blob: f4e38aeb653ec7d5980599834fd5127462c020a5 [file] [log] [blame]
//===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InlayHints.h"
#include "AST.h"
#include "Config.h"
#include "HeuristicResolver.h"
#include "ParsedAST.h"
#include "SourceCode.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/ScopeExit.h"
#include <optional>
namespace clang {
namespace clangd {
namespace {
// For now, inlay hints are always anchored at the left or right of their range.
enum class HintSide { Left, Right };
// Helper class to iterate over the designator names of an aggregate type.
//
// For an array type, yields [0], [1], [2]...
// For aggregate classes, yields null for each base, then .field1, .field2, ...
class AggregateDesignatorNames {
public:
AggregateDesignatorNames(QualType T) {
if (!T.isNull()) {
T = T.getCanonicalType();
if (T->isArrayType()) {
IsArray = true;
Valid = true;
return;
}
if (const RecordDecl *RD = T->getAsRecordDecl()) {
Valid = true;
FieldsIt = RD->field_begin();
FieldsEnd = RD->field_end();
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) {
BasesIt = CRD->bases_begin();
BasesEnd = CRD->bases_end();
Valid = CRD->isAggregate();
}
OneField = Valid && BasesIt == BasesEnd && FieldsIt != FieldsEnd &&
std::next(FieldsIt) == FieldsEnd;
}
}
}
// Returns false if the type was not an aggregate.
operator bool() { return Valid; }
// Advance to the next element in the aggregate.
void next() {
if (IsArray)
++Index;
else if (BasesIt != BasesEnd)
++BasesIt;
else if (FieldsIt != FieldsEnd)
++FieldsIt;
}
// Print the designator to Out.
// Returns false if we could not produce a designator for this element.
bool append(std::string &Out, bool ForSubobject) {
if (IsArray) {
Out.push_back('[');
Out.append(std::to_string(Index));
Out.push_back(']');
return true;
}
if (BasesIt != BasesEnd)
return false; // Bases can't be designated. Should we make one up?
if (FieldsIt != FieldsEnd) {
llvm::StringRef FieldName;
if (const IdentifierInfo *II = FieldsIt->getIdentifier())
FieldName = II->getName();
// For certain objects, their subobjects may be named directly.
if (ForSubobject &&
(FieldsIt->isAnonymousStructOrUnion() ||
// std::array<int,3> x = {1,2,3}. Designators not strictly valid!
(OneField && isReservedName(FieldName))))
return true;
if (!FieldName.empty() && !isReservedName(FieldName)) {
Out.push_back('.');
Out.append(FieldName.begin(), FieldName.end());
return true;
}
return false;
}
return false;
}
private:
bool Valid = false;
bool IsArray = false;
bool OneField = false; // e.g. std::array { T __elements[N]; }
unsigned Index = 0;
CXXRecordDecl::base_class_const_iterator BasesIt;
CXXRecordDecl::base_class_const_iterator BasesEnd;
RecordDecl::field_iterator FieldsIt;
RecordDecl::field_iterator FieldsEnd;
};
// Collect designator labels describing the elements of an init list.
//
// This function contributes the designators of some (sub)object, which is
// represented by the semantic InitListExpr Sem.
// This includes any nested subobjects, but *only* if they are part of the same
// original syntactic init list (due to brace elision).
// In other words, it may descend into subobjects but not written init-lists.
//
// For example: struct Outer { Inner a,b; }; struct Inner { int x, y; }
// Outer o{{1, 2}, 3};
// This function will be called with Sem = { {1, 2}, {3, ImplicitValue} }
// It should generate designators '.a:' and '.b.x:'.
// '.a:' is produced directly without recursing into the written sublist.
// (The written sublist will have a separate collectDesignators() call later).
// Recursion with Prefix='.b' and Sem = {3, ImplicitValue} produces '.b.x:'.
void collectDesignators(const InitListExpr *Sem,
llvm::DenseMap<SourceLocation, std::string> &Out,
const llvm::DenseSet<SourceLocation> &NestedBraces,
std::string &Prefix) {
if (!Sem || Sem->isTransparent())
return;
assert(Sem->isSemanticForm());
// The elements of the semantic form all correspond to direct subobjects of
// the aggregate type. `Fields` iterates over these subobject names.
