blob: 9f63a69365ccd0709445de37adffaa06d79c4c92 [file] [log] [blame]
//===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Rewrite/RewriteInstance.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryEmitter.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/DebugData.h"
#include "bolt/Core/Exceptions.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Core/MCPlusBuilder.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Core/Relocation.h"
#include "bolt/Passes/CacheMetrics.h"
#include "bolt/Passes/ReorderFunctions.h"
#include "bolt/Profile/BoltAddressTranslation.h"
#include "bolt/Profile/DataAggregator.h"
#include "bolt/Profile/DataReader.h"
#include "bolt/Profile/YAMLProfileReader.h"
#include "bolt/Profile/YAMLProfileWriter.h"
#include "bolt/Rewrite/BinaryPassManager.h"
#include "bolt/Rewrite/DWARFRewriter.h"
#include "bolt/Rewrite/ExecutableFileMemoryManager.h"
#include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <fstream>
#include <memory>
#include <optional>
#include <system_error>
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace object;
using namespace bolt;
extern cl::opt<uint32_t> X86AlignBranchBoundary;
extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
namespace opts {
extern cl::opt<MacroFusionType> AlignMacroOpFusion;
extern cl::list<std::string> HotTextMoveSections;
extern cl::opt<bool> Hugify;
extern cl::opt<bool> Instrument;
extern cl::opt<JumpTableSupportLevel> JumpTables;
extern cl::list<std::string> ReorderData;
extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
extern cl::opt<bool> TimeBuild;
static cl::opt<bool> ForceToDataRelocations(
"force-data-relocations",
cl::desc("force relocations to data sections to always be processed"),
cl::Hidden, cl::cat(BoltCategory));
cl::opt<std::string>
BoltID("bolt-id",
cl::desc("add any string to tag this execution in the "
"output binary via bolt info section"),
cl::cat(BoltCategory));
cl::opt<bool> DumpDotAll(
"dump-dot-all",
cl::desc("dump function CFGs to graphviz format after each stage;"
"enable '-print-loops' for color-coded blocks"),
cl::Hidden, cl::cat(BoltCategory));
static cl::list<std::string>
ForceFunctionNames("funcs",
cl::CommaSeparated,
cl::desc("limit optimizations to functions from the list"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string>
FunctionNamesFile("funcs-file",
cl::desc("file with list of functions to optimize"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string> ForceFunctionNamesNR(
"funcs-no-regex", cl::CommaSeparated,
cl::desc("limit optimizations to functions from the list (non-regex)"),
cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<std::string> FunctionNamesFileNR(
"funcs-file-no-regex",
cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
KeepTmp("keep-tmp",
cl::desc("preserve intermediate .o file"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"),
cl::cat(BoltCategory));
static cl::opt<unsigned>
LiteThresholdPct("lite-threshold-pct",
cl::desc("threshold (in percent) for selecting functions to process in lite "
"mode. Higher threshold means fewer functions to process. E.g "
"threshold of 90 means only top 10 percent of functions with "
"profile will be processed."),
cl::init(0),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<unsigned> LiteThresholdCount(
"lite-threshold-count",
cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
"absolute function call count. I.e. limit processing to functions "
"executed at least the specified number of times."),
cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<unsigned>
MaxFunctions("max-funcs",
cl::desc("maximum number of functions to process"), cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<unsigned> MaxDataRelocations(
"max-data-relocations",
cl::desc("maximum number of data relocations to process"), cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool> PrintAll("print-all",
cl::desc("print functions after each stage"), cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool> PrintCFG("print-cfg",
cl::desc("print functions after CFG construction"),
cl::Hidden, cl::cat(BoltCategory));
cl::opt<bool> PrintDisasm("print-disasm",
cl::desc("print function after disassembly"),
cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
PrintGlobals("print-globals",
cl::desc("print global symbols after disassembly"), cl::Hidden,
cl::cat(BoltCategory));
extern cl::opt<bool> PrintSections;
static cl::opt<bool> PrintLoopInfo("print-loops",
cl::desc("print loop related information"),
cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool> PrintSDTMarkers("print-sdt",
cl::desc("print all SDT markers"),
cl::Hidden, cl::cat(BoltCategory));
enum PrintPseudoProbesOptions {
PPP_None = 0,
PPP_Probes_Section_Decode = 0x1,
PPP_Probes_Address_Conversion = 0x2,
PPP_Encoded_Probes = 0x3,
PPP_All = 0xf
};
cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes(
"print-pseudo-probes", cl::desc("print pseudo probe info"),
cl::init(PPP_None),
cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode",
"decode probes section from binary"),
clEnumValN(PPP_Probes_Address_Conversion, "address_conversion",
"update address2ProbesMap with output block address"),
clEnumValN(PPP_Encoded_Probes, "encoded_probes",
"display the encoded probes in binary section"),
clEnumValN(PPP_All, "all", "enable all debugging printout")),
cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory));
static cl::opt<cl::boolOrDefault> RelocationMode(
"relocs", cl::desc("use relocations in the binary (default=autodetect)"),
cl::cat(BoltCategory));
static cl::opt<std::string>
SaveProfile("w",
cl::desc("save recorded profile to a file"),
cl::cat(BoltOutputCategory));
static cl::list<std::string>
SkipFunctionNames("skip-funcs",
cl::CommaSeparated,
cl::desc("list of functions to skip"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string>
SkipFunctionNamesFile("skip-funcs-file",
cl::desc("file with list of functions to skip"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
TrapOldCode("trap-old-code",
cl::desc("insert traps in old function bodies (relocation mode)"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string> DWPPathName("dwp",
cl::desc("Path and name to DWP file."),
cl::Hidden, cl::init(""),
cl::cat(BoltCategory));
static cl::opt<bool>
UseGnuStack("use-gnu-stack",
cl::desc("use GNU_STACK program header for new segment (workaround for "
"issues with strip/objcopy)"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<bool>
TimeRewrite("time-rewrite",
cl::desc("print time spent in rewriting passes"), cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
SequentialDisassembly("sequential-disassembly",
cl::desc("performs disassembly sequentially"),
cl::init(false),
cl::cat(BoltOptCategory));
static cl::opt<bool> WriteBoltInfoSection(
"bolt-info", cl::desc("write bolt info section in the output binary"),
cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory));
} // namespace opts
constexpr const char *RewriteInstance::SectionsToOverwrite[];
std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str",
".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists",
".gdb_index", ".debug_addr"};
const char RewriteInstance::TimerGroupName[] = "rewrite";
const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
namespace llvm {
namespace bolt {
extern const char *BoltRevision;
MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
const MCInstrAnalysis *Analysis,
const MCInstrInfo *Info,
const MCRegisterInfo *RegInfo) {
#ifdef X86_AVAILABLE
if (Arch == Triple::x86_64)
return createX86MCPlusBuilder(Analysis, Info, RegInfo);
#endif
#ifdef AARCH64_AVAILABLE
if (Arch == Triple::aarch64)
return createAArch64MCPlusBuilder(Analysis, Info, RegInfo);
#endif
llvm_unreachable("architecture unsupported by MCPlusBuilder");
}
} // namespace bolt
} // namespace llvm
namespace {
bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) {
return Section && Section->getName() == SectionName;
});
}
} // anonymous namespace
Expected<std::unique_ptr<RewriteInstance>>
RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc,
const char *const *Argv,
StringRef ToolPath) {
Error Err = Error::success();
auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err);
if (Err)
return std::move(Err);
return std::move(RI);
}
RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
const char *const *Argv, StringRef ToolPath,
Error &Err)
: InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
SHStrTab(StringTableBuilder::ELF) {
ErrorAsOutParameter EAO(&Err);
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
Err = createStringError(errc::not_supported,
"Only 64-bit LE ELF binaries are supported");
return;
}
bool IsPIC = false;
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
if (Obj.getHeader().e_type != ELF::ET_EXEC) {
outs() << "BOLT-INFO: shared object or position-independent executable "
"detected\n";
IsPIC = true;
}
auto BCOrErr = BinaryContext::createBinaryContext(
File, IsPIC,
DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
nullptr, opts::DWPPathName,
WithColor::defaultErrorHandler,
WithColor::defaultWarningHandler));
if (Error E = BCOrErr.takeError()) {
Err = std::move(E);
return;
}
BC = std::move(BCOrErr.get());
BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder(
BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get())));
BAT = std::make_unique<BoltAddressTranslation>();
if (opts::UpdateDebugSections)
DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
if (opts::Instrument)
BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
else if (opts::Hugify)
BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
}
RewriteInstance::~RewriteInstance() {}
Error RewriteInstance::setProfile(StringRef Filename) {
if (!sys::fs::exists(Filename))
return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
if (ProfileReader) {
// Already exists
return make_error<StringError>(Twine("multiple profiles specified: ") +
ProfileReader->getFilename() + " and " +
Filename,
inconvertibleErrorCode());
}
// Spawn a profile reader based on file contents.
if (DataAggregator::checkPerfDataMagic(Filename))
ProfileReader = std::make_unique<DataAggregator>(Filename);
else if (YAMLProfileReader::isYAML(Filename))
ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
else
ProfileReader = std::make_unique<DataReader>(Filename);
return Error::success();
}
/// Return true if the function \p BF should be disassembled.
static bool shouldDisassemble(const BinaryFunction &BF) {
if (BF.isPseudo())
return false;
if (opts::processAllFunctions())
return true;
return !BF.isIgnored();
}
Error RewriteInstance::discoverStorage() {
NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
BC->StartFunctionAddress = Obj.getHeader().e_entry;
NextAvailableAddress = 0;
uint64_t NextAvailableOffset = 0;
Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers();
if (Error E = PHsOrErr.takeError())
return E;
ELF64LE::PhdrRange PHs = PHsOrErr.get();
for (const ELF64LE::Phdr &Phdr : PHs) {
switch (Phdr.p_type) {
case ELF::PT_LOAD:
BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
static_cast<uint64_t>(Phdr.p_vaddr));
NextAvailableAddress = std::max(NextAvailableAddress,
Phdr.p_vaddr + Phdr.p_memsz);
NextAvailableOffset = std::max(NextAvailableOffset,
Phdr.p_offset + Phdr.p_filesz);
BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr,
Phdr.p_memsz,
Phdr.p_offset,
Phdr.p_filesz,
Phdr.p_align};
break;
case ELF::PT_INTERP:
BC->HasInterpHeader = true;
break;
}
}
for (const SectionRef &Section : InputFile->sections()) {
Expected<StringRef> SectionNameOrErr = Section.getName();
if (Error E = SectionNameOrErr.takeError())
return E;
StringRef SectionName = SectionNameOrErr.get();
if (SectionName == ".text") {
BC->OldTextSectionAddress = Section.getAddress();
BC->OldTextSectionSize = Section.getSize();
Expected<StringRef> SectionContentsOrErr = Section.getContents();
if (Error E = SectionContentsOrErr.takeError())
return E;
StringRef SectionContents = SectionContentsOrErr.get();
BC->OldTextSectionOffset =
SectionContents.data() - InputFile->getData().data();
}
if (!opts::HeatmapMode &&
!(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
(SectionName.startswith(getOrgSecPrefix()) ||
SectionName == getBOLTTextSectionName()))
return createStringError(
errc::function_not_supported,
"BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
}
if (!NextAvailableAddress || !NextAvailableOffset)
return createStringError(errc::executable_format_error,
"no PT_LOAD pheader seen");
outs() << "BOLT-INFO: first alloc address is 0x"
<< Twine::utohexstr(BC->FirstAllocAddress) << '\n';
FirstNonAllocatableOffset = NextAvailableOffset;
NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
// Hugify: Additional huge page from left side due to
// weird ASLR mapping addresses (4KB aligned)
if (opts::Hugify && !BC->HasFixedLoadAddress)
NextAvailableAddress += BC->PageAlign;
if (!opts::UseGnuStack) {
// This is where the black magic happens. Creating PHDR table in a segment
// other than that containing ELF header is tricky. Some loaders and/or
// parts of loaders will apply e_phoff from ELF header assuming both are in
// the same segment, while others will do the proper calculation.
// We create the new PHDR table in such a way that both of the methods
// of loading and locating the table work. There's a slight file size
// overhead because of that.
//
// NB: bfd's strip command cannot do the above and will corrupt the
// binary during the process of stripping non-allocatable sections.
if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
else
NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
assert(NextAvailableOffset ==
NextAvailableAddress - BC->FirstAllocAddress &&
"PHDR table address calculation error");
outs() << "BOLT-INFO: creating new program header table at address 0x"
<< Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
<< Twine::utohexstr(NextAvailableOffset) << '\n';
PHDRTableAddress = NextAvailableAddress;
PHDRTableOffset = NextAvailableOffset;
// Reserve space for 3 extra pheaders.
unsigned Phnum = Obj.getHeader().e_phnum;
Phnum += 3;
NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
}
// Align at cache line.
NextAvailableAddress = alignTo(NextAvailableAddress, 64);
NextAvailableOffset = alignTo(NextAvailableOffset, 64);
NewTextSegmentAddress = NextAvailableAddress;
NewTextSegmentOffset = NextAvailableOffset;
BC->LayoutStartAddress = NextAvailableAddress;
// Tools such as objcopy can strip section contents but leave header
// entries. Check that at least .text is mapped in the file.
if (!getFileOffsetForAddress(BC->OldTextSectionAddress))
return createStringError(errc::executable_format_error,
"BOLT-ERROR: input binary is not a valid ELF "
"executable as its text section is not "
"mapped to a valid segment");
return Error::success();
}
void RewriteInstance::parseSDTNotes() {
if (!SDTSection)
return;
StringRef Buf = SDTSection->getContents();
DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize());
uint64_t Offset = 0;
while (DE.isValidOffset(Offset)) {
uint32_t NameSz = DE.getU32(&Offset);
DE.getU32(&Offset); // skip over DescSz
uint32_t Type = DE.getU32(&Offset);
Offset = alignTo(Offset, 4);
if (Type != 3)
errs() << "BOLT-WARNING: SDT note type \"" << Type
<< "\" is not expected\n";
if (NameSz == 0)
errs() << "BOLT-WARNING: SDT note has empty name\n";
StringRef Name = DE.getCStr(&Offset);
if (!Name.equals("stapsdt"))
errs() << "BOLT-WARNING: SDT note name \"" << Name
<< "\" is not expected\n";
// Parse description
SDTMarkerInfo Marker;
Marker.PCOffset = Offset;
Marker.PC = DE.getU64(&Offset);
Marker.Base = DE.getU64(&Offset);
Marker.Semaphore = DE.getU64(&Offset);
Marker.Provider = DE.getCStr(&Offset);
Marker.Name = DE.getCStr(&Offset);
Marker.Args = DE.getCStr(&Offset);
Offset = alignTo(Offset, 4);
BC->SDTMarkers[Marker.PC] = Marker;
}
if (opts::PrintSDTMarkers)
printSDTMarkers();
}
void RewriteInstance::parsePseudoProbe() {
if (!PseudoProbeDescSection && !PseudoProbeSection) {
// pesudo probe is not added to binary. It is normal and no warning needed.
return;
}
// If only one section is found, it might mean the ELF is corrupted.
if (!PseudoProbeDescSection) {
errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n";
return;
} else if (!PseudoProbeSection) {
errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n";
return;
}
StringRef Contents = PseudoProbeDescSection->getContents();
if (!BC->ProbeDecoder.buildGUID2FuncDescMap(
reinterpret_cast<const uint8_t *>(Contents.data()),
Contents.size())) {
errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n";
return;
}
MCPseudoProbeDecoder::Uint64Set GuidFilter;
MCPseudoProbeDecoder::Uint64Map FuncStartAddrs;
for (const BinaryFunction *F : BC->getAllBinaryFunctions()) {
for (const MCSymbol *Sym : F->getSymbols()) {
FuncStartAddrs[Function::getGUID(NameResolver::restore(Sym->getName()))] =
F->getAddress();
}
}
Contents = PseudoProbeSection->getContents();
if (!BC->ProbeDecoder.buildAddress2ProbeMap(
reinterpret_cast<const uint8_t *>(Contents.data()), Contents.size(),
GuidFilter, FuncStartAddrs)) {
BC->ProbeDecoder.getAddress2ProbesMap().clear();
errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n";
return;
}
if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
opts::PrintPseudoProbes ==
opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) {
outs() << "Report of decoding input pseudo probe binaries \n";
BC->ProbeDecoder.printGUID2FuncDescMap(outs());
BC->ProbeDecoder.printProbesForAllAddresses(outs());
}
}
void RewriteInstance::printSDTMarkers() {
outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size()
<< "\n";
for (auto It : BC->SDTMarkers) {
SDTMarkerInfo &Marker = It.second;
outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC)
<< ", Base: " << utohexstr(Marker.Base)
<< ", Semaphore: " << utohexstr(Marker.Semaphore)
<< ", Provider: " << Marker.Provider << ", Name: " << Marker.Name
<< ", Args: " << Marker.Args << "\n";
}
}
void RewriteInstance::parseBuildID() {
if (!BuildIDSection)
return;
StringRef Buf = BuildIDSection->getContents();
// Reading notes section (see Portable Formats Specification, Version 1.1,
// pg 2-5, section "Note Section").
DataExtractor DE = DataExtractor(Buf, true, 8);
uint64_t Offset = 0;
if (!DE.isValidOffset(Offset))
return;
uint32_t NameSz = DE.getU32(&Offset);
if (!DE.isValidOffset(Offset))
return;
uint32_t DescSz = DE.getU32(&Offset);
if (!DE.isValidOffset(Offset))
return;
uint32_t Type = DE.getU32(&Offset);
LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz
<< "; Type = " << Type << "\n");
// Type 3 is a GNU build-id note section
if (Type != 3)
return;
StringRef Name = Buf.slice(Offset, Offset + NameSz);
Offset = alignTo(Offset + NameSz, 4);
if (Name.substr(0, 3) != "GNU")
return;
BuildID = Buf.slice(Offset, Offset + DescSz);
}
std::optional<std::string> RewriteInstance::getPrintableBuildID() const {
if (BuildID.empty())
return std::nullopt;
std::string Str;
raw_string_ostream OS(Str);
const unsigned char *CharIter = BuildID.bytes_begin();
while (CharIter != BuildID.bytes_end()) {
if (*CharIter < 0x10)
OS << "0";
OS << Twine::utohexstr(*CharIter);
++CharIter;
}
return OS.str();
}
void RewriteInstance::patchBuildID() {
raw_fd_ostream &OS = Out->os();
if (BuildID.empty())
return;
size_t IDOffset = BuildIDSection->getContents().rfind(BuildID);
assert(IDOffset != StringRef::npos && "failed to patch build-id");
uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress());
if (!FileOffset) {
errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n";
return;
}
char LastIDByte = BuildID[BuildID.size() - 1];
LastIDByte ^= 1;
OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1);
outs() << "BOLT-INFO: patched build-id (flipped last bit)\n";
}
Error RewriteInstance::run() {
assert(BC && "failed to create a binary context");
outs() << "BOLT-INFO: Target architecture: "
<< Triple::getArchTypeName(
(llvm::Triple::ArchType)InputFile->getArch())
<< "\n";
outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
if (Error E = discoverStorage())
return E;
if (Error E = readSpecialSections())
return E;
adjustCommandLineOptions();
discoverFileObjects();
preprocessProfileData();
// Skip disassembling if we have a translation table and we are running an
// aggregation job.
if (opts::AggregateOnly && BAT->enabledFor(InputFile)) {
processProfileData();
return Error::success();
}
selectFunctionsToProcess();
readDebugInfo();
disassembleFunctions();
processProfileDataPreCFG();
buildFunctionsCFG();
processProfileData();
postProcessFunctions();
if (opts::DiffOnly)
return Error::success();
preregisterSections();
runOptimizationPasses();
emitAndLink();
updateMetadata();
if (opts::LinuxKernelMode) {
errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n";
return Error::success();
} else if (opts::OutputFilename == "/dev/null") {
outs() << "BOLT-INFO: skipping writing final binary to disk\n";
return Error::success();
}
// Rewrite allocatable contents and copy non-allocatable parts with mods.
rewriteFile();
return Error::success();
}
void RewriteInstance::discoverFileObjects() {
NamedRegionTimer T("discoverFileObjects", "discover file objects",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
FileSymRefs.clear();
BC->getBinaryFunctions().clear();
BC->clearBinaryData();
// For local symbols we want to keep track of associated FILE symbol name for
// disambiguation by combined name.
