverseTemplateArgument( | |
const TemplateArgument &Arg) { | |
{ | |
// A non-type template argument is a constant-evaluated context. | |
EnterExpressionEvaluationContext Evaluated( | |
S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | |
if (Arg.getKind() == TemplateArgument::Declaration) { | |
if (Decl *D = Arg.getAsDecl()) | |
S.MarkAnyDeclReferenced(Loc, D, true); | |
} else if (Arg.getKind() == TemplateArgument::Expression) { | |
S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false); | |
} | |
} | |
return Inherited::TraverseTemplateArgument(Arg); | |
} | |
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { | |
MarkReferencedDecls Marker(*this, Loc); | |
Marker.TraverseType(T); | |
} | |
namespace { | |
/// Helper class that marks all of the declarations referenced by | |
/// potentially-evaluated subexpressions as "referenced". | |
class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> { | |
public: | |
typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited; | |
bool SkipLocalVariables; | |
EvaluatedExprMarker(Sema &S, bool SkipLocalVariables) | |
: Inherited(S), SkipLocalVariables(SkipLocalVariables) {} | |
void visitUsedDecl(SourceLocation Loc, Decl *D) { | |
S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D)); | |
} | |
void VisitDeclRefExpr(DeclRefExpr *E) { | |
// If we were asked not to visit local variables, don't. | |
if (SkipLocalVariables) { | |
if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) | |
if (VD->hasLocalStorage()) | |
return; | |
} | |
S.MarkDeclRefReferenced(E); | |
} | |
void VisitMemberExpr(MemberExpr *E) { | |
S.MarkMemberReferenced(E); | |
Visit(E->getBase()); | |
} | |
}; | |
} // namespace | |
/// Mark any declarations that appear within this expression or any | |
/// potentially-evaluated subexpressions as "referenced". | |
/// | |
/// \param SkipLocalVariables If true, don't mark local variables as | |
/// 'referenced'. | |
void Sema::MarkDeclarationsReferencedInExpr(Expr *E, | |
bool SkipLocalVariables) { | |
EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E); | |
} | |
/// Emit a diagnostic that describes an effect on the run-time behavior | |
/// of the program being compiled. | |
/// | |
/// This routine emits the given diagnostic when the code currently being | |
/// type-checked is "potentially evaluated", meaning that there is a | |
/// possibility that the code will actually be executable. Code in sizeof() | |
/// expressions, code used only during overload resolution, etc., are not | |
/// potentially evaluated. This routine will suppress such diagnostics or, | |
/// in the absolutely nutty case of potentially potentially evaluated | |
/// expressions (C++ typeid), queue the diagnostic to potentially emit it | |
/// later. | |
/// | |
/// This routine should be used for all diagnostics that describe the run-time | |
/// behavior of a program, such as passing a non-POD value through an ellipsis. | |
/// Failure to do so will likely result in spurious diagnostics or failures | |
/// during overload resolution or within sizeof/alignof/typeof/typeid. | |
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts, | |
const PartialDiagnostic &PD) { | |
switch (ExprEvalContexts.back().Context) { | |
case ExpressionEvaluationContext::Unevaluated: | |
case ExpressionEvaluationContext::UnevaluatedList: | |
case ExpressionEvaluationContext::UnevaluatedAbstract: | |
case ExpressionEvaluationContext::DiscardedStatement: | |
// The argument will never be evaluated, so don't complain. | |
break; | |
case ExpressionEvaluationContext::ConstantEvaluated: | |
// Relevant diagnostics should be produced by constant evaluation. | |
break; | |
case ExpressionEvaluationContext::PotentiallyEvaluated: | |
case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | |
if (!Stmts.empty() && getCurFunctionOrMethodDecl()) { | |
FunctionScopes.back()->PossiblyUnreachableDiags. | |
push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts)); | |
return true; | |
} | |
// The initializer of a constexpr variable or of the first declaration of a | |
// static data member is not syntactically a constant evaluated constant, | |
// but nonetheless is always required to be a constant expression, so we | |
// can skip diagnosing. | |
// FIXME: Using the mangling context here is a hack. | |
if (auto *VD = dyn_cast_or_null<VarDecl>( | |
