| //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Builder implementation for CGRecordLayout objects. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGRecordLayout.h" | 
 | #include "CGCXXABI.h" | 
 | #include "CodeGenTypes.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/Attr.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/Basic/CodeGenOptions.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | namespace { | 
 | /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an | 
 | /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we | 
 | /// detail some of the complexities and weirdnesses here. | 
 | /// * LLVM does not have unions - Unions can, in theory be represented by any | 
 | ///   llvm::Type with correct size.  We choose a field via a specific heuristic | 
 | ///   and add padding if necessary. | 
 | /// * LLVM does not have bitfields - Bitfields are collected into contiguous | 
 | ///   runs and allocated as a single storage type for the run.  ASTRecordLayout | 
 | ///   contains enough information to determine where the runs break.  Microsoft | 
 | ///   and Itanium follow different rules and use different codepaths. | 
 | /// * It is desired that, when possible, bitfields use the appropriate iN type | 
 | ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to | 
 | ///   i24.  This isn't always possible because i24 has storage size of 32 bit | 
 | ///   and if it is possible to use that extra byte of padding we must use | 
 | ///   [i8 x 3] instead of i24.  The function clipTailPadding does this. | 
 | ///   C++ examples that require clipping: | 
 | ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 | 
 | ///   struct A { int a : 24; }; // a must be clipped because a struct like B | 
 | //    could exist: struct B : A { char b; }; // b goes at offset 3 | 
 | /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized | 
 | ///   fields.  The existing asserts suggest that LLVM assumes that *every* field | 
 | ///   has an underlying storage type.  Therefore empty structures containing | 
 | ///   zero sized subobjects such as empty records or zero sized arrays still get | 
 | ///   a zero sized (empty struct) storage type. | 
 | /// * Clang reads the complete type rather than the base type when generating | 
 | ///   code to access fields.  Bitfields in tail position with tail padding may | 
 | ///   be clipped in the base class but not the complete class (we may discover | 
 | ///   that the tail padding is not used in the complete class.) However, | 
 | ///   because LLVM reads from the complete type it can generate incorrect code | 
 | ///   if we do not clip the tail padding off of the bitfield in the complete | 
 | ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage. | 
 | ///   The location of the clip is stored internally as a sentinel of type | 
 | ///   SCISSOR.  If LLVM were updated to read base types (which it probably | 
 | ///   should because locations of things such as VBases are bogus in the llvm | 
 | ///   type anyway) then we could eliminate the SCISSOR. | 
 | /// * Itanium allows nearly empty primary virtual bases.  These bases don't get | 
 | ///   get their own storage because they're laid out as part of another base | 
 | ///   or at the beginning of the structure.  Determining if a VBase actually | 
 | ///   gets storage awkwardly involves a walk of all bases. | 
 | /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. | 
 | struct CGRecordLowering { | 
 |   // MemberInfo is a helper structure that contains information about a record | 
 |   // member.  In additional to the standard member types, there exists a | 
 |   // sentinel member type that ensures correct rounding. | 
 |   struct MemberInfo { | 
 |     CharUnits Offset; | 
 |     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; | 
 |     llvm::Type *Data; | 
 |     union { | 
 |       const FieldDecl *FD; | 
 |       const CXXRecordDecl *RD; | 
 |     }; | 
 |     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, | 
 |                const FieldDecl *FD = nullptr) | 
 |       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} | 
 |     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, | 
 |                const CXXRecordDecl *RD) | 
 |       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} | 
 |     // MemberInfos are sorted so we define a < operator. | 
 |     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } | 
 |   }; | 
 |   // The constructor. | 
 |   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); | 
 |   // Short helper routines. | 
 |   /// Constructs a MemberInfo instance from an offset and llvm::Type *. | 
 |   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { | 
 |     return MemberInfo(Offset, MemberInfo::Field, Data); | 
 |   } | 
 |  | 
 |   /// The Microsoft bitfield layout rule allocates discrete storage | 
 |   /// units of the field's formal type and only combines adjacent | 
 |   /// fields of the same formal type.  We want to emit a layout with | 
 |   /// these discrete storage units instead of combining them into a | 
 |   /// continuous run. | 
 |   bool isDiscreteBitFieldABI() { | 
 |     return Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
 |            D->isMsStruct(Context); | 