StringRef FileSymbolName;
bool SeenFileName = false;
struct SymbolRefHash {
size_t operator()(SymbolRef const &S) const {
return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
}
};
std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
Expected<StringRef> NameOrError = Symbol.getName();
if (NameOrError && NameOrError->startswith("__asan_init")) {
errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
"support. Cannot optimize.\n";
exit(1);
}
if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) {
errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
"support. Cannot optimize.\n";
exit(1);
}
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
continue;
if (cantFail(Symbol.getType()) == SymbolRef::ST_File) {
StringRef Name =
cantFail(std::move(NameOrError), "cannot get symbol name for file");
// Ignore Clang LTO artificial FILE symbol as it is not always generated,
// and this uncertainty is causing havoc in function name matching.
if (Name == "ld-temp.o")
continue;
FileSymbolName = Name;
SeenFileName = true;
continue;
}
if (!FileSymbolName.empty() &&
!(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global))
SymbolToFileName[Symbol] = FileSymbolName;
}
// Sort symbols in the file by value. Ignore symbols from non-allocatable
// sections.
auto isSymbolInMemory = [this](const SymbolRef &Sym) {
if (cantFail(Sym.getType()) == SymbolRef::ST_File)
return false;
if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
return true;
if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
return false;
BinarySection Section(*BC, *cantFail(Sym.getSection()));
return Section.isAllocatable();
};
std::vector<SymbolRef> SortedFileSymbols;
llvm::copy_if(InputFile->symbols(), std::back_inserter(SortedFileSymbols),
isSymbolInMemory);
auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) {
// Marker symbols have the highest precedence, while
// SECTIONs have the lowest.
auto AddressA = cantFail(A.getAddress());
auto AddressB = cantFail(B.getAddress());
if (AddressA != AddressB)
return AddressA < AddressB;
bool AMarker = BC->isMarker(A);
bool BMarker = BC->isMarker(B);
if (AMarker || BMarker) {
return AMarker && !BMarker;
}
auto AType = cantFail(A.getType());
auto BType = cantFail(B.getType());
if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
return true;
if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
return true;
return false;
};
llvm::stable_sort(SortedFileSymbols, CompareSymbols);
auto LastSymbol = SortedFileSymbols.end();
if (!SortedFileSymbols.empty())
--LastSymbol;
// For aarch64, the ABI defines mapping symbols so we identify data in the
// code section (see IHI0056B). $d identifies data contents.
// Compilers usually merge multiple data objects in a single $d-$x interval,
// but we need every data object to be marked with $d. Because of that we
// create a vector of MarkerSyms with all locations of data objects.
struct MarkerSym {
uint64_t Address;
MarkerSymType Type;
};
std::vector<MarkerSym> SortedMarkerSymbols;
auto addExtraDataMarkerPerSymbol =
[this](const std::vector<SymbolRef> &SortedFileSymbols,
std::vector<MarkerSym> &SortedMarkerSymbols) {
bool IsData = false;
uint64_t LastAddr = 0;
for (auto Sym = SortedFileSymbols.begin();
Sym < SortedFileSymbols.end(); ++Sym) {
uint64_t Address = cantFail(Sym->getAddress());
if (LastAddr == Address) // don't repeat markers
continue;
MarkerSymType MarkerType = BC->getMarkerType(*Sym);
if (MarkerType != MarkerSymType::NONE) {
SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType});
LastAddr = Address;
IsData = MarkerType == MarkerSymType::DATA;
continue;
}
if (IsData) {
SortedMarkerSymbols.push_back(
MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA});
LastAddr = Address;
}
}
};
if (BC->isAArch64()) {
addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols);
LastSymbol = std::stable_partition(
SortedFileSymbols.begin(), SortedFileSymbols.end(),
[this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); });
if (!SortedFileSymbols.empty())
--LastSymbol;
}
BinaryFunction *PreviousFunction = nullptr;
unsigned AnonymousId = 0;
const auto SortedSymbolsEnd = LastSymbol == SortedFileSymbols.end()
? LastSymbol
: std::next(LastSymbol);
for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd;
++ISym) {
const SymbolRef &Symbol = *ISym;
// Keep undefined symbols for pretty printing?
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
continue;
const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
if (SymbolType == SymbolRef::ST_File)
continue;
StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
uint64_t Address =
cantFail(Symbol.getAddress(), "cannot get symbol address");
if (Address == 0) {
if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
errs() << "BOLT-WARNING: function with 0 address seen\n";
continue;
}
// Ignore input hot markers
if (SymName == "__hot_start" || SymName == "__hot_end")
continue;
FileSymRefs[Address] = Symbol;
// Skip section symbols that will be registered by disassemblePLT().
if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) {
ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address);
if (BSection && getPLTSectionInfo(BSection->getName()))
continue;
}
/// It is possible we are seeing a globalized local. LLVM might treat it as
/// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
/// change the prefix to enforce global scope of the symbol.
std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix())
? "PG" + std::string(SymName)
: std::string(SymName);
// Disambiguate all local symbols before adding to symbol table.
// Since we don't know if we will see a global with the same name,
// always modify the local name.
//
// NOTE: the naming convention for local symbols should match
// the one we use for profile data.
std::string UniqueName;
std::string AlternativeName;
if (Name.empty()) {
UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
} else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) {
if (const BinaryData *BD = BC->getBinaryDataByName(Name)) {
if (BD->getSize() == ELFSymbolRef(Symbol).getSize() &&
BD->getAddress() == Address) {
if (opts::Verbosity > 1)
errs() << "BOLT-WARNING: ignoring duplicate global symbol " << Name
<< "\n";
// Ignore duplicate entry - possibly a bug in the linker
continue;
}
errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
<< "\" is not unique\n";
exit(1);
}
UniqueName = Name;
} else {
// If we have a local file name, we should create 2 variants for the
// function name. The reason is that perf profile might have been
// collected on a binary that did not have the local file name (e.g. as
// a side effect of stripping debug info from the binary):
//
// primary: <function>/<id>
// alternative: <function>/<file>/<id2>
//
// The <id> field is used for disambiguation of local symbols since there
// could be identical function names coming from identical file names
// (e.g. from different directories).
std::string AltPrefix;
auto SFI = SymbolToFileName.find(Symbol);
if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end())
AltPrefix = Name + "/" + std::string(SFI->second);
UniqueName = NR.uniquify(Name);
if (!AltPrefix.empty())
AlternativeName = NR.uniquify(AltPrefix);
}
uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
uint64_t SymbolAlignment = Symbol.getAlignment();
unsigned SymbolFlags = cantFail(Symbol.getFlags());
auto registerName = [&](uint64_t FinalSize) {
// Register names even if it's not a function, e.g. for an entry point.
BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment,
SymbolFlags);
if (!AlternativeName.empty())
BC->registerNameAtAddress(AlternativeName, Address, FinalSize,
SymbolAlignment, SymbolFlags);
};
section_iterator Section =
cantFail(Symbol.getSection(), "cannot get symbol section");
if (Section == InputFile->section_end()) {
// Could be an absolute symbol. Could record for pretty printing.
LLVM_DEBUG(if (opts::Verbosity > 1) {
dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
});
registerName(SymbolSize);
continue;
}
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
<< " for function\n");
if (Address == Section->getAddress() + Section->getSize()) {
assert(SymbolSize == 0 &&
"unexpect non-zero sized symbol at end of section");
LLVM_DEBUG(
dbgs()
<< "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
registerName(SymbolSize);
continue;
}
if (!Section->isText()) {
assert(SymbolType != SymbolRef::ST_Function &&
"unexpected function inside non-code section");
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
registerName(SymbolSize);
continue;
}
// Assembly functions could be ST_NONE with 0 size. Check that the
// corresponding section is a code section and they are not inside any
// other known function to consider them.
//
// Sometimes assembly functions are not marked as functions and neither are
// their local labels. The only way to tell them apart is to look at
// symbol scope - global vs local.
if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
if (PreviousFunction->containsAddress(Address)) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
LLVM_DEBUG(dbgs()
<< "BOLT-DEBUG: symbol is a function local symbol\n");
} else if (Address == PreviousFunction->getAddress() && !SymbolSize) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
} else if (opts::Verbosity > 1) {
errs() << "BOLT-WARNING: symbol " << UniqueName
<< " seen in the middle of function " << *PreviousFunction
<< ". Could be a new entry.\n";
}
registerName(SymbolSize);
continue;
} else if (PreviousFunction->getSize() == 0 &&
PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
registerName(SymbolSize);
continue;
}
}
if (PreviousFunction && PreviousFunction->containsAddress(Address) &&
PreviousFunction->getAddress() != Address) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: skipping possibly another entry for function "
<< *PreviousFunction << " : " << UniqueName << '\n';
registerName(SymbolSize);
} else {
outs() << "BOLT-INFO: using " << UniqueName << " as another entry to "
<< "function " << *PreviousFunction << '\n';
registerName(0);
PreviousFunction->addEntryPointAtOffset(Address -
PreviousFunction->getAddress());
// Remove the symbol from FileSymRefs so that we can skip it from
// in the future.
auto SI = FileSymRefs.find(Address);
assert(SI != FileSymRefs.end() && "symbol expected to be present");
assert(SI->second == Symbol && "wrong symbol found");
FileSymRefs.erase(SI);
}
continue;
}
// Checkout for conflicts with function data from FDEs.
bool IsSimple = true;
auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address);
if (FDEI != CFIRdWrt->getFDEs().end()) {
const dwarf::FDE &FDE = *FDEI->second;
if (FDEI->first != Address) {
// There's no matching starting address in FDE. Make sure the previous
// FDE does not contain this address.
if (FDEI != CFIRdWrt->getFDEs().begin()) {
--FDEI;
const dwarf::FDE &PrevFDE = *FDEI->second;
uint64_t PrevStart = PrevFDE.getInitialLocation();
uint64_t PrevLength = PrevFDE.getAddressRange();
if (Address > PrevStart && Address < PrevStart + PrevLength) {
errs() << "BOLT-ERROR: function " << UniqueName
<< " is in conflict with FDE ["
<< Twine::utohexstr(PrevStart) << ", "
<< Twine::utohexstr(PrevStart + PrevLength)
<< "). Skipping.\n";
IsSimple = false;
}
}
} else if (FDE.getAddressRange() != SymbolSize) {
if (SymbolSize) {
// Function addresses match but sizes differ.
errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
<< ". FDE : " << FDE.getAddressRange()
<< "; symbol table : " << SymbolSize << ". Using max size.\n";
}
SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
if (BC->getBinaryDataAtAddress(Address)) {
BC->setBinaryDataSize(Address, SymbolSize);
} else {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
<< Twine::utohexstr(Address) << "\n");
}
}
}
BinaryFunction *BF = nullptr;
// Since function may not have yet obtained its real size, do a search
// using the list of registered functions instead of calling
// getBinaryFunctionAtAddress().
auto BFI = BC->getBinaryFunctions().find(Address);
if (BFI != BC->getBinaryFunctions().end()) {
BF = &BFI->second;
// Duplicate the function name. Make sure everything matches before we add
// an alternative name.
if (SymbolSize != BF->getSize()) {
if (opts::Verbosity >= 1) {
if (SymbolSize && BF->getSize())
errs() << "BOLT-WARNING: size mismatch for duplicate entries "
<< *BF << " and " << UniqueName << '\n';
outs() << "BOLT-INFO: adjusting size of function " << *BF << " old "
<< BF->getSize() << " new " << SymbolSize << "\n";
}
BF->setSize(std::max(SymbolSize, BF->getSize()));
BC->setBinaryDataSize(Address, BF->getSize());
}
BF->addAlternativeName(UniqueName);
} else {
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
// Skip symbols from invalid sections
if (!Section) {
errs() << "BOLT-WARNING: " << UniqueName << " (0x"
<< Twine::utohexstr(Address) << ") does not have any section\n";
continue;
}
// Skip symbols from zero-sized sections.
if (!Section->getSize())
continue;
BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize);
if (!IsSimple)
BF->setSimple(false);
}
if (!AlternativeName.empty())
BF->addAlternativeName(AlternativeName);
registerName(SymbolSize);
PreviousFunction = BF;
}
// Read dynamic relocation first as their presence affects the way we process
// static relocations. E.g. we will ignore a static relocation at an address
// that is a subject to dynamic relocation processing.
processDynamicRelocations();
// Process PLT section.
disassemblePLT();
// See if we missed any functions marked by FDE.
for (const auto &FDEI : CFIRdWrt->getFDEs()) {
const uint64_t Address = FDEI.first;
const dwarf::FDE *FDE = FDEI.second;
const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
if (BF)
continue;
BF = BC->getBinaryFunctionContainingAddress(Address);
if (BF) {
errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
<< Twine::utohexstr(Address + FDE->getAddressRange())
<< ") conflicts with function " << *BF << '\n';
continue;
}
if (opts::Verbosity >= 1)
errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
<< Twine::utohexstr(Address + FDE->getAddressRange())
<< ") has no corresponding symbol table entry\n";
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
assert(Section && "cannot get section for address from FDE");
std::string FunctionName =
"__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
BC->createBinaryFunction(FunctionName, *Section, Address,
FDE->getAddressRange());
}
BC->setHasSymbolsWithFileName(SeenFileName);
// Now that all the functions were created - adjust their boundaries.
adjustFunctionBoundaries();
// Annotate functions with code/data markers in AArch64
for (auto ISym = SortedMarkerSymbols.begin();
ISym != SortedMarkerSymbols.end(); ++ISym) {
auto *BF =
BC->getBinaryFunctionContainingAddress(ISym->Address, true, true);
if (!BF) {
// Stray marker
continue;
}
const auto EntryOffset = ISym->Address - BF->getAddress();
if (ISym->Type == MarkerSymType::CODE) {
BF->markCodeAtOffset(EntryOffset);
continue;
}
if (ISym->Type == MarkerSymType::DATA) {
BF->markDataAtOffset(EntryOffset);
BC->AddressToConstantIslandMap[ISym->Address] = BF;
continue;
}
llvm_unreachable("Unknown marker");
}
if (opts::LinuxKernelMode) {
// Read all special linux kernel sections and their relocations
processLKSections();
} else {
// Read all relocations now that we have binary functions mapped.
processRelocations();
}
}
void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress,
uint64_t EntryAddress,
uint64_t EntrySize) {
if (!TargetAddress)
return;
auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) {
const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
MCSymbol *TargetSymbol = BC->registerNameAtAddress(
Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize);
BF->setPLTSymbol(TargetSymbol);
};
BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress);
if (BF && BC->isAArch64()) {
// Handle IFUNC trampoline
setPLTSymbol(BF, BF->getOneName());
return;
}
const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
if (!Rel || !Rel->Symbol)
return;
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress);
assert(Section && "cannot get section for address");
if (!BF)
BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT",
*Section, EntryAddress, 0, EntrySize,
Section->getAlignment());
else
BF->addAlternativeName(Rel->Symbol->getName().str() + "@PLT");
setPLTSymbol(BF, Rel->Symbol->getName());
}
void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) {
const uint64_t SectionAddress = Section.getAddress();
const uint64_t SectionSize = Section.getSize();
StringRef PLTContents = Section.getContents();
ArrayRef<uint8_t> PLTData(
reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
uint64_t &InstrSize) {
const uint64_t InstrAddr = SectionAddress + InstrOffset;
if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
PLTData.slice(InstrOffset), InstrAddr,
nulls())) {
errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
<< Section.getName() << " at offset 0x"
<< Twine::utohexstr(InstrOffset) << '\n';
exit(1);
}
};
uint64_t InstrOffset = 0;
// Locate new plt entry
while (InstrOffset < SectionSize) {
InstructionListType Instructions;
MCInst Instruction;
uint64_t EntryOffset = InstrOffset;
uint64_t EntrySize = 0;
uint64_t InstrSize;
// Loop through entry instructions
while (InstrOffset < SectionSize) {
disassembleInstruction(InstrOffset, Instruction, InstrSize);
EntrySize += InstrSize;
if (!BC->MIB->isIndirectBranch(Instruction)) {
Instructions.emplace_back(Instruction);
InstrOffset += InstrSize;
continue;
}
const uint64_t EntryAddress = SectionAddress + EntryOffset;
const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
break;
}
// Branch instruction
InstrOffset += InstrSize;
// Skip nops if any
while (InstrOffset < SectionSize) {
disassembleInstruction(InstrOffset, Instruction, InstrSize);
if (!BC->MIB->isNoop(Instruction))
break;
InstrOffset += InstrSize;
}
}
}
void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section,
uint64_t EntrySize) {
const uint64_t SectionAddress = Section.getAddress();
const uint64_t SectionSize = Section.getSize();
StringRef PLTContents = Section.getContents();
ArrayRef<uint8_t> PLTData(
reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
uint64_t &InstrSize) {
const uint64_t InstrAddr = SectionAddress + InstrOffset;
if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
PLTData.slice(InstrOffset), InstrAddr,
nulls())) {
errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
<< Section.getName() << " at offset 0x"
<< Twine::utohexstr(InstrOffset) << '\n';
exit(1);
}
};
for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize;
EntryOffset += EntrySize) {
MCInst Instruction;
uint64_t InstrSize, InstrOffset = EntryOffset;
while (InstrOffset < EntryOffset + EntrySize) {
disassembleInstruction(InstrOffset, Instruction, InstrSize);
// Check if the entry size needs adjustment.
if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
EntrySize == 8)
EntrySize = 16;
if (BC->MIB->isIndirectBranch(Instruction))
break;
InstrOffset += InstrSize;
}
if (InstrOffset + InstrSize > EntryOffset + EntrySize)
continue;
uint64_t TargetAddress;
if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
SectionAddress + InstrOffset,
InstrSize)) {
errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
<< Twine::utohexstr(SectionAddress + InstrOffset) << '\n';
exit(1);
}
createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset,
EntrySize);
}
}
void RewriteInstance::disassemblePLT() {
auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
if (BC->isAArch64())
return disassemblePLTSectionAArch64(Section);
return disassemblePLTSectionX86(Section, EntrySize);
};
for (BinarySection &Section : BC->allocatableSections()) {
const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
if (!PLTSI)
continue;
analyzeOnePLTSection(Section, PLTSI->EntrySize);
BinaryFunction *PltBF;
auto BFIter = BC->getBinaryFunctions().find(Section.getAddress());
if (BFIter != BC->getBinaryFunctions().end()) {
PltBF = &BFIter->second;
} else {
// If we did not register any function at the start of the section,
// then it must be a general PLT entry. Add a function at the location.