AggregateDesignatorNames Fields(Sem->getType());
if (!Fields)
return;
for (const Expr *Init : Sem->inits()) {
auto Next = llvm::make_scope_exit([&, Size(Prefix.size())] {
Fields.next(); // Always advance to the next subobject name.
Prefix.resize(Size); // Erase any designator we appended.
});
// Skip for a broken initializer or if it is a "hole" in a subobject that
// was not explicitly initialized.
if (!Init || llvm::isa<ImplicitValueInitExpr>(Init))
continue;
const auto *BraceElidedSubobject = llvm::dyn_cast<InitListExpr>(Init);
if (BraceElidedSubobject &&
NestedBraces.contains(BraceElidedSubobject->getLBraceLoc()))
BraceElidedSubobject = nullptr; // there were braces!
if (!Fields.append(Prefix, BraceElidedSubobject != nullptr))
continue; // no designator available for this subobject
if (BraceElidedSubobject) {
// If the braces were elided, this aggregate subobject is initialized
// inline in the same syntactic list.
// Descend into the semantic list describing the subobject.
// (NestedBraces are still correct, they're from the same syntactic list).
collectDesignators(BraceElidedSubobject, Out, NestedBraces, Prefix);
continue;
}
Out.try_emplace(Init->getBeginLoc(), Prefix);
}
}
// Get designators describing the elements of a (syntactic) init list.
// This does not produce designators for any explicitly-written nested lists.
llvm::DenseMap<SourceLocation, std::string>
getDesignators(const InitListExpr *Syn) {
assert(Syn->isSyntacticForm());
// collectDesignators needs to know which InitListExprs in the semantic tree
// were actually written, but InitListExpr::isExplicit() lies.
// Instead, record where braces of sub-init-lists occur in the syntactic form.
llvm::DenseSet<SourceLocation> NestedBraces;
for (const Expr *Init : Syn->inits())
if (auto *Nested = llvm::dyn_cast<InitListExpr>(Init))
NestedBraces.insert(Nested->getLBraceLoc());
// Traverse the semantic form to find the designators.
// We use their SourceLocation to correlate with the syntactic form later.
llvm::DenseMap<SourceLocation, std::string> Designators;
std::string EmptyPrefix;
collectDesignators(Syn->isSemanticForm() ? Syn : Syn->getSemanticForm(),
Designators, NestedBraces, EmptyPrefix);
return Designators;
}
class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
public:
InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
const Config &Cfg, std::optional<Range> RestrictRange)
: Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()),
Cfg(Cfg), RestrictRange(std::move(RestrictRange)),
MainFileID(AST.getSourceManager().getMainFileID()),
Resolver(AST.getHeuristicResolver()),
TypeHintPolicy(this->AST.getPrintingPolicy()),
StructuredBindingPolicy(this->AST.getPrintingPolicy()) {
bool Invalid = false;
llvm::StringRef Buf =
AST.getSourceManager().getBufferData(MainFileID, &Invalid);
MainFileBuf = Invalid ? StringRef{} : Buf;
TypeHintPolicy.SuppressScope = true; // keep type names short
TypeHintPolicy.AnonymousTagLocations =
false; // do not print lambda locations
// For structured bindings, print canonical types. This is important because
// for bindings that use the tuple_element protocol, the non-canonical types
// would be "tuple_element<I, A>::type".
// For "auto", we often prefer sugared types.
// Not setting PrintCanonicalTypes for "auto" allows
// SuppressDefaultTemplateArgs (set by default) to have an effect.
StructuredBindingPolicy = TypeHintPolicy;
StructuredBindingPolicy.PrintCanonicalTypes = true;
}
bool VisitTypeLoc(TypeLoc TL) {
if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType()))
if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType())
addTypeHint(TL.getSourceRange(), UT, ": ");
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
// Weed out constructor calls that don't look like a function call with
// an argument list, by checking the validity of getParenOrBraceRange().