 |   } | 
 |  | 
 |   /// The Itanium base layout rule allows virtual bases to overlap | 
 |   /// other bases, which complicates layout in specific ways. | 
 |   /// | 
 |   /// Note specifically that the ms_struct attribute doesn't change this. | 
 |   bool isOverlappingVBaseABI() { | 
 |     return !Context.getTargetInfo().getCXXABI().isMicrosoft(); | 
 |   } | 
 |  | 
 |   /// Wraps llvm::Type::getIntNTy with some implicit arguments. | 
 |   llvm::Type *getIntNType(uint64_t NumBits) { | 
 |     return llvm::Type::getIntNTy(Types.getLLVMContext(), | 
 |                                  (unsigned)llvm::alignTo(NumBits, 8)); | 
 |   } | 
 |   /// Gets an llvm type of size NumBytes and alignment 1. | 
 |   llvm::Type *getByteArrayType(CharUnits NumBytes) { | 
 |     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed."); | 
 |     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext()); | 
 |     return NumBytes == CharUnits::One() ? Type : | 
 |         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity()); | 
 |   } | 
 |   /// Gets the storage type for a field decl and handles storage | 
 |   /// for itanium bitfields that are smaller than their declared type. | 
 |   llvm::Type *getStorageType(const FieldDecl *FD) { | 
 |     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); | 
 |     if (!FD->isBitField()) return Type; | 
 |     if (isDiscreteBitFieldABI()) return Type; | 
 |     return getIntNType(std::min(FD->getBitWidthValue(Context), | 
 |                              (unsigned)Context.toBits(getSize(Type)))); | 
 |   } | 
 |   /// Gets the llvm Basesubobject type from a CXXRecordDecl. | 
 |   llvm::Type *getStorageType(const CXXRecordDecl *RD) { | 
 |     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); | 
 |   } | 
 |   CharUnits bitsToCharUnits(uint64_t BitOffset) { | 
 |     return Context.toCharUnitsFromBits(BitOffset); | 
 |   } | 
 |   CharUnits getSize(llvm::Type *Type) { | 
 |     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); | 
 |   } | 
 |   CharUnits getAlignment(llvm::Type *Type) { | 
 |     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); | 
 |   } | 
 |   bool isZeroInitializable(const FieldDecl *FD) { | 
 |     return Types.isZeroInitializable(FD->getType()); | 
 |   } | 
 |   bool isZeroInitializable(const RecordDecl *RD) { | 
 |     return Types.isZeroInitializable(RD); | 
 |   } | 
 |   void appendPaddingBytes(CharUnits Size) { | 
 |     if (!Size.isZero()) | 
 |       FieldTypes.push_back(getByteArrayType(Size)); | 
 |   } | 
 |   uint64_t getFieldBitOffset(const FieldDecl *FD) { | 
 |     return Layout.getFieldOffset(FD->getFieldIndex()); | 
 |   } | 
 |   // Layout routines. | 
 |   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, | 
 |                        llvm::Type *StorageType); | 
 |   /// Lowers an ASTRecordLayout to a llvm type. | 
 |   void lower(bool NonVirtualBaseType); | 
 |   void lowerUnion(); | 
 |   void accumulateFields(); | 
 |   void accumulateBitFields(RecordDecl::field_iterator Field, | 
 |                         RecordDecl::field_iterator FieldEnd); | 
 |   void accumulateBases(); | 
 |   void accumulateVPtrs(); | 
 |   void accumulateVBases(); | 
 |   /// Recursively searches all of the bases to find out if a vbase is | 
 |   /// not the primary vbase of some base class. | 
 |   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); | 
 |   void calculateZeroInit(); | 
 |   /// Lowers bitfield storage types to I8 arrays for bitfields with tail | 
 |   /// padding that is or can potentially be used. | 
 |   void clipTailPadding(); | 
 |   /// Determines if we need a packed llvm struct. | 
 |   void determinePacked(bool NVBaseType); | 
 |   /// Inserts padding everywhere it's needed. | 
 |   void insertPadding(); | 
 |   /// Fills out the structures that are ultimately consumed. | 
 |   void fillOutputFields(); | 
 |   // Input memoization fields. | 
 |   CodeGenTypes &Types; | 
 |   const ASTContext &Context; | 
 |   const RecordDecl *D; | 
 |   const CXXRecordDecl *RD; | 
 |   const ASTRecordLayout &Layout; | 
 |   const llvm::DataLayout &DataLayout; | 
 |   // Helpful intermediate data-structures. | 
 |   std::vector<MemberInfo> Members; | 
 |   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. | 
 |   SmallVector<llvm::Type *, 16> FieldTypes; | 
 |   llvm::DenseMap<const FieldDecl *, unsigned> Fields; | 
 |   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; | 
 |   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; | 
 |   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; | 
 |   bool IsZeroInitializable : 1; | 
 |   bool IsZeroInitializableAsBase : 1; | 
 |   bool Packed : 1; | 
 | private: | 
 |   CGRecordLowering(const CGRecordLowering &) = delete; | 
 |   void operator =(const CGRecordLowering &) = delete; | 
 | }; | 
 | } // namespace { | 
 |  | 
 | CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, | 
 |                                    bool Packed) | 
 |     : Types(Types), Context(Types.getContext()), D(D), | 
 |       RD(dyn_cast<CXXRecordDecl>(D)), | 
 |       Layout(Types.getContext().getASTRecordLayout(D)), | 
 |       DataLayout(Types.getDataLayout()), IsZeroInitializable(true), | 
 |       IsZeroInitializableAsBase(true), Packed(Packed) {} | 