PltBF = BC->createBinaryFunction(
"__BOLT_PSEUDO_" + Section.getName().str(), Section,
Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
}
PltBF->setPseudo(true);
}
}
void RewriteInstance::adjustFunctionBoundaries() {
for (auto BFI = BC->getBinaryFunctions().begin(),
BFE = BC->getBinaryFunctions().end();
BFI != BFE; ++BFI) {
BinaryFunction &Function = BFI->second;
const BinaryFunction *NextFunction = nullptr;
if (std::next(BFI) != BFE)
NextFunction = &std::next(BFI)->second;
// Check if it's a fragment of a function.
std::optional<StringRef> FragName =
Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?");
if (FragName) {
static bool PrintedWarning = false;
if (!PrintedWarning) {
PrintedWarning = true;
errs() << "BOLT-WARNING: split function detected on input : "
<< *FragName;
if (BC->HasRelocations)
errs() << ". The support is limited in relocation mode";
if (opts::Lite) {
opts::Lite = false;
errs() << "\nBOLT-WARNING: disabling lite mode (-lite) when split "
<< "functions are present\n";
}
}
Function.IsFragment = true;
}
// Check if there's a symbol or a function with a larger address in the
// same section. If there is - it determines the maximum size for the
// current function. Otherwise, it is the size of a containing section
// the defines it.
//
// NOTE: ignore some symbols that could be tolerated inside the body
// of a function.
auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
while (NextSymRefI != FileSymRefs.end()) {
SymbolRef &Symbol = NextSymRefI->second;
const uint64_t SymbolAddress = NextSymRefI->first;
const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
if (NextFunction && SymbolAddress >= NextFunction->getAddress())
break;
if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
break;
// This is potentially another entry point into the function.
uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
<< Function << " at offset 0x"
<< Twine::utohexstr(EntryOffset) << '\n');
Function.addEntryPointAtOffset(EntryOffset);
++NextSymRefI;
}
// Function runs at most till the end of the containing section.
uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
// Or till the next object marked by a symbol.
if (NextSymRefI != FileSymRefs.end())
NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
// Or till the next function not marked by a symbol.
if (NextFunction)
NextObjectAddress =
std::min(NextFunction->getAddress(), NextObjectAddress);
const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
if (MaxSize < Function.getSize()) {
errs() << "BOLT-ERROR: symbol seen in the middle of the function "
<< Function << ". Skipping.\n";
Function.setSimple(false);
Function.setMaxSize(Function.getSize());
continue;
}
Function.setMaxSize(MaxSize);
if (!Function.getSize() && Function.isSimple()) {
// Some assembly functions have their size set to 0, use the max
// size as their real size.
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: setting size of function " << Function << " to "
<< Function.getMaxSize() << " (was 0)\n";
Function.setSize(Function.getMaxSize());
}
}
}
void RewriteInstance::relocateEHFrameSection() {
assert(EHFrameSection && "Non-empty .eh_frame section expected.");
BinarySection *RelocatedEHFrameSection =
getSection(".relocated" + getEHFrameSectionName());
assert(RelocatedEHFrameSection &&
"Relocated eh_frame section should be preregistered.");
DWARFDataExtractor DE(EHFrameSection->getContents(),
BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize());
auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
if (DwarfType == dwarf::DW_EH_PE_omit)
return;
// Only fix references that are relative to other locations.
if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
!(DwarfType & dwarf::DW_EH_PE_textrel) &&
!(DwarfType & dwarf::DW_EH_PE_funcrel) &&
!(DwarfType & dwarf::DW_EH_PE_datarel))
return;
if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
return;
uint64_t RelType;
switch (DwarfType & 0x0f) {
default:
llvm_unreachable("unsupported DWARF encoding type");
case dwarf::DW_EH_PE_sdata4:
case dwarf::DW_EH_PE_udata4:
RelType = Relocation::getPC32();
Offset -= 4;
break;
case dwarf::DW_EH_PE_sdata8:
case dwarf::DW_EH_PE_udata8:
RelType = Relocation::getPC64();
Offset -= 8;
break;
}
// Create a relocation against an absolute value since the goal is to
// preserve the contents of the section independent of the new values
// of referenced symbols.
RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
};
Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
check_error(std::move(E), "failed to patch EH frame");
}
ArrayRef<uint8_t> RewriteInstance::getLSDAData() {
return ArrayRef<uint8_t>(LSDASection->getData(),
LSDASection->getContents().size());
}
uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); }
Error RewriteInstance::readSpecialSections() {
NamedRegionTimer T("readSpecialSections", "read special sections",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
bool HasTextRelocations = false;
bool HasSymbolTable = false;
bool HasDebugInfo = false;
// Process special sections.
for (const SectionRef &Section : InputFile->sections()) {
Expected<StringRef> SectionNameOrErr = Section.getName();
check_error(SectionNameOrErr.takeError(), "cannot get section name");
StringRef SectionName = *SectionNameOrErr;
if (Error E = Section.getContents().takeError())
return E;
BC->registerSection(Section);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
<< Twine::utohexstr(Section.getAddress()) << ":0x"
<< Twine::utohexstr(Section.getAddress() + Section.getSize())
<< "\n");
if (isDebugSection(SectionName))
HasDebugInfo = true;
if (isKSymtabSection(SectionName))
opts::LinuxKernelMode = true;
}
if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
"Use -update-debug-sections to keep it.\n";
}
HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text");
HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab");
LSDASection = BC->getUniqueSectionByName(".gcc_except_table");
EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
GOTPLTSection = BC->getUniqueSectionByName(".got.plt");
RelaPLTSection = BC->getUniqueSectionByName(".rela.plt");
RelaDynSection = BC->getUniqueSectionByName(".rela.dyn");
BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id");
SDTSection = BC->getUniqueSectionByName(".note.stapsdt");
PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc");
PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe");
if (ErrorOr<BinarySection &> BATSec =
BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
// Do not read BAT when plotting a heatmap
if (!opts::HeatmapMode) {
if (std::error_code EC = BAT->parse(BATSec->getContents())) {
errs() << "BOLT-ERROR: failed to parse BOLT address translation "
"table.\n";
exit(1);
}
}
}
if (opts::PrintSections) {
outs() << "BOLT-INFO: Sections from original binary:\n";
BC->printSections(outs());
}
if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
errs() << "BOLT-ERROR: relocations against code are missing from the input "
"file. Cannot proceed in relocations mode (-relocs).\n";
exit(1);
}
BC->HasRelocations =
HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
BC->IsStripped = !HasSymbolTable;
// Force non-relocation mode for heatmap generation
if (opts::HeatmapMode)
BC->HasRelocations = false;
if (BC->HasRelocations)
outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
<< "relocation mode\n";
if (BC->IsStripped)
outs() << "BOLT-INFO: input binary is stripped. The support is limited and "
<< "is considered experimental.\n";
// Read EH frame for function boundaries info.
Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
if (!EHFrameOrError)
report_error("expected valid eh_frame section", EHFrameOrError.takeError());
CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get()));
// Parse build-id
parseBuildID();
if (std::optional<std::string> FileBuildID = getPrintableBuildID())
BC->setFileBuildID(*FileBuildID);
parseSDTNotes();
// Read .dynamic/PT_DYNAMIC.
return readELFDynamic();
}
void RewriteInstance::adjustCommandLineOptions() {
if (BC->isAArch64() && !BC->HasRelocations)
errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
"supported\n";
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
RtLibrary->adjustCommandLineOptions(*BC);
if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) {
outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n";
opts::AlignMacroOpFusion = MFT_NONE;
}
if (BC->isX86() && BC->MAB->allowAutoPadding()) {
if (!BC->HasRelocations) {
errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
"non-relocation mode\n";
exit(1);
}
outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
"may take several minutes\n";
opts::AlignMacroOpFusion = MFT_NONE;
}
if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) {
outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation "
"mode\n";
opts::AlignMacroOpFusion = MFT_NONE;
}
if (opts::SplitEH && !BC->HasRelocations) {
errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
opts::SplitEH = false;
}
if (opts::StrictMode && !BC->HasRelocations) {
errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
"mode\n";
opts::StrictMode = false;
}
if (BC->HasRelocations && opts::AggregateOnly &&
!opts::StrictMode.getNumOccurrences()) {
outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
"purposes\n";
opts::StrictMode = true;
}
if (BC->isX86() && BC->HasRelocations &&
opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) {
outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile "
"was specified\n";
opts::AlignMacroOpFusion = MFT_ALL;
}
if (!BC->HasRelocations &&
opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
errs() << "BOLT-ERROR: function reordering only works when "
<< "relocations are enabled\n";
exit(1);
}
if (opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
!opts::HotText.getNumOccurrences()) {
opts::HotText = true;
} else if (opts::HotText && !BC->HasRelocations) {
errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
opts::HotText = false;
}
if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
opts::HotTextMoveSections.addValue(".stub");
opts::HotTextMoveSections.addValue(".mover");
opts::HotTextMoveSections.addValue(".never_hugify");
}
if (opts::UseOldText && !BC->OldTextSectionAddress) {
errs() << "BOLT-WARNING: cannot use old .text as the section was not found"
"\n";
opts::UseOldText = false;
}
if (opts::UseOldText && !BC->HasRelocations) {
errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
opts::UseOldText = false;
}
if (!opts::AlignText.getNumOccurrences())
opts::AlignText = BC->PageAlign;
if (opts::AlignText < opts::AlignFunctions)
opts::AlignText = (unsigned)opts::AlignFunctions;
if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
!opts::UseOldText)
opts::Lite = true;
if (opts::Lite && opts::UseOldText) {
errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
"Disabling -use-old-text.\n";
opts::UseOldText = false;
}
if (opts::Lite && opts::StrictMode) {
errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
exit(1);
}
if (opts::Lite)
outs() << "BOLT-INFO: enabling lite mode\n";
if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) {
errs() << "BOLT-ERROR: unable to save profile in YAML format for input "
"file processed by BOLT. Please remove -w option and use branch "
"profile.\n";
exit(1);
}
}
namespace {
template <typename ELFT>
int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
const RelocationRef &RelRef) {
using ELFShdrTy = typename ELFT::Shdr;
using Elf_Rela = typename ELFT::Rela;
int64_t Addend = 0;
const ELFFile<ELFT> &EF = Obj->getELFFile();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
switch (RelocationSection->sh_type) {
default:
llvm_unreachable("unexpected relocation section type");
case ELF::SHT_REL:
break;
case ELF::SHT_RELA: {
const Elf_Rela *RelA = Obj->getRela(Rel);
Addend = RelA->r_addend;
break;
}
}
return Addend;
}
int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
const RelocationRef &Rel) {
if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
return getRelocationAddend(ELF32LE, Rel);
if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
return getRelocationAddend(ELF64LE, Rel);
if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
return getRelocationAddend(ELF32BE, Rel);
auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
return getRelocationAddend(ELF64BE, Rel);
}
template <typename ELFT>
uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj,
const RelocationRef &RelRef) {
using ELFShdrTy = typename ELFT::Shdr;
uint32_t Symbol = 0;
const ELFFile<ELFT> &EF = Obj->getELFFile();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
switch (RelocationSection->sh_type) {
default:
llvm_unreachable("unexpected relocation section type");
case ELF::SHT_REL:
Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL());
break;
case ELF::SHT_RELA:
Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL());
break;
}
return Symbol;
}
uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj,
const RelocationRef &Rel) {
if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
return getRelocationSymbol(ELF32LE, Rel);
if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
return getRelocationSymbol(ELF64LE, Rel);
if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
return getRelocationSymbol(ELF32BE, Rel);
auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
return getRelocationSymbol(ELF64BE, Rel);
}
} // anonymous namespace
bool RewriteInstance::analyzeRelocation(
const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName,
bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
uint64_t &ExtractedValue, bool &Skip) const {
Skip = false;
if (!Relocation::isSupported(RType))
return false;
const bool IsAArch64 = BC->isAArch64();
const size_t RelSize = Relocation::getSizeForType(RType);
ErrorOr<uint64_t> Value =
BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
assert(Value && "failed to extract relocated value");
if ((Skip = Relocation::skipRelocationProcess(RType, *Value)))
return true;
ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
Addend = getRelocationAddend(InputFile, Rel);
const bool IsPCRelative = Relocation::isPCRelative(RType);
const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
bool SkipVerification = false;
auto SymbolIter = Rel.getSymbol();
if (SymbolIter == InputFile->symbol_end()) {
SymbolAddress = ExtractedValue - Addend + PCRelOffset;
MCSymbol *RelSymbol =
BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
SymbolName = std::string(RelSymbol->getName());
IsSectionRelocation = false;
} else {
const SymbolRef &Symbol = *SymbolIter;
SymbolName = std::string(cantFail(Symbol.getName()));
SymbolAddress = cantFail(Symbol.getAddress());
SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
// Section symbols are marked as ST_Debug.
IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
// Check for PLT entry registered with symbol name
if (!SymbolAddress && IsAArch64) {
const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName);
SymbolAddress = BD ? BD->getAddress() : 0;
}
}
// For PIE or dynamic libs, the linker may choose not to put the relocation
// result at the address if it is a X86_64_64 one because it will emit a
// dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
// resolve it at run time. The static relocation result goes as the addend
// of the dynamic relocation in this case. We can't verify these cases.
// FIXME: perhaps we can try to find if it really emitted a corresponding
// RELATIVE relocation at this offset with the correct value as the addend.
if (!BC->HasFixedLoadAddress && RelSize == 8)
SkipVerification = true;
if (IsSectionRelocation && !IsAArch64) {
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
assert(Section && "section expected for section relocation");
SymbolName = "section " + std::string(Section->getName());
// Convert section symbol relocations to regular relocations inside
// non-section symbols.
if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
SymbolAddress = ExtractedValue;
Addend = 0;
} else {
Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
}
}
// If no symbol has been found or if it is a relocation requiring the
// creation of a GOT entry, do not link against the symbol but against
// whatever address was extracted from the instruction itself. We are
// not creating a GOT entry as this was already processed by the linker.
// For GOT relocs, do not subtract addend as the addend does not refer
// to this instruction's target, but it refers to the target in the GOT
// entry.
if (Relocation::isGOT(RType)) {
Addend = 0;
SymbolAddress = ExtractedValue + PCRelOffset;
} else if (Relocation::isTLS(RType)) {
SkipVerification = true;
} else if (!SymbolAddress) {
assert(!IsSectionRelocation);
if (ExtractedValue || Addend == 0 || IsPCRelative) {
SymbolAddress =
truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
} else {
// This is weird case. The extracted value is zero but the addend is
// non-zero and the relocation is not pc-rel. Using the previous logic,
// the SymbolAddress would end up as a huge number. Seen in
// exceptions_pic.test.
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
<< Twine::utohexstr(Rel.getOffset())
<< " value does not match addend for "
<< "relocation to undefined symbol.\n");
return true;
}
}
auto verifyExtractedValue = [&]() {
if (SkipVerification)
return true;
if (IsAArch64)
return true;
if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
return true;
if (RType == ELF::R_X86_64_PLT32)
return true;
return truncateToSize(ExtractedValue, RelSize) ==
truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
};
(void)verifyExtractedValue;
assert(verifyExtractedValue() && "mismatched extracted relocation value");
return true;
}
void RewriteInstance::processDynamicRelocations() {
// Read relocations for PLT - DT_JMPREL.
if (PLTRelocationsSize > 0) {
ErrorOr<BinarySection &> PLTRelSectionOrErr =
BC->getSectionForAddress(*PLTRelocationsAddress);
if (!PLTRelSectionOrErr)
report_error("unable to find section corresponding to DT_JMPREL",
PLTRelSectionOrErr.getError());
if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
report_error("section size mismatch for DT_PLTRELSZ",
errc::executable_format_error);
readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(),
/*IsJmpRel*/ true);
}
// The rest of dynamic relocations - DT_RELA.
if (DynamicRelocationsSize > 0) {
ErrorOr<BinarySection &> DynamicRelSectionOrErr =
BC->getSectionForAddress(*DynamicRelocationsAddress);
if (!DynamicRelSectionOrErr)
report_error("unable to find section corresponding to DT_RELA",
DynamicRelSectionOrErr.getError());
if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize)
report_error("section size mismatch for DT_RELASZ",
errc::executable_format_error);
readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(),
/*IsJmpRel*/ false);
}
}
void RewriteInstance::processRelocations() {
if (!BC->HasRelocations)
return;
for (const SectionRef &Section : InputFile->sections()) {
if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() &&
!BinarySection(*BC, Section).isAllocatable())
readRelocations(Section);
}
if (NumFailedRelocations)
errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
<< " relocations\n";
}
void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
int32_t PCRelativeOffset,
bool IsPCRelative, StringRef SectionName) {
BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
}
void RewriteInstance::processLKSections() {
assert(opts::LinuxKernelMode &&
"process Linux Kernel special sections and their relocations only in "
"linux kernel mode.\n");
processLKExTable();
processLKPCIFixup();
processLKKSymtab();
processLKKSymtab(true);
processLKBugTable();
processLKSMPLocks();
}
/// Process __ex_table section of Linux Kernel.
/// This section contains information regarding kernel level exception
/// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html).
/// More documentation is in arch/x86/include/asm/extable.h.
///
/// The section is the list of the following structures:
///
/// struct exception_table_entry {
/// int insn;
/// int fixup;
/// int handler;
/// };
///
void RewriteInstance::processLKExTable() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName("__ex_table");
if (!SectionOrError)
return;
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 12) == 0 &&
"The size of the __ex_table section should be a multiple of 12");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "failed reading PC-relative offset for __ex_table");
int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC->getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
MCSymbol *ReferencedSymbol = ContainingBF->getSymbol();
const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress();
switch (I % 12) {
default:
llvm_unreachable("bad alignment of __ex_table");
break;
case 0:
// insn
insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table");
break;
case 4:
// fixup
if (FunctionOffset)
ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset);
BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
0, *Offset);
break;
case 8:
// handler
assert(!FunctionOffset &&
"__ex_table handler entry should point to function start");
BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
0, *Offset);
break;
}
}
}
/// Process .pci_fixup section of Linux Kernel.
/// This section contains a list of entries for different PCI devices and their
/// corresponding hook handler (code pointer where the fixup
/// code resides, usually on x86_64 it is an entry PC relative 32 bit offset).
/// Documentation is in include/linux/pci.h.
void RewriteInstance::processLKPCIFixup() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName(".pci_fixup");
assert(SectionOrError &&
".pci_fixup section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16");
for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) {
const uint64_t PC = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4);
assert(Offset && "cannot read value from .pci_fixup");
const int32_t SignedOffset = *Offset;
const uint64_t HookupAddress = PC + SignedOffset;
BinaryFunction *HookupFunction =
BC->getBinaryFunctionAtAddress(HookupAddress);
assert(HookupFunction && "expected function for entry in .pci_fixup");
BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// Process __ksymtab[_gpl] sections of Linux Kernel.
/// This section lists all the vmlinux symbols that kernel modules can access.