ExprEvalContexts.back().ManglingContextDecl)) { | |
if (VD->isConstexpr() || | |
(VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline())) | |
break; | |
// FIXME: For any other kind of variable, we should build a CFG for its | |
// initializer and check whether the context in question is reachable. | |
} | |
Diag(Loc, PD); | |
return true; | |
} | |
return false; | |
} | |
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, | |
const PartialDiagnostic &PD) { | |
return DiagRuntimeBehavior( | |
Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD); | |
} | |
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, | |
CallExpr *CE, FunctionDecl *FD) { | |
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) | |
return false; | |
// If we're inside a decltype's expression, don't check for a valid return | |
// type or construct temporaries until we know whether this is the last call. | |
if (ExprEvalContexts.back().ExprContext == | |
ExpressionEvaluationContextRecord::EK_Decltype) { | |
ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE); | |
return false; | |
} | |
class CallReturnIncompleteDiagnoser : public TypeDiagnoser { | |
FunctionDecl *FD; | |
CallExpr *CE; | |
public: | |
CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE) | |
: FD(FD), CE(CE) { } | |
void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |
if (!FD) { | |
S.Diag(Loc, diag::err_call_incomplete_return) | |
<< T << CE->getSourceRange(); | |
return; | |
} | |
S.Diag(Loc, diag::err_call_function_incomplete_return) | |
<< CE->getSourceRange() << FD->getDeclName() << T; | |
S.Diag(FD->getLocation(), diag::note_entity_declared_at) | |
<< FD->getDeclName(); | |
} | |
} Diagnoser(FD, CE); | |
if (RequireCompleteType(Loc, ReturnType, Diagnoser)) | |
return true; | |
return false; | |
} | |
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses | |
// will prevent this condition from triggering, which is what we want. | |
void Sema::DiagnoseAssignmentAsCondition(Expr *E) { | |
SourceLocation Loc; | |
unsigned diagnostic = diag::warn_condition_is_assignment; | |
bool IsOrAssign = false; | |
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { | |
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) | |
return; | |
IsOrAssign = Op->getOpcode() == BO_OrAssign; | |
// Greylist some idioms by putting them into a warning subcategory. | |
if (ObjCMessageExpr *ME | |
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { | |
Selector Sel = ME->getSelector(); | |
// self = [<foo> init...] | |
if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init) | |
diagnostic = diag::warn_condition_is_idiomatic_assignment; | |
// <foo> = [<bar> nextObject] | |
else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") | |
diagnostic = diag::warn_condition_is_idiomatic_assignment; | |
} | |
Loc = Op->getOperatorLoc(); | |
} else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { | |
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) | |
return; | |
IsOrAssign = Op->getOperator() == OO_PipeEqual; | |
Loc = Op->getOperatorLoc(); | |
} else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) | |
return DiagnoseAssignmentAsCondition(POE->getSyntacticForm()); | |
else { | |
// Not an assignment. | |
return; | |
} | |
Diag(Loc, diagnostic) << E->getSourceRange(); | |
SourceLocation Open = E->getBeginLoc(); | |
SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd()); | |
Diag(Loc, diag::note_condition_assign_silence) | |
<< FixItHint::CreateInsertion(Open, "(") | |
<< FixItHint::CreateInsertion(Close, ")"); | |
if (IsOrAssign) | |
Diag(Loc, diag::note_condition_or_assign_to_comparison) | |
<< FixItHint::CreateReplacement(Loc, "!="); | |
else | |
Diag(Loc, diag::note_condition_assign_to_comparison) | |
<< FixItHint::CreateReplacement(Loc, "=="); | |
} | |
/// Redundant parentheses over an equality comparison can indicate | |
/// that the user intended an assignment used as condition. | |
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { | |
// Don't warn if the parens came from a macro. | |
SourceLocation parenLoc = ParenE->getBeginLoc(); | |
if (parenLoc.isInvalid() || parenLoc.isMacroID()) | |
return; | |
// Don't warn for dependent expressions. | |
if (ParenE->isTypeDependent()) | |
return; | |
Expr *E = ParenE->IgnoreParens(); | |
