blob: f7cc9d19123635d9a5c3c79655ca4b0c6d038cb5 [file] [log] [blame]
//===--- WalkAST.cpp - Find declaration references in the AST -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AnalysisInternal.h"
#include "clang-include-cleaner/Types.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
namespace clang::include_cleaner {
namespace {
using DeclCallback =
llvm::function_ref<void(SourceLocation, NamedDecl &, RefType)>;
class ASTWalker : public RecursiveASTVisitor<ASTWalker> {
DeclCallback Callback;
void report(SourceLocation Loc, NamedDecl *ND,
RefType RT = RefType::Explicit) {
if (!ND || Loc.isInvalid())
return;
Callback(Loc, *cast<NamedDecl>(ND->getCanonicalDecl()), RT);
}
NamedDecl *resolveTemplateName(TemplateName TN) {
// For using-templates, only mark the alias.
if (auto *USD = TN.getAsUsingShadowDecl())
return USD;
return TN.getAsTemplateDecl();
}
NamedDecl *getMemberProvider(QualType Base) {
if (Base->isPointerType())
return getMemberProvider(Base->getPointeeType());
// Unwrap the sugar ElaboratedType.
if (const auto *ElTy = dyn_cast<ElaboratedType>(Base))
return getMemberProvider(ElTy->getNamedType());
if (const auto *TT = dyn_cast<TypedefType>(Base))
return TT->getDecl();
if (const auto *UT = dyn_cast<UsingType>(Base))
return UT->getFoundDecl();
// A heuristic: to resolve a template type to **only** its template name.
// We're only using this method for the base type of MemberExpr, in general
// the template provides the member, and the critical case `unique_ptr<Foo>`
// is supported (the base type is a Foo*).
//
// There are some exceptions that this heuristic could fail (dependent base,
// dependent typealias), but we believe these are rare.
if (const auto *TST = dyn_cast<TemplateSpecializationType>(Base))
return resolveTemplateName(TST->getTemplateName());
return Base->getAsRecordDecl();
}
// Templated as TemplateSpecializationType and
// DeducedTemplateSpecializationType doesn't share a common base.
template <typename T>
// Picks the most specific specialization for a
// (Deduced)TemplateSpecializationType, while prioritizing using-decls.
NamedDecl *getMostRelevantTemplatePattern(const T *TST) {
// In case of exported template names always prefer the using-decl. This
// implies we'll point at the using-decl even when there's an explicit
// specializaiton using the exported name, but that's rare.
auto *ND = resolveTemplateName(TST->getTemplateName());
if (llvm::isa_and_present<UsingShadowDecl, TypeAliasTemplateDecl>(ND))
return ND;
// This is the underlying decl used by TemplateSpecializationType, can be
// null when type is dependent or not resolved to a pattern yet.
// If so, fallback to primary template.
CXXRecordDecl *TD = TST->getAsCXXRecordDecl();
if (!TD || TD->getTemplateSpecializationKind() == TSK_Undeclared)
return ND;
// We ignore explicit instantiations. This might imply marking the wrong
// declaration as used in specific cases, but seems like the right trade-off
// in general (e.g. we don't want to include a custom library that has an
// explicit specialization of a common type).
if (auto *Pat = TD->getTemplateInstantiationPattern())
return Pat;
// For explicit specializations, use the specialized decl directly.
return TD;
}
public:
ASTWalker(DeclCallback Callback) : Callback(Callback) {}
// Operators are almost always ADL extension points and by design references
// to them doesn't count as uses (generally the type should provide them, so
// ignore them).
// Unless we're using an operator defined as a member, in such cases treat
// these as regular member references.
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
if (!WalkUpFromCXXOperatorCallExpr(S))
return false;
if (auto *CD = S->getCalleeDecl()) {
if (llvm::isa<CXXMethodDecl>(CD)) {
// Treat this as a regular member reference.
report(S->getOperatorLoc(), getMemberProvider(S->getArg(0)->getType()),
RefType::Implicit);
} else {
report(S->getOperatorLoc(), llvm::dyn_cast<NamedDecl>(CD),
RefType::Implicit);
}
}
for (auto *Arg : S->arguments())
if (!TraverseStmt(Arg))
return false;
return true;
}
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
auto *FD = DRE->getFoundDecl();
// Prefer the underlying decl if FoundDecl isn't a shadow decl, e.g:
// - For templates, found-decl is always primary template, but we want the
// specializaiton itself.
if (!llvm::isa<UsingShadowDecl>(FD))
FD = DRE->getDecl();
// For refs to non-meber-like decls, use the found decl.