///
/// All the entries are 4 bytes each and hence we can read them by one by one
/// and ignore the ones that are not pointing to the .text section. All pointers
/// are PC relative offsets. Always, points to the beginning of the function.
void RewriteInstance::processLKKSymtab(bool IsGPL) {
StringRef SectionName = "__ksymtab";
if (IsGPL)
SectionName = "__ksymtab_gpl";
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName(SectionName);
assert(SectionOrError &&
"__ksymtab[_gpl] section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the __ksymtab[_gpl] section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress);
if (!BF)
continue;
BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// Process __bug_table section.
/// This section contains information useful for kernel debugging.
/// Each entry in the section is a struct bug_entry that contains a pointer to
/// the ud2 instruction corresponding to the bug, corresponding file name (both
/// pointers use PC relative offset addressing), line number, and flags.
/// The definition of the struct bug_entry can be found in
/// `include/asm-generic/bug.h`
void RewriteInstance::processLKBugTable() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName("__bug_table");
if (!SectionOrError)
return;
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 12) == 0 &&
"The size of the __bug_table section should be a multiple of 12");
for (uint64_t I = 0; I < SectionSize; I += 12) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset &&
"Reading valid PC-relative offset for a __bug_table entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
assert(BC->getBinaryFunctionContainingAddress(RefAddress) &&
"__bug_table entries should point to a function");
insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table");
}
}
/// .smp_locks section contains PC-relative references to instructions with LOCK
/// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
void RewriteInstance::processLKSMPLocks() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName(".smp_locks");
if (!SectionOrError)
return;
uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the .smp_locks section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
int32_t SignedOffset = *Offset;
uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC->getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
}
}
void RewriteInstance::readDynamicRelocations(const SectionRef &Section,
bool IsJmpRel) {
assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
LLVM_DEBUG({
StringRef SectionName = cantFail(Section.getName());
dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
<< ":\n";
});
for (const RelocationRef &Rel : Section.relocations()) {
const uint64_t RType = Rel.getType();
if (Relocation::isNone(RType))
continue;
StringRef SymbolName = "<none>";
MCSymbol *Symbol = nullptr;
uint64_t SymbolAddress = 0;
const uint64_t Addend = getRelocationAddend(InputFile, Rel);
symbol_iterator SymbolIter = Rel.getSymbol();
if (SymbolIter != InputFile->symbol_end()) {
SymbolName = cantFail(SymbolIter->getName());
BinaryData *BD = BC->getBinaryDataByName(SymbolName);
Symbol = BD ? BD->getSymbol()
: BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
SymbolAddress = cantFail(SymbolIter->getAddress());
(void)SymbolAddress;
}
LLVM_DEBUG(
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
<< Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
<< " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress)
<< " : + 0x" << Twine::utohexstr(Addend) << '\n'
);
if (IsJmpRel)
IsJmpRelocation[RType] = true;
if (Symbol)
SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel);
BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend);
}
}
void RewriteInstance::printRelocationInfo(const RelocationRef &Rel,
StringRef SymbolName,
uint64_t SymbolAddress,
uint64_t Addend,
uint64_t ExtractedValue) const {
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
const uint64_t Address = SymbolAddress + Addend;
const uint64_t Offset = Rel.getOffset();
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
BinaryFunction *Func =
BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64());
dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
Offset, TypeName, ExtractedValue)
<< formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName,
Section ? Section->getName() : "", SymbolAddress)
<< formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address);
if (Func)
dbgs() << Func->getPrintName();
else
dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName();
dbgs() << '\n';
}
void RewriteInstance::readRelocations(const SectionRef &Section) {
LLVM_DEBUG({
StringRef SectionName = cantFail(Section.getName());
dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
<< ":\n";
});
if (BinarySection(*BC, Section).isAllocatable()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
return;
}
section_iterator SecIter = cantFail(Section.getRelocatedSection());
assert(SecIter != InputFile->section_end() && "relocated section expected");
SectionRef RelocatedSection = *SecIter;
StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
<< RelocatedSectionName << '\n');
if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
<< "non-allocatable section\n");
return;
}
const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
.Cases(".plt", ".rela.plt", ".got.plt",
".eh_frame", ".gcc_except_table", true)
.Default(false);
if (SkipRelocs) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
return;
}
for (const RelocationRef &Rel : Section.relocations())
handleRelocation(RelocatedSection, Rel);
}
void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection,
const RelocationRef &Rel) {
const bool IsAArch64 = BC->isAArch64();
const bool IsFromCode = RelocatedSection.isText();
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
uint64_t RType = Rel.getType();
if (Relocation::skipRelocationType(RType))
return;
// Adjust the relocation type as the linker might have skewed it.
if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) {
if (opts::Verbosity >= 1)
dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
RType &= ~ELF::R_X86_64_converted_reloc_bit;
}
if (Relocation::isTLS(RType)) {
// No special handling required for TLS relocations on X86.
if (BC->isX86())
return;
// The non-got related TLS relocations on AArch64 also could be skipped.
if (!Relocation::isGOT(RType))
return;
}
if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) {
LLVM_DEBUG({
dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset())
<< "dynamic relocation against it. Ignoring static relocation.\n";
});
return;
}
std::string SymbolName;
uint64_t SymbolAddress;
int64_t Addend;
uint64_t ExtractedValue;
bool IsSectionRelocation;
bool Skip;
if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
SymbolAddress, Addend, ExtractedValue, Skip)) {
LLVM_DEBUG({
dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
<< formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
});
++NumFailedRelocations;
return;
}
if (Skip) {
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
<< formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
});
return;
}
const uint64_t Address = SymbolAddress + Addend;
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: ";
printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue);
});
BinaryFunction *ContainingBF = nullptr;
if (IsFromCode) {
ContainingBF =
BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
/*CheckPastEnd*/ false,
/*UseMaxSize*/ true);
assert(ContainingBF && "cannot find function for address in code");
if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
if (opts::Verbosity >= 1)
outs() << formatv("BOLT-INFO: {0} has relocations in padding area\n",
*ContainingBF);
ContainingBF->setSize(ContainingBF->getMaxSize());
ContainingBF->setSimple(false);
return;
}
}
MCSymbol *ReferencedSymbol = nullptr;
if (!IsSectionRelocation)
if (BinaryData *BD = BC->getBinaryDataByName(SymbolName))
ReferencedSymbol = BD->getSymbol();
ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address};
symbol_iterator SymbolIter = Rel.getSymbol();
if (SymbolIter != InputFile->symbol_end()) {
SymbolRef Symbol = *SymbolIter;
section_iterator Section =
cantFail(Symbol.getSection(), "cannot get symbol section");
if (Section != InputFile->section_end()) {
Expected<StringRef> SectionName = Section->getName();
if (SectionName && !SectionName->empty())
ReferencedSection = BC->getUniqueSectionByName(*SectionName);
}
}
if (!ReferencedSection)
ReferencedSection = BC->getSectionForAddress(SymbolAddress);
const bool IsToCode = ReferencedSection && ReferencedSection->isText();
// Special handling of PC-relative relocations.
if (!IsAArch64 && Relocation::isPCRelative(RType)) {
if (!IsFromCode && IsToCode) {
// PC-relative relocations from data to code are tricky since the
// original information is typically lost after linking, even with
// '--emit-relocs'. Such relocations are normally used by PIC-style
// jump tables and they reference both the jump table and jump
// targets by computing the difference between the two. If we blindly
// apply the relocation, it will appear that it references an arbitrary
// location in the code, possibly in a different function from the one
// containing the jump table.
//
// For that reason, we only register the fact that there is a
// PC-relative relocation at a given address against the code.
// The actual referenced label/address will be determined during jump
// table analysis.
BC->addPCRelativeDataRelocation(Rel.getOffset());
} else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) {
// If we know the referenced symbol, register the relocation from
// the code. It's required to properly handle cases where
// "symbol + addend" references an object different from "symbol".
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
Addend, ExtractedValue);
} else {
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
<< formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName);
});
}
return;
}
bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
if (BC->isAArch64() && Relocation::isGOT(RType))
ForceRelocation = true;
if (!ReferencedSection && !ForceRelocation) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
return;
}
// Occasionally we may see a reference past the last byte of the function
// typically as a result of __builtin_unreachable(). Check it here.
BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
if (!IsSectionRelocation) {
if (BinaryFunction *BF =
BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
if (BF != ReferencedBF) {
// It's possible we are referencing a function without referencing any
// code, e.g. when taking a bitmask action on a function address.
errs() << "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
<< formatv(" detected against function {0} from ", *BF);
if (IsFromCode)
errs() << formatv("function {0}\n", *ContainingBF);
else
errs() << formatv("data section at {0:x}\n", Rel.getOffset());
LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
ExtractedValue));
ReferencedBF = BF;
}
}
} else if (ReferencedBF) {
assert(ReferencedSection && "section expected for section relocation");
if (*ReferencedBF->getOriginSection() != *ReferencedSection) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
ReferencedBF = nullptr;
}
}
// Workaround for a member function pointer de-virtualization bug. We check
// if a non-pc-relative relocation in the code is pointing to (fptr - 1).
if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
(!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
if (const BinaryFunction *RogueBF =
BC->getBinaryFunctionAtAddress(Address + 1)) {
// Do an extra check that the function was referenced previously.
// It's a linear search, but it should rarely happen.
auto CheckReloc = [&](const Relocation &Rel) {
return Rel.Symbol == RogueBF->getSymbol() &&
!Relocation::isPCRelative(Rel.Type);
};
bool Found = llvm::any_of(
llvm::make_second_range(ContainingBF->Relocations), CheckReloc);
if (Found) {
errs() << "BOLT-WARNING: detected possible compiler de-virtualization "
"bug: -1 addend used with non-pc-relative relocation against "
<< formatv("function {0} in function {1}\n", *RogueBF,
*ContainingBF);
return;
}
}
}
if (ForceRelocation) {
std::string Name =
Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName;
ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0);
SymbolAddress = 0;
if (Relocation::isGOT(RType))
Addend = Address;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
<< SymbolName << " with addend " << Addend << '\n');
} else if (ReferencedBF) {
ReferencedSymbol = ReferencedBF->getSymbol();
uint64_t RefFunctionOffset = 0;
// Adjust the point of reference to a code location inside a function.
if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) {
RefFunctionOffset = Address - ReferencedBF->getAddress();
if (RefFunctionOffset) {
if (ContainingBF && ContainingBF != ReferencedBF) {
ReferencedSymbol =
ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
} else {
ReferencedSymbol =
ReferencedBF->getOrCreateLocalLabel(Address,
/*CreatePastEnd =*/true);
ReferencedBF->registerReferencedOffset(RefFunctionOffset);
}
if (opts::Verbosity > 1 &&
BinarySection(*BC, RelocatedSection).isWritable())
errs() << "BOLT-WARNING: writable reference into the middle of the "
<< formatv("function {0} detected at address {1:x}\n",
*ReferencedBF, Rel.getOffset());
}
SymbolAddress = Address;
Addend = 0;
}
LLVM_DEBUG({
dbgs() << " referenced function " << *ReferencedBF;
if (Address != ReferencedBF->getAddress())
dbgs() << formatv(" at offset {0:x}", RefFunctionOffset);
dbgs() << '\n';
});
} else {
if (IsToCode && SymbolAddress) {
// This can happen e.g. with PIC-style jump tables.
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
"relocation against code\n");
}
// In AArch64 there are zero reasons to keep a reference to the
// "original" symbol plus addend. The original symbol is probably just a
// section symbol. If we are here, this means we are probably accessing
// data, so it is imperative to keep the original address.
if (IsAArch64) {
SymbolName = formatv("SYMBOLat{0:x}", Address);
SymbolAddress = Address;
Addend = 0;
}
if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
// Note: this assertion is trying to check sanity of BinaryData objects
// but AArch64 has inferred and incomplete object locations coming from
// GOT/TLS or any other non-trivial relocation (that requires creation
// of sections and whose symbol address is not really what should be
// encoded in the instruction). So we essentially disabled this check
// for AArch64 and live with bogus names for objects.
assert((IsAArch64 || IsSectionRelocation ||
BD->nameStartsWith(SymbolName) ||
BD->nameStartsWith("PG" + SymbolName) ||
(BD->nameStartsWith("ANONYMOUS") &&
(BD->getSectionName().startswith(".plt") ||
BD->getSectionName().endswith(".plt")))) &&
"BOLT symbol names of all non-section relocations must match up "
"with symbol names referenced in the relocation");
if (IsSectionRelocation)
BC->markAmbiguousRelocations(*BD, Address);
ReferencedSymbol = BD->getSymbol();
Addend += (SymbolAddress - BD->getAddress());
SymbolAddress = BD->getAddress();
assert(Address == SymbolAddress + Addend);
} else {
// These are mostly local data symbols but undefined symbols
// in relocation sections can get through here too, from .plt.
assert(
(IsAArch64 || IsSectionRelocation ||
BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) &&
"known symbols should not resolve to anonymous locals");
if (IsSectionRelocation) {
ReferencedSymbol =
BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
} else {
SymbolRef Symbol = *Rel.getSymbol();
const uint64_t SymbolSize =
IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment();
const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
std::string Name;
if (SymbolFlags & SymbolRef::SF_Global) {
Name = SymbolName;
} else {
if (StringRef(SymbolName)
.startswith(BC->AsmInfo->getPrivateGlobalPrefix()))
Name = NR.uniquify("PG" + SymbolName);
else
Name = NR.uniquify(SymbolName);
}
ReferencedSymbol = BC->registerNameAtAddress(
Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
}
if (IsSectionRelocation) {
BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
BC->markAmbiguousRelocations(*BD, Address);
}
}
}
auto checkMaxDataRelocations = [&]() {
++NumDataRelocations;
LLVM_DEBUG(if (opts::MaxDataRelocations &&
NumDataRelocations + 1 == opts::MaxDataRelocations) {
dbgs() << "BOLT-DEBUG: processing ending on data relocation "
<< NumDataRelocations << ": ";
printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
Addend, ExtractedValue);
});
return (!opts::MaxDataRelocations ||
NumDataRelocations < opts::MaxDataRelocations);
};
if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) ||
(opts::ForceToDataRelocations && checkMaxDataRelocations()))
ForceRelocation = true;
if (IsFromCode) {
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
Addend, ExtractedValue);
} else if (IsToCode || ForceRelocation) {
BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
ExtractedValue);
} else {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
}
}
void RewriteInstance::selectFunctionsToProcess() {
// Extend the list of functions to process or skip from a file.
auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
cl::list<std::string> &FunctionNames) {
if (FunctionNamesFile.empty())
return;
std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
std::string FuncName;
while (std::getline(FuncsFile, FuncName))
FunctionNames.push_back(FuncName);
};
populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
// Make a set of functions to process to speed up lookups.
std::unordered_set<std::string> ForceFunctionsNR(
opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
if ((!opts::ForceFunctionNames.empty() ||
!opts::ForceFunctionNamesNR.empty()) &&
!opts::SkipFunctionNames.empty()) {
errs() << "BOLT-ERROR: cannot select functions to process and skip at the "
"same time. Please use only one type of selection.\n";
exit(1);
}
uint64_t LiteThresholdExecCount = 0;
if (opts::LiteThresholdPct) {
if (opts::LiteThresholdPct > 100)
opts::LiteThresholdPct = 100;
std::vector<const BinaryFunction *> TopFunctions;
for (auto &BFI : BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
if (ProfileReader->mayHaveProfileData(Function))
TopFunctions.push_back(&Function);
}
llvm::sort(
TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) {
return A->getKnownExecutionCount() < B->getKnownExecutionCount();
});
size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
if (Index)
--Index;
LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
outs() << "BOLT-INFO: limiting processing to functions with at least "
<< LiteThresholdExecCount << " invocations\n";
}
LiteThresholdExecCount = std::max(
LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
StringSet<> ReorderFunctionsUserSet;
if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
for (const std::string &Function :
ReorderFunctions::readFunctionOrderFile())
ReorderFunctionsUserSet.insert(Function);
}
uint64_t NumFunctionsToProcess = 0;
auto shouldProcess = [&](const BinaryFunction &Function) {
if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions)
return false;
// If the list is not empty, only process functions from the list.
if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
// Regex check (-funcs and -funcs-file options).
for (std::string &Name : opts::ForceFunctionNames)
if (Function.hasNameRegex(Name))
return true;
// Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
std::optional<StringRef> Match =
Function.forEachName([&ForceFunctionsNR](StringRef Name) {
return ForceFunctionsNR.count(Name.str());
});
return Match.has_value();
}
for (std::string &Name : opts::SkipFunctionNames)
if (Function.hasNameRegex(Name))
return false;
if (opts::Lite) {
// Forcibly include functions specified in the -function-order file.
if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
std::optional<StringRef> Match =
Function.forEachName([&](StringRef Name) {
return ReorderFunctionsUserSet.contains(Name);
});
if (Match.has_value())
return true;
}
if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
return false;
if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
return false;
}
return true;
};
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
// Pseudo functions are explicitly marked by us not to be processed.
if (Function.isPseudo()) {
Function.IsIgnored = true;
Function.HasExternalRefRelocations = true;
continue;
}
if (!shouldProcess(Function)) {
LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function "
<< Function << " per user request\n");
Function.setIgnored();
} else {
++NumFunctionsToProcess;
if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
outs() << "BOLT-INFO: processing ending on " << Function << '\n';
}
}
}
void RewriteInstance::readDebugInfo() {
NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
if (!opts::UpdateDebugSections)
return;
BC->preprocessDebugInfo();
}
void RewriteInstance::preprocessProfileData() {
if (!ProfileReader)
return;
NamedRegionTimer T("preprocessprofile", "pre-process profile data",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
outs() << "BOLT-INFO: pre-processing profile using "
<< ProfileReader->getReaderName() << '\n';
if (BAT->enabledFor(InputFile)) {
outs() << "BOLT-INFO: profile collection done on a binary already "
"processed by BOLT\n";
ProfileReader->setBAT(&*BAT);
}
if (Error E = ProfileReader->preprocessProfile(*BC.get()))
report_error("cannot pre-process profile", std::move(E));
if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName()) {
errs() << "BOLT-ERROR: input binary does not have local file symbols "
"but profile data includes function names with embedded file "
"names. It appears that the input binary was stripped while a "
"profiled binary was not\n";
exit(1);
}
}
void RewriteInstance::processProfileDataPreCFG() {
if (!ProfileReader)
return;
NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
if (Error E = ProfileReader->readProfilePreCFG(*BC.get()))
report_error("cannot read profile pre-CFG", std::move(E));
}
void RewriteInstance::processProfileData() {
if (!ProfileReader)
return;
NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
if (Error E = ProfileReader->readProfile(*BC.get()))
report_error("cannot read profile", std::move(E));
if (!opts::SaveProfile.empty()) {
YAMLProfileWriter PW(opts::SaveProfile);
PW.writeProfile(*this);
}
if (opts::AggregateOnly &&
opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) {
YAMLProfileWriter PW(opts::OutputFilename);
PW.writeProfile(*this);
}
// Release memory used by profile reader.