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) | |
if (opE->getOpcode() == BO_EQ && | |
opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) | |
== Expr::MLV_Valid) { | |
SourceLocation Loc = opE->getOperatorLoc(); | |
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); | |
SourceRange ParenERange = ParenE->getSourceRange(); | |
Diag(Loc, diag::note_equality_comparison_silence) | |
<< FixItHint::CreateRemoval(ParenERange.getBegin()) | |
<< FixItHint::CreateRemoval(ParenERange.getEnd()); | |
Diag(Loc, diag::note_equality_comparison_to_assign) | |
<< FixItHint::CreateReplacement(Loc, "="); | |
} | |
} | |
ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E, | |
bool IsConstexpr) { | |
DiagnoseAssignmentAsCondition(E); | |
if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) | |
DiagnoseEqualityWithExtraParens(parenE); | |
ExprResult result = CheckPlaceholderExpr(E); | |
if (result.isInvalid()) return ExprError(); | |
E = result.get(); | |
if (!E->isTypeDependent()) { | |
if (getLangOpts().CPlusPlus) | |
return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4 | |
ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); | |
if (ERes.isInvalid()) | |
return ExprError(); | |
E = ERes.get(); | |
QualType T = E->getType(); | |
if (!T->isScalarType()) { // C99 6.8.4.1p1 | |
Diag(Loc, diag::err_typecheck_statement_requires_scalar) | |
<< T << E->getSourceRange(); | |
return ExprError(); | |
} | |
CheckBoolLikeConversion(E, Loc); | |
} | |
return E; | |
} | |
Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc, | |
Expr *SubExpr, ConditionKind CK) { | |
// Empty conditions are valid in for-statements. | |
if (!SubExpr) | |
return ConditionResult(); | |
ExprResult Cond; | |
switch (CK) { | |
case ConditionKind::Boolean: | |
Cond = CheckBooleanCondition(Loc, SubExpr); | |
break; | |
case ConditionKind::ConstexprIf: | |
Cond = CheckBooleanCondition(Loc, SubExpr, true); | |
break; | |
case ConditionKind::Switch: | |
Cond = CheckSwitchCondition(Loc, SubExpr); | |
break; | |
} | |
if (Cond.isInvalid()) | |
return ConditionError(); | |
// FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead. | |
FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc); | |
if (!FullExpr.get()) | |
return ConditionError(); | |
return ConditionResult(*this, nullptr, FullExpr, | |
CK == ConditionKind::ConstexprIf); | |
} | |
namespace { | |
/// A visitor for rebuilding a call to an __unknown_any expression | |
/// to have an appropriate type. | |
struct RebuildUnknownAnyFunction | |
: StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { | |
Sema &S; | |
RebuildUnknownAnyFunction(Sema &S) : S(S) {} | |
ExprResult VisitStmt(Stmt *S) { | |
llvm_unreachable("unexpected statement!"); | |
} | |
ExprResult VisitExpr(Expr *E) { | |
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) | |
<< E->getSourceRange(); | |
return ExprError(); | |
} | |
/// Rebuild an expression which simply semantically wraps another | |
/// expression which it shares the type and value kind of. | |
template <class T> ExprResult rebuildSugarExpr(T *E) { | |
ExprResult SubResult = Visit(E->getSubExpr()); | |
if (SubResult.isInvalid()) return ExprError(); | |
Expr *SubExpr = SubResult.get(); | |
E->setSubExpr(SubExpr); | |
E->setType(SubExpr->getType()); | |
E->setValueKind(SubExpr->getValueKind()); | |
assert(E->getObjectKind() == OK_Ordinary); | |
return E; | |
} | |
ExprResult VisitParenExpr(ParenExpr *E) { | |
return rebuildSugarExpr(E); | |
} | |
ExprResult VisitUnaryExtension(UnaryOperator *E) { | |
return rebuildSugarExpr(E); | |
} | |
ExprResult VisitUnaryAddrOf(UnaryOperator *E) { | |
ExprResult SubResult = Visit(E->getSubExpr()); | |
if (SubResult.isInvalid()) return ExprError(); | |
Expr *SubExpr = SubResult.get(); | |
E->setSubExpr(SubExpr); | |
E->setType(S.Context.getPointerType(SubExpr->getType())); | |
assert(E->getValueKind() == VK_RValue); | |
assert(E->getObjectKind() == OK_Ordinary); | |
return E; | |
} | |
ExprResult resolveDecl(Expr *E, ValueDecl *VD) { | |
if (!isa<FunctionDecl>(VD)) return VisitExpr(E); | |
E->setType(VD->getType()); | |
assert(E->getValueKind() == VK_RValue); | |
if (S.getLangOpts().CPlusPlus && | |
!(isa<CXXMethodDecl>(VD) && | |
cast<CXXMethodDecl>(VD)->isInstance())) | |
E->setValueKind(VK_LValue); | |
return E; | |
} | |
ExprResult VisitMemberExpr(MemberExpr *E) { | |