// For member-like decls, we should have a reference from the qualifier to
// the container decl instead, which is preferred as it'll handle
// aliases/exports properly.
if (!FD->isCXXClassMember() && !llvm::isa<EnumConstantDecl>(FD)) {
report(DRE->getLocation(), FD);
return true;
}
// If the ref is without a qualifier, and is a member, ignore it. As it is
// available in current context due to some other construct (e.g. base
// specifiers, using decls) that has to spell the name explicitly.
//
// If it's an enum constant, it must be due to prior decl. Report references
// to it when qualifier isn't a type.
if (llvm::isa<EnumConstantDecl>(FD)) {
if (!DRE->getQualifier() || DRE->getQualifier()->getAsNamespace())
report(DRE->getLocation(), FD);
}
return true;
}
bool VisitMemberExpr(MemberExpr *E) {
// Reporting a usage of the member decl would cause issues (e.g. force
// including the base class for inherited members). Instead, we report a
// usage of the base type of the MemberExpr, so that e.g. code
// `returnFoo().bar` can keep #include "foo.h" (rather than inserting
// "bar.h" for the underlying base type `Bar`).
QualType Type = E->getBase()->IgnoreImpCasts()->getType();
report(E->getMemberLoc(), getMemberProvider(Type), RefType::Implicit);
return true;
}
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
report(E->getMemberLoc(), getMemberProvider(E->getBaseType()),
RefType::Implicit);
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
// Always treat consturctor calls as implicit. We'll have an explicit
// reference for the constructor calls that mention the type-name (through
// TypeLocs). This reference only matters for cases where there's no
// explicit syntax at all or there're only braces.
report(E->getLocation(), getMemberProvider(E->getType()),
RefType::Implicit);
return true;
}
bool VisitOverloadExpr(OverloadExpr *E) {
// Since we can't prove which overloads are used, report all of them.
for (NamedDecl *D : E->decls())
report(E->getNameLoc(), D, RefType::Ambiguous);
return true;
}
// Report all (partial) specializations of a class/var template decl.
template <typename TemplateDeclType, typename ParitialDeclType>
void reportSpecializations(SourceLocation Loc, NamedDecl *ND) {
const auto *TD = llvm::dyn_cast<TemplateDeclType>(ND);
if (!TD)
return;
for (auto *Spec : TD->specializations())
report(Loc, Spec, RefType::Ambiguous);
llvm::SmallVector<ParitialDeclType *> PartialSpecializations;
TD->getPartialSpecializations(PartialSpecializations);
for (auto *PartialSpec : PartialSpecializations)
report(Loc, PartialSpec, RefType::Ambiguous);
}
bool VisitUsingDecl(UsingDecl *UD) {
for (const auto *Shadow : UD->shadows()) {
auto *TD = Shadow->getTargetDecl();
auto IsUsed = TD->isUsed() || TD->isReferenced();
report(UD->getLocation(), TD,
IsUsed ? RefType::Explicit : RefType::Ambiguous);
// All (partial) template specializations are visible via a using-decl,
// However a using-decl only refers to the primary template (per C++ name
// lookup). Thus, we need to manually report all specializations.
reportSpecializations<ClassTemplateDecl,
ClassTemplatePartialSpecializationDecl>(
UD->getLocation(), TD);
reportSpecializations<VarTemplateDecl,
VarTemplatePartialSpecializationDecl>(
UD->getLocation(), TD);
if (const auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(TD))
for (auto *Spec : FTD->specializations())
report(UD->getLocation(), Spec, RefType::Ambiguous);
}
return true;
}
bool VisitFunctionDecl(FunctionDecl *FD) {
// Mark declaration from definition as it needs type-checking.
if (FD->isThisDeclarationADefinition())
report(FD->getLocation(), FD);
// Explicit specializaiton/instantiations of a function template requires
// primary template.
