blob: 06f2c055a4d3c88a624eecf423d1448cd5dde422 [file] [log] [blame]
//===-- InlayHintTests.cpp -------------------------------*- C++ -*-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Annotations.h"
#include "Config.h"
#include "InlayHints.h"
#include "Protocol.h"
#include "TestTU.h"
#include "TestWorkspace.h"
#include "XRefs.h"
#include "support/Context.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ScopedPrinter.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace clang {
namespace clangd {
llvm::raw_ostream &operator<<(llvm::raw_ostream &Stream,
const InlayHint &Hint) {
return Stream << Hint.label << "@" << Hint.range;
}
namespace {
using ::testing::ElementsAre;
using ::testing::IsEmpty;
std::vector<InlayHint> hintsOfKind(ParsedAST &AST, InlayHintKind Kind) {
std::vector<InlayHint> Result;
for (auto &Hint : inlayHints(AST, /*RestrictRange=*/std::nullopt)) {
if (Hint.kind == Kind)
Result.push_back(Hint);
}
return Result;
}
enum HintSide { Left, Right };
struct ExpectedHint {
std::string Label;
std::string RangeName;
HintSide Side = Left;
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &Stream,
const ExpectedHint &Hint) {
return Stream << Hint.Label << "@$" << Hint.RangeName;
}
};
MATCHER_P2(HintMatcher, Expected, Code, llvm::to_string(Expected)) {
llvm::StringRef ExpectedView(Expected.Label);
if (arg.label != ExpectedView.trim(" ") ||
arg.paddingLeft != ExpectedView.startswith(" ") ||
arg.paddingRight != ExpectedView.endswith(" ")) {
*result_listener << "label is '" << arg.label << "'";
return false;
}
if (arg.range != Code.range(Expected.RangeName)) {
*result_listener << "range is " << llvm::to_string(arg.range) << " but $"
<< Expected.RangeName << " is "
<< llvm::to_string(Code.range(Expected.RangeName));
return false;
}
return true;
}
MATCHER_P(labelIs, Label, "") { return arg.label == Label; }
Config noHintsConfig() {
Config C;
C.InlayHints.Parameters = false;
C.InlayHints.DeducedTypes = false;
C.InlayHints.Designators = false;
return C;
}
template <typename... ExpectedHints>
void assertHints(InlayHintKind Kind, llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
Annotations Source(AnnotatedSource);
TestTU TU = TestTU::withCode(Source.code());
TU.ExtraArgs.push_back("-std=c++20");
auto AST = TU.build();
EXPECT_THAT(hintsOfKind(AST, Kind),
ElementsAre(HintMatcher(Expected, Source)...));
// Sneak in a cross-cutting check that hints are disabled by config.
// We'll hit an assertion failure if addInlayHint still gets called.
WithContextValue WithCfg(Config::Key, noHintsConfig());
EXPECT_THAT(inlayHints(AST, std::nullopt), IsEmpty());
}
// Hack to allow expression-statements operating on parameter packs in C++14.
template <typename... T> void ignore(T &&...) {}
template <typename... ExpectedHints>
void assertParameterHints(llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
ignore(Expected.Side = Left...);
assertHints(InlayHintKind::Parameter, AnnotatedSource, Expected...);
}
template <typename... ExpectedHints>
void assertTypeHints(llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
ignore(Expected.Side = Right...);
assertHints(InlayHintKind::Type, AnnotatedSource, Expected...);
}
template <typename... ExpectedHints>
void assertDesignatorHints(llvm::StringRef AnnotatedSource,
ExpectedHints... Expected) {
Config Cfg;
Cfg.InlayHints.Designators = true;
WithContextValue WithCfg(Config::Key, std::move(Cfg));
assertHints(InlayHintKind::Designator, AnnotatedSource, Expected...);
}
TEST(ParameterHints, Smoke) {
assertParameterHints(R"cpp(
void foo(int param);
void bar() {
foo($param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NoName) {
// No hint for anonymous parameter.
assertParameterHints(R"cpp(
void foo(int);
void bar() {
foo(42);
}
)cpp");
}
TEST(ParameterHints, NoNameConstReference) {
// No hint for anonymous const l-value ref parameter.
assertParameterHints(R"cpp(
void foo(const int&);
void bar() {
foo(42);
}
)cpp");
}
TEST(ParameterHints, NoNameReference) {
// Reference hint for anonymous l-value ref parameter.
assertParameterHints(R"cpp(
void foo(int&);
void bar() {
int i;
foo($param[[i]]);
}
)cpp",
ExpectedHint{"&: ", "param"});
}
TEST(ParameterHints, NoNameRValueReference) {
// No reference hint for anonymous r-value ref parameter.