return resolveDecl(E, E->getMemberDecl()); | |
} | |
ExprResult VisitDeclRefExpr(DeclRefExpr *E) { | |
return resolveDecl(E, E->getDecl()); | |
} | |
}; | |
} | |
/// Given a function expression of unknown-any type, try to rebuild it | |
/// to have a function type. | |
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { | |
ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); | |
if (Result.isInvalid()) return ExprError(); | |
return S.DefaultFunctionArrayConversion(Result.get()); | |
} | |
namespace { | |
/// A visitor for rebuilding an expression of type __unknown_anytype | |
/// into one which resolves the type directly on the referring | |
/// expression. Strict preservation of the original source | |
/// structure is not a goal. | |
struct RebuildUnknownAnyExpr | |
: StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { | |
Sema &S; | |
/// The current destination type. | |
QualType DestType; | |
RebuildUnknownAnyExpr(Sema &S, QualType CastType) | |
: S(S), DestType(CastType) {} | |
ExprResult VisitStmt(Stmt *S) { | |
llvm_unreachable("unexpected statement!"); | |
} | |
ExprResult VisitExpr(Expr *E) { | |
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) | |
<< E->getSourceRange(); | |
return ExprError(); | |
} | |
ExprResult VisitCallExpr(CallExpr *E); | |
ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); | |
/// Rebuild an expression which simply semantically wraps another | |
/// expression which it shares the type and value kind of. | |
template <class T> ExprResult rebuildSugarExpr(T *E) { | |
ExprResult SubResult = Visit(E->getSubExpr()); | |
if (SubResult.isInvalid()) return ExprError(); | |
Expr *SubExpr = SubResult.get(); | |
E->setSubExpr(SubExpr); | |
E->setType(SubExpr->getType()); | |
E->setValueKind(SubExpr->getValueKind()); | |
assert(E->getObjectKind() == OK_Ordinary); | |
return E; | |
} | |
ExprResult VisitParenExpr(ParenExpr *E) { | |
return rebuildSugarExpr(E); | |
} | |
ExprResult VisitUnaryExtension(UnaryOperator *E) { | |
return rebuildSugarExpr(E); | |
} | |
ExprResult VisitUnaryAddrOf(UnaryOperator *E) { | |
const PointerType *Ptr = DestType->getAs<PointerType>(); | |
if (!Ptr) { | |
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) | |
<< E->getSourceRange(); | |
return ExprError(); | |
} | |
if (isa<CallExpr>(E->getSubExpr())) { | |
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call) | |
<< E->getSourceRange(); | |
return ExprError(); | |
} | |
assert(E->getValueKind() == VK_RValue); | |
assert(E->getObjectKind() == OK_Ordinary); | |
E->setType(DestType); | |
// Build the sub-expression as if it were an object of the pointee type. | |
DestType = Ptr->getPointeeType(); | |
ExprResult SubResult = Visit(E->getSubExpr()); | |
if (SubResult.isInvalid()) return ExprError(); | |
E->setSubExpr(SubResult.get()); | |
return E; | |
} | |
ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); | |
ExprResult resolveDecl(Expr *E, ValueDecl *VD); | |
ExprResult VisitMemberExpr(MemberExpr *E) { | |
return resolveDecl(E, E->getMemberDecl()); | |
} | |
ExprResult VisitDeclRefExpr(DeclRefExpr *E) { | |
return resolveDecl(E, E->getDecl()); | |
} | |
}; | |
} | |
/// Rebuilds a call expression which yielded __unknown_anytype. | |
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { | |
Expr *CalleeExpr = E->getCallee(); | |
enum FnKind { | |
FK_MemberFunction, | |
FK_FunctionPointer, | |
FK_BlockPointer | |
}; | |
FnKind Kind; | |
QualType CalleeType = CalleeExpr->getType(); | |
if (CalleeType == S.Context.BoundMemberTy) { | |
assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)); | |
Kind = FK_MemberFunction; | |
CalleeType = Expr::findBoundMemberType(CalleeExpr); | |
} else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) { | |
CalleeType = Ptr->getPointeeType(); | |
Kind = FK_FunctionPointer; | |
} else { | |
CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType(); | |
Kind = FK_BlockPointer; | |
} | |
const FunctionType *FnType = CalleeType->castAs<FunctionType>(); | |
// Verify that this is a legal result type of a function. | |
if (DestType->isArrayType() || DestType->isFunctionType()) { | |
unsigned diagID = diag::err_func_returning_array_function; | |
if (Kind == FK_BlockPointer) | |
diagID = diag::err_block_returning_array_function; | |
S.Diag(E->getExprLoc(), diagID) | |
