blob: 25b2fad25b3e793204ded5a54a137f57eab732be [file] [log] [blame]
//===- bolt/Rewrite/BoltDiff.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RewriteInstance methods related to comparing one instance to another, used
// by the boltdiff tool to print a report.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/IdenticalCodeFolding.h"
#include "bolt/Profile/ProfileReaderBase.h"
#include "bolt/Rewrite/RewriteInstance.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#undef DEBUG_TYPE
#define DEBUG_TYPE "boltdiff"
using namespace llvm;
using namespace object;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltDiffCategory;
extern cl::opt<bool> NeverPrint;
extern cl::opt<bool> ICF;
static cl::opt<bool> IgnoreLTOSuffix(
"ignore-lto-suffix",
cl::desc("ignore lto_priv or const suffixes when matching functions"),
cl::init(true), cl::cat(BoltDiffCategory));
static cl::opt<bool> PrintUnmapped(
"print-unmapped",
cl::desc("print functions of binary 2 that were not matched to any "
"function in binary 1"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> PrintProfiledUnmapped(
"print-profiled-unmapped",
cl::desc("print functions that have profile in binary 1 but do not "
"in binary 2"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> PrintDiffCFG(
"print-diff-cfg",
cl::desc("print the CFG of important functions that changed in "
"binary 2"),
cl::cat(BoltDiffCategory));
static cl::opt<bool>
PrintDiffBBs("print-diff-bbs",
cl::desc("print the basic blocks showed in top differences"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> MatchByHash(
"match-by-hash",
cl::desc("match functions in binary 2 to binary 1 if they have the same "
"hash of a function in binary 1"),
cl::cat(BoltDiffCategory));
static cl::opt<bool> IgnoreUnchanged(
"ignore-unchanged",
cl::desc("do not diff functions whose contents have not been changed from "
"one binary to another"),
cl::cat(BoltDiffCategory));
static cl::opt<unsigned> DisplayCount(
"display-count",
cl::desc("number of functions to display when printing the top largest "
"differences in function activity"),
cl::init(10), cl::cat(BoltDiffCategory));
static cl::opt<bool> NormalizeByBin1(
"normalize-by-bin1",
cl::desc("show execution count of functions in binary 2 as a ratio of the "
"total samples in binary 1 - make sure both profiles have equal "
"collection time and sampling rate for this to make sense"),
cl::cat(BoltDiffCategory));
} // end namespace opts
namespace llvm {
namespace bolt {
namespace {
/// Helper used to print colored numbers
void printColoredPercentage(double Perc) {
if (outs().has_colors() && Perc > 0.0)
outs().changeColor(raw_ostream::RED);
else if (outs().has_colors() && Perc < 0.0)
outs().changeColor(raw_ostream::GREEN);
else if (outs().has_colors())
outs().changeColor(raw_ostream::YELLOW);
outs() << format("%.2f", Perc) << "%";
if (outs().has_colors())
outs().resetColor();
}
void setLightColor() {
if (opts::PrintDiffBBs && outs().has_colors())
outs().changeColor(raw_ostream::CYAN);
}
void setTitleColor() {
if (outs().has_colors())
outs().changeColor(raw_ostream::WHITE, /*Bold=*/true);
}
void setRegularColor() {
if (outs().has_colors())
outs().resetColor();
}
} // end anonymous namespace
/// Perform the comparison between two binaries with profiling information
class RewriteInstanceDiff {
typedef std::tuple<const BinaryBasicBlock *, const BinaryBasicBlock *, double>
EdgeTy;
RewriteInstance &RI1;
RewriteInstance &RI2;
// The map of functions keyed by functions in binary 2, providing its
// corresponding function in binary 1
std::map<const BinaryFunction *, const BinaryFunction *> FuncMap;