assertParameterHints(R"cpp(
void foo(int&&);
void bar() {
foo(42);
}
)cpp");
}
TEST(ParameterHints, NoNameVariadicDeclaration) {
// No hint for anonymous variadic parameter
assertParameterHints(R"cpp(
template <typename... Args>
void foo(Args&& ...);
void bar() {
foo(42);
}
)cpp");
}
TEST(ParameterHints, NoNameVariadicForwarded) {
// No hint for anonymous variadic parameter
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
bar(42);
}
)cpp");
}
TEST(ParameterHints, NoNameVariadicPlain) {
// No hint for anonymous variadic parameter
assertParameterHints(R"cpp(
void foo(int);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
bar(42);
}
)cpp");
}
TEST(ParameterHints, NameInDefinition) {
// Parameter name picked up from definition if necessary.
assertParameterHints(R"cpp(
void foo(int);
void bar() {
foo($param[[42]]);
}
void foo(int param) {};
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NamePartiallyInDefinition) {
// Parameter name picked up from definition if necessary.
assertParameterHints(R"cpp(
void foo(int, int b);
void bar() {
foo($param1[[42]], $param2[[42]]);
}
void foo(int a, int) {};
)cpp",
ExpectedHint{"a: ", "param1"},
ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, NameInDefinitionVariadic) {
// Parameter name picked up from definition in a resolved forwarded parameter.
assertParameterHints(R"cpp(
void foo(int, int);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
void baz() {
bar($param1[[42]], $param2[[42]]);
}
void foo(int a, int b) {};
)cpp",
ExpectedHint{"a: ", "param1"},
ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, NameMismatch) {
// Prefer name from declaration.
assertParameterHints(R"cpp(
void foo(int good);
void bar() {
foo($good[[42]]);
}
void foo(int bad) {};
)cpp",
ExpectedHint{"good: ", "good"});
}
TEST(ParameterHints, NameConstReference) {
// Only name hint for const l-value ref parameter.
assertParameterHints(R"cpp(
void foo(const int& param);
void bar() {
foo($param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NameTypeAliasConstReference) {
// Only name hint for const l-value ref parameter via type alias.
assertParameterHints(R"cpp(
using alias = const int&;
void foo(alias param);
void bar() {
int i;
foo($param[[i]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NameReference) {
// Reference and name hint for l-value ref parameter.
assertParameterHints(R"cpp(
void foo(int& param);
void bar() {
int i;
foo($param[[i]]);
}
)cpp",
ExpectedHint{"&param: ", "param"});
}
TEST(ParameterHints, NameTypeAliasReference) {
// Reference and name hint for l-value ref parameter via type alias.
assertParameterHints(R"cpp(
using alias = int&;
void foo(alias param);
void bar() {
int i;
foo($param[[i]]);
}
)cpp",
ExpectedHint{"&param: ", "param"});
}
TEST(ParameterHints, NameRValueReference) {
// Only name hint for r-value ref parameter.
assertParameterHints(R"cpp(
void foo(int&& param);
void bar() {
foo($param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, VariadicForwardedConstructor) {
// Name hint for variadic parameter using std::forward in a constructor call
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
struct S { S(int a); };
template <typename T, typename... Args>
T bar(Args&&... args) { return T{std::forward<Args>(args)...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlainConstructor) {
// Name hint for variadic parameter in a constructor call
assertParameterHints(R"cpp(
struct S { S(int a); };
template <typename T, typename... Args>
T bar(Args&&... args) { return T{args...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicForwardedNewConstructor) {
// Name hint for variadic parameter using std::forward in a new expression
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
struct S { S(int a); };
template <typename T, typename... Args>
T* bar(Args&&... args) { return new T{std::forward<Args>(args)...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlainNewConstructor) {
// Name hint for variadic parameter in a new expression
assertParameterHints(R"cpp(
struct S { S(int a); };
template <typename T, typename... Args>
T* bar(Args&&... args) { return new T{args...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicForwarded) {
// Name for variadic parameter using std::forward
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int b;
bar($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlain) {
// Name hint for variadic parameter
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
bar($param[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlainWithPackFirst) {
// Name hint for variadic parameter when the parameter pack is not the last
// template parameter
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args, typename Arg>
void bar(Arg, Args&&... args) { return foo(args...); }
void baz() {
bar(1, $param[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicSplitTwolevel) {
// Name for variadic parameter that involves both head and tail parameters to
// deal with.