<< DestType->isFunctionType() << DestType; | |
return ExprError(); | |
} | |
// Otherwise, go ahead and set DestType as the call's result. | |
E->setType(DestType.getNonLValueExprType(S.Context)); | |
E->setValueKind(Expr::getValueKindForType(DestType)); | |
assert(E->getObjectKind() == OK_Ordinary); | |
// Rebuild the function type, replacing the result type with DestType. | |
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType); | |
if (Proto) { | |
// __unknown_anytype(...) is a special case used by the debugger when | |
// it has no idea what a function's signature is. | |
// | |
// We want to build this call essentially under the K&R | |
// unprototyped rules, but making a FunctionNoProtoType in C++ | |
// would foul up all sorts of assumptions. However, we cannot | |
// simply pass all arguments as variadic arguments, nor can we | |
// portably just call the function under a non-variadic type; see | |
// the comment on IR-gen's TargetInfo::isNoProtoCallVariadic. | |
// However, it turns out that in practice it is generally safe to | |
// call a function declared as "A foo(B,C,D);" under the prototype | |
// "A foo(B,C,D,...);". The only known exception is with the | |
// Windows ABI, where any variadic function is implicitly cdecl | |
// regardless of its normal CC. Therefore we change the parameter | |
// types to match the types of the arguments. | |
// | |
// This is a hack, but it is far superior to moving the | |
// corresponding target-specific code from IR-gen to Sema/AST. | |
ArrayRef<QualType> ParamTypes = Proto->getParamTypes(); | |
SmallVector<QualType, 8> ArgTypes; | |
if (ParamTypes.empty() && Proto->isVariadic()) { // the special case | |
ArgTypes.reserve(E->getNumArgs()); | |
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { | |
Expr *Arg = E->getArg(i); | |
QualType ArgType = Arg->getType(); | |
if (E->isLValue()) { | |
ArgType = S.Context.getLValueReferenceType(ArgType); | |
} else if (E->isXValue()) { | |
ArgType = S.Context.getRValueReferenceType(ArgType); | |
} | |
ArgTypes.push_back(ArgType); | |
} | |
ParamTypes = ArgTypes; | |
} | |
DestType = S.Context.getFunctionType(DestType, ParamTypes, | |
Proto->getExtProtoInfo()); | |
} else { | |
DestType = S.Context.getFunctionNoProtoType(DestType, | |
FnType->getExtInfo()); | |
} | |
// Rebuild the appropriate pointer-to-function type. | |
switch (Kind) { | |
case FK_MemberFunction: | |
// Nothing to do. | |
break; | |
case FK_FunctionPointer: | |
DestType = S.Context.getPointerType(DestType); | |
break; | |
case FK_BlockPointer: | |
DestType = S.Context.getBlockPointerType(DestType); | |
break; | |
} | |
// Finally, we can recurse. | |
ExprResult CalleeResult = Visit(CalleeExpr); | |
if (!CalleeResult.isUsable()) return ExprError(); | |
E->setCallee(CalleeResult.get()); | |
// Bind a temporary if necessary. | |
return S.MaybeBindToTemporary(E); | |
} | |
ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { | |
// Verify that this is a legal result type of a call. | |
if (DestType->isArrayType() || DestType->isFunctionType()) { | |
S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) | |
<< DestType->isFunctionType() << DestType; | |
return ExprError(); | |
} | |
// Rewrite the method result type if available. | |
if (ObjCMethodDecl *Method = E->getMethodDecl()) { | |
assert(Method->getReturnType() == S.Context.UnknownAnyTy); | |
Method->setReturnType(DestType); | |
} | |
// Change the type of the message. | |
E->setType(DestType.getNonReferenceType()); | |
E->setValueKind(Expr::getValueKindForType(DestType)); | |
return S.MaybeBindToTemporary(E); | |
} | |
ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { | |
// The only case we should ever see here is a function-to-pointer decay. | |
if (E->getCastKind() == CK_FunctionToPointerDecay) { | |
assert(E->getValueKind() == VK_RValue); | |
assert(E->getObjectKind() == OK_Ordinary); | |
E->setType(DestType); | |
// Rebuild the sub-expression as the pointee (function) type. | |
DestType = DestType->castAs<PointerType>()->getPointeeType(); | |
ExprResult Result = Visit(E->getSubExpr()); | |
if (!Result.isUsable()) return ExprError(); | |
E->setSubExpr(Result.get()); | |
return E; | |
} else if (E->getCastKind() == CK_LValueToRValue) { | |
assert(E->getValueKind() == VK_RValue); | |
assert(E->getObjectKind() == OK_Ordinary); | |