if (clang::isTemplateExplicitInstantiationOrSpecialization(
FD->getTemplateSpecializationKind()))
report(FD->getLocation(), FD->getPrimaryTemplate());
return true;
}
bool VisitVarDecl(VarDecl *VD) {
// Ignore the parameter decl itself (its children were handled elsewhere),
// as they don't contribute to the main-file #include.
if (llvm::isa<ParmVarDecl>(VD))
return true;
// Mark declaration from definition as it needs type-checking.
if (VD->isThisDeclarationADefinition())
report(VD->getLocation(), VD);
return true;
}
bool VisitEnumDecl(EnumDecl *D) {
// Definition of an enum with an underlying type references declaration for
// type-checking purposes.
if (D->isThisDeclarationADefinition() && D->getIntegerTypeSourceInfo())
report(D->getLocation(), D);
return true;
}
bool VisitFriendDecl(FriendDecl *D) {
// We already visit the TypeLoc properly, but need to special case the decl
// case.
if (auto *FD = D->getFriendDecl())
report(D->getLocation(), FD);
return true;
}
bool VisitConceptReference(const ConceptReference *CR) {
report(CR->getConceptNameLoc(), CR->getFoundDecl());
return true;
}
// Report a reference from explicit specializations/instantiations to the
// specialized template. Implicit ones are filtered out by RAV.
bool
VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *CTSD) {
// if (CTSD->isExplicitSpecialization())
if (clang::isTemplateExplicitInstantiationOrSpecialization(
CTSD->getTemplateSpecializationKind()))
report(CTSD->getLocation(),
CTSD->getSpecializedTemplate()->getTemplatedDecl());
return true;
}
bool VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *VTSD) {
// if (VTSD->isExplicitSpecialization())
if (clang::isTemplateExplicitInstantiationOrSpecialization(
VTSD->getTemplateSpecializationKind()))
report(VTSD->getLocation(),
VTSD->getSpecializedTemplate()->getTemplatedDecl());
return true;
}
// TypeLoc visitors.
void reportType(SourceLocation RefLoc, NamedDecl *ND) {
// Reporting explicit references to types nested inside classes can cause
// issues, e.g. a type accessed through a derived class shouldn't require
// inclusion of the base.
// Hence we report all such references as implicit. The code must spell the
// outer type-location somewhere, which will trigger an explicit reference
// and per IWYS, it's that spelling's responsibility to bring in necessary
// declarations.
RefType RT = llvm::isa<RecordDecl>(ND->getDeclContext())
? RefType::Implicit
: RefType::Explicit;
return report(RefLoc, ND, RT);
}
bool VisitUsingTypeLoc(UsingTypeLoc TL) {
reportType(TL.getNameLoc(), TL.getFoundDecl());
return true;
}
bool VisitTagTypeLoc(TagTypeLoc TTL) {
reportType(TTL.getNameLoc(), TTL.getDecl());
return true;
}
bool VisitTypedefTypeLoc(TypedefTypeLoc TTL) {
reportType(TTL.getNameLoc(), TTL.getTypedefNameDecl());
return true;
}
bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
reportType(TL.getTemplateNameLoc(),
getMostRelevantTemplatePattern(TL.getTypePtr()));
return true;
}
bool VisitDeducedTemplateSpecializationTypeLoc(
DeducedTemplateSpecializationTypeLoc TL) {
reportType(TL.getTemplateNameLoc(),
getMostRelevantTemplatePattern(TL.getTypePtr()));
return true;
}
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &TL) {
auto &Arg = TL.getArgument();
// Template-template parameters require special attention, as there's no
// TemplateNameLoc.
if (Arg.getKind() == TemplateArgument::Template ||
Arg.getKind() == TemplateArgument::TemplateExpansion) {
report(TL.getLocation(),
resolveTemplateName(Arg.getAsTemplateOrTemplatePattern()));
return true;
}
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(TL);
}
bool VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
// Reliance on initializer_lists requires std::initializer_list to be
// visible per standard. So report a reference to it, otherwise include of
// `<initializer_list>` might not receive any use.
report(E->getExprLoc(),
const_cast<CXXRecordDecl *>(E->getBestDynamicClassType()),
RefType::Implicit);
return true;
}
};
} // namespace
void walkAST(Decl &Root, DeclCallback Callback) {
ASTWalker(Callback).TraverseDecl(&Root);
}
} // namespace clang::include_cleaner