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void baz(int, int b, double);
template <typename... Args>
void foo(int a, Args&&... args) {
return baz(1, std::forward<Args>(args)..., 1.0);
}
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void bazz() {
bar($param1[[32]], $param2[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param1"},
ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, VariadicNameFromSpecialization) {
// We don't try to resolve forwarding parameters if the function call uses a
// specialization.
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <>
void bar<int>(int b);
void baz() {
bar($param[[42]]);
}
)cpp",
ExpectedHint{"b: ", "param"});
}
TEST(ParameterHints, VariadicNameFromSpecializationRecursive) {
// We don't try to resolve forwarding parameters inside a forwarding function
// call if that function call uses a specialization.
assertParameterHints(R"cpp(
void foo2(int a);
template <typename... Args>
void foo(Args... args) {
foo2(args...);
}
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <>
void foo<int>(int b);
void baz() {
bar($param[[42]]);
}
)cpp",
ExpectedHint{"b: ", "param"});
}
TEST(ParameterHints, VariadicOverloaded) {
// Name for variadic parameter for an overloaded function with unique number
// of parameters.
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(
R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void baz(int b, int c);
void baz(int bb, int cc, int dd);
template <typename... Args>
void foo(int a, Args&&... args) {
return baz(std::forward<Args>(args)...);
}
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void bazz() {
bar($param1[[32]], $param2[[42]], $param3[[52]]);
bar($param4[[1]], $param5[[2]], $param6[[3]], $param7[[4]]);
}
)cpp",
ExpectedHint{"a: ", "param1"}, ExpectedHint{"b: ", "param2"},
ExpectedHint{"c: ", "param3"}, ExpectedHint{"a: ", "param4"},
ExpectedHint{"bb: ", "param5"}, ExpectedHint{"cc: ", "param6"},
ExpectedHint{"dd: ", "param7"});
}
TEST(ParameterHints, VariadicRecursive) {
// make_tuple-like recursive variadic call
assertParameterHints(
R"cpp(
void foo();
template <typename Head, typename... Tail>
void foo(Head head, Tail... tail) {
foo(tail...);
}
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
int main() {
bar(1, 2, 3);
}
)cpp");
}
TEST(ParameterHints, VariadicVarargs) {
// variadic call involving varargs (to make sure we don't crash)
assertParameterHints(R"cpp(
void foo(int fixed, ...);
template <typename... Args>
void bar(Args&&... args) {
foo(args...);
}
void baz() {
bar($fixed[[41]], 42, 43);
}
)cpp");
}
TEST(ParameterHints, VariadicTwolevelUnresolved) {
// the same setting as VariadicVarargs, only with parameter pack
assertParameterHints(R"cpp(
template <typename... Args>
void foo(int fixed, Args&& ... args);
template <typename... Args>
void bar(Args&&... args) {
foo(args...);
}
void baz() {
bar($fixed[[41]], 42, 43);
}
)cpp",
ExpectedHint{"fixed: ", "fixed"});
}
TEST(ParameterHints, VariadicTwoCalls) {
// only the first call using the parameter pack should be picked up
assertParameterHints(
R"cpp(
void f1(int a, int b);
void f2(int c, int d);
bool cond;
template <typename... Args>
void foo(Args... args) {
if (cond) {
f1(args...);
} else {
f2(args...);
}
}
int main() {
foo($param1[[1]], $param2[[2]]);
}
)cpp",
ExpectedHint{"a: ", "param1"}, ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, VariadicInfinite) {
// infinite recursion should not break clangd
assertParameterHints(
R"cpp(
template <typename... Args>
void foo(Args...);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <typename... Args>
void foo(Args... args) {
bar(args...);
}
int main() {
foo(1, 2);
}
)cpp");
}
TEST(ParameterHints, VariadicDuplicatePack) {
// edge cases with multiple adjacent packs should work
assertParameterHints(
R"cpp(
void foo(int a, int b, int c, int);
template <typename... Args>
void bar(int, Args... args, int d) {
foo(args..., d);
}
template <typename... Args>
void baz(Args... args, Args... args2) {
bar<Args..., int>(1, args..., args2...);
}
int main() {
baz<int, int>($p1[[1]], $p2[[2]], $p3[[3]], $p4[[4]]);
}
)cpp",
ExpectedHint{"a: ", "p1"}, ExpectedHint{"b: ", "p2"},
ExpectedHint{"c: ", "p3"}, ExpectedHint{"d: ", "p4"});
}
TEST(ParameterHints, VariadicEmplace) {
// emplace-like calls should forward constructor parameters
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(
R"cpp(
namespace std { template <typename T> T&& forward(T&); }
using size_t = decltype(sizeof(0));
void *operator new(size_t, void *);