ProfileReader.reset();
if (opts::AggregateOnly)
exit(0);
}
void RewriteInstance::disassembleFunctions() {
NamedRegionTimer T("disassembleFunctions", "disassemble functions",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
if (!FunctionData) {
errs() << "BOLT-ERROR: corresponding section is non-executable or "
<< "empty for function " << Function << '\n';
exit(1);
}
// Treat zero-sized functions as non-simple ones.
if (Function.getSize() == 0) {
Function.setSimple(false);
continue;
}
// Offset of the function in the file.
const auto *FileBegin =
reinterpret_cast<const uint8_t *>(InputFile->getData().data());
Function.setFileOffset(FunctionData->begin() - FileBegin);
if (!shouldDisassemble(Function)) {
NamedRegionTimer T("scan", "scan functions", "buildfuncs",
"Scan Binary Functions", opts::TimeBuild);
Function.scanExternalRefs();
Function.setSimple(false);
continue;
}
if (!Function.disassemble()) {
if (opts::processAllFunctions())
BC->exitWithBugReport("function cannot be properly disassembled. "
"Unable to continue in relocation mode.",
Function);
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: could not disassemble function " << Function
<< ". Will ignore.\n";
// Forcefully ignore the function.
Function.setIgnored();
continue;
}
if (opts::PrintAll || opts::PrintDisasm)
Function.print(outs(), "after disassembly");
}
BC->processInterproceduralReferences();
BC->populateJumpTables();
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (!shouldDisassemble(Function))
continue;
Function.postProcessEntryPoints();
Function.postProcessJumpTables();
}
BC->clearJumpTableTempData();
BC->adjustCodePadding();
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (!shouldDisassemble(Function))
continue;
if (!Function.isSimple()) {
assert((!BC->HasRelocations || Function.getSize() == 0 ||
Function.hasIndirectTargetToSplitFragment()) &&
"unexpected non-simple function in relocation mode");
continue;
}
// Fill in CFI information for this function
if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
if (BC->HasRelocations) {
BC->exitWithBugReport("unable to fill CFI.", Function);
} else {
errs() << "BOLT-WARNING: unable to fill CFI for function " << Function
<< ". Skipping.\n";
Function.setSimple(false);
continue;
}
}
// Parse LSDA.
if (Function.getLSDAAddress() != 0 &&
!BC->getFragmentsToSkip().count(&Function))
Function.parseLSDA(getLSDAData(), getLSDAAddress());
}
}
void RewriteInstance::buildFunctionsCFG() {
NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
"Build Binary Functions", opts::TimeBuild);
// Create annotation indices to allow lock-free execution
BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
BC->MIB->getOrCreateAnnotationIndex("NOP");
BC->MIB->getOrCreateAnnotationIndex("Size");
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
if (!BF.buildCFG(AllocId))
return;
if (opts::PrintAll) {
auto L = BC->scopeLock();
BF.print(outs(), "while building cfg");
}
};
ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
return !shouldDisassemble(BF) || !BF.isSimple();
};
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
*BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
SkipPredicate, "disassembleFunctions-buildCFG",
/*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
BC->postProcessSymbolTable();
}
void RewriteInstance::postProcessFunctions() {
// We mark fragments as non-simple here, not during disassembly,
// So we can build their CFGs.
BC->skipMarkedFragments();
BC->clearFragmentsToSkip();
BC->TotalScore = 0;
BC->SumExecutionCount = 0;
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (Function.empty())
continue;
Function.postProcessCFG();
if (opts::PrintAll || opts::PrintCFG)
Function.print(outs(), "after building cfg");
if (opts::DumpDotAll)
Function.dumpGraphForPass("00_build-cfg");
if (opts::PrintLoopInfo) {
Function.calculateLoopInfo();
Function.printLoopInfo(outs());
}
BC->TotalScore += Function.getFunctionScore();
BC->SumExecutionCount += Function.getKnownExecutionCount();
}
if (opts::PrintGlobals) {
outs() << "BOLT-INFO: Global symbols:\n";
BC->printGlobalSymbols(outs());
}
}
void RewriteInstance::runOptimizationPasses() {
NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
BinaryFunctionPassManager::runAllPasses(*BC);
}
namespace {
class BOLTSymbolResolver : public JITSymbolResolver {
BinaryContext &BC;
public:
BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {}
// We are responsible for all symbols
Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override {
return Symbols;
}
// Some of our symbols may resolve to zero and this should not be an error
bool allowsZeroSymbols() override { return true; }
/// Resolves the address of each symbol requested
void lookup(const LookupSet &Symbols,
OnResolvedFunction OnResolved) override {
JITSymbolResolver::LookupResult AllResults;
if (BC.EFMM->ObjectsLoaded) {
for (const StringRef &Symbol : Symbols) {
std::string SymName = Symbol.str();
LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
// Resolve to a PLT entry if possible
if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) {
AllResults[Symbol] =
JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags());
continue;
}
OnResolved(make_error<StringError>(
"Symbol not found required by runtime: " + Symbol,
inconvertibleErrorCode()));
return;
}
OnResolved(std::move(AllResults));
return;
}
for (const StringRef &Symbol : Symbols) {
std::string SymName = Symbol.str();
LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
if (BinaryData *I = BC.getBinaryDataByName(SymName)) {
uint64_t Address = I->isMoved() && !I->isJumpTable()
? I->getOutputAddress()
: I->getAddress();
LLVM_DEBUG(dbgs() << "Resolved to address 0x"
<< Twine::utohexstr(Address) << "\n");
AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags());
continue;
}
LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n");
AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags());
}
OnResolved(std::move(AllResults));
}
};
} // anonymous namespace
void RewriteInstance::preregisterSections() {
// Preregister sections before emission to set their order in the output.
const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true,
/*IsText*/ false,
/*IsAllocatable*/ true);
if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) {
// New .eh_frame.
BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
ELF::SHT_PROGBITS, ROFlags);
// Fully register a relocatable copy of the original .eh_frame.
BC->registerSection(".relocated.eh_frame", *EHFrameSection);
}
BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
ELF::SHT_PROGBITS, ROFlags);
BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS,
ROFlags);
BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
ELF::SHT_PROGBITS, ROFlags);
}
void RewriteInstance::emitAndLink() {
NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
std::error_code EC;
// This is an object file, which we keep for debugging purposes.
// Once we decide it's useless, we should create it in memory.
SmallString<128> OutObjectPath;
sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
std::unique_ptr<ToolOutputFile> TempOut =
std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None);
check_error(EC, "cannot create output object file");
std::unique_ptr<buffer_ostream> BOS =
std::make_unique<buffer_ostream>(TempOut->os());
raw_pwrite_stream *OS = BOS.get();
// Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
// and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
// two instances.
std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS);
if (EHFrameSection) {
if (opts::UseOldText || opts::StrictMode) {
// The section is going to be regenerated from scratch.
// Empty the contents, but keep the section reference.
EHFrameSection->clearContents();
} else {
// Make .eh_frame relocatable.
relocateEHFrameSection();
}
}
emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
Streamer->finish();
if (Streamer->getContext().hadError()) {
errs() << "BOLT-ERROR: Emission failed.\n";
exit(1);
}
ErrorOr<BinarySection &> TextSection =
BC->getUniqueSectionByName(BC->getMainCodeSectionName());
if (BC->HasRelocations && TextSection)
BC->renameSection(*TextSection, getOrgSecPrefix() + ".text");
//////////////////////////////////////////////////////////////////////////////
// Assign addresses to new sections.
//////////////////////////////////////////////////////////////////////////////
// Get output object as ObjectFile.
std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false);
std::unique_ptr<object::ObjectFile> Obj = cantFail(
object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()),
"error creating in-memory object");
BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC);
MCAsmLayout FinalLayout(
static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler());
// Disable stubs because RuntimeDyld may try to increase the size of
// sections accounting for stubs. We need those sections to match the
// same size seen in the input binary, in case this section is a copy
// of the original one seen in the binary.
BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs=*/false));
BC->EFMM->setNewSecPrefix(getNewSecPrefix());
BC->EFMM->setOrgSecPrefix(getOrgSecPrefix());
RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver));
RTDyld->setProcessAllSections(false);
RTDyld->loadObject(*Obj);
// Assign addresses to all sections. If key corresponds to the object
// created by ourselves, call our regular mapping function. If we are
// loading additional objects as part of runtime libraries for
// instrumentation, treat them as extra sections.
mapFileSections(*RTDyld);
RTDyld->finalizeWithMemoryManagerLocking();
if (RTDyld->hasError()) {
errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n";
exit(1);
}
// Update output addresses based on the new section map and
// layout. Only do this for the object created by ourselves.
updateOutputValues(FinalLayout);
if (opts::UpdateDebugSections)
DebugInfoRewriter->updateLineTableOffsets(FinalLayout);
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) {
// Map newly registered sections.
this->mapAllocatableSections(*RTDyld);
});
// Once the code is emitted, we can rename function sections to actual
// output sections and de-register sections used for emission.
for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
ErrorOr<BinarySection &> Section = Function->getCodeSection();
if (Section &&
(Function->getImageAddress() == 0 || Function->getImageSize() == 0))
continue;
// Restore origin section for functions that were emitted or supposed to
// be emitted to patch sections.
if (Section)
BC->deregisterSection(*Section);
assert(Function->getOriginSectionName() && "expected origin section");
Function->CodeSectionName = Function->getOriginSectionName()->str();
for (const FunctionFragment &FF :
Function->getLayout().getSplitFragments()) {
if (ErrorOr<BinarySection &> ColdSection =
Function->getCodeSection(FF.getFragmentNum()))
BC->deregisterSection(*ColdSection);
}
if (Function->getLayout().isSplit())
Function->setColdCodeSectionName(getBOLTTextSectionName());
}
if (opts::PrintCacheMetrics) {
outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
CacheMetrics::printAll(BC->getSortedFunctions());
}
if (opts::KeepTmp) {
TempOut->keep();
outs() << "BOLT-INFO: intermediary output object file saved for debugging "
"purposes: "
<< OutObjectPath << "\n";
}
}
void RewriteInstance::updateMetadata() {
updateSDTMarkers();
updateLKMarkers();
parsePseudoProbe();
updatePseudoProbes();
if (opts::UpdateDebugSections) {
NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
DebugInfoRewriter->updateDebugInfo();
}
if (opts::WriteBoltInfoSection)
addBoltInfoSection();
}
void RewriteInstance::updatePseudoProbes() {
// check if there is pseudo probe section decoded
if (BC->ProbeDecoder.getAddress2ProbesMap().empty())
return;
// input address converted to output
AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap();
const GUIDProbeFunctionMap &GUID2Func =
BC->ProbeDecoder.getGUID2FuncDescMap();
for (auto &AP : Address2ProbesMap) {
BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first);
// If F is removed, eliminate all probes inside it from inline tree
// Setting probes' addresses as INT64_MAX means elimination
if (!F) {
for (MCDecodedPseudoProbe &Probe : AP.second)
Probe.setAddress(INT64_MAX);
continue;
}
// If F is not emitted, the function will remain in the same address as its
// input
if (!F->isEmitted())
continue;
uint64_t Offset = AP.first - F->getAddress();
const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset);
uint64_t BlkOutputAddress = BB->getOutputAddressRange().first;
// Check if block output address is defined.
// If not, such block is removed from binary. Then remove the probes from
// inline tree
if (BlkOutputAddress == 0) {
for (MCDecodedPseudoProbe &Probe : AP.second)
Probe.setAddress(INT64_MAX);
continue;
}
unsigned ProbeTrack = AP.second.size();
std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin();
while (ProbeTrack != 0) {
if (Probe->isBlock()) {
Probe->setAddress(BlkOutputAddress);
} else if (Probe->isCall()) {
// A call probe may be duplicated due to ICP
// Go through output of InputOffsetToAddressMap to collect all related
// probes
const InputOffsetToAddressMapTy &Offset2Addr =
F->getInputOffsetToAddressMap();
auto CallOutputAddresses = Offset2Addr.equal_range(Offset);
auto CallOutputAddress = CallOutputAddresses.first;
if (CallOutputAddress == CallOutputAddresses.second) {
Probe->setAddress(INT64_MAX);
} else {
Probe->setAddress(CallOutputAddress->second);
CallOutputAddress = std::next(CallOutputAddress);
}
while (CallOutputAddress != CallOutputAddresses.second) {
AP.second.push_back(*Probe);
AP.second.back().setAddress(CallOutputAddress->second);
Probe->getInlineTreeNode()->addProbes(&(AP.second.back()));
CallOutputAddress = std::next(CallOutputAddress);
}
}
Probe = std::next(Probe);
ProbeTrack--;
}
}
if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
opts::PrintPseudoProbes ==
opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) {
outs() << "Pseudo Probe Address Conversion results:\n";
// table that correlates address to block
std::unordered_map<uint64_t, StringRef> Addr2BlockNames;
for (auto &F : BC->getBinaryFunctions())
for (BinaryBasicBlock &BinaryBlock : F.second)
Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] =
BinaryBlock.getName();
// scan all addresses -> correlate probe to block when print out
std::vector<uint64_t> Addresses;
for (auto &Entry : Address2ProbesMap)
Addresses.push_back(Entry.first);
llvm::sort(Addresses);
for (uint64_t Key : Addresses) {
for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) {
if (Probe.getAddress() == INT64_MAX)
outs() << "Deleted Probe: ";
else
outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " ";
Probe.print(outs(), GUID2Func, true);
// print block name only if the probe is block type and undeleted.
if (Probe.isBlock() && Probe.getAddress() != INT64_MAX)
outs() << format_hex(Probe.getAddress(), 8) << " Probe is in "
<< Addr2BlockNames[Probe.getAddress()] << "\n";
}
}
outs() << "=======================================\n";
}
// encode pseudo probes with updated addresses
encodePseudoProbes();
}
template <typename F>
static void emitLEB128IntValue(F encode, uint64_t Value,
SmallString<8> &Contents) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
encode(Value, OSE);
Contents.append(OSE.str().begin(), OSE.str().end());
}
void RewriteInstance::encodePseudoProbes() {
// Buffer for new pseudo probes section
SmallString<8> Contents;
MCDecodedPseudoProbe *LastProbe = nullptr;
auto EmitInt = [&](uint64_t Value, uint32_t Size) {
const bool IsLittleEndian = BC->AsmInfo->isLittleEndian();
uint64_t Swapped = support::endian::byte_swap(
Value, IsLittleEndian ? support::little : support::big);
unsigned Index = IsLittleEndian ? 0 : 8 - Size;
auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size);
Contents.append(Entry.begin(), Entry.end());
};
auto EmitULEB128IntValue = [&](uint64_t Value) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
encodeULEB128(Value, OSE, 0);
Contents.append(OSE.str().begin(), OSE.str().end());
};
auto EmitSLEB128IntValue = [&](int64_t Value) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
encodeSLEB128(Value, OSE);
Contents.append(OSE.str().begin(), OSE.str().end());
};
// Emit indiviual pseudo probes in a inline tree node
// Probe index, type, attribute, address type and address are encoded
// Address of the first probe is absolute.
// Other probes' address are represented by delta
auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) {
assert(!isSentinelProbe(CurProbe->getAttributes()) &&
"Sentinel probes should not be emitted");
EmitULEB128IntValue(CurProbe->getIndex());
uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4);
uint8_t Flag =
LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
EmitInt(Flag | PackedType, 1);
if (LastProbe) {
// Emit the delta between the address label and LastProbe.
int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress();
EmitSLEB128IntValue(Delta);
} else {
// Emit absolute address for encoding the first pseudo probe.
uint32_t AddrSize = BC->AsmInfo->getCodePointerSize();
EmitInt(CurProbe->getAddress(), AddrSize);
}
};
std::map<InlineSite, MCDecodedPseudoProbeInlineTree *,
std::greater<InlineSite>>
Inlinees;
// DFS of inline tree to emit pseudo probes in all tree node
// Inline site index of a probe is emitted first.
// Then tree node Guid, size of pseudo probes and children nodes, and detail
// of contained probes are emitted Deleted probes are skipped Root node is not
// encoded to binaries. It's a "wrapper" of inline trees of each function.
std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes;
const MCDecodedPseudoProbeInlineTree &Root =
BC->ProbeDecoder.getDummyInlineRoot();
for (auto Child = Root.getChildren().begin();
Child != Root.getChildren().end(); ++Child)
Inlinees[Child->first] = Child->second.get();
for (auto Inlinee : Inlinees)
// INT64_MAX is "placeholder" of unused callsite index field in the pair
NextNodes.push_back({INT64_MAX, Inlinee.second});
Inlinees.clear();
while (!NextNodes.empty()) {
uint64_t ProbeIndex = NextNodes.back().first;
MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second;
NextNodes.pop_back();
if (Cur->Parent && !Cur->Parent->isRoot())
// Emit probe inline site
EmitULEB128IntValue(ProbeIndex);
// Emit probes grouped by GUID.
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "GUID: " << Cur->Guid << "\n";
});
// Emit Guid
EmitInt(Cur->Guid, 8);
// Emit number of probes in this node
uint64_t Deleted = 0;
for (MCDecodedPseudoProbe *&Probe : Cur->getProbes())
if (Probe->getAddress() == INT64_MAX)
Deleted++;
LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n");
uint64_t ProbesSize = Cur->getProbes().size() - Deleted;
EmitULEB128IntValue(ProbesSize);
// Emit number of direct inlinees
EmitULEB128IntValue(Cur->getChildren().size());
// Emit probes in this group
for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) {
if (Probe->getAddress() == INT64_MAX)
continue;
EmitDecodedPseudoProbe(Probe);
LastProbe = Probe;
}
for (auto Child = Cur->getChildren().begin();
Child != Cur->getChildren().end(); ++Child)
Inlinees[Child->first] = Child->second.get();
for (const auto &Inlinee : Inlinees) {
assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid");
NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second});
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
});
}
Inlinees.clear();
}
// Create buffer for new contents for the section
// Freed when parent section is destroyed
uint8_t *Output = new uint8_t[Contents.str().size()];
memcpy(Output, Contents.str().data(), Contents.str().size());
addToDebugSectionsToOverwrite(".pseudo_probe");
BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(),
PseudoProbeSection->getELFFlags(), Output,
Contents.str().size(), 1);
if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
opts::PrintPseudoProbes ==
opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) {
// create a dummy decoder;
MCPseudoProbeDecoder DummyDecoder;
StringRef DescContents = PseudoProbeDescSection->getContents();
DummyDecoder.buildGUID2FuncDescMap(
reinterpret_cast<const uint8_t *>(DescContents.data()),
DescContents.size());
StringRef ProbeContents = PseudoProbeSection->getOutputContents();
MCPseudoProbeDecoder::Uint64Set GuidFilter;
MCPseudoProbeDecoder::Uint64Map FuncStartAddrs;
for (const BinaryFunction *F : BC->getAllBinaryFunctions()) {
const uint64_t Addr =
F->isEmitted() ? F->getOutputAddress() : F->getAddress();
FuncStartAddrs[Function::getGUID(
NameResolver::restore(F->getOneName()))] = Addr;
}
DummyDecoder.buildAddress2ProbeMap(
reinterpret_cast<const uint8_t *>(ProbeContents.data()),
ProbeContents.size(), GuidFilter, FuncStartAddrs);
DummyDecoder.printProbesForAllAddresses(outs());
}
}
void RewriteInstance::updateSDTMarkers() {
NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
if (!SDTSection)
return;
SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
SimpleBinaryPatcher *SDTNotePatcher =
static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher());
for (auto &SDTInfoKV : BC->SDTMarkers) {
const uint64_t OriginalAddress = SDTInfoKV.first;
SDTMarkerInfo &SDTInfo = SDTInfoKV.second;
const BinaryFunction *F =
BC->getBinaryFunctionContainingAddress(OriginalAddress);
if (!F)
continue;
const uint64_t NewAddress =
F->translateInputToOutputAddress(OriginalAddress);
SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress);
}
}
void RewriteInstance::updateLKMarkers() {
if (BC->LKMarkers.size() == 0)
return;
NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
std::unordered_map<std::string, uint64_t> PatchCounts;
for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
&LKMarkerInfoKV : BC->LKMarkers) {
const uint64_t OriginalAddress = LKMarkerInfoKV.first;
const BinaryFunction *BF =
BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true);
if (!BF)
continue;
uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
if (NewAddress == 0)
continue;
// Apply base address.
if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
NewAddress = NewAddress + 0xffffffff00000000;
if (OriginalAddress == NewAddress)
continue;
for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
StringRef SectionName = LKMarkerInfo.SectionName;
SimpleBinaryPatcher *LKPatcher;
ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
assert(BSec && "missing section info for kernel section");
if (!BSec->getPatcher())
BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
PatchCounts[std::string(SectionName)]++;
if (LKMarkerInfo.IsPCRelative)
LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
NewAddress - OriginalAddress +
LKMarkerInfo.PCRelativeOffset);
else
LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
}
}
outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
"section are as follows:\n";
for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
outs() << " Section: " << KV.first << ", patch-counts: " << KV.second
<< '\n';
}
void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) {
BC->deregisterUnusedSections();
// If no new .eh_frame was written, remove relocated original .eh_frame.