// Also weed out std::initializer_list constructors as there are no names
// for the individual arguments.
if (!E->getParenOrBraceRange().isValid() ||
E->isStdInitListInitialization()) {
return true;
}
processCall(E->getConstructor(), {E->getArgs(), E->getNumArgs()});
return true;
}
bool VisitCallExpr(CallExpr *E) {
if (!Cfg.InlayHints.Parameters)
return true;
// Do not show parameter hints for operator calls written using operator
// syntax or user-defined literals. (Among other reasons, the resulting
// hints can look awkard, e.g. the expression can itself be a function
// argument and then we'd get two hints side by side).
if (isa<CXXOperatorCallExpr>(E) || isa<UserDefinedLiteral>(E))
return true;
auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
if (CalleeDecls.size() != 1)
return true;
const FunctionDecl *Callee = nullptr;
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
Callee = FD;
else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
Callee = FTD->getTemplatedDecl();
if (!Callee)
return true;
processCall(Callee, {E->getArgs(), E->getNumArgs()});
return true;
}
bool VisitFunctionDecl(FunctionDecl *D) {
if (auto *FPT =
llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
if (!FPT->hasTrailingReturn()) {
if (auto FTL = D->getFunctionTypeLoc())
addReturnTypeHint(D, FTL.getRParenLoc());
}
}
return true;
}
bool VisitLambdaExpr(LambdaExpr *E) {
FunctionDecl *D = E->getCallOperator();
if (!E->hasExplicitResultType())
addReturnTypeHint(D, E->hasExplicitParameters()
? D->getFunctionTypeLoc().getRParenLoc()
: E->getIntroducerRange().getEnd());
return true;
}
void addReturnTypeHint(FunctionDecl *D, SourceRange Range) {
auto *AT = D->getReturnType()->getContainedAutoType();
if (!AT || AT->getDeducedType().isNull())
return;
addTypeHint(Range, D->getReturnType(), /*Prefix=*/"-> ");
}
bool VisitVarDecl(VarDecl *D) {
// Do not show hints for the aggregate in a structured binding,
// but show hints for the individual bindings.
if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
for (auto *Binding : DD->bindings()) {
addTypeHint(Binding->getLocation(), Binding->getType(), /*Prefix=*/": ",
StructuredBindingPolicy);
}
return true;
}
if (D->getType()->getContainedAutoType()) {
if (!D->getType()->isDependentType()) {
// Our current approach is to place the hint on the variable
// and accordingly print the full type
// (e.g. for `const auto& x = 42`, print `const int&`).
// Alternatively, we could place the hint on the `auto`
// (and then just print the type deduced for the `auto`).
addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
}
}
// Handle templates like `int foo(auto x)` with exactly one instantiation.
if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
if (D->getIdentifier() && PVD->getType()->isDependentType() &&
!getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
.isNull()) {
if (auto *IPVD = getOnlyParamInstantiation(PVD))
addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
}
}
return true;
}
ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
if (!TemplateFunction)
return nullptr;
auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
getOnlyInstantiation(TemplateFunction));
if (!InstantiatedFunction)
return nullptr;
unsigned ParamIdx = 0;
for (auto *Param : TemplateFunction->parameters()) {
// Can't reason about param indexes in the presence of preceding packs.
// And if this param is a pack, it may expand to multiple params.
if (Param->isParameterPack())
return nullptr;
if (Param == D)
break;
++ParamIdx;
}
assert(ParamIdx < TemplateFunction->getNumParams() &&
"Couldn't find param in list?");
assert(ParamIdx < InstantiatedFunction->getNumParams() &&
"Instantiated function has fewer (non-pack) parameters?");
return InstantiatedFunction->getParamDecl(ParamIdx);
}
bool VisitInitListExpr(InitListExpr *Syn) {
// We receive the syntactic form here (shouldVisitImplicitCode() is false).
// This is the one we will ultimately attach designators to.
// It may have subobject initializers inlined without braces. The *semantic*
// form of the init-list has nested init-lists for these.