 |  | 
 | void CGRecordLowering::setBitFieldInfo( | 
 |     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { | 
 |   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; | 
 |   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); | 
 |   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); | 
 |   Info.Size = FD->getBitWidthValue(Context); | 
 |   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); | 
 |   Info.StorageOffset = StartOffset; | 
 |   if (Info.Size > Info.StorageSize) | 
 |     Info.Size = Info.StorageSize; | 
 |   // Reverse the bit offsets for big endian machines. Because we represent | 
 |   // a bitfield as a single large integer load, we can imagine the bits | 
 |   // counting from the most-significant-bit instead of the | 
 |   // least-significant-bit. | 
 |   if (DataLayout.isBigEndian()) | 
 |     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); | 
 | } | 
 |  | 
 | void CGRecordLowering::lower(bool NVBaseType) { | 
 |   // The lowering process implemented in this function takes a variety of | 
 |   // carefully ordered phases. | 
 |   // 1) Store all members (fields and bases) in a list and sort them by offset. | 
 |   // 2) Add a 1-byte capstone member at the Size of the structure. | 
 |   // 3) Clip bitfield storages members if their tail padding is or might be | 
 |   //    used by another field or base.  The clipping process uses the capstone | 
 |   //    by treating it as another object that occurs after the record. | 
 |   // 4) Determine if the llvm-struct requires packing.  It's important that this | 
 |   //    phase occur after clipping, because clipping changes the llvm type. | 
 |   //    This phase reads the offset of the capstone when determining packedness | 
 |   //    and updates the alignment of the capstone to be equal of the alignment | 
 |   //    of the record after doing so. | 
 |   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to | 
 |   //    have been computed and needs to know the alignment of the record in | 
 |   //    order to understand if explicit tail padding is needed. | 
 |   // 6) Remove the capstone, we don't need it anymore. | 
 |   // 7) Determine if this record can be zero-initialized.  This phase could have | 
 |   //    been placed anywhere after phase 1. | 
 |   // 8) Format the complete list of members in a way that can be consumed by | 
 |   //    CodeGenTypes::ComputeRecordLayout. | 
 |   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); | 
 |   if (D->isUnion()) | 
 |     return lowerUnion(); | 
 |   accumulateFields(); | 
 |   // RD implies C++. | 
 |   if (RD) { | 
 |     accumulateVPtrs(); | 
 |     accumulateBases(); | 
 |     if (Members.empty()) | 
 |       return appendPaddingBytes(Size); | 
 |     if (!NVBaseType) | 
 |       accumulateVBases(); | 
 |   } | 
 |   llvm::stable_sort(Members); | 
 |   Members.push_back(StorageInfo(Size, getIntNType(8))); | 
 |   clipTailPadding(); | 
 |   determinePacked(NVBaseType); | 
 |   insertPadding(); | 
 |   Members.pop_back(); | 
 |   calculateZeroInit(); | 
 |   fillOutputFields(); | 
 | } | 
 |  | 
 | void CGRecordLowering::lowerUnion() { | 
 |   CharUnits LayoutSize = Layout.getSize(); | 
 |   llvm::Type *StorageType = nullptr; | 
 |   bool SeenNamedMember = false; | 
 |   // Iterate through the fields setting bitFieldInfo and the Fields array. Also | 
 |   // locate the "most appropriate" storage type.  The heuristic for finding the | 
 |   // storage type isn't necessary, the first (non-0-length-bitfield) field's | 
 |   // type would work fine and be simpler but would be different than what we've | 
 |   // been doing and cause lit tests to change. | 
 |   for (const auto *Field : D->fields()) { | 
 |     if (Field->isBitField()) { | 
 |       if (Field->isZeroLengthBitField(Context)) | 
 |         continue; | 
 |       llvm::Type *FieldType = getStorageType(Field); | 
 |       if (LayoutSize < getSize(FieldType)) | 
 |         FieldType = getByteArrayType(LayoutSize); | 
 |       setBitFieldInfo(Field, CharUnits::Zero(), FieldType); | 
 |     } | 
 |     Fields[Field->getCanonicalDecl()] = 0; | 
 |     llvm::Type *FieldType = getStorageType(Field); | 
 |     // Compute zero-initializable status. | 
 |     // This union might not be zero initialized: it may contain a pointer to | 
 |     // data member which might have some exotic initialization sequence. | 
 |     // If this is the case, then we aught not to try and come up with a "better" | 
 |     // type, it might not be very easy to come up with a Constant which | 
 |     // correctly initializes it. | 
 |     if (!SeenNamedMember) { | 
 |       SeenNamedMember = Field->getIdentifier(); | 
 |       if (!SeenNamedMember) | 
 |         if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) | 
 |           SeenNamedMember = FieldRD->findFirstNamedDataMember(); | 
 |       if (SeenNamedMember && !isZeroInitializable(Field)) { | 
 |         IsZeroInitializable = IsZeroInitializableAsBase = false; | 
 |         StorageType = FieldType; | 
 |       } | 
 |     } | 
 |     // Because our union isn't zero initializable, we won't be getting a better | 
 |     // storage type. | 
 |     if (!IsZeroInitializable) | 
 |       continue; | 