// The map of basic blocks correspondence, analogue to FuncMap for BBs,
// sorted by score difference
std::map<const BinaryBasicBlock *, const BinaryBasicBlock *> BBMap;
// The map of edge correspondence
std::map<double, std::pair<EdgeTy, EdgeTy>> EdgeMap;
// Maps all known basic blocks back to their parent function
std::map<const BinaryBasicBlock *, const BinaryFunction *> BBToFuncMap;
// Accounting which functions were matched
std::set<const BinaryFunction *> Bin1MappedFuncs;
std::set<const BinaryFunction *> Bin2MappedFuncs;
// Structures for our 3 matching strategies: by name, by hash and by lto name,
// from the strongest to the weakest bind between two functions
StringMap<const BinaryFunction *> NameLookup;
DenseMap<size_t, const BinaryFunction *> HashLookup;
StringMap<const BinaryFunction *> LTONameLookup1;
StringMap<const BinaryFunction *> LTONameLookup2;
// Score maps used to order and find hottest functions
std::multimap<double, const BinaryFunction *> LargestBin1;
std::multimap<double, const BinaryFunction *> LargestBin2;
// Map multiple functions in the same LTO bucket to a single parent function
// representing all functions sharing the same prefix
std::map<const BinaryFunction *, const BinaryFunction *> LTOMap1;
std::map<const BinaryFunction *, const BinaryFunction *> LTOMap2;
std::map<const BinaryFunction *, double> LTOAggregatedScore1;
std::map<const BinaryFunction *, double> LTOAggregatedScore2;
// Map scores in bin2 and 1 keyed by a binary 2 function - post-matching
DenseMap<const BinaryFunction *, std::pair<double, double>> ScoreMap;
double getNormalizedScore(const BinaryFunction &Function,
const RewriteInstance &Ctx) {
if (!opts::NormalizeByBin1)
return static_cast<double>(Function.getFunctionScore()) /
Ctx.getTotalScore();
return static_cast<double>(Function.getFunctionScore()) /
RI1.getTotalScore();
}
double getNormalizedScore(const BinaryBasicBlock &BB,
const RewriteInstance &Ctx) {
if (!opts::NormalizeByBin1)
return static_cast<double>(BB.getKnownExecutionCount()) /
Ctx.getTotalScore();
return static_cast<double>(BB.getKnownExecutionCount()) /
RI1.getTotalScore();
}
double getNormalizedScore(BinaryBasicBlock::const_branch_info_iterator BIIter,
const RewriteInstance &Ctx) {
double Score =
BIIter->Count == BinaryBasicBlock::COUNT_NO_PROFILE ? 0 : BIIter->Count;
if (!opts::NormalizeByBin1)
return Score / Ctx.getTotalScore();
return Score / RI1.getTotalScore();
}
/// Initialize data structures used for function lookup in binary 1, used
/// later when matching functions in binary 2 to corresponding functions
/// in binary 1
void buildLookupMaps() {
for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
StringRef LTOName;
const BinaryFunction &Function = BFI.second;
const double Score = getNormalizedScore(Function, RI1);
LargestBin1.insert(std::make_pair<>(Score, &Function));
for (const StringRef &Name : Function.getNames()) {
if (std::optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
LTOName = *OptionalLTOName;
NameLookup[Name] = &Function;
}
if (opts::MatchByHash && Function.hasCFG())
HashLookup[Function.computeHash(/*UseDFS=*/true)] = &Function;
if (opts::IgnoreLTOSuffix && !LTOName.empty()) {
if (!LTONameLookup1.count(LTOName))
LTONameLookup1[LTOName] = &Function;
LTOMap1[&Function] = LTONameLookup1[LTOName];
}
}
// Compute LTONameLookup2 and LargestBin2
for (const auto &BFI : RI2.BC->getBinaryFunctions()) {
StringRef LTOName;
const BinaryFunction &Function = BFI.second;
const double Score = getNormalizedScore(Function, RI2);
LargestBin2.insert(std::make_pair<>(Score, &Function));
for (const StringRef &Name : Function.getNames()) {