// getDesignators will look at the semantic form to determine the labels.
assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
if (!Cfg.InlayHints.Designators)
return true;
if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
return true;
llvm::DenseMap<SourceLocation, std::string> Designators =
getDesignators(Syn);
for (const Expr *Init : Syn->inits()) {
if (llvm::isa<DesignatedInitExpr>(Init))
continue;
auto It = Designators.find(Init->getBeginLoc());
if (It != Designators.end() &&
!isPrecededByParamNameComment(Init, It->second))
addDesignatorHint(Init->getSourceRange(), It->second);
}
return true;
}
// FIXME: Handle RecoveryExpr to try to hint some invalid calls.
private:
using NameVec = SmallVector<StringRef, 8>;
void processCall(const FunctionDecl *Callee,
llvm::ArrayRef<const Expr *> Args) {
if (!Cfg.InlayHints.Parameters || Args.size() == 0 || !Callee)
return;
// The parameter name of a move or copy constructor is not very interesting.
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee))
if (Ctor->isCopyOrMoveConstructor())
return;
// Resolve parameter packs to their forwarded parameter
auto ForwardedParams = resolveForwardingParameters(Callee);
NameVec ParameterNames = chooseParameterNames(ForwardedParams);
// Exclude setters (i.e. functions with one argument whose name begins with
// "set"), and builtins like std::move/forward/... as their parameter name
// is also not likely to be interesting.
if (isSetter(Callee, ParameterNames) || isSimpleBuiltin(Callee))
return;
for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
// Pack expansion expressions cause the 1:1 mapping between arguments and
// parameters to break down, so we don't add further inlay hints if we
// encounter one.
if (isa<PackExpansionExpr>(Args[I])) {
break;
}
StringRef Name = ParameterNames[I];
bool NameHint = shouldHintName(Args[I], Name);
bool ReferenceHint =
shouldHintReference(Callee->getParamDecl(I), ForwardedParams[I]);
if (NameHint || ReferenceHint) {
addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
InlayHintKind::Parameter, ReferenceHint ? "&" : "",
NameHint ? Name : "", ": ");
}
}
}
static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
if (ParamNames.size() != 1)
return false;
StringRef Name = getSimpleName(*Callee);
if (!Name.startswith_insensitive("set"))
return false;
// In addition to checking that the function has one parameter and its
// name starts with "set", also check that the part after "set" matches
// the name of the parameter (ignoring case). The idea here is that if
// the parameter name differs, it may contain extra information that
// may be useful to show in a hint, as in:
// void setTimeout(int timeoutMillis);
// This currently doesn't handle cases where params use snake_case
// and functions don't, e.g.
// void setExceptionHandler(EHFunc exception_handler);
// We could improve this by replacing `equals_insensitive` with some
// `sloppy_equals` which ignores case and also skips underscores.
StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
return WhatItIsSetting.equals_insensitive(ParamNames[0]);
}
// Checks if the callee is one of the builtins
// addressof, as_const, forward, move(_if_noexcept)
static bool isSimpleBuiltin(const FunctionDecl *Callee) {
switch (Callee->getBuiltinID()) {
case Builtin::BIaddressof:
case Builtin::BIas_const:
case Builtin::BIforward:
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
return true;
default:
return false;
}
}
bool shouldHintName(const Expr *Arg, StringRef ParamName) {
if (ParamName.empty())
return false;
// If the argument expression is a single name and it matches the
// parameter name exactly, omit the name hint.
if (ParamName == getSpelledIdentifier(Arg))
return false;
// Exclude argument expressions preceded by a /*paramName*/.
if (isPrecededByParamNameComment(Arg, ParamName))
return false;
return true;
}
bool shouldHintReference(const ParmVarDecl *Param,
const ParmVarDecl *ForwardedParam) {
// We add a & hint only when the argument is passed as mutable reference.
// For parameters that are not part of an expanded pack, this is
// straightforward. For expanded pack parameters, it's likely that they will
// be forwarded to another function. In this situation, we only want to add
// the reference hint if the argument is actually being used via mutable
// reference. This means we need to check
// 1. whether the value category of the argument is preserved, i.e. each
// pack expansion uses std::forward correctly.