 |     // Conditionally update our storage type if we've got a new "better" one. | 
 |     if (!StorageType || | 
 |         getAlignment(FieldType) >  getAlignment(StorageType) || | 
 |         (getAlignment(FieldType) == getAlignment(StorageType) && | 
 |         getSize(FieldType) > getSize(StorageType))) | 
 |       StorageType = FieldType; | 
 |   } | 
 |   // If we have no storage type just pad to the appropriate size and return. | 
 |   if (!StorageType) | 
 |     return appendPaddingBytes(LayoutSize); | 
 |   // If our storage size was bigger than our required size (can happen in the | 
 |   // case of packed bitfields on Itanium) then just use an I8 array. | 
 |   if (LayoutSize < getSize(StorageType)) | 
 |     StorageType = getByteArrayType(LayoutSize); | 
 |   FieldTypes.push_back(StorageType); | 
 |   appendPaddingBytes(LayoutSize - getSize(StorageType)); | 
 |   // Set packed if we need it. | 
 |   if (LayoutSize % getAlignment(StorageType)) | 
 |     Packed = true; | 
 | } | 
 |  | 
 | void CGRecordLowering::accumulateFields() { | 
 |   for (RecordDecl::field_iterator Field = D->field_begin(), | 
 |                                   FieldEnd = D->field_end(); | 
 |     Field != FieldEnd;) { | 
 |     if (Field->isBitField()) { | 
 |       RecordDecl::field_iterator Start = Field; | 
 |       // Iterate to gather the list of bitfields. | 
 |       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); | 
 |       accumulateBitFields(Start, Field); | 
 |     } else if (!Field->isZeroSize(Context)) { | 
 |       Members.push_back(MemberInfo( | 
 |           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, | 
 |           getStorageType(*Field), *Field)); | 
 |       ++Field; | 
 |     } else { | 
 |       ++Field; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, | 
 |                                       RecordDecl::field_iterator FieldEnd) { | 
 |   // Run stores the first element of the current run of bitfields.  FieldEnd is | 
 |   // used as a special value to note that we don't have a current run.  A | 
 |   // bitfield run is a contiguous collection of bitfields that can be stored in | 
 |   // the same storage block.  Zero-sized bitfields and bitfields that would | 
 |   // cross an alignment boundary break a run and start a new one. | 
 |   RecordDecl::field_iterator Run = FieldEnd; | 
 |   // Tail is the offset of the first bit off the end of the current run.  It's | 
 |   // used to determine if the ASTRecordLayout is treating these two bitfields as | 
 |   // contiguous.  StartBitOffset is offset of the beginning of the Run. | 
 |   uint64_t StartBitOffset, Tail = 0; | 
 |   if (isDiscreteBitFieldABI()) { | 
 |     for (; Field != FieldEnd; ++Field) { | 
 |       uint64_t BitOffset = getFieldBitOffset(*Field); | 
 |       // Zero-width bitfields end runs. | 
 |       if (Field->isZeroLengthBitField(Context)) { | 
 |         Run = FieldEnd; | 
 |         continue; | 
 |       } | 
 |       llvm::Type *Type = | 
 |           Types.ConvertTypeForMem(Field->getType(), /*ForBitFields=*/true); | 
 |       // If we don't have a run yet, or don't live within the previous run's | 
 |       // allocated storage then we allocate some storage and start a new run. | 
 |       if (Run == FieldEnd || BitOffset >= Tail) { | 
 |         Run = Field; | 
 |         StartBitOffset = BitOffset; | 
 |         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); | 
 |         // Add the storage member to the record.  This must be added to the | 
 |         // record before the bitfield members so that it gets laid out before | 
 |         // the bitfields it contains get laid out. | 
 |         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); | 
 |       } | 
 |       // Bitfields get the offset of their storage but come afterward and remain | 
 |       // there after a stable sort. | 
 |       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), | 
 |                                    MemberInfo::Field, nullptr, *Field)); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check if OffsetInRecord is better as a single field run. When OffsetInRecord | 
 |   // has legal integer width, and its bitfield offset is naturally aligned, it | 
 |   // is better to make the bitfield a separate storage component so as it can be | 
 |   // accessed directly with lower cost. | 
 |   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord, | 
 |                                       uint64_t StartBitOffset) { | 
 |     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses) | 
 |       return false; | 
 |     if (!DataLayout.isLegalInteger(OffsetInRecord)) | 
 |       return false; | 
 |     // Make sure StartBitOffset is natually aligned if it is treated as an | 
 |     // IType integer. | 
 |      if (StartBitOffset % | 
 |             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) != | 
 |         0) | 
 |       return false; | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // The start field is better as a single field run. | 
 |   bool StartFieldAsSingleRun = false; | 
 |   for (;;) { | 
 |     // Check to see if we need to start a new run. | 
 |     if (Run == FieldEnd) { | 
 |       // If we're out of fields, return. | 
 |       if (Field == FieldEnd) | 
 |         break; | 