struct S {
S(int A);
S(int B, int C);
};
struct alloc {
template <typename T>
T* allocate();
template <typename T, typename... Args>
void construct(T* ptr, Args&&... args) {
::new ((void*)ptr) T{std::forward<Args>(args)...};
}
};
template <typename T>
struct container {
template <typename... Args>
void emplace(Args&&... args) {
alloc a;
auto ptr = a.template allocate<T>();
a.construct(ptr, std::forward<Args>(args)...);
}
};
void foo() {
container<S> c;
c.emplace($param1[[1]]);
c.emplace($param2[[2]], $param3[[3]]);
}
)cpp",
ExpectedHint{"A: ", "param1"}, ExpectedHint{"B: ", "param2"},
ExpectedHint{"C: ", "param3"});
}
TEST(ParameterHints, VariadicReferenceHint) {
assertParameterHints(R"cpp(
void foo(int&);
template <typename... Args>
void bar(Args... args) { return foo(args...); }
void baz() {
int a;
bar(a);
bar(1);
}
)cpp");
}
TEST(ParameterHints, VariadicReferenceHintForwardingRef) {
assertParameterHints(R"cpp(
void foo(int&);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
int a;
bar($param[[a]]);
bar(1);
}
)cpp",
ExpectedHint{"&: ", "param"});
}
TEST(ParameterHints, VariadicReferenceHintForwardingRefStdForward) {
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int&);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int a;
bar($param[[a]]);
}
)cpp",
ExpectedHint{"&: ", "param"});
}
TEST(ParameterHints, VariadicNoReferenceHintForwardingRefStdForward) {
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int a;
bar(a);
bar(1);
}
)cpp");
}
TEST(ParameterHints, VariadicNoReferenceHintUnresolvedForward) {
assertParameterHints(R"cpp(
template <typename... Args>
void foo(Args&&... args);
void bar() {
int a;
foo(a);
}
)cpp");
}
TEST(ParameterHints, MatchingNameVariadicForwarded) {
// No name hint for variadic parameter with matching name
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int a;
bar(a);
}
)cpp");
}
TEST(ParameterHints, MatchingNameVariadicPlain) {
// No name hint for variadic parameter with matching name
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
int a;
bar(a);
}
)cpp");
}
TEST(ParameterHints, Operator) {
// No hint for operator call with operator syntax.
assertParameterHints(R"cpp(
struct S {};
void operator+(S lhs, S rhs);
void bar() {
S a, b;
a + b;
}
)cpp");
}
TEST(ParameterHints, Macros) {
// Handling of macros depends on where the call's argument list comes from.
// If it comes from a macro definition, there's nothing to hint
// at the invocation site.
assertParameterHints(R"cpp(
void foo(int param);
#define ExpandsToCall() foo(42)
void bar() {
ExpandsToCall();
}
)cpp");
// The argument expression being a macro invocation shouldn't interfere
// with hinting.
assertParameterHints(R"cpp(
#define PI 3.14
void foo(double param);
void bar() {
foo($param[[PI]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
// If the whole argument list comes from a macro parameter, hint it.
assertParameterHints(R"cpp(
void abort();
#define ASSERT(expr) if (!expr) abort()
int foo(int param);
void bar() {
ASSERT(foo($param[[42]]) == 0);
}
)cpp",
ExpectedHint{"param: ", "param"});
// If the macro expands to multiple arguments, don't hint it.
assertParameterHints(R"cpp(
void foo(double x, double y);
#define CONSTANTS 3.14, 2.72
void bar() {
foo(CONSTANTS);
}
)cpp");
}
TEST(ParameterHints, ConstructorParens) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
void bar() {
S obj($param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ConstructorBraces) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
void bar() {
S obj{$param[[42]]};
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ConstructorStdInitList) {
// Do not show hints for std::initializer_list constructors.
assertParameterHints(R"cpp(
namespace std {
template <typename> class initializer_list {};
}
struct S {
S(std::initializer_list<int> param);
};
void bar() {
S obj{42, 43};
}
)cpp");
}
TEST(ParameterHints, MemberInit) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
struct T {
S member;
T() : member($param[[42]]) {}
};
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ImplicitConstructor) {
assertParameterHints(R"cpp(
struct S {
S(int param);
};
void bar(S);
S foo() {
// Do not show hint for implicit constructor call in argument.
bar(42);
// Do not show hint for implicit constructor call in return.
return 42;
}
)cpp");
}
TEST(ParameterHints, ArgMatchesParam) {
assertParameterHints(R"cpp(
void foo(int param);
struct S {
static const int param = 42;
};
void bar() {
int param = 42;
// Do not show redundant "param: param".