BinarySection *RelocatedEHFrameSection =
getSection(".relocated" + getEHFrameSectionName());
if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) {
BinarySection *NewEHFrameSection =
getSection(getNewSecPrefix() + getEHFrameSectionName());
if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) {
// RTDyld will still have to process relocations for the section, hence
// we need to assign it the address that wouldn't result in relocation
// processing failure.
RTDyld.reassignSectionAddress(RelocatedEHFrameSection->getSectionID(),
NextAvailableAddress);
BC->deregisterSection(*RelocatedEHFrameSection);
}
}
mapCodeSections(RTDyld);
// Map the rest of the sections.
mapAllocatableSections(RTDyld);
}
std::vector<BinarySection *> RewriteInstance::getCodeSections() {
std::vector<BinarySection *> CodeSections;
for (BinarySection &Section : BC->textSections())
if (Section.hasValidSectionID())
CodeSections.emplace_back(&Section);
auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
// Place movers before anything else.
if (A->getName() == BC->getHotTextMoverSectionName())
return true;
if (B->getName() == BC->getHotTextMoverSectionName())
return false;
// Depending on the option, put main text at the beginning or at the end.
if (opts::HotFunctionsAtEnd)
return B->getName() == BC->getMainCodeSectionName();
else
return A->getName() == BC->getMainCodeSectionName();
};
// Determine the order of sections.
llvm::stable_sort(CodeSections, compareSections);
return CodeSections;
}
void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) {
if (BC->HasRelocations) {
// Map sections for functions with pre-assigned addresses.
for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
if (!OutputAddress)
continue;
ErrorOr<BinarySection &> FunctionSection =
InjectedFunction->getCodeSection();
assert(FunctionSection && "function should have section");
FunctionSection->setOutputAddress(OutputAddress);
RTDyld.reassignSectionAddress(FunctionSection->getSectionID(),
OutputAddress);
InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
InjectedFunction->setImageSize(FunctionSection->getOutputSize());
}
// Populate the list of sections to be allocated.
std::vector<BinarySection *> CodeSections = getCodeSections();
// Remove sections that were pre-allocated (patch sections).
llvm::erase_if(CodeSections, [](BinarySection *Section) {
return Section->getOutputAddress();
});
LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
for (const BinarySection *Section : CodeSections)
dbgs() << Section->getName() << '\n';
);
uint64_t PaddingSize = 0; // size of padding required at the end
// Allocate sections starting at a given Address.
auto allocateAt = [&](uint64_t Address) {
for (BinarySection *Section : CodeSections) {
Address = alignTo(Address, Section->getAlignment());
Section->setOutputAddress(Address);
Address += Section->getOutputSize();
// Hugify: Additional huge page from right side due to
// weird ASLR mapping addresses (4KB aligned)
if (opts::Hugify && !BC->HasFixedLoadAddress &&
Section->getName() == BC->getMainCodeSectionName())
Address = alignTo(Address, Section->getAlignment());
}
// Make sure we allocate enough space for huge pages.
ErrorOr<BinarySection &> TextSection =
BC->getUniqueSectionByName(BC->getMainCodeSectionName());
if (opts::HotText && TextSection && TextSection->hasValidSectionID()) {
uint64_t HotTextEnd =
TextSection->getOutputAddress() + TextSection->getOutputSize();
HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
if (HotTextEnd > Address) {
PaddingSize = HotTextEnd - Address;
Address = HotTextEnd;
}
}
return Address;
};
// Check if we can fit code in the original .text
bool AllocationDone = false;
if (opts::UseOldText) {
const uint64_t CodeSize =
allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress;
if (CodeSize <= BC->OldTextSectionSize) {
outs() << "BOLT-INFO: using original .text for new code with 0x"
<< Twine::utohexstr(opts::AlignText) << " alignment\n";
AllocationDone = true;
} else {
errs() << "BOLT-WARNING: original .text too small to fit the new code"
<< " using 0x" << Twine::utohexstr(opts::AlignText)
<< " alignment. " << CodeSize << " bytes needed, have "
<< BC->OldTextSectionSize << " bytes available.\n";
opts::UseOldText = false;
}
}
if (!AllocationDone)
NextAvailableAddress = allocateAt(NextAvailableAddress);
// Do the mapping for ORC layer based on the allocation.
for (BinarySection *Section : CodeSections) {
LLVM_DEBUG(
dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
<< Twine::utohexstr(Section->getAllocAddress()) << " to 0x"
<< Twine::utohexstr(Section->getOutputAddress()) << '\n');
RTDyld.reassignSectionAddress(Section->getSectionID(),
Section->getOutputAddress());
Section->setOutputFileOffset(
getFileOffsetForAddress(Section->getOutputAddress()));
}
// Check if we need to insert a padding section for hot text.
if (PaddingSize && !opts::UseOldText)
outs() << "BOLT-INFO: padding code to 0x"
<< Twine::utohexstr(NextAvailableAddress)
<< " to accommodate hot text\n";
return;
}
// Processing in non-relocation mode.
uint64_t NewTextSectionStartAddress = NextAvailableAddress;
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (!Function.isEmitted())
continue;
bool TooLarge = false;
ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
assert(FuncSection && "cannot find section for function");
FuncSection->setOutputAddress(Function.getAddress());
LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
<< Twine::utohexstr(FuncSection->getAllocAddress())
<< " to 0x" << Twine::utohexstr(Function.getAddress())
<< '\n');
RTDyld.reassignSectionAddress(FuncSection->getSectionID(),
Function.getAddress());
Function.setImageAddress(FuncSection->getAllocAddress());
Function.setImageSize(FuncSection->getOutputSize());
if (Function.getImageSize() > Function.getMaxSize()) {
TooLarge = true;
FailedAddresses.emplace_back(Function.getAddress());
}
// Map jump tables if updating in-place.
if (opts::JumpTables == JTS_BASIC) {
for (auto &JTI : Function.JumpTables) {
JumpTable *JT = JTI.second;
BinarySection &Section = JT->getOutputSection();
Section.setOutputAddress(JT->getAddress());
Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress()));
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName()
<< " to 0x" << Twine::utohexstr(JT->getAddress())
<< '\n');
RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress());
}
}
if (!Function.isSplit())
continue;
assert(Function.getLayout().isHotColdSplit() &&
"Cannot allocate more than two fragments per function in "
"non-relocation mode.");
FunctionFragment &FF =
Function.getLayout().getFragment(FragmentNum::cold());
ErrorOr<BinarySection &> ColdSection =
Function.getCodeSection(FF.getFragmentNum());
assert(ColdSection && "cannot find section for cold part");
// Cold fragments are aligned at 16 bytes.
NextAvailableAddress = alignTo(NextAvailableAddress, 16);
if (TooLarge) {
// The corresponding FDE will refer to address 0.
FF.setAddress(0);
FF.setImageAddress(0);
FF.setImageSize(0);
FF.setFileOffset(0);
BC->deregisterSection(*ColdSection);
} else {
FF.setAddress(NextAvailableAddress);
FF.setImageAddress(ColdSection->getAllocAddress());
FF.setImageSize(ColdSection->getOutputSize());
FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
ColdSection->setOutputAddress(FF.getAddress());
}
LLVM_DEBUG(
dbgs() << formatv(
"BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
FF.getImageAddress(), FF.getAddress(), FF.getImageSize()));
RTDyld.reassignSectionAddress(ColdSection->getSectionID(), FF.getAddress());
NextAvailableAddress += FF.getImageSize();
}
// Add the new text section aggregating all existing code sections.
// This is pseudo-section that serves a purpose of creating a corresponding
// entry in section header table.
int64_t NewTextSectionSize =
NextAvailableAddress - NewTextSectionStartAddress;
if (NewTextSectionSize) {
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
/*IsText=*/true,
/*IsAllocatable=*/true);
BinarySection &Section =
BC->registerOrUpdateSection(getBOLTTextSectionName(),
ELF::SHT_PROGBITS,
Flags,
/*Data=*/nullptr,
NewTextSectionSize,
16);
Section.setOutputAddress(NewTextSectionStartAddress);
Section.setOutputFileOffset(
getFileOffsetForAddress(NewTextSectionStartAddress));
}
}
void RewriteInstance::mapAllocatableSections(RuntimeDyld &RTDyld) {
// Allocate read-only sections first, then writable sections.
enum : uint8_t { ST_READONLY, ST_READWRITE };
for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) {
for (BinarySection &Section : BC->allocatableSections()) {
if (!Section.hasValidSectionID())
continue;
if (Section.isWritable() == (SType == ST_READONLY))
continue;
if (Section.getOutputAddress()) {
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: section " << Section.getName()
<< " is already mapped at 0x"
<< Twine::utohexstr(Section.getOutputAddress()) << '\n';
});
continue;
}
if (Section.hasSectionRef()) {
LLVM_DEBUG({
dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName()
<< " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n';
});
Section.setOutputAddress(Section.getAddress());
Section.setOutputFileOffset(Section.getInputFileOffset());
RTDyld.reassignSectionAddress(Section.getSectionID(),
Section.getAddress());
} else {
NextAvailableAddress =
alignTo(NextAvailableAddress, Section.getAlignment());
LLVM_DEBUG({
dbgs() << "BOLT: mapping section " << Section.getName() << " (0x"
<< Twine::utohexstr(Section.getAllocAddress()) << ") to 0x"
<< Twine::utohexstr(NextAvailableAddress) << ":0x"
<< Twine::utohexstr(NextAvailableAddress +
Section.getOutputSize())
<< '\n';
});
RTDyld.reassignSectionAddress(Section.getSectionID(),
NextAvailableAddress);
Section.setOutputAddress(NextAvailableAddress);
Section.setOutputFileOffset(
getFileOffsetForAddress(NextAvailableAddress));
NextAvailableAddress += Section.getOutputSize();
}
}
}
}
void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) {
for (BinaryFunction *Function : BC->getAllBinaryFunctions())
Function->updateOutputValues(Layout);
}
void RewriteInstance::patchELFPHDRTable() {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
raw_fd_ostream &OS = Out->os();
// Write/re-write program headers.
Phnum = Obj.getHeader().e_phnum;
if (PHDRTableOffset) {
// Writing new pheader table.
Phnum += 1; // only adding one new segment
// Segment size includes the size of the PHDR area.
NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
} else {
assert(!PHDRTableAddress && "unexpected address for program header table");
// Update existing table.
PHDRTableOffset = Obj.getHeader().e_phoff;
NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
}
OS.seek(PHDRTableOffset);
bool ModdedGnuStack = false;
(void)ModdedGnuStack;
bool AddedSegment = false;
(void)AddedSegment;
auto createNewTextPhdr = [&]() {
ELF64LEPhdrTy NewPhdr;
NewPhdr.p_type = ELF::PT_LOAD;
if (PHDRTableAddress) {
NewPhdr.p_offset = PHDRTableOffset;
NewPhdr.p_vaddr = PHDRTableAddress;
NewPhdr.p_paddr = PHDRTableAddress;
} else {
NewPhdr.p_offset = NewTextSegmentOffset;
NewPhdr.p_vaddr = NewTextSegmentAddress;
NewPhdr.p_paddr = NewTextSegmentAddress;
}
NewPhdr.p_filesz = NewTextSegmentSize;
NewPhdr.p_memsz = NewTextSegmentSize;
NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
// FIXME: Currently instrumentation is experimental and the runtime data
// is emitted with code, thus everything needs to be writable
if (opts::Instrument)
NewPhdr.p_flags |= ELF::PF_W;
NewPhdr.p_align = BC->PageAlign;
return NewPhdr;
};
// Copy existing program headers with modifications.
for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
ELF64LE::Phdr NewPhdr = Phdr;
if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) {
NewPhdr.p_offset = PHDRTableOffset;
NewPhdr.p_vaddr = PHDRTableAddress;
NewPhdr.p_paddr = PHDRTableAddress;
NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
} else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) {
ErrorOr<BinarySection &> EHFrameHdrSec =
BC->getUniqueSectionByName(getNewSecPrefix() + ".eh_frame_hdr");
if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
EHFrameHdrSec->isFinalized()) {
NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
}
} else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) {
NewPhdr = createNewTextPhdr();
ModdedGnuStack = true;
} else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) {
// Insert the new header before DYNAMIC.
ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
OS.write(reinterpret_cast<const char *>(&NewTextPhdr),
sizeof(NewTextPhdr));
AddedSegment = true;
}
OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
}
if (!opts::UseGnuStack && !AddedSegment) {
// Append the new header to the end of the table.
ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr));
}
assert((!opts::UseGnuStack || ModdedGnuStack) &&
"could not find GNU_STACK program header to modify");
}
namespace {
/// Write padding to \p OS such that its current \p Offset becomes aligned
/// at \p Alignment. Return new (aligned) offset.
uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
uint64_t Alignment) {
if (!Alignment)
return Offset;
const uint64_t PaddingSize =
offsetToAlignment(Offset, llvm::Align(Alignment));
for (unsigned I = 0; I < PaddingSize; ++I)
OS.write((unsigned char)0);
return Offset + PaddingSize;
}
}
void RewriteInstance::rewriteNoteSections() {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
raw_fd_ostream &OS = Out->os();
uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
"next available offset calculation failure");
OS.seek(NextAvailableOffset);
// Copy over non-allocatable section contents and update file offsets.
for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
if (Section.sh_flags & ELF::SHF_ALLOC)
continue;
SectionRef SecRef = ELF64LEFile->toSectionRef(&Section);
BinarySection *BSec = BC->getSectionForSectionRef(SecRef);
assert(BSec && !BSec->isAllocatable() &&
"Matching non-allocatable BinarySection should exist.");
StringRef SectionName =
cantFail(Obj.getSectionName(Section), "cannot get section name");
if (shouldStrip(Section, SectionName))
continue;
// Insert padding as needed.
NextAvailableOffset =
appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
// New section size.
uint64_t Size = 0;
bool DataWritten = false;
uint8_t *SectionData = nullptr;
// Copy over section contents unless it's one of the sections we overwrite.
if (!willOverwriteSection(SectionName)) {
Size = Section.sh_size;
StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
std::string Data;
if (BSec->getPatcher()) {
Data = BSec->getPatcher()->patchBinary(Dataref);
Dataref = StringRef(Data);
}
// Section was expanded, so need to treat it as overwrite.
if (Size != Dataref.size()) {
BSec = &BC->registerOrUpdateNoteSection(
SectionName, copyByteArray(Dataref), Dataref.size());
Size = 0;
} else {
OS << Dataref;
DataWritten = true;
// Add padding as the section extension might rely on the alignment.
Size = appendPadding(OS, Size, Section.sh_addralign);
}
}
// Perform section post-processing.
assert(BSec->getAlignment() <= Section.sh_addralign &&
"alignment exceeds value in file");
if (BSec->getAllocAddress()) {
assert(!DataWritten && "Writing section twice.");
(void)DataWritten;
SectionData = BSec->getOutputData();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
<< " contents to section " << SectionName << '\n');
OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize());
Size += BSec->getOutputSize();
}
BSec->setOutputFileOffset(NextAvailableOffset);
BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) {
return getNewValueForSymbol(S->getName());
});
// Set/modify section info.
BinarySection &NewSection = BC->registerOrUpdateNoteSection(
SectionName, SectionData, Size, Section.sh_addralign,
!BSec->isWritable(), BSec->getELFType());
NewSection.setOutputAddress(0);
NewSection.setOutputFileOffset(NextAvailableOffset);
NextAvailableOffset += Size;
}
// Write new note sections.
for (BinarySection &Section : BC->nonAllocatableSections()) {
if (Section.getOutputFileOffset() || !Section.getAllocAddress())
continue;
assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
NextAvailableOffset =
appendPadding(OS, NextAvailableOffset, Section.getAlignment());
Section.setOutputFileOffset(NextAvailableOffset);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
<< " of size " << Section.getOutputSize() << " at offset 0x"
<< Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
OS.write(Section.getOutputContents().data(), Section.getOutputSize());
NextAvailableOffset += Section.getOutputSize();
}
}
template <typename ELFT>
void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
// Pre-populate section header string table.
for (const BinarySection &Section : BC->sections())
if (!Section.isAnonymous())
SHStrTab.add(Section.getOutputName());
SHStrTab.finalize();
const size_t SHStrTabSize = SHStrTab.getSize();
uint8_t *DataCopy = new uint8_t[SHStrTabSize];
memset(DataCopy, 0, SHStrTabSize);
SHStrTab.write(DataCopy);
BC->registerOrUpdateNoteSection(".shstrtab",
DataCopy,
SHStrTabSize,
/*Alignment=*/1,
/*IsReadOnly=*/true,
ELF::SHT_STRTAB);
}
void RewriteInstance::addBoltInfoSection() {
std::string DescStr;
raw_string_ostream DescOS(DescStr);
DescOS << "BOLT revision: " << BoltRevision << ", "
<< "command line:";
for (int I = 0; I < Argc; ++I)
DescOS << " " << Argv[I];
DescOS.flush();
// Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
const std::string BoltInfo =
BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
void RewriteInstance::addBATSection() {
BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
0,
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
void RewriteInstance::encodeBATSection() {
std::string DescStr;
raw_string_ostream DescOS(DescStr);
BAT->write(*BC, DescOS);
DescOS.flush();
const std::string BoltInfo =
BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
copyByteArray(BoltInfo), BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
template <typename ELFShdrTy>
bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
StringRef SectionName) {
// Strip non-allocatable relocation sections.
if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
return true;
// Strip debug sections if not updating them.
if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
return true;
// Strip symtab section if needed
if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
return true;
return false;
}
template <typename ELFT>
std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
std::vector<uint32_t> &NewSectionIndex) {
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
const ELFFile<ELFT> &Obj = File->getELFFile();
typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
// Keep track of section header entries attached to the corresponding section.
std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections;
auto addSection = [&](const ELFShdrTy &Section, BinarySection *BinSec) {
ELFShdrTy NewSection = Section;
NewSection.sh_name = SHStrTab.getOffset(BinSec->getOutputName());
OutputSections.emplace_back(BinSec, std::move(NewSection));
};
// Copy over entries for original allocatable sections using modified name.
for (const ELFShdrTy &Section : Sections) {
// Always ignore this section.
if (Section.sh_type == ELF::SHT_NULL) {
OutputSections.emplace_back(nullptr, Section);
continue;
}
if (!(Section.sh_flags & ELF::SHF_ALLOC))
continue;
SectionRef SecRef = File->toSectionRef(&Section);
BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
assert(BinSec && "Matching BinarySection should exist.");
addSection(Section, BinSec);
}
for (BinarySection &Section : BC->allocatableSections()) {
if (!Section.isFinalized())
continue;
if (Section.hasSectionRef() || Section.isAnonymous()) {
if (opts::Verbosity)
outs() << "BOLT-INFO: not writing section header for section "
<< Section.getOutputName() << '\n';
continue;
}
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: writing section header for "
<< Section.getOutputName() << '\n';
ELFShdrTy NewSection;
NewSection.sh_type = ELF::SHT_PROGBITS;
NewSection.sh_addr = Section.getOutputAddress();
NewSection.sh_offset = Section.getOutputFileOffset();
NewSection.sh_size = Section.getOutputSize();
NewSection.sh_entsize = 0;
NewSection.sh_flags = Section.getELFFlags();
NewSection.sh_link = 0;
NewSection.sh_info = 0;
NewSection.sh_addralign = Section.getAlignment();
addSection(NewSection, &Section);
}
// Sort all allocatable sections by their offset.
llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) {
return A.second.sh_offset < B.second.sh_offset;
});
// Fix section sizes to prevent overlapping.