 |       // Any non-zero-length bitfield can start a new run. | 
 |       if (!Field->isZeroLengthBitField(Context)) { | 
 |         Run = Field; | 
 |         StartBitOffset = getFieldBitOffset(*Field); | 
 |         Tail = StartBitOffset + Field->getBitWidthValue(Context); | 
 |         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset, | 
 |                                                          StartBitOffset); | 
 |       } | 
 |       ++Field; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // If the start field of a new run is better as a single run, or | 
 |     // if current field (or consecutive fields) is better as a single run, or | 
 |     // if current field has zero width bitfield and either | 
 |     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to | 
 |     // true, or | 
 |     // if the offset of current field is inconsistent with the offset of | 
 |     // previous field plus its offset, | 
 |     // skip the block below and go ahead to emit the storage. | 
 |     // Otherwise, try to add bitfields to the run. | 
 |     if (!StartFieldAsSingleRun && Field != FieldEnd && | 
 |         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) && | 
 |         (!Field->isZeroLengthBitField(Context) || | 
 |          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() && | 
 |           !Context.getTargetInfo().useBitFieldTypeAlignment())) && | 
 |         Tail == getFieldBitOffset(*Field)) { | 
 |       Tail += Field->getBitWidthValue(Context); | 
 |       ++Field; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // We've hit a break-point in the run and need to emit a storage field. | 
 |     llvm::Type *Type = getIntNType(Tail - StartBitOffset); | 
 |     // Add the storage member to the record and set the bitfield info for all of | 
 |     // the bitfields in the run.  Bitfields get the offset of their storage but | 
 |     // come afterward and remain there after a stable sort. | 
 |     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); | 
 |     for (; Run != Field; ++Run) | 
 |       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), | 
 |                                    MemberInfo::Field, nullptr, *Run)); | 
 |     Run = FieldEnd; | 
 |     StartFieldAsSingleRun = false; | 
 |   } | 
 | } | 
 |  | 
 | void CGRecordLowering::accumulateBases() { | 
 |   // If we've got a primary virtual base, we need to add it with the bases. | 
 |   if (Layout.isPrimaryBaseVirtual()) { | 
 |     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); | 
 |     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, | 
 |                                  getStorageType(BaseDecl), BaseDecl)); | 
 |   } | 
 |   // Accumulate the non-virtual bases. | 
 |   for (const auto &Base : RD->bases()) { | 
 |     if (Base.isVirtual()) | 
 |       continue; | 
 |  | 
 |     // Bases can be zero-sized even if not technically empty if they | 
 |     // contain only a trailing array member. | 
 |     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
 |     if (!BaseDecl->isEmpty() && | 
 |         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) | 
 |       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), | 
 |           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); | 
 |   } | 
 | } | 
 |  | 
 | void CGRecordLowering::accumulateVPtrs() { | 
 |   if (Layout.hasOwnVFPtr()) | 
 |     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, | 
 |         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> | 
 |             getPointerTo()->getPointerTo())); | 
 |   if (Layout.hasOwnVBPtr()) | 
 |     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, | 
 |         llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); | 
 | } | 
 |  | 
 | void CGRecordLowering::accumulateVBases() { | 
 |   CharUnits ScissorOffset = Layout.getNonVirtualSize(); | 
 |   // In the itanium ABI, it's possible to place a vbase at a dsize that is | 
 |   // smaller than the nvsize.  Here we check to see if such a base is placed | 
 |   // before the nvsize and set the scissor offset to that, instead of the | 
 |   // nvsize. | 
 |   if (isOverlappingVBaseABI()) | 
 |     for (const auto &Base : RD->vbases()) { | 
 |       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
 |       if (BaseDecl->isEmpty()) | 
 |         continue; | 
 |       // If the vbase is a primary virtual base of some base, then it doesn't | 
 |       // get its own storage location but instead lives inside of that base. | 
 |       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) | 
 |         continue; | 
 |       ScissorOffset = std::min(ScissorOffset, | 
 |                                Layout.getVBaseClassOffset(BaseDecl)); | 
 |     } | 
 |   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, | 
 |                                RD)); | 
 |   for (const auto &Base : RD->vbases()) { | 
 |     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
 |     if (BaseDecl->isEmpty()) | 
 |       continue; | 
 |     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); | 
 |     // If the vbase is a primary virtual base of some base, then it doesn't | 
 |     // get its own storage location but instead lives inside of that base. | 
 |     if (isOverlappingVBaseABI() && | 