assert(isa<BlockPointerType>(E->getType())); | |
E->setType(DestType); | |
// The sub-expression has to be a lvalue reference, so rebuild it as such. | |
DestType = S.Context.getLValueReferenceType(DestType); | |
ExprResult Result = Visit(E->getSubExpr()); | |
if (!Result.isUsable()) return ExprError(); | |
E->setSubExpr(Result.get()); | |
return E; | |
} else { | |
llvm_unreachable("Unhandled cast type!"); | |
} | |
} | |
ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { | |
ExprValueKind ValueKind = VK_LValue; | |
QualType Type = DestType; | |
// We know how to make this work for certain kinds of decls: | |
// - functions | |
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) { | |
if (const PointerType *Ptr = Type->getAs<PointerType>()) { | |
DestType = Ptr->getPointeeType(); | |
ExprResult Result = resolveDecl(E, VD); | |
if (Result.isInvalid()) return ExprError(); | |
return S.ImpCastExprToType(Result.get(), Type, | |
CK_FunctionToPointerDecay, VK_RValue); | |
} | |
if (!Type->isFunctionType()) { | |
S.Diag(E->getExprLoc(), diag::err_unknown_any_function) | |
<< VD << E->getSourceRange(); | |
return ExprError(); | |
} | |
if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) { | |
// We must match the FunctionDecl's type to the hack introduced in | |
// RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown | |
// type. See the lengthy commentary in that routine. | |
QualType FDT = FD->getType(); | |
const FunctionType *FnType = FDT->castAs<FunctionType>(); | |
const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType); | |
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | |
if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) { | |
SourceLocation Loc = FD->getLocation(); | |
FunctionDecl *NewFD = FunctionDecl::Create( | |
S.Context, FD->getDeclContext(), Loc, Loc, | |
FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(), | |
SC_None, false /*isInlineSpecified*/, FD->hasPrototype(), | |
/*ConstexprKind*/ CSK_unspecified); | |
if (FD->getQualifier()) | |
NewFD->setQualifierInfo(FD->getQualifierLoc()); | |
SmallVector<ParmVarDecl*, 16> Params; | |
for (const auto &AI : FT->param_types()) { | |
ParmVarDecl *Param = | |
S.BuildParmVarDeclForTypedef(FD, Loc, AI); | |
Param->setScopeInfo(0, Params.size()); | |
Params.push_back(Param); | |
} | |
NewFD->setParams(Params); | |
DRE->setDecl(NewFD); | |
VD = DRE->getDecl(); | |
} | |
} | |
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) | |
if (MD->isInstance()) { | |
ValueKind = VK_RValue; | |
Type = S.Context.BoundMemberTy; | |
} | |
// Function references aren't l-values in C. | |
if (!S.getLangOpts().CPlusPlus) | |
ValueKind = VK_RValue; | |
// - variables | |
} else if (isa<VarDecl>(VD)) { | |
if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) { | |
Type = RefTy->getPointeeType(); | |
} else if (Type->isFunctionType()) { | |
S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) | |
<< VD << E->getSourceRange(); | |
return ExprError(); | |
} | |
// - nothing else | |
} else { | |
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) | |
<< VD << E->getSourceRange(); | |
return ExprError(); | |
} | |
// Modifying the declaration like this is friendly to IR-gen but | |
// also really dangerous. | |
VD->setType(DestType); | |
E->setType(Type); | |
E->setValueKind(ValueKind); | |
return E; | |
} | |
/// Check a cast of an unknown-any type. We intentionally only | |
/// trigger this for C-style casts. | |
ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, | |
Expr *CastExpr, CastKind &CastKind, | |
ExprValueKind &VK, CXXCastPath &Path) { | |
// The type we're casting to must be either void or complete. | |
if (!CastType->isVoidType() && | |
RequireCompleteType(TypeRange.getBegin(), CastType, | |
diag::err_typecheck_cast_to_incomplete)) | |
return ExprError(); | |
// Rewrite the casted expression from scratch. | |
ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); | |
if (!result.isUsable()) return ExprError(); | |
CastExpr = result.get(); | |
VK = CastExpr->getValueKind(); | |
CastKind = CK_NoOp; | |
return CastExpr; | |
} | |
ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { | |
return RebuildUnknownAnyExpr(*this, ToType).Visit(E); | |
} | |
ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc, | |
Expr *arg, QualType ¶mType) { | |