if (std::optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
LTOName = *OptionalLTOName;
}
if (opts::IgnoreLTOSuffix && !LTOName.empty()) {
if (!LTONameLookup2.count(LTOName))
LTONameLookup2[LTOName] = &Function;
LTOMap2[&Function] = LTONameLookup2[LTOName];
}
}
}
/// Match functions in binary 2 with functions in binary 1
void matchFunctions() {
outs() << "BOLT-DIFF: Mapping functions in Binary2 to Binary1\n";
uint64_t BothHaveProfile = 0ull;
std::set<const BinaryFunction *> Bin1ProfiledMapped;
for (const auto &BFI2 : RI2.BC->getBinaryFunctions()) {
const BinaryFunction &Function2 = BFI2.second;
StringRef LTOName;
bool Match = false;
for (const StringRef &Name : Function2.getNames()) {
auto Iter = NameLookup.find(Name);
if (std::optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
LTOName = *OptionalLTOName;
if (Iter == NameLookup.end())
continue;
FuncMap.insert(std::make_pair<>(&Function2, Iter->second));
Bin1MappedFuncs.insert(Iter->second);
Bin2MappedFuncs.insert(&Function2);
if (Function2.hasValidProfile() && Iter->second->hasValidProfile()) {
++BothHaveProfile;
Bin1ProfiledMapped.insert(Iter->second);
}
Match = true;
break;
}
if (Match || !Function2.hasCFG())
continue;
auto Iter = HashLookup.find(Function2.computeHash(/*UseDFS*/ true));
if (Iter != HashLookup.end()) {
FuncMap.insert(std::make_pair<>(&Function2, Iter->second));
Bin1MappedFuncs.insert(Iter->second);
Bin2MappedFuncs.insert(&Function2);
if (Function2.hasValidProfile() && Iter->second->hasValidProfile()) {
++BothHaveProfile;
Bin1ProfiledMapped.insert(Iter->second);
}
continue;
}
if (LTOName.empty())
continue;
auto LTOIter = LTONameLookup1.find(LTOName);
if (LTOIter != LTONameLookup1.end()) {
FuncMap.insert(std::make_pair<>(&Function2, LTOIter->second));
Bin1MappedFuncs.insert(LTOIter->second);
Bin2MappedFuncs.insert(&Function2);
if (Function2.hasValidProfile() && LTOIter->second->hasValidProfile()) {
++BothHaveProfile;
Bin1ProfiledMapped.insert(LTOIter->second);
}
}
}
PrintProgramStats PPS(opts::NeverPrint);
outs() << "* BOLT-DIFF: Starting print program stats pass for binary 1\n";
PPS.runOnFunctions(*RI1.BC);
outs() << "* BOLT-DIFF: Starting print program stats pass for binary 2\n";
PPS.runOnFunctions(*RI2.BC);
outs() << "=====\n";
outs() << "Inputs share " << BothHaveProfile
<< " functions with valid profile.\n";
if (opts::PrintProfiledUnmapped) {
outs() << "\nFunctions in profile 1 that are missing in the profile 2:\n";
std::vector<const BinaryFunction *> Unmapped;
for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
if (!Function.hasValidProfile() || Bin1ProfiledMapped.count(&Function))
continue;
Unmapped.emplace_back(&Function);
}
llvm::sort(Unmapped,
[&](const BinaryFunction *A, const BinaryFunction *B) {
return A->getFunctionScore() > B->getFunctionScore();
});
for (const BinaryFunction *Function : Unmapped) {
outs() << Function->getPrintName() << " : ";
outs() << Function->getFunctionScore() << "\n";
}
outs() << "=====\n";
}
}
/// Check if opcodes in BB1 match those in BB2
bool compareBBs(const BinaryBasicBlock &BB1,
const BinaryBasicBlock &BB2) const {
auto Iter1 = BB1.begin();
auto Iter2 = BB2.begin();
if ((Iter1 == BB1.end() && Iter2 != BB2.end()) ||
(Iter1 != BB1.end() && Iter2 == BB2.end()))
return false;
while (Iter1 != BB1.end()) {
if (Iter2 == BB2.end() || Iter1->getOpcode() != Iter2->getOpcode())
return false;
++Iter1;
++Iter2;
}
if (Iter2 != BB2.end())
return false;
return true;
}
/// For a function in binary 2 that matched one in binary 1, now match each
/// individual basic block in it to its corresponding blocks in binary 1.