 |         Context.isNearlyEmpty(BaseDecl) && | 
 |         !hasOwnStorage(RD, BaseDecl)) { | 
 |       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, | 
 |                                    BaseDecl)); | 
 |       continue; | 
 |     } | 
 |     // If we've got a vtordisp, add it as a storage type. | 
 |     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) | 
 |       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), | 
 |                                     getIntNType(32))); | 
 |     Members.push_back(MemberInfo(Offset, MemberInfo::VBase, | 
 |                                  getStorageType(BaseDecl), BaseDecl)); | 
 |   } | 
 | } | 
 |  | 
 | bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, | 
 |                                      const CXXRecordDecl *Query) { | 
 |   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); | 
 |   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) | 
 |     return false; | 
 |   for (const auto &Base : Decl->bases()) | 
 |     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | void CGRecordLowering::calculateZeroInit() { | 
 |   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
 |                                                MemberEnd = Members.end(); | 
 |        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { | 
 |     if (Member->Kind == MemberInfo::Field) { | 
 |       if (!Member->FD || isZeroInitializable(Member->FD)) | 
 |         continue; | 
 |       IsZeroInitializable = IsZeroInitializableAsBase = false; | 
 |     } else if (Member->Kind == MemberInfo::Base || | 
 |                Member->Kind == MemberInfo::VBase) { | 
 |       if (isZeroInitializable(Member->RD)) | 
 |         continue; | 
 |       IsZeroInitializable = false; | 
 |       if (Member->Kind == MemberInfo::Base) | 
 |         IsZeroInitializableAsBase = false; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CGRecordLowering::clipTailPadding() { | 
 |   std::vector<MemberInfo>::iterator Prior = Members.begin(); | 
 |   CharUnits Tail = getSize(Prior->Data); | 
 |   for (std::vector<MemberInfo>::iterator Member = Prior + 1, | 
 |                                          MemberEnd = Members.end(); | 
 |        Member != MemberEnd; ++Member) { | 
 |     // Only members with data and the scissor can cut into tail padding. | 
 |     if (!Member->Data && Member->Kind != MemberInfo::Scissor) | 
 |       continue; | 
 |     if (Member->Offset < Tail) { | 
 |       assert(Prior->Kind == MemberInfo::Field && | 
 |              "Only storage fields have tail padding!"); | 
 |       if (!Prior->FD || Prior->FD->isBitField()) | 
 |         Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo( | 
 |             cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); | 
 |       else { | 
 |         assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() && | 
 |                "should not have reused this field's tail padding"); | 
 |         Prior->Data = getByteArrayType( | 
 |             Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first); | 
 |       } | 
 |     } | 
 |     if (Member->Data) | 
 |       Prior = Member; | 
 |     Tail = Prior->Offset + getSize(Prior->Data); | 
 |   } | 
 | } | 
 |  | 
 | void CGRecordLowering::determinePacked(bool NVBaseType) { | 
 |   if (Packed) | 
 |     return; | 
 |   CharUnits Alignment = CharUnits::One(); | 
 |   CharUnits NVAlignment = CharUnits::One(); | 
 |   CharUnits NVSize = | 
 |       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); | 
 |   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
 |                                                MemberEnd = Members.end(); | 
 |        Member != MemberEnd; ++Member) { | 
 |     if (!Member->Data) | 
 |       continue; | 
 |     // If any member falls at an offset that it not a multiple of its alignment, | 
 |     // then the entire record must be packed. | 
 |     if (Member->Offset % getAlignment(Member->Data)) | 
 |       Packed = true; | 
 |     if (Member->Offset < NVSize) | 
 |       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); | 
 |     Alignment = std::max(Alignment, getAlignment(Member->Data)); | 
 |   } | 
 |   // If the size of the record (the capstone's offset) is not a multiple of the | 
 |   // record's alignment, it must be packed. | 
 |   if (Members.back().Offset % Alignment) | 
 |     Packed = true; | 
 |   // If the non-virtual sub-object is not a multiple of the non-virtual | 
 |   // sub-object's alignment, it must be packed.  We cannot have a packed | 
 |   // non-virtual sub-object and an unpacked complete object or vise versa. | 
 |   if (NVSize % NVAlignment) | 
 |     Packed = true; | 
 |   // Update the alignment of the sentinel. | 
 |   if (!Packed) | 
 |     Members.back().Data = getIntNType(Context.toBits(Alignment)); | 
 | } | 
 |  | 
 | void CGRecordLowering::insertPadding() { | 
 |   std::vector<std::pair<CharUnits, CharUnits> > Padding; | 
 |   CharUnits Size = CharUnits::Zero(); | 
 |   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
 |                                                MemberEnd = Members.end(); | 
 |        Member != MemberEnd; ++Member) { | 
 |     if (!Member->Data) | 
 |       continue; | 
 |     CharUnits Offset = Member->Offset; | 