// If the syntactic form of the argument is not an explicit cast of | |
// any sort, just do default argument promotion. | |
ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens()); | |
if (!castArg) { | |
ExprResult result = DefaultArgumentPromotion(arg); | |
if (result.isInvalid()) return ExprError(); | |
paramType = result.get()->getType(); | |
return result; | |
} | |
// Otherwise, use the type that was written in the explicit cast. | |
assert(!arg->hasPlaceholderType()); | |
paramType = castArg->getTypeAsWritten(); | |
// Copy-initialize a parameter of that type. | |
InitializedEntity entity = | |
InitializedEntity::InitializeParameter(Context, paramType, | |
/*consumed*/ false); | |
return PerformCopyInitialization(entity, callLoc, arg); | |
} | |
static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { | |
Expr *orig = E; | |
unsigned diagID = diag::err_uncasted_use_of_unknown_any; | |
while (true) { | |
E = E->IgnoreParenImpCasts(); | |
if (CallExpr *call = dyn_cast<CallExpr>(E)) { | |
E = call->getCallee(); | |
diagID = diag::err_uncasted_call_of_unknown_any; | |
} else { | |
break; | |
} | |
} | |
SourceLocation loc; | |
NamedDecl *d; | |
if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) { | |
loc = ref->getLocation(); | |
d = ref->getDecl(); | |
} else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) { | |
loc = mem->getMemberLoc(); | |
d = mem->getMemberDecl(); | |
} else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) { | |
diagID = diag::err_uncasted_call_of_unknown_any; | |
loc = msg->getSelectorStartLoc(); | |
d = msg->getMethodDecl(); | |
if (!d) { | |
S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) | |
<< static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector() | |
<< orig->getSourceRange(); | |
return ExprError(); | |
} | |
} else { | |
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) | |
<< E->getSourceRange(); | |
return ExprError(); | |
} | |
S.Diag(loc, diagID) << d << orig->getSourceRange(); | |
// Never recoverable. | |
return ExprError(); | |
} | |
/// Check for operands with placeholder types and complain if found. | |
/// Returns ExprError() if there was an error and no recovery was possible. | |
ExprResult Sema::CheckPlaceholderExpr(Expr *E) { | |
if (!getLangOpts().CPlusPlus) { | |
// C cannot handle TypoExpr nodes on either side of a binop because it | |
// doesn't handle dependent types properly, so make sure any TypoExprs have | |
// been dealt with before checking the operands. | |
ExprResult Result = CorrectDelayedTyposInExpr(E); | |
if (!Result.isUsable()) return ExprError(); | |
E = Result.get(); | |
} | |
const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); | |
if (!placeholderType) return E; | |
switch (placeholderType->getKind()) { | |
// Overloaded expressions. | |
case BuiltinType::Overload: { | |
// Try to resolve a single function template specialization. | |
// This is obligatory. | |
ExprResult Result = E; | |
if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false)) | |
return Result; | |
// No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization | |
// leaves Result unchanged on failure. | |
Result = E; | |
if (resolveAndFixAddressOfSingleOverloadCandidate(Result)) | |
return Result; | |
// If that failed, try to recover with a call. | |
tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable), | |
/*complain*/ true); | |
return Result; | |
} | |
// Bound member functions. | |
case BuiltinType::BoundMember: { | |
ExprResult result = E; | |
const Expr *BME = E->IgnoreParens(); | |
PartialDiagnostic PD = PDiag(diag::err_bound_member_function); | |
// Try to give a nicer diagnostic if it is a bound member that we recognize. | |
if (isa<CXXPseudoDestructorExpr>(BME)) { | |
PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1; | |
} else if (const auto *ME = dyn_cast<MemberExpr>(BME)) { | |
if (ME->getMemberNameInfo().getName().getNameKind() == | |
DeclarationName::CXXDestructorName) | |
PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0; | |
} | |
tryToRecoverWithCall(result, PD, | |
/*complain*/ true); | |
return result; | |
} | |
// ARC unbridged casts. | |
case BuiltinType::ARCUnbridgedCast: { | |
Expr *realCast = stripARCUnbridgedCast(E); | |
diagnoseARCUnbridgedCast(realCast); | |
return realCast; | |
} | |
// Expressions of unknown type. | |
case BuiltinType::UnknownAny: | |