foo(param);
// But show it if the argument is qualified.
foo($param[[S::param]]);
}
struct A {
int param;
void bar() {
// Do not show "param: param" for member-expr.
foo(param);
}
};
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, ArgMatchesParamReference) {
assertParameterHints(R"cpp(
void foo(int& param);
void foo2(const int& param);
void bar() {
int param;
// show reference hint on mutable reference
foo($param[[param]]);
// but not on const reference
foo2(param);
}
)cpp",
ExpectedHint{"&: ", "param"});
}
TEST(ParameterHints, LeadingUnderscore) {
assertParameterHints(R"cpp(
void foo(int p1, int _p2, int __p3);
void bar() {
foo($p1[[41]], $p2[[42]], $p3[[43]]);
}
)cpp",
ExpectedHint{"p1: ", "p1"}, ExpectedHint{"p2: ", "p2"},
ExpectedHint{"p3: ", "p3"});
}
TEST(ParameterHints, DependentCalls) {
assertParameterHints(R"cpp(
template <typename T>
void nonmember(T par1);
template <typename T>
struct A {
void member(T par2);
static void static_member(T par3);
};
void overload(int anInt);
void overload(double aDouble);
template <typename T>
struct S {
void bar(A<T> a, T t) {
nonmember($par1[[t]]);
a.member($par2[[t]]);
A<T>::static_member($par3[[t]]);
// We don't want to arbitrarily pick between
// "anInt" or "aDouble", so just show no hint.
overload(T{});
}
};
)cpp",
ExpectedHint{"par1: ", "par1"},
ExpectedHint{"par2: ", "par2"},
ExpectedHint{"par3: ", "par3"});
}
TEST(ParameterHints, VariadicFunction) {
assertParameterHints(R"cpp(
template <typename... T>
void foo(int fixed, T... variadic);
void bar() {
foo($fixed[[41]], 42, 43);
}
)cpp",
ExpectedHint{"fixed: ", "fixed"});
}
TEST(ParameterHints, VarargsFunction) {
assertParameterHints(R"cpp(
void foo(int fixed, ...);
void bar() {
foo($fixed[[41]], 42, 43);
}
)cpp",
ExpectedHint{"fixed: ", "fixed"});
}
TEST(ParameterHints, CopyOrMoveConstructor) {
// Do not show hint for parameter of copy or move constructor.
assertParameterHints(R"cpp(
struct S {
S();
S(const S& other);
S(S&& other);
};
void bar() {
S a;
S b(a); // copy
S c(S()); // move
}
)cpp");
}
TEST(ParameterHints, AggregateInit) {
// FIXME: This is not implemented yet, but it would be a natural
// extension to show member names as hints here.
assertParameterHints(R"cpp(
struct Point {
int x;
int y;
};
void bar() {
Point p{41, 42};
}
)cpp");
}
TEST(ParameterHints, UserDefinedLiteral) {
// Do not hint call to user-defined literal operator.
assertParameterHints(R"cpp(
long double operator"" _w(long double param);
void bar() {
1.2_w;
}
)cpp");
}
TEST(ParameterHints, ParamNameComment) {
// Do not hint an argument which already has a comment
// with the parameter name preceding it.
assertParameterHints(R"cpp(
void foo(int param);
void bar() {
foo(/*param*/42);
foo( /* param = */ 42);
foo(/* the answer */$param[[42]]);
}
)cpp",
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, SetterFunctions) {
assertParameterHints(R"cpp(
struct S {
void setParent(S* parent);
void set_parent(S* parent);
void setTimeout(int timeoutMillis);
void setTimeoutMillis(int timeout_millis);
};
void bar() {
S s;
// Parameter name matches setter name - omit hint.
s.setParent(nullptr);
// Support snake_case
s.set_parent(nullptr);
// Parameter name may contain extra info - show hint.
s.setTimeout($timeoutMillis[[120]]);
// FIXME: Ideally we'd want to omit this.
s.setTimeoutMillis($timeout_millis[[120]]);
}
)cpp",
ExpectedHint{"timeoutMillis: ", "timeoutMillis"},
ExpectedHint{"timeout_millis: ", "timeout_millis"});
}
TEST(ParameterHints, BuiltinFunctions) {
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo() {
int i;
std::forward(i);
}
)cpp");
}
TEST(ParameterHints, IncludeAtNonGlobalScope) {
Annotations FooInc(R"cpp(
void bar() { foo(42); }
)cpp");
Annotations FooCC(R"cpp(
struct S {
void foo(int param);
#include "foo.inc"
};
)cpp");
TestWorkspace Workspace;
Workspace.addSource("foo.inc", FooInc.code());
Workspace.addMainFile("foo.cc", FooCC.code());
auto AST = Workspace.openFile("foo.cc");
ASSERT_TRUE(bool(AST));
// Ensure the hint for the call in foo.inc is NOT materialized in foo.cc.