// 2. whether the argument is ever copied/cast instead of passed
// by-reference
// Instead of checking this explicitly, we use the following proxy:
// 1. the value category can only change from rvalue to lvalue during
// forwarding, so checking whether both the parameter of the forwarding
// function and the forwarded function are lvalue references detects such
// a conversion.
// 2. if the argument is copied/cast somewhere in the chain of forwarding
// calls, it can only be passed on to an rvalue reference or const lvalue
// reference parameter. Thus if the forwarded parameter is a mutable
// lvalue reference, it cannot have been copied/cast to on the way.
// Additionally, we should not add a reference hint if the forwarded
// parameter was only partially resolved, i.e. points to an expanded pack
// parameter, since we do not know how it will be used eventually.
auto Type = Param->getType();
auto ForwardedType = ForwardedParam->getType();
return Type->isLValueReferenceType() &&
ForwardedType->isLValueReferenceType() &&
!ForwardedType.getNonReferenceType().isConstQualified() &&
!isExpandedFromParameterPack(ForwardedParam);
}
// Checks if "E" is spelled in the main file and preceded by a C-style comment
// whose contents match ParamName (allowing for whitespace and an optional "="
// at the end.
bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
auto &SM = AST.getSourceManager();
auto ExprStartLoc = SM.getTopMacroCallerLoc(E->getBeginLoc());
auto Decomposed = SM.getDecomposedLoc(ExprStartLoc);
if (Decomposed.first != MainFileID)
return false;
StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
// Allow whitespace between comment and expression.
SourcePrefix = SourcePrefix.rtrim();
// Check for comment ending.
if (!SourcePrefix.consume_back("*/"))
return false;
// Ignore some punctuation and whitespace around comment.
// In particular this allows designators to match nicely.
llvm::StringLiteral IgnoreChars = " =.";
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
ParamName = ParamName.trim(IgnoreChars);
// Other than that, the comment must contain exactly ParamName.
if (!SourcePrefix.consume_back(ParamName))
return false;
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
return SourcePrefix.endswith("/*");
}
// If "E" spells a single unqualified identifier, return that name.
// Otherwise, return an empty string.
static StringRef getSpelledIdentifier(const Expr *E) {
E = E->IgnoreUnlessSpelledInSource();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (!DRE->getQualifier())
return getSimpleName(*DRE->getDecl());
if (auto *ME = dyn_cast<MemberExpr>(E))
if (!ME->getQualifier() && ME->isImplicitAccess())
return getSimpleName(*ME->getMemberDecl());
return {};
}
NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
NameVec ParameterNames;
for (const auto *P : Parameters) {
if (isExpandedFromParameterPack(P)) {
// If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
// non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
// unlikely to be useful.
ParameterNames.emplace_back();
} else {
auto SimpleName = getSimpleName(*P);
// If the parameter is unnamed in the declaration:
// attempt to get its name from the definition
if (SimpleName.empty()) {
if (const auto *PD = getParamDefinition(P)) {
SimpleName = getSimpleName(*PD);
}
}
ParameterNames.emplace_back(SimpleName);
}
}
// Standard library functions often have parameter names that start
// with underscores, which makes the hints noisy, so strip them out.
for (auto &Name : ParameterNames)
stripLeadingUnderscores(Name);
return ParameterNames;
}
// for a ParmVarDecl from a function declaration, returns the corresponding
// ParmVarDecl from the definition if possible, nullptr otherwise.
static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
if (auto *Def = Callee->getDefinition()) {
auto I = std::distance(Callee->param_begin(),
llvm::find(Callee->parameters(), P));
if (I < Callee->getNumParams()) {
return Def->getParamDecl(I);
}
}
}
return nullptr;
}
static void stripLeadingUnderscores(StringRef &Name) {
Name = Name.ltrim('_');
}
static StringRef getSimpleName(const NamedDecl &D) {
if (IdentifierInfo *Ident = D.getDeclName().getAsIdentifierInfo()) {
return Ident->getName();
}
return StringRef();
}
// We pass HintSide rather than SourceLocation because we want to ensure
// it is in the same file as the common file range.
void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
llvm::StringRef Prefix, llvm::StringRef Label,
llvm::StringRef Suffix) {
// We shouldn't get as far as adding a hint if the category is disabled.