return diagnoseUnknownAnyExpr(*this, E); | |
// Pseudo-objects. | |
case BuiltinType::PseudoObject: | |
return checkPseudoObjectRValue(E); | |
case BuiltinType::BuiltinFn: { | |
// Accept __noop without parens by implicitly converting it to a call expr. | |
auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); | |
if (DRE) { | |
auto *FD = cast<FunctionDecl>(DRE->getDecl()); | |
if (FD->getBuiltinID() == Builtin::BI__noop) { | |
E = ImpCastExprToType(E, Context.getPointerType(FD->getType()), | |
CK_BuiltinFnToFnPtr) | |
.get(); | |
return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy, | |
VK_RValue, SourceLocation()); | |
} | |
} | |
Diag(E->getBeginLoc(), diag::err_builtin_fn_use); | |
return ExprError(); | |
} | |
// Expressions of unknown type. | |
case BuiltinType::OMPArraySection: | |
Diag(E->getBeginLoc(), diag::err_omp_array_section_use); | |
return ExprError(); | |
// Expressions of unknown type. | |
case BuiltinType::OMPArrayShaping: | |
return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use)); | |
case BuiltinType::OMPIterator: | |
return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use)); | |
// Everything else should be impossible. | |
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | |
case BuiltinType::Id: | |
#include "clang/Basic/OpenCLImageTypes.def" | |
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | |
case BuiltinType::Id: | |
#include "clang/Basic/OpenCLExtensionTypes.def" | |
#define SVE_TYPE(Name, Id, SingletonId) \ | |
case BuiltinType::Id: | |
#include "clang/Basic/AArch64SVEACLETypes.def" | |
#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id: | |
#define PLACEHOLDER_TYPE(Id, SingletonId) | |
#include "clang/AST/BuiltinTypes.def" | |
break; | |
} | |
llvm_unreachable("invalid placeholder type!"); | |
} | |
bool Sema::CheckCaseExpression(Expr *E) { | |
if (E->isTypeDependent()) | |
return true; | |
if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) | |
return E->getType()->isIntegralOrEnumerationType(); | |
return false; | |
} | |
/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. | |
ExprResult | |
Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { | |
assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && | |
"Unknown Objective-C Boolean value!"); | |
QualType BoolT = Context.ObjCBuiltinBoolTy; | |
if (!Context.getBOOLDecl()) { | |
LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc, | |
Sema::LookupOrdinaryName); | |
if (LookupName(Result, getCurScope()) && Result.isSingleResult()) { | |
NamedDecl *ND = Result.getFoundDecl(); | |
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) | |
Context.setBOOLDecl(TD); | |
} | |
} | |
if (Context.getBOOLDecl()) | |
BoolT = Context.getBOOLType(); | |
return new (Context) | |
ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc); | |
} | |
ExprResult Sema::ActOnObjCAvailabilityCheckExpr( | |
llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc, | |
SourceLocation RParen) { | |
StringRef Platform = getASTContext().getTargetInfo().getPlatformName(); | |
auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { | |
return Spec.getPlatform() == Platform; | |
}); | |
VersionTuple Version; | |
if (Spec != AvailSpecs.end()) | |
Version = Spec->getVersion(); | |
// The use of `@available` in the enclosing function should be analyzed to | |
// warn when it's used inappropriately (i.e. not if(@available)). | |
if (getCurFunctionOrMethodDecl()) | |
getEnclosingFunction()->HasPotentialAvailabilityViolations = true; | |
else if (getCurBlock() || getCurLambda()) | |
getCurFunction()->HasPotentialAvailabilityViolations = true; | |
return new (Context) | |
ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy); | |
} | |
bool Sema::IsDependentFunctionNameExpr(Expr *E) { | |
assert(E->isTypeDependent()); | |
return isa<UnresolvedLookupExpr>(E); | |
} | |
ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, | |
ArrayRef<Expr *> SubExprs) { | |
// FIXME: enable it for C++, RecoveryExpr is type-dependent to suppress | |
// bogus diagnostics and this trick does not work in C. | |
// FIXME: use containsErrors() to suppress unwanted diags in C. | |
if (!Context.getLangOpts().RecoveryAST) | |
return ExprError(); | |
if (isSFINAEContext()) | |
return ExprError(); | |
return RecoveryExpr::Create(Context, Begin, End, SubExprs); | |
} |