EXPECT_EQ(hintsOfKind(*AST, InlayHintKind::Parameter).size(), 0u);
}
TEST(TypeHints, Smoke) {
assertTypeHints(R"cpp(
auto $waldo[[waldo]] = 42;
)cpp",
ExpectedHint{": int", "waldo"});
}
TEST(TypeHints, Decorations) {
assertTypeHints(R"cpp(
int x = 42;
auto* $var1[[var1]] = &x;
auto&& $var2[[var2]] = x;
const auto& $var3[[var3]] = x;
)cpp",
ExpectedHint{": int *", "var1"},
ExpectedHint{": int &", "var2"},
ExpectedHint{": const int &", "var3"});
}
TEST(TypeHints, DecltypeAuto) {
assertTypeHints(R"cpp(
int x = 42;
int& y = x;
decltype(auto) $z[[z]] = y;
)cpp",
ExpectedHint{": int &", "z"});
}
TEST(TypeHints, NoQualifiers) {
assertTypeHints(R"cpp(
namespace A {
namespace B {
struct S1 {};
S1 foo();
auto $x[[x]] = foo();
struct S2 {
template <typename T>
struct Inner {};
};
S2::Inner<int> bar();
auto $y[[y]] = bar();
}
}
)cpp",
ExpectedHint{": S1", "x"},
// FIXME: We want to suppress scope specifiers
// here because we are into the whole
// brevity thing, but the ElaboratedType
// printer does not honor the SuppressScope
// flag by design, so we need to extend the
// PrintingPolicy to support this use case.
ExpectedHint{": S2::Inner<int>", "y"});
}
TEST(TypeHints, Lambda) {
// Do not print something overly verbose like the lambda's location.
// Show hints for init-captures (but not regular captures).
assertTypeHints(R"cpp(
void f() {
int cap = 42;
auto $L[[L]] = [cap, $init[[init]] = 1 + 1](int a$ret[[)]] {
return a + cap + init;
};
}
)cpp",
ExpectedHint{": (lambda)", "L"},
ExpectedHint{": int", "init"}, ExpectedHint{"-> int", "ret"});
// Lambda return hint shown even if no param list.
// (The digraph :> is just a ] that doesn't conflict with the annotations).
assertTypeHints("auto $L[[x]] = <:$ret[[:>]]{return 42;};",
ExpectedHint{": (lambda)", "L"},
ExpectedHint{"-> int", "ret"});
}
// Structured bindings tests.
// Note, we hint the individual bindings, not the aggregate.
TEST(TypeHints, StructuredBindings_PublicStruct) {
assertTypeHints(R"cpp(
// Struct with public fields.
struct Point {
int x;
int y;
};
Point foo();
auto [$x[[x]], $y[[y]]] = foo();
)cpp",
ExpectedHint{": int", "x"}, ExpectedHint{": int", "y"});
}
TEST(TypeHints, StructuredBindings_Array) {
assertTypeHints(R"cpp(
int arr[2];
auto [$x[[x]], $y[[y]]] = arr;
)cpp",
ExpectedHint{": int", "x"}, ExpectedHint{": int", "y"});
}
TEST(TypeHints, StructuredBindings_TupleLike) {
assertTypeHints(R"cpp(
// Tuple-like type.
struct IntPair {
int a;
int b;
};
namespace std {
template <typename T>
struct tuple_size {};
template <>
struct tuple_size<IntPair> {
constexpr static unsigned value = 2;
};
template <unsigned I, typename T>
struct tuple_element {};
template <unsigned I>
struct tuple_element<I, IntPair> {
using type = int;
};
}
template <unsigned I>
int get(const IntPair& p) {
if constexpr (I == 0) {
return p.a;
} else if constexpr (I == 1) {
return p.b;
}
}
IntPair bar();
auto [$x[[x]], $y[[y]]] = bar();
)cpp",
ExpectedHint{": int", "x"}, ExpectedHint{": int", "y"});
}
TEST(TypeHints, StructuredBindings_NoInitializer) {
assertTypeHints(R"cpp(
// No initializer (ill-formed).