 |     assert(Offset >= Size); | 
 |     // Insert padding if we need to. | 
 |     if (Offset != | 
 |         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data))) | 
 |       Padding.push_back(std::make_pair(Size, Offset - Size)); | 
 |     Size = Offset + getSize(Member->Data); | 
 |   } | 
 |   if (Padding.empty()) | 
 |     return; | 
 |   // Add the padding to the Members list and sort it. | 
 |   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator | 
 |         Pad = Padding.begin(), PadEnd = Padding.end(); | 
 |         Pad != PadEnd; ++Pad) | 
 |     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); | 
 |   llvm::stable_sort(Members); | 
 | } | 
 |  | 
 | void CGRecordLowering::fillOutputFields() { | 
 |   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
 |                                                MemberEnd = Members.end(); | 
 |        Member != MemberEnd; ++Member) { | 
 |     if (Member->Data) | 
 |       FieldTypes.push_back(Member->Data); | 
 |     if (Member->Kind == MemberInfo::Field) { | 
 |       if (Member->FD) | 
 |         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; | 
 |       // A field without storage must be a bitfield. | 
 |       if (!Member->Data) | 
 |         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); | 
 |     } else if (Member->Kind == MemberInfo::Base) | 
 |       NonVirtualBases[Member->RD] = FieldTypes.size() - 1; | 
 |     else if (Member->Kind == MemberInfo::VBase) | 
 |       VirtualBases[Member->RD] = FieldTypes.size() - 1; | 
 |   } | 
 | } | 
 |  | 
 | CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, | 
 |                                         const FieldDecl *FD, | 
 |                                         uint64_t Offset, uint64_t Size, | 
 |                                         uint64_t StorageSize, | 
 |                                         CharUnits StorageOffset) { | 
 |   // This function is vestigial from CGRecordLayoutBuilder days but is still | 
 |   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that | 
 |   // when addressed will allow for the removal of this function. | 
 |   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); | 
 |   CharUnits TypeSizeInBytes = | 
 |     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); | 
 |   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); | 
 |  | 
 |   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); | 
 |  | 
 |   if (Size > TypeSizeInBits) { | 
 |     // We have a wide bit-field. The extra bits are only used for padding, so | 
 |     // if we have a bitfield of type T, with size N: | 
 |     // | 
 |     // T t : N; | 
 |     // | 
 |     // We can just assume that it's: | 
 |     // | 
 |     // T t : sizeof(T); | 
 |     // | 
 |     Size = TypeSizeInBits; | 
 |   } | 
 |  | 
 |   // Reverse the bit offsets for big endian machines. Because we represent | 
 |   // a bitfield as a single large integer load, we can imagine the bits | 
 |   // counting from the most-significant-bit instead of the | 
 |   // least-significant-bit. | 
 |   if (Types.getDataLayout().isBigEndian()) { | 
 |     Offset = StorageSize - (Offset + Size); | 
 |   } | 
 |  | 
 |   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset); | 
 | } | 
 |  | 
 | CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, | 
 |                                                   llvm::StructType *Ty) { | 
 |   CGRecordLowering Builder(*this, D, /*Packed=*/false); | 
 |  | 
 |   Builder.lower(/*NonVirtualBaseType=*/false); | 
 |  | 
 |   // If we're in C++, compute the base subobject type. | 
 |   llvm::StructType *BaseTy = nullptr; | 
 |   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { | 
 |     BaseTy = Ty; | 
 |     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { | 
 |       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); | 
 |       BaseBuilder.lower(/*NonVirtualBaseType=*/true); | 
 |       BaseTy = llvm::StructType::create( | 
 |           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); | 
 |       addRecordTypeName(D, BaseTy, ".base"); | 
 |       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work | 
 |       // on both of them with the same index. | 
 |       assert(Builder.Packed == BaseBuilder.Packed && | 
 |              "Non-virtual and complete types must agree on packedness"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Fill in the struct *after* computing the base type.  Filling in the body | 
 |   // signifies that the type is no longer opaque and record layout is complete, | 
 |   // but we may need to recursively layout D while laying D out as a base type. | 
 |   Ty->setBody(Builder.FieldTypes, Builder.Packed); | 
 |  | 
 |   CGRecordLayout *RL = | 
 |     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, | 
 |                         Builder.IsZeroInitializableAsBase); | 
 |  | 
 |   RL->NonVirtualBases.swap(Builder.NonVirtualBases); | 
 |   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); | 
 |  | 
 |   // Add all the field numbers. | 
 |   RL->FieldInfo.swap(Builder.Fields); | 
 |  | 
 |   // Add bitfield info. | 
 |   RL->BitFields.swap(Builder.BitFields); | 
 |  | 
 |   // Dump the layout, if requested. | 