// We'd like to disable as much of the analysis as possible above instead.
// Assert in debug mode but add a dynamic check in production.
assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
switch (Kind) {
#define CHECK_KIND(Enumerator, ConfigProperty) \
case InlayHintKind::Enumerator: \
assert(Cfg.InlayHints.ConfigProperty && \
"Shouldn't get here if kind is disabled!"); \
if (!Cfg.InlayHints.ConfigProperty) \
return; \
break
CHECK_KIND(Parameter, Parameters);
CHECK_KIND(Type, DeducedTypes);
CHECK_KIND(Designator, Designators);
#undef CHECK_KIND
}
auto LSPRange = getHintRange(R);
if (!LSPRange)
return;
Position LSPPos = Side == HintSide::Left ? LSPRange->start : LSPRange->end;
if (RestrictRange &&
(LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
return;
bool PadLeft = Prefix.consume_front(" ");
bool PadRight = Suffix.consume_back(" ");
Results.push_back(InlayHint{LSPPos, (Prefix + Label + Suffix).str(), Kind,
PadLeft, PadRight, *LSPRange});
}
// Get the range of the main file that *exactly* corresponds to R.
std::optional<Range> getHintRange(SourceRange R) {
const auto &SM = AST.getSourceManager();
auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R));
// TokenBuffer will return null if e.g. R corresponds to only part of a
// macro expansion.
if (!Spelled || Spelled->empty())
return std::nullopt;
// Hint must be within the main file, not e.g. a non-preamble include.
if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() ||
SM.getFileID(Spelled->back().location()) != SM.getMainFileID())
return std::nullopt;
return Range{sourceLocToPosition(SM, Spelled->front().location()),
sourceLocToPosition(SM, Spelled->back().endLocation())};
}
static bool shouldPrintCanonicalType(QualType QT) {
// The sugared type is more useful in some cases, and the canonical
// type in other cases. For now, prefer the sugared type unless
// we are printing `decltype(expr)`. This could be refined further
// (see https://github.com/clangd/clangd/issues/1298).
if (QT->isDecltypeType())
return true;
if (const AutoType *AT = QT->getContainedAutoType())
if (!AT->getDeducedType().isNull() &&
AT->getDeducedType()->isDecltypeType())
return true;
return false;
}
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
TypeHintPolicy.PrintCanonicalTypes = shouldPrintCanonicalType(T);
addTypeHint(R, T, Prefix, TypeHintPolicy);
}
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix,
const PrintingPolicy &Policy) {
if (!Cfg.InlayHints.DeducedTypes || T.isNull())
return;
std::string TypeName = T.getAsString(Policy);
if (TypeName.length() < TypeNameLimit)
addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
/*Suffix=*/"");
}
void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
/*Prefix=*/"", Text, /*Suffix=*/"=");
}
std::vector<InlayHint> &Results;
ASTContext &AST;
const syntax::TokenBuffer &Tokens;
const Config &Cfg;
std::optional<Range> RestrictRange;
FileID MainFileID;
StringRef MainFileBuf;
const HeuristicResolver *Resolver;
// We want to suppress default template arguments, but otherwise print
// canonical types. Unfortunately, they're conflicting policies so we can't
// have both. For regular types, suppressing template arguments is more
// important, whereas printing canonical types is crucial for structured
// bindings, so we use two separate policies. (See the constructor where
// the policies are initialized for more details.)
PrintingPolicy TypeHintPolicy;
PrintingPolicy StructuredBindingPolicy;
static const size_t TypeNameLimit = 32;
};
} // namespace
std::vector<InlayHint> inlayHints(ParsedAST &AST,
std::optional<Range> RestrictRange) {
std::vector<InlayHint> Results;
const auto &Cfg = Config::current();
if (!Cfg.InlayHints.Enabled)
return Results;
InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange));
Visitor.TraverseAST(AST.getASTContext());
// De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
// template instantiations.
llvm::sort(Results);
Results.erase(std::unique(Results.begin(), Results.end()), Results.end());
return Results;
}
} // namespace clangd
} // namespace clang