// Do not show useless "NULL TYPE" hint.
auto [x, y]; /*error-ok*/
)cpp");
}
TEST(TypeHints, ReturnTypeDeduction) {
assertTypeHints(
R"cpp(
auto f1(int x$ret1a[[)]]; // Hint forward declaration too
auto f1(int x$ret1b[[)]] { return x + 1; }
// Include pointer operators in hint
int s;
auto& f2($ret2[[)]] { return s; }
// Do not hint `auto` for trailing return type.
auto f3() -> int;
// Do not hint when a trailing return type is specified.
auto f4() -> auto* { return "foo"; }
auto f5($noreturn[[)]] {}
// `auto` conversion operator
struct A {
operator auto($retConv[[)]] { return 42; }
};
// FIXME: Dependent types do not work yet.
template <typename T>
struct S {
auto method() { return T(); }
};
)cpp",
ExpectedHint{"-> int", "ret1a"}, ExpectedHint{"-> int", "ret1b"},
ExpectedHint{"-> int &", "ret2"}, ExpectedHint{"-> void", "noreturn"},
ExpectedHint{"-> int", "retConv"});
}
TEST(TypeHints, DependentType) {
assertTypeHints(R"cpp(
template <typename T>
void foo(T arg) {
// The hint would just be "auto" and we can't do any better.
auto var1 = arg.method();
// FIXME: It would be nice to show "T" as the hint.
auto $var2[[var2]] = arg;
}
)cpp");
}
TEST(TypeHints, LongTypeName) {
assertTypeHints(R"cpp(
template <typename, typename, typename>
struct A {};
struct MultipleWords {};
A<MultipleWords, MultipleWords, MultipleWords> foo();
// Omit type hint past a certain length (currently 32)
auto var = foo();
)cpp");
}
TEST(TypeHints, DefaultTemplateArgs) {
assertTypeHints(R"cpp(
template <typename, typename = int>
struct A {};
A<float> foo();
auto $var[[var]] = foo();
)cpp",
ExpectedHint{": A<float>", "var"});
}
TEST(TypeHints, Deduplication) {
assertTypeHints(R"cpp(
template <typename T>
void foo() {
auto $var[[var]] = 42;
}
template void foo<int>();
template void foo<float>();
)cpp",
ExpectedHint{": int", "var"});
}
TEST(TypeHints, SinglyInstantiatedTemplate) {
assertTypeHints(R"cpp(
auto $lambda[[x]] = [](auto *$param[[y]], auto) { return 42; };
int m = x("foo", 3);
)cpp",
ExpectedHint{": (lambda)", "lambda"},
ExpectedHint{": const char *", "param"});
// No hint for packs, or auto params following packs
assertTypeHints(R"cpp(
int x(auto $a[[a]], auto... b, auto c) { return 42; }
int m = x<void*, char, float>(nullptr, 'c', 2.0, 2);
)cpp",
ExpectedHint{": void *", "a"});
}
TEST(TypeHints, Aliased) {
// Check that we don't crash for functions without a FunctionTypeLoc.
// https://github.com/clangd/clangd/issues/1140
TestTU TU = TestTU::withCode("void foo(void){} extern typeof(foo) foo;");
TU.ExtraArgs.push_back("-xc");
auto AST = TU.build();
EXPECT_THAT(hintsOfKind(AST, InlayHintKind::Type), IsEmpty());
}
TEST(TypeHints, Decltype) {
assertTypeHints(R"cpp(
$a[[decltype(0)]] a;
$b[[decltype(a)]] b;
const $c[[decltype(0)]] &c = b;
// Don't show for dependent type
template <class T>
constexpr decltype(T{}) d;
$e[[decltype(0)]] e();
auto f() -> $f[[decltype(0)]];
template <class, class> struct Foo;
using G = Foo<$g[[decltype(0)]], float>;
auto $h[[h]] = $i[[decltype(0)]]{};
// No crash
/* error-ok */
auto $j[[s]];
)cpp",
ExpectedHint{": int", "a"}, ExpectedHint{": int", "b"},
ExpectedHint{": int", "c"}, ExpectedHint{": int", "e"},
ExpectedHint{": int", "f"}, ExpectedHint{": int", "g"},
ExpectedHint{": int", "h"}, ExpectedHint{": int", "i"},
ExpectedHint{": auto", "j"});
}
TEST(DesignatorHints, Basic) {
assertDesignatorHints(R"cpp(
struct S { int x, y, z; };
S s {$x[[1]], $y[[2+2]]};
int x[] = {$0[[0]], $1[[1]]};
)cpp",
ExpectedHint{".x=", "x"}, ExpectedHint{".y=", "y"},
ExpectedHint{"[0]=", "0"}, ExpectedHint{"[1]=", "1"});
}
TEST(DesignatorHints, Nested) {
assertDesignatorHints(R"cpp(
struct Inner { int x, y; };
struct Outer { Inner a, b; };
Outer o{ $a[[{ $x[[1]], $y[[2]] }]], $bx[[3]] };
)cpp",
ExpectedHint{".a=", "a"}, ExpectedHint{".x=", "x"},
ExpectedHint{".y=", "y"}, ExpectedHint{".b.x=", "bx"});
}
TEST(DesignatorHints, AnonymousRecord) {
assertDesignatorHints(R"cpp(
struct S {
union {
struct {
struct {
int y;
};
} x;
};
};
S s{$xy[[42]]};
)cpp",
ExpectedHint{".x.y=", "xy"});
}
TEST(DesignatorHints, Suppression) {
assertDesignatorHints(R"cpp(
struct Point { int a, b, c, d, e, f, g, h; };
Point p{/*a=*/1, .c=2, /* .d = */3, $e[[4]]};
)cpp",
ExpectedHint{".e=", "e"});
}
TEST(DesignatorHints, StdArray) {
// Designators for std::array should be [0] rather than .__elements[0].