ELFShdrTy *PrevSection = nullptr;
BinarySection *PrevBinSec = nullptr;
for (auto &SectionKV : OutputSections) {
ELFShdrTy &Section = SectionKV.second;
// TBSS section does not take file or memory space. Ignore it for layout
// purposes.
if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS))
continue;
if (PrevSection &&
PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) {
if (opts::Verbosity > 1)
outs() << "BOLT-INFO: adjusting size for section "
<< PrevBinSec->getOutputName() << '\n';
PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr
? Section.sh_addr - PrevSection->sh_addr
: 0;
}
PrevSection = &Section;
PrevBinSec = SectionKV.first;
}
uint64_t LastFileOffset = 0;
// Copy over entries for non-allocatable sections performing necessary
// adjustments.
for (const ELFShdrTy &Section : Sections) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
if (Section.sh_flags & ELF::SHF_ALLOC)
continue;
StringRef SectionName =
cantFail(Obj.getSectionName(Section), "cannot get section name");
if (shouldStrip(Section, SectionName))
continue;
SectionRef SecRef = File->toSectionRef(&Section);
BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
assert(BinSec && "Matching BinarySection should exist.");
ELFShdrTy NewSection = Section;
NewSection.sh_offset = BinSec->getOutputFileOffset();
NewSection.sh_size = BinSec->getOutputSize();
if (NewSection.sh_type == ELF::SHT_SYMTAB)
NewSection.sh_info = NumLocalSymbols;
addSection(NewSection, BinSec);
LastFileOffset = BinSec->getOutputFileOffset();
}
// Create entries for new non-allocatable sections.
for (BinarySection &Section : BC->nonAllocatableSections()) {
if (Section.getOutputFileOffset() <= LastFileOffset)
continue;
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: writing section header for "
<< Section.getOutputName() << '\n';
ELFShdrTy NewSection;
NewSection.sh_type = Section.getELFType();
NewSection.sh_addr = 0;
NewSection.sh_offset = Section.getOutputFileOffset();
NewSection.sh_size = Section.getOutputSize();
NewSection.sh_entsize = 0;
NewSection.sh_flags = Section.getELFFlags();
NewSection.sh_link = 0;
NewSection.sh_info = 0;
NewSection.sh_addralign = Section.getAlignment();
addSection(NewSection, &Section);
}
// Assign indices to sections.
std::unordered_map<std::string, uint64_t> NameToIndex;
for (uint32_t Index = 1; Index < OutputSections.size(); ++Index)
OutputSections[Index].first->setIndex(Index);
// Update section index mapping
NewSectionIndex.clear();
NewSectionIndex.resize(Sections.size(), 0);
for (const ELFShdrTy &Section : Sections) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
size_t OrgIndex = std::distance(Sections.begin(), &Section);
SectionRef SecRef = File->toSectionRef(&Section);
BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
assert(BinSec && "BinarySection should exist for an input section.");
// Some sections are stripped
if (!BinSec->hasValidIndex())
continue;
NewSectionIndex[OrgIndex] = BinSec->getIndex();
}
std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
llvm::transform(OutputSections, SectionsOnly.begin(),
[](auto &SectionInfo) { return SectionInfo.second; });
return SectionsOnly;
}
// Rewrite section header table inserting new entries as needed. The sections
// header table size itself may affect the offsets of other sections,
// so we are placing it at the end of the binary.
//
// As we rewrite entries we need to track how many sections were inserted
// as it changes the sh_link value. We map old indices to new ones for
// existing sections.
template <typename ELFT>
void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
raw_fd_ostream &OS = Out->os();
const ELFFile<ELFT> &Obj = File->getELFFile();
std::vector<uint32_t> NewSectionIndex;
std::vector<ELFShdrTy> OutputSections =
getOutputSections(File, NewSectionIndex);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n';
);
// Align starting address for section header table.
uint64_t SHTOffset = OS.tell();
SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy));
// Write all section header entries while patching section references.
for (ELFShdrTy &Section : OutputSections) {
Section.sh_link = NewSectionIndex[Section.sh_link];
if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) {
if (Section.sh_info)
Section.sh_info = NewSectionIndex[Section.sh_info];
}
OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
}
// Fix ELF header.
ELFEhdrTy NewEhdr = Obj.getHeader();
if (BC->HasRelocations) {
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
else
NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
"cannot find new address for entry point");
}
NewEhdr.e_phoff = PHDRTableOffset;
NewEhdr.e_phnum = Phnum;
NewEhdr.e_shoff = SHTOffset;
NewEhdr.e_shnum = OutputSections.size();
NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
}
template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
void RewriteInstance::updateELFSymbolTable(
ELFObjectFile<ELFT> *File, bool IsDynSym,
const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
StrTabFuncTy AddToStrTab) {
const ELFFile<ELFT> &Obj = File->getELFFile();
using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
StringRef StringSection =
cantFail(Obj.getStringTableForSymtab(SymTabSection));
unsigned NumHotTextSymsUpdated = 0;
unsigned NumHotDataSymsUpdated = 0;
std::map<const BinaryFunction *, uint64_t> IslandSizes;
auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
auto Itr = IslandSizes.find(&BF);
if (Itr != IslandSizes.end())
return Itr->second;
return IslandSizes[&BF] = BF.estimateConstantIslandSize();
};
// Symbols for the new symbol table.
std::vector<ELFSymTy> Symbols;
auto getNewSectionIndex = [&](uint32_t OldIndex) {
// For dynamic symbol table, the section index could be wrong on the input,
// and its value is ignored by the runtime if it's different from
// SHN_UNDEF and SHN_ABS.
// However, we still need to update dynamic symbol table, so return a
// section index, even though the index is broken.
if (IsDynSym && OldIndex >= NewSectionIndex.size())
return OldIndex;
assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
const uint32_t NewIndex = NewSectionIndex[OldIndex];
// We may have stripped the section that dynsym was referencing due to
// the linker bug. In that case return the old index avoiding marking
// the symbol as undefined.
if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
return OldIndex;
return NewIndex;
};
// Add extra symbols for the function.
//
// Note that addExtraSymbols() could be called multiple times for the same
// function with different FunctionSymbol matching the main function entry
// point.
auto addExtraSymbols = [&](const BinaryFunction &Function,
const ELFSymTy &FunctionSymbol) {
if (Function.isFolded()) {
BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
while (ICFParent->isFolded())
ICFParent = ICFParent->getFoldedIntoFunction();
ELFSymTy ICFSymbol = FunctionSymbol;
SmallVector<char, 256> Buf;
ICFSymbol.st_name =
AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
.concat(".icf.0")
.toStringRef(Buf));
ICFSymbol.st_value = ICFParent->getOutputAddress();
ICFSymbol.st_size = ICFParent->getOutputSize();
ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
Symbols.emplace_back(ICFSymbol);
}
if (Function.isSplit()) {
for (const FunctionFragment &FF :
Function.getLayout().getSplitFragments()) {
if (FF.getAddress()) {
ELFSymTy NewColdSym = FunctionSymbol;
const SmallString<256> SymbolName = formatv(
"{0}.cold.{1}", cantFail(FunctionSymbol.getName(StringSection)),
FF.getFragmentNum().get() - 1);
NewColdSym.st_name = AddToStrTab(SymbolName);
NewColdSym.st_shndx =
Function.getCodeSection(FF.getFragmentNum())->getIndex();
NewColdSym.st_value = FF.getAddress();
NewColdSym.st_size = FF.getImageSize();
NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
Symbols.emplace_back(NewColdSym);
}
}
}
if (Function.hasConstantIsland()) {
uint64_t DataMark = Function.getOutputDataAddress();
uint64_t CISize = getConstantIslandSize(Function);
uint64_t CodeMark = DataMark + CISize;
ELFSymTy DataMarkSym = FunctionSymbol;
DataMarkSym.st_name = AddToStrTab("$d");
DataMarkSym.st_value = DataMark;
DataMarkSym.st_size = 0;
DataMarkSym.setType(ELF::STT_NOTYPE);
DataMarkSym.setBinding(ELF::STB_LOCAL);
ELFSymTy CodeMarkSym = DataMarkSym;
CodeMarkSym.st_name = AddToStrTab("$x");
CodeMarkSym.st_value = CodeMark;
Symbols.emplace_back(DataMarkSym);
Symbols.emplace_back(CodeMarkSym);
}
if (Function.hasConstantIsland() && Function.isSplit()) {
uint64_t DataMark = Function.getOutputColdDataAddress();
uint64_t CISize = getConstantIslandSize(Function);
uint64_t CodeMark = DataMark + CISize;
ELFSymTy DataMarkSym = FunctionSymbol;
DataMarkSym.st_name = AddToStrTab("$d");
DataMarkSym.st_value = DataMark;
DataMarkSym.st_size = 0;
DataMarkSym.setType(ELF::STT_NOTYPE);
DataMarkSym.setBinding(ELF::STB_LOCAL);
ELFSymTy CodeMarkSym = DataMarkSym;
CodeMarkSym.st_name = AddToStrTab("$x");
CodeMarkSym.st_value = CodeMark;
Symbols.emplace_back(DataMarkSym);
Symbols.emplace_back(CodeMarkSym);
}
};
// For regular (non-dynamic) symbol table, exclude symbols referring
// to non-allocatable sections.
auto shouldStrip = [&](const ELFSymTy &Symbol) {
if (Symbol.isAbsolute() || !Symbol.isDefined())
return false;
// If we cannot link the symbol to a section, leave it as is.
Expected<const typename ELFT::Shdr *> Section =
Obj.getSection(Symbol.st_shndx);
if (!Section)
return false;
// Remove the section symbol iif the corresponding section was stripped.
if (Symbol.getType() == ELF::STT_SECTION) {
if (!getNewSectionIndex(Symbol.st_shndx))
return true;
return false;
}
// Symbols in non-allocatable sections are typically remnants of relocations
// emitted under "-emit-relocs" linker option. Delete those as we delete
// relocations against non-allocatable sections.
if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
return true;
return false;
};
for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
// For regular (non-dynamic) symbol table strip unneeded symbols.
if (!IsDynSym && shouldStrip(Symbol))
continue;
const BinaryFunction *Function =
BC->getBinaryFunctionAtAddress(Symbol.st_value);
// Ignore false function references, e.g. when the section address matches
// the address of the function.
if (Function && Symbol.getType() == ELF::STT_SECTION)
Function = nullptr;
// For non-dynamic symtab, make sure the symbol section matches that of
// the function. It can mismatch e.g. if the symbol is a section marker
// in which case we treat the symbol separately from the function.
// For dynamic symbol table, the section index could be wrong on the input,
// and its value is ignored by the runtime if it's different from
// SHN_UNDEF and SHN_ABS.
if (!IsDynSym && Function &&
Symbol.st_shndx !=
Function->getOriginSection()->getSectionRef().getIndex())
Function = nullptr;
// Create a new symbol based on the existing symbol.
ELFSymTy NewSymbol = Symbol;
if (Function) {
// If the symbol matched a function that was not emitted, update the
// corresponding section index but otherwise leave it unchanged.
if (Function->isEmitted()) {
NewSymbol.st_value = Function->getOutputAddress();
NewSymbol.st_size = Function->getOutputSize();
NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
} else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
}
// Add new symbols to the symbol table if necessary.
if (!IsDynSym)
addExtraSymbols(*Function, NewSymbol);
} else {
// Check if the function symbol matches address inside a function, i.e.
// it marks a secondary entry point.
Function =
(Symbol.getType() == ELF::STT_FUNC)
? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
/*CheckPastEnd=*/false,
/*UseMaxSize=*/true)
: nullptr;
if (Function && Function->isEmitted()) {
assert(Function->getLayout().isHotColdSplit() &&
"Adding symbols based on cold fragment when there are more than "
"2 fragments");
const uint64_t OutputAddress =
Function->translateInputToOutputAddress(Symbol.st_value);
NewSymbol.st_value = OutputAddress;
// Force secondary entry points to have zero size.
NewSymbol.st_size = 0;
// Find fragment containing entrypoint
FunctionLayout::fragment_const_iterator FF = llvm::find_if(
Function->getLayout().fragments(), [&](const FunctionFragment &FF) {
uint64_t Lo = FF.getAddress();
uint64_t Hi = Lo + FF.getImageSize();
return Lo <= OutputAddress && OutputAddress < Hi;
});
if (FF == Function->getLayout().fragment_end()) {
assert(
OutputAddress >= Function->getCodeSection()->getOutputAddress() &&
OutputAddress < (Function->getCodeSection()->getOutputAddress() +
Function->getCodeSection()->getOutputSize()) &&
"Cannot locate fragment containg secondary entrypoint");
FF = Function->getLayout().fragment_begin();
}
NewSymbol.st_shndx =
Function->getCodeSection(FF->getFragmentNum())->getIndex();
} else {
// Check if the symbol belongs to moved data object and update it.
BinaryData *BD = opts::ReorderData.empty()
? nullptr
: BC->getBinaryDataAtAddress(Symbol.st_value);
if (BD && BD->isMoved() && !BD->isJumpTable()) {
assert((!BD->getSize() || !Symbol.st_size ||
Symbol.st_size == BD->getSize()) &&
"sizes must match");
BinarySection &OutputSection = BD->getOutputSection();
assert(OutputSection.getIndex());
LLVM_DEBUG(dbgs()
<< "BOLT-DEBUG: moving " << BD->getName() << " from "
<< *BC->getSectionNameForAddress(Symbol.st_value) << " ("
<< Symbol.st_shndx << ") to " << OutputSection.getName()
<< " (" << OutputSection.getIndex() << ")\n");
NewSymbol.st_shndx = OutputSection.getIndex();
NewSymbol.st_value = BD->getOutputAddress();
} else {
// Otherwise just update the section for the symbol.
if (Symbol.st_shndx < ELF::SHN_LORESERVE)
NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
}
// Detect local syms in the text section that we didn't update
// and that were preserved by the linker to support relocations against
// .text. Remove them from the symtab.
if (Symbol.getType() == ELF::STT_NOTYPE &&
Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
/*CheckPastEnd=*/false,
/*UseMaxSize=*/true)) {
// Can only delete the symbol if not patching. Such symbols should
// not exist in the dynamic symbol table.
assert(!IsDynSym && "cannot delete symbol");
continue;
}
}
}
}
// Handle special symbols based on their name.
Expected<StringRef> SymbolName = Symbol.getName(StringSection);
assert(SymbolName && "cannot get symbol name");
auto updateSymbolValue = [&](const StringRef Name,
std::optional<uint64_t> Value = std::nullopt) {
NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name);
NewSymbol.st_shndx = ELF::SHN_ABS;
outs() << "BOLT-INFO: setting " << Name << " to 0x"
<< Twine::utohexstr(NewSymbol.st_value) << '\n';
};
if (opts::HotText &&
(*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) {
updateSymbolValue(*SymbolName);
++NumHotTextSymsUpdated;
}
if (opts::HotData && (*SymbolName == "__hot_data_start" ||
*SymbolName == "__hot_data_end")) {
updateSymbolValue(*SymbolName);
++NumHotDataSymsUpdated;
}
if (*SymbolName == "_end")
updateSymbolValue(*SymbolName, NextAvailableAddress);
if (IsDynSym)
Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
sizeof(ELFSymTy),
NewSymbol);
else
Symbols.emplace_back(NewSymbol);
}
if (IsDynSym) {
assert(Symbols.empty());
return;
}
// Add symbols of injected functions
for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
ELFSymTy NewSymbol;
BinarySection *OriginSection = Function->getOriginSection();
NewSymbol.st_shndx =
OriginSection
? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
: Function->getCodeSection()->getIndex();
NewSymbol.st_value = Function->getOutputAddress();
NewSymbol.st_name = AddToStrTab(Function->getOneName());
NewSymbol.st_size = Function->getOutputSize();
NewSymbol.st_other = 0;
NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
Symbols.emplace_back(NewSymbol);
if (Function->isSplit()) {
assert(Function->getLayout().isHotColdSplit() &&
"Adding symbols based on cold fragment when there are more than "
"2 fragments");
ELFSymTy NewColdSym = NewSymbol;
NewColdSym.setType(ELF::STT_NOTYPE);
SmallVector<char, 256> Buf;
NewColdSym.st_name = AddToStrTab(
Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
const FunctionFragment &ColdFF =
Function->getLayout().getFragment(FragmentNum::cold());
NewColdSym.st_value = ColdFF.getAddress();
NewColdSym.st_size = ColdFF.getImageSize();
Symbols.emplace_back(NewColdSym);
}
}
assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
"either none or both __hot_start/__hot_end symbols were expected");
assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
"either none or both __hot_data_start/__hot_data_end symbols were "
"expected");
auto addSymbol = [&](const std::string &Name) {
ELFSymTy Symbol;
Symbol.st_value = getNewValueForSymbol(Name);
Symbol.st_shndx = ELF::SHN_ABS;
Symbol.st_name = AddToStrTab(Name);
Symbol.st_size = 0;
Symbol.st_other = 0;
Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
outs() << "BOLT-INFO: setting " << Name << " to 0x"
<< Twine::utohexstr(Symbol.st_value) << '\n';
Symbols.emplace_back(Symbol);
};
if (opts::HotText && !NumHotTextSymsUpdated) {
addSymbol("__hot_start");
addSymbol("__hot_end");
}
if (opts::HotData && !NumHotDataSymsUpdated) {
addSymbol("__hot_data_start");
addSymbol("__hot_data_end");
}
// Put local symbols at the beginning.
llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) {
if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL)
return true;
return false;
});
for (const ELFSymTy &Symbol : Symbols)
Write(0, Symbol);
}
template <typename ELFT>
void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
const ELFFile<ELFT> &Obj = File->getELFFile();
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
// Compute a preview of how section indices will change after rewriting, so
// we can properly update the symbol table based on new section indices.
std::vector<uint32_t> NewSectionIndex;
getOutputSections(File, NewSectionIndex);
// Set pointer at the end of the output file, so we can pwrite old symbol
// tables if we need to.
uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
"next available offset calculation failure");
Out->os().seek(NextAvailableOffset);
// Update dynamic symbol table.
const ELFShdrTy *DynSymSection = nullptr;
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
if (Section.sh_type == ELF::SHT_DYNSYM) {
DynSymSection = &Section;
break;
}
}
assert((DynSymSection || BC->IsStaticExecutable) &&
"dynamic symbol table expected");
if (DynSymSection) {
updateELFSymbolTable(
File,
/*IsDynSym=*/true,
*DynSymSection,
NewSectionIndex,
[&](size_t Offset, const ELFSymTy &Sym) {
Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
sizeof(ELFSymTy),
DynSymSection->sh_offset + Offset);
},
[](StringRef) -> size_t { return 0; });
}
if (opts::RemoveSymtab)
return;
// (re)create regular symbol table.
const ELFShdrTy *SymTabSection = nullptr;
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
if (Section.sh_type == ELF::SHT_SYMTAB) {
SymTabSection = &Section;
break;
}
}
if (!SymTabSection) {
errs() << "BOLT-WARNING: no symbol table found\n";
return;
}
const ELFShdrTy *StrTabSection =
cantFail(Obj.getSection(SymTabSection->sh_link));
std::string NewContents;
std::string NewStrTab = std::string(
File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
NumLocalSymbols = 0;
updateELFSymbolTable(
File,
/*IsDynSym=*/false,
*SymTabSection,
NewSectionIndex,
[&](size_t Offset, const ELFSymTy &Sym) {
if (Sym.getBinding() == ELF::STB_LOCAL)
++NumLocalSymbols;
NewContents.append(reinterpret_cast<const char *>(&Sym),
sizeof(ELFSymTy));
},
[&](StringRef Str) {
size_t Idx = NewStrTab.size();
NewStrTab.append(NameResolver::restore(Str).str());
NewStrTab.append(1, '\0');
return Idx;
});
BC->registerOrUpdateNoteSection(SecName,
copyByteArray(NewContents),
NewContents.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true,
ELF::SHT_SYMTAB);
BC->registerOrUpdateNoteSection(StrSecName,
copyByteArray(NewStrTab),
NewStrTab.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true,
ELF::SHT_STRTAB);
}
template <typename ELFT>
void
RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
using Elf_Rela = typename ELFT::Rela;
raw_fd_ostream &OS = Out->os();
const ELFFile<ELFT> &EF = File->getELFFile();
uint64_t RelDynOffset = 0, RelDynEndOffset = 0;
uint64_t RelPltOffset = 0, RelPltEndOffset = 0;
auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start,
uint64_t &End) {
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
Start = Section->getInputFileOffset();
End = Start + Section->getSize();
};
if (!DynamicRelocationsAddress && !PLTRelocationsAddress)
return;
if (DynamicRelocationsAddress)
setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset,
RelDynEndOffset);
if (PLTRelocationsAddress)
setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset,
RelPltEndOffset);
DynamicRelativeRelocationsCount = 0;
auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) {
OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset);
Offset += sizeof(*RelA);
};
auto writeRelocations = [&](bool PatchRelative) {
for (BinarySection &Section : BC->allocatableSections()) {
for (const Relocation &Rel : Section.dynamicRelocations()) {
const bool IsRelative = Rel.isRelative();
if (PatchRelative != IsRelative)
continue;
if (IsRelative)
++DynamicRelativeRelocationsCount;
Elf_Rela NewRelA;
uint64_t SectionAddress = Section.getOutputAddress();
SectionAddress =
SectionAddress == 0 ? Section.getAddress() : SectionAddress;
MCSymbol *Symbol = Rel.Symbol;
uint32_t SymbolIdx = 0;
uint64_t Addend = Rel.Addend;
if (Rel.Symbol) {
SymbolIdx = getOutputDynamicSymbolIndex(Symbol);
} else {
// Usually this case is used for R_*_(I)RELATIVE relocations
const uint64_t Address = getNewFunctionOrDataAddress(Addend);
if (Address)
Addend = Address;
}
NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL());
NewRelA.r_offset = SectionAddress + Rel.Offset;
NewRelA.r_addend = Addend;
const bool IsJmpRel =
!!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end());
uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset;
const uint64_t &EndOffset =
IsJmpRel ? RelPltEndOffset : RelDynEndOffset;
if (!Offset || !EndOffset) {
errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
exit(1);
}
if (Offset + sizeof(NewRelA) > EndOffset) {
errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
exit(1);
}
writeRela(&NewRelA, Offset);
}
}
};
// The dynamic linker expects R_*_RELATIVE relocations to be emitted first
writeRelocations(/* PatchRelative */ true);
writeRelocations(/* PatchRelative */ false);
auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) {
if (!Offset)
return;
typename ELFObjectFile<ELFT>::Elf_Rela RelA;
RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL());
RelA.r_offset = 0;
RelA.r_addend = 0;
while (Offset < EndOffset)
writeRela(&RelA, Offset);
assert(Offset == EndOffset && "Unexpected section overflow");
};
// Fill the rest of the sections with R_*_NONE relocations
fillNone(RelDynOffset, RelDynEndOffset);
fillNone(RelPltOffset, RelPltEndOffset);
}
template <typename ELFT>
void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
raw_fd_ostream &OS = Out->os();
SectionRef GOTSection;
for (const SectionRef &Section : File->sections()) {
StringRef SectionName = cantFail(Section.getName());
if (SectionName == ".got") {
GOTSection = Section;
break;
}
}
if (!GOTSection.getObject()) {
if (!BC->IsStaticExecutable)
errs() << "BOLT-INFO: no .got section found\n";
return;
}
StringRef GOTContents = cantFail(GOTSection.getContents());
for (const uint64_t *GOTEntry =
reinterpret_cast<const uint64_t *>(GOTContents.data());
GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
GOTContents.size());
++GOTEntry) {
if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
<< Twine::utohexstr(*GOTEntry) << " with 0x"
<< Twine::utohexstr(NewAddress) << '\n');
OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
reinterpret_cast<const char *>(GOTEntry) -
File->getData().data());
}
}
}
template <typename ELFT>
void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
if (BC->IsStaticExecutable)
return;
const ELFFile<ELFT> &Obj = File->getELFFile();
raw_fd_ostream &OS = Out->os();
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
// Locate DYNAMIC by looking through program headers.
uint64_t DynamicOffset = 0;
const Elf_Phdr *DynamicPhdr = nullptr;
for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
if (Phdr.p_type == ELF::PT_DYNAMIC) {
DynamicOffset = Phdr.p_offset;
DynamicPhdr = &Phdr;
assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
break;
}
}
assert(DynamicPhdr && "missing dynamic in ELF binary");
bool ZNowSet = false;
// Go through all dynamic entries and patch functions addresses with
// new ones.
typename ELFT::DynRange DynamicEntries =
cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
auto DTB = DynamicEntries.begin();
for (const Elf_Dyn &Dyn : DynamicEntries) {
Elf_Dyn NewDE = Dyn;
bool ShouldPatch = true;
switch (Dyn.d_tag) {
default:
ShouldPatch = false;
break;
case ELF::DT_RELACOUNT:
NewDE.d_un.d_val = DynamicRelativeRelocationsCount;
break;
case ELF::DT_INIT:
case ELF::DT_FINI: {
if (BC->HasRelocations) {
if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
<< Dyn.getTag() << '\n');
NewDE.d_un.d_ptr = NewAddress;
}
}
RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
NewDE.d_un.d_ptr = Addr;
}
if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
<< Twine::utohexstr(Addr) << '\n');
NewDE.d_un.d_ptr = Addr;
}
}
break;
}
case ELF::DT_FLAGS:
if (BC->RequiresZNow) {
NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
ZNowSet = true;
}
break;
case ELF::DT_FLAGS_1:
if (BC->RequiresZNow) {
NewDE.d_un.d_val |= ELF::DF_1_NOW;
ZNowSet = true;
}
break;
}
if (ShouldPatch)
OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
}
if (BC->RequiresZNow && !ZNowSet) {
errs() << "BOLT-ERROR: output binary requires immediate relocation "
"processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
".dynamic. Please re-link the binary with -znow.\n";
exit(1);
}
}
template <typename ELFT>
Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
const ELFFile<ELFT> &Obj = File->getELFFile();
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
// Locate DYNAMIC by looking through program headers.
const Elf_Phdr *DynamicPhdr = nullptr;
for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
if (Phdr.p_type == ELF::PT_DYNAMIC) {
DynamicPhdr = &Phdr;
break;
}
}
if (!DynamicPhdr) {
outs() << "BOLT-INFO: static input executable detected\n";
// TODO: static PIE executable might have dynamic header
BC->IsStaticExecutable = true;
return Error::success();
}
if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz)
return createStringError(errc::executable_format_error,
"dynamic section sizes should match");
// Go through all dynamic entries to locate entries of interest.
auto DynamicEntriesOrErr = Obj.dynamicEntries();
if (!DynamicEntriesOrErr)
return DynamicEntriesOrErr.takeError();
typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get();
for (const Elf_Dyn &Dyn : DynamicEntries) {
switch (Dyn.d_tag) {
case ELF::DT_INIT:
if (!BC->HasInterpHeader) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
BC->StartFunctionAddress = Dyn.getPtr();
}
break;
case ELF::DT_FINI:
BC->FiniFunctionAddress = Dyn.getPtr();
break;
case ELF::DT_RELA:
DynamicRelocationsAddress = Dyn.getPtr();
break;
case ELF::DT_RELASZ:
DynamicRelocationsSize = Dyn.getVal();
break;
case ELF::DT_JMPREL:
PLTRelocationsAddress = Dyn.getPtr();
break;
case ELF::DT_PLTRELSZ:
PLTRelocationsSize = Dyn.getVal();
break;
case ELF::DT_RELACOUNT:
DynamicRelativeRelocationsCount = Dyn.getVal();
break;
}
}
if (!DynamicRelocationsAddress || !DynamicRelocationsSize) {
DynamicRelocationsAddress.reset();
DynamicRelocationsSize = 0;
}
if (!PLTRelocationsAddress || !PLTRelocationsSize) {
PLTRelocationsAddress.reset();
PLTRelocationsSize = 0;
}
return Error::success();
}
uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
if (!Function)
return 0;
return Function->getOutputAddress();
}
uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) {
if (uint64_t Function = getNewFunctionAddress(OldAddress))
return Function;
const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress);
if (BD && BD->isMoved())
return BD->getOutputAddress();
return 0;
}
void RewriteInstance::rewriteFile() {
std::error_code EC;
Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
sys::fs::OF_None);
check_error(EC, "cannot create output executable file");
raw_fd_ostream &OS = Out->os();
// Copy allocatable part of the input.
OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
// We obtain an asm-specific writer so that we can emit nops in an
// architecture-specific way at the end of the function.
std::unique_ptr<MCAsmBackend> MAB(
BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions()));
auto Streamer = BC->createStreamer(OS);
// Make sure output stream has enough reserved space, otherwise
// pwrite() will fail.
uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress));
(void)Offset;
assert(Offset == getFileOffsetForAddress(NextAvailableAddress) &&
"error resizing output file");
// Overwrite functions with fixed output address. This is mostly used by
// non-relocation mode, with one exception: injected functions are covered
// here in both modes.
uint64_t CountOverwrittenFunctions = 0;
uint64_t OverwrittenScore = 0;
for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
continue;
if (Function->getImageSize() > Function->getMaxSize()) {
if (opts::Verbosity >= 1)
errs() << "BOLT-WARNING: new function size (0x"
<< Twine::utohexstr(Function->getImageSize())
<< ") is larger than maximum allowed size (0x"
<< Twine::utohexstr(Function->getMaxSize()) << ") for function "
<< *Function << '\n';
// Remove jump table sections that this function owns in non-reloc mode
// because we don't want to write them anymore.
if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) {
for (auto &JTI : Function->JumpTables) {
JumpTable *JT = JTI.second;
BinarySection &Section = JT->getOutputSection();
BC->deregisterSection(Section);
}
}
continue;
}
const auto HasAddress = [](const FunctionFragment &FF) {
return FF.empty() ||
(FF.getImageAddress() != 0 && FF.getImageSize() != 0);
};
const bool SplitFragmentsHaveAddress =
llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress);
if (Function->isSplit() && !SplitFragmentsHaveAddress) {
const auto HasNoAddress = [](const FunctionFragment &FF) {
return FF.getImageAddress() == 0 && FF.getImageSize() == 0;
};
assert(llvm::all_of(Function->getLayout().getSplitFragments(),
HasNoAddress) &&
"Some split fragments have an address while others do not");
(void)HasNoAddress;
continue;
}
OverwrittenScore += Function->getFunctionScore();
// Overwrite function in the output file.
if (opts::Verbosity >= 2)
outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
Function->getImageSize(), Function->getFileOffset());
// Write nops at the end of the function.
if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
uint64_t Pos = OS.tell();
OS.seek(Function->getFileOffset() + Function->getImageSize());
MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(),
&*BC->STI);
OS.seek(Pos);
}
if (!Function->isSplit()) {
++CountOverwrittenFunctions;
if (opts::MaxFunctions &&
CountOverwrittenFunctions == opts::MaxFunctions) {
outs() << "BOLT: maximum number of functions reached\n";
break;
}
continue;
}
// Write cold part
if (opts::Verbosity >= 2)
outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
*Function);
for (const FunctionFragment &FF :
Function->getLayout().getSplitFragments()) {
OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()),
FF.getImageSize(), FF.getFileOffset());
}
++CountOverwrittenFunctions;
if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) {
outs() << "BOLT: maximum number of functions reached\n";
break;
}
}
// Print function statistics for non-relocation mode.
if (!BC->HasRelocations) {
outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
<< BC->getBinaryFunctions().size()
<< " functions were overwritten.\n";
if (BC->TotalScore != 0) {
double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage)
<< "% of the execution count of simple functions of "
"this binary\n";
}
}
if (BC->HasRelocations && opts::TrapOldCode) {
uint64_t SavedPos = OS.tell();
// Overwrite function body to make sure we never execute these instructions.
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &BF = BFI.second;
if (!BF.getFileOffset() || !BF.isEmitted())
continue;
OS.seek(BF.getFileOffset());
for (unsigned I = 0; I < BF.getMaxSize(); ++I)
OS.write((unsigned char)BC->MIB->getTrapFillValue());
}
OS.seek(SavedPos);
}
// Write all allocatable sections - reloc-mode text is written here as well
for (BinarySection &Section : BC->allocatableSections()) {
if (!Section.isFinalized() || !Section.getOutputData())
continue;
if (opts::Verbosity >= 1)
outs() << "BOLT: writing new section " << Section.getName()
<< "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress())
<< "\n of size " << Section.getOutputSize() << "\n at offset "
<< Section.getOutputFileOffset() << '\n';
OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()),
Section.getOutputSize(), Section.getOutputFileOffset());
}
for (BinarySection &Section : BC->allocatableSections())
Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
return getNewValueForSymbol(S->getName());
});
// If .eh_frame is present create .eh_frame_hdr.
if (EHFrameSection)
writeEHFrameHeader();
// Add BOLT Addresses Translation maps to allow profile collection to
// happen in the output binary
if (opts::EnableBAT)
addBATSection();
// Patch program header table.
patchELFPHDRTable();
// Finalize memory image of section string table.
finalizeSectionStringTable();
// Update symbol tables.
patchELFSymTabs();
patchBuildID();
if (opts::EnableBAT)
encodeBATSection();
// Copy non-allocatable sections once allocatable part is finished.
rewriteNoteSections();
if (BC->HasRelocations) {
patchELFAllocatableRelaSections();
patchELFGOT();
}
// Patch dynamic section/segment.
patchELFDynamic();
// Update ELF book-keeping info.
patchELFSectionHeaderTable();
if (opts::PrintSections) {
outs() << "BOLT-INFO: Sections after processing:\n";
BC->printSections(outs());
}
Out->keep();
EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all);
check_error(EC, "cannot set permissions of output file");
}
void RewriteInstance::writeEHFrameHeader() {
BinarySection *NewEHFrameSection =
getSection(getNewSecPrefix() + getEHFrameSectionName());
// No need to update the header if no new .eh_frame was created.
if (!NewEHFrameSection)
return;
DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
NewEHFrameSection->getOutputAddress());
Error E = NewEHFrame.parse(DWARFDataExtractor(
NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize()));
check_error(std::move(E), "failed to parse EH frame");
uint64_t RelocatedEHFrameAddress = 0;
StringRef RelocatedEHFrameContents;
BinarySection *RelocatedEHFrameSection =
getSection(".relocated" + getEHFrameSectionName());
if (RelocatedEHFrameSection) {
RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress();
RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents();
}
DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true,
RelocatedEHFrameAddress);
Error Er = RelocatedEHFrame.parse(DWARFDataExtractor(
RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize()));
check_error(std::move(Er), "failed to parse EH frame");
LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
NextAvailableAddress =
appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress;
const uint64_t EHFrameHdrFileOffset =
getFileOffsetForAddress(NextAvailableAddress);
std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses);
assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch");
Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
/*IsText=*/false,
/*IsAllocatable=*/true);
BinarySection *OldEHFrameHdrSection = getSection(".eh_frame_hdr");
if (OldEHFrameHdrSection)
OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() + ".eh_frame_hdr");
BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
getNewSecPrefix() + ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr,
NewEHFrameHdr.size(), /*Alignment=*/1);
EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
EHFrameHdrSec.setOutputName(".eh_frame_hdr");
NextAvailableAddress += EHFrameHdrSec.getOutputSize();
// Merge new .eh_frame with the relocated original so that gdb can locate all
// FDEs.
if (RelocatedEHFrameSection) {
const uint64_t NewEHFrameSectionSize =
RelocatedEHFrameSection->getOutputAddress() +
RelocatedEHFrameSection->getOutputSize() -
NewEHFrameSection->getOutputAddress();
NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(),
NewEHFrameSectionSize);
BC->deregisterSection(*RelocatedEHFrameSection);
}
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
<< NewEHFrameSection->getOutputSize() << '\n');
}
uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
uint64_t Value = RTDyld->getSymbol(Name).getAddress();
if (Value != 0)
return Value;
// Return the original value if we haven't emitted the symbol.
BinaryData *BD = BC->getBinaryDataByName(Name);
if (!BD)
return 0;
return BD->getAddress();
}
uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
// Check if it's possibly part of the new segment.
if (Address >= NewTextSegmentAddress)
return Address - NewTextSegmentAddress + NewTextSegmentOffset;
// Find an existing segment that matches the address.
const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
if (SegmentInfoI == BC->SegmentMapInfo.begin())
return 0;
const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
if (Address < SegmentInfo.Address ||
Address >= SegmentInfo.Address + SegmentInfo.FileSize)
return 0;
return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
}
bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
for (const char *const &OverwriteName : SectionsToOverwrite)
if (SectionName == OverwriteName)
return true;
for (std::string &OverwriteName : DebugSectionsToOverwrite)
if (SectionName == OverwriteName)
return true;
ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
return Section && Section->isAllocatable() && Section->isFinalized();
}
bool RewriteInstance::isDebugSection(StringRef SectionName) {
if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") ||
SectionName == ".gdb_index" || SectionName == ".stab" ||
SectionName == ".stabstr")
return true;
return false;
}
bool RewriteInstance::isKSymtabSection(StringRef SectionName) {
if (SectionName.startswith("__ksymtab"))
return true;
return false;
}