/// Also match each edge in binary 2 to the corresponding ones in binary 1.
void matchBasicBlocks() {
for (const auto &MapEntry : FuncMap) {
const BinaryFunction *const &Func1 = MapEntry.second;
const BinaryFunction *const &Func2 = MapEntry.first;
auto Iter1 = Func1->getLayout().block_begin();
auto Iter2 = Func2->getLayout().block_begin();
bool Match = true;
std::map<const BinaryBasicBlock *, const BinaryBasicBlock *> Map;
std::map<double, std::pair<EdgeTy, EdgeTy>> EMap;
while (Iter1 != Func1->getLayout().block_end()) {
if (Iter2 == Func2->getLayout().block_end()) {
Match = false;
break;
}
if (!compareBBs(**Iter1, **Iter2)) {
Match = false;
break;
}
Map.insert(std::make_pair<>(*Iter2, *Iter1));
auto SuccIter1 = (*Iter1)->succ_begin();
auto SuccIter2 = (*Iter2)->succ_begin();
auto BIIter1 = (*Iter1)->branch_info_begin();
auto BIIter2 = (*Iter2)->branch_info_begin();
while (SuccIter1 != (*Iter1)->succ_end()) {
if (SuccIter2 == (*Iter2)->succ_end()) {
Match = false;
break;
}
const double ScoreEdge1 = getNormalizedScore(BIIter1, RI1);
const double ScoreEdge2 = getNormalizedScore(BIIter2, RI2);
EMap.insert(std::make_pair<>(
std::abs(ScoreEdge2 - ScoreEdge1),
std::make_pair<>(
std::make_tuple<>(*Iter2, *SuccIter2, ScoreEdge2),
std::make_tuple<>(*Iter1, *SuccIter1, ScoreEdge1))));
++SuccIter1;
++SuccIter2;
++BIIter1;
++BIIter2;
}
if (SuccIter2 != (*Iter2)->succ_end())
Match = false;
if (!Match)
break;
BBToFuncMap[*Iter1] = Func1;
BBToFuncMap[*Iter2] = Func2;
++Iter1;
++Iter2;
}
if (!Match || Iter2 != Func2->getLayout().block_end())
continue;
BBMap.insert(Map.begin(), Map.end());
EdgeMap.insert(EMap.begin(), EMap.end());
}
}
/// Print the largest differences in basic block performance from binary 1
/// to binary 2
void reportHottestBBDiffs() {
std::map<double, const BinaryBasicBlock *> LargestDiffs;
for (const auto &MapEntry : BBMap) {
const BinaryBasicBlock *BB2 = MapEntry.first;
const BinaryBasicBlock *BB1 = MapEntry.second;
LargestDiffs.insert(
std::make_pair<>(std::abs(getNormalizedScore(*BB2, RI2) -
getNormalizedScore(*BB1, RI1)),
BB2));
}
unsigned Printed = 0;
setTitleColor();
outs()
<< "\nTop " << opts::DisplayCount
<< " largest differences in basic block performance bin 2 -> bin 1:\n";
outs() << "=========================================================\n";
setRegularColor();
outs() << " * Functions with different contents do not appear here\n\n";
for (const BinaryBasicBlock *BB2 :
llvm::make_second_range(llvm::reverse(LargestDiffs))) {
const double Score2 = getNormalizedScore(*BB2, RI2);
const double Score1 = getNormalizedScore(*BBMap[BB2], RI1);
outs() << "BB " << BB2->getName() << " from "
<< BBToFuncMap[BB2]->getDemangledName()
<< "\n\tScore bin1 = " << format("%.4f", Score1 * 100.0)
<< "%\n\tScore bin2 = " << format("%.4f", Score2 * 100.0);
outs() << "%\t(Difference: ";
printColoredPercentage((Score2 - Score1) * 100.0);
outs() << ")\n";
if (opts::PrintDiffBBs) {
setLightColor();
BB2->dump();
setRegularColor();
}
if (Printed++ == opts::DisplayCount)
break;
}
}
/// Print the largest differences in edge counts from one binary to another
void reportHottestEdgeDiffs() {
unsigned Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " largest differences in edge hotness bin 2 -> bin 1:\n";
outs() << "=========================================================\n";
setRegularColor();
outs() << " * Functions with different contents do not appear here\n";
for (std::pair<EdgeTy, EdgeTy> &EI :
llvm::make_second_range(llvm::reverse(EdgeMap))) {