// While technically correct, the designator is useless and horrible to read.
assertDesignatorHints(R"cpp(
template <typename T, int N> struct Array { T __elements[N]; };
Array<int, 2> x = {$0[[0]], $1[[1]]};
)cpp",
ExpectedHint{"[0]=", "0"}, ExpectedHint{"[1]=", "1"});
}
TEST(DesignatorHints, OnlyAggregateInit) {
assertDesignatorHints(R"cpp(
struct Copyable { int x; } c;
Copyable d{c};
struct Constructible { Constructible(int x); };
Constructible x{42};
)cpp" /*no designator hints expected (but param hints!)*/);
}
TEST(DesignatorHints, NoCrash) {
assertDesignatorHints(R"cpp(
/*error-ok*/
struct A {};
struct Foo {int a; int b;};
void test() {
Foo f{A(), $b[[1]]};
}
)cpp", ExpectedHint{".b=", "b"});
}
TEST(InlayHints, RestrictRange) {
Annotations Code(R"cpp(
auto a = false;
[[auto b = 1;
auto c = '2';]]
auto d = 3.f;
)cpp");
auto AST = TestTU::withCode(Code.code()).build();
EXPECT_THAT(inlayHints(AST, Code.range()),
ElementsAre(labelIs(": int"), labelIs(": char")));
}
TEST(ParameterHints, ArgPacksAndConstructors) {
assertParameterHints(
R"cpp(
struct Foo{ Foo(); Foo(int x); };
void foo(Foo a, int b);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <typename... Args>
void baz(Args... args) { foo($param1[[Foo{args...}]], $param2[[1]]); }
template <typename... Args>
void bax(Args... args) { foo($param3[[{args...}]], args...); }
void foo() {
bar($param4[[Foo{}]], $param5[[42]]);
bar($param6[[42]], $param7[[42]]);
baz($param8[[42]]);
bax($param9[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param1"}, ExpectedHint{"b: ", "param2"},
ExpectedHint{"a: ", "param3"}, ExpectedHint{"a: ", "param4"},
ExpectedHint{"b: ", "param5"}, ExpectedHint{"a: ", "param6"},
ExpectedHint{"b: ", "param7"}, ExpectedHint{"x: ", "param8"},
ExpectedHint{"b: ", "param9"});
}
TEST(ParameterHints, DoesntExpandAllArgs) {
assertParameterHints(
R"cpp(
void foo(int x, int y);
int id(int a, int b, int c);
template <typename... Args>
void bar(Args... args) {
foo(id($param1[[args]], $param2[[1]], $param3[[args]])...);
}
void foo() {
bar(1, 2); // FIXME: We could have `bar(a: 1, a: 2)` here.
}
)cpp",
ExpectedHint{"a: ", "param1"}, ExpectedHint{"b: ", "param2"},
ExpectedHint{"c: ", "param3"});
}
// FIXME: Low-hanging fruit where we could omit a type hint:
// - auto x = TypeName(...);
// - auto x = (TypeName) (...);
// - auto x = static_cast<TypeName>(...); // and other built-in casts
// Annoyances for which a heuristic is not obvious:
// - auto x = llvm::dyn_cast<LongTypeName>(y); // and similar
// - stdlib algos return unwieldy __normal_iterator<X*, ...> type
// (For this one, perhaps we should omit type hints that start
// with a double underscore.)
} // namespace
} // namespace clangd
} // namespace clang