 |   if (getContext().getLangOpts().DumpRecordLayouts) { | 
 |     llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; | 
 |     llvm::outs() << "Record: "; | 
 |     D->dump(llvm::outs()); | 
 |     llvm::outs() << "\nLayout: "; | 
 |     RL->print(llvm::outs()); | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Verify that the computed LLVM struct size matches the AST layout size. | 
 |   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); | 
 |  | 
 |   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); | 
 |   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && | 
 |          "Type size mismatch!"); | 
 |  | 
 |   if (BaseTy) { | 
 |     CharUnits NonVirtualSize  = Layout.getNonVirtualSize(); | 
 |  | 
 |     uint64_t AlignedNonVirtualTypeSizeInBits = | 
 |       getContext().toBits(NonVirtualSize); | 
 |  | 
 |     assert(AlignedNonVirtualTypeSizeInBits == | 
 |            getDataLayout().getTypeAllocSizeInBits(BaseTy) && | 
 |            "Type size mismatch!"); | 
 |   } | 
 |  | 
 |   // Verify that the LLVM and AST field offsets agree. | 
 |   llvm::StructType *ST = RL->getLLVMType(); | 
 |   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); | 
 |  | 
 |   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); | 
 |   RecordDecl::field_iterator it = D->field_begin(); | 
 |   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { | 
 |     const FieldDecl *FD = *it; | 
 |  | 
 |     // Ignore zero-sized fields. | 
 |     if (FD->isZeroSize(getContext())) | 
 |       continue; | 
 |  | 
 |     // For non-bit-fields, just check that the LLVM struct offset matches the | 
 |     // AST offset. | 
 |     if (!FD->isBitField()) { | 
 |       unsigned FieldNo = RL->getLLVMFieldNo(FD); | 
 |       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && | 
 |              "Invalid field offset!"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Ignore unnamed bit-fields. | 
 |     if (!FD->getDeclName()) | 
 |       continue; | 
 |  | 
 |     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); | 
 |     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); | 
 |  | 
 |     // Unions have overlapping elements dictating their layout, but for | 
 |     // non-unions we can verify that this section of the layout is the exact | 
 |     // expected size. | 
 |     if (D->isUnion()) { | 
 |       // For unions we verify that the start is zero and the size | 
 |       // is in-bounds. However, on BE systems, the offset may be non-zero, but | 
 |       // the size + offset should match the storage size in that case as it | 
 |       // "starts" at the back. | 
 |       if (getDataLayout().isBigEndian()) | 
 |         assert(static_cast<unsigned>(Info.Offset + Info.Size) == | 
 |                Info.StorageSize && | 
 |                "Big endian union bitfield does not end at the back"); | 
 |       else | 
 |         assert(Info.Offset == 0 && | 
 |                "Little endian union bitfield with a non-zero offset"); | 
 |       assert(Info.StorageSize <= SL->getSizeInBits() && | 
 |              "Union not large enough for bitfield storage"); | 
 |     } else { | 
 |       assert(Info.StorageSize == | 
 |              getDataLayout().getTypeAllocSizeInBits(ElementTy) && | 
 |              "Storage size does not match the element type size"); | 
 |     } | 
 |     assert(Info.Size > 0 && "Empty bitfield!"); | 
 |     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && | 
 |            "Bitfield outside of its allocated storage"); | 
 |   } | 
 | #endif | 
 |  | 
 |   return RL; | 
 | } | 
 |  | 
 | void CGRecordLayout::print(raw_ostream &OS) const { | 
 |   OS << "<CGRecordLayout\n"; | 
 |   OS << "  LLVMType:" << *CompleteObjectType << "\n"; | 
 |   if (BaseSubobjectType) | 
 |     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; | 
 |   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n"; | 
 |   OS << "  BitFields:[\n"; | 
 |  | 
 |   // Print bit-field infos in declaration order. | 
 |   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; | 
 |   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator | 
 |          it = BitFields.begin(), ie = BitFields.end(); | 
 |        it != ie; ++it) { | 
 |     const RecordDecl *RD = it->first->getParent(); | 
 |     unsigned Index = 0; | 
 |     for (RecordDecl::field_iterator | 
 |            it2 = RD->field_begin(); *it2 != it->first; ++it2) | 
 |       ++Index; | 
 |     BFIs.push_back(std::make_pair(Index, &it->second)); | 
 |   } | 
 |   llvm::array_pod_sort(BFIs.begin(), BFIs.end()); | 
 |   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { | 
 |     OS.indent(4); | 
 |     BFIs[i].second->print(OS); | 
 |     OS << "\n"; | 
 |   } | 
 |  | 
 |   OS << "]>\n"; | 
 | } | 
 |  | 
 | LLVM_DUMP_METHOD void CGRecordLayout::dump() const { | 
 |   print(llvm::errs()); | 
 | } | 
 |  | 
 | void CGBitFieldInfo::print(raw_ostream &OS) const { | 
 |   OS << "<CGBitFieldInfo" | 
 |      << " Offset:" << Offset | 
 |      << " Size:" << Size | 
 |      << " IsSigned:" << IsSigned | 
 |      << " StorageSize:" << StorageSize | 
 |      << " StorageOffset:" << StorageOffset.getQuantity() << ">"; | 
 | } | 
 |  | 
 | LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const { | 
 |   print(llvm::errs()); | 
 | } |