EdgeTy &Edge2 = EI.first;
EdgeTy &Edge1 = EI.second;
const double Score2 = std::get<2>(Edge2);
const double Score1 = std::get<2>(Edge1);
outs() << "Edge (" << std::get<0>(Edge2)->getName() << " -> "
<< std::get<1>(Edge2)->getName() << ") in "
<< BBToFuncMap[std::get<0>(Edge2)]->getDemangledName()
<< "\n\tScore bin1 = " << format("%.4f", Score1 * 100.0)
<< "%\n\tScore bin2 = " << format("%.4f", Score2 * 100.0);
outs() << "%\t(Difference: ";
printColoredPercentage((Score2 - Score1) * 100.0);
outs() << ")\n";
if (opts::PrintDiffBBs) {
setLightColor();
std::get<0>(Edge2)->dump();
std::get<1>(Edge2)->dump();
setRegularColor();
}
if (Printed++ == opts::DisplayCount)
break;
}
}
/// For LTO functions sharing the same prefix (for example, func1.lto_priv.1
/// and func1.lto_priv.2 share the func1.lto_priv prefix), compute aggregated
/// scores for them. This is used to avoid reporting all LTO functions as
/// having a large difference in performance because hotness shifted from
/// LTO variant 1 to variant 2, even though they represent the same function.
void computeAggregatedLTOScore() {
for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
double Score = getNormalizedScore(Function, RI1);
auto Iter = LTOMap1.find(&Function);
if (Iter == LTOMap1.end())
continue;
LTOAggregatedScore1[Iter->second] += Score;
}
double UnmappedScore = 0;
for (const auto &BFI : RI2.BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
bool Matched = FuncMap.find(&Function) != FuncMap.end();
double Score = getNormalizedScore(Function, RI2);
auto Iter = LTOMap2.find(&Function);
if (Iter == LTOMap2.end()) {
if (!Matched)
UnmappedScore += Score;
continue;
}
LTOAggregatedScore2[Iter->second] += Score;
if (FuncMap.find(Iter->second) == FuncMap.end())
UnmappedScore += Score;
}
int64_t Unmapped =
RI2.BC->getBinaryFunctions().size() - Bin2MappedFuncs.size();
outs() << "BOLT-DIFF: " << Unmapped
<< " functions in Binary2 have no correspondence to any other "
"function in Binary1.\n";
// Print the hotness score of functions in binary 2 that were not matched
// to any function in binary 1
outs() << "BOLT-DIFF: These unmapped functions in Binary2 represent "
<< format("%.2f", UnmappedScore * 100.0) << "% of execution.\n";
}
/// Print the largest hotness differences from binary 2 to binary 1
void reportHottestFuncDiffs() {
std::multimap<double, decltype(FuncMap)::value_type> LargestDiffs;
for (const auto &MapEntry : FuncMap) {
const BinaryFunction *const &Func1 = MapEntry.second;
const BinaryFunction *const &Func2 = MapEntry.first;
double Score1 = getNormalizedScore(*Func1, RI1);
auto Iter1 = LTOMap1.find(Func1);
if (Iter1 != LTOMap1.end())
Score1 = LTOAggregatedScore1[Iter1->second];
double Score2 = getNormalizedScore(*Func2, RI2);
auto Iter2 = LTOMap2.find(Func2);
if (Iter2 != LTOMap2.end())
Score2 = LTOAggregatedScore2[Iter2->second];
if (Score1 == 0.0 || Score2 == 0.0)
continue;
LargestDiffs.insert(
std::make_pair<>(std::abs(Score1 - Score2), MapEntry));
ScoreMap[Func2] = std::make_pair<>(Score1, Score2);
}
unsigned Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " largest differences in performance bin 2 -> bin 1:\n";
outs() << "=========================================================\n";
setRegularColor();
for (decltype(this->FuncMap)::value_type &MapEntry :
llvm::make_second_range(llvm::reverse(LargestDiffs))) {
if (opts::IgnoreUnchanged &&
MapEntry.second->computeHash(/*UseDFS=*/true) ==
MapEntry.first->computeHash(/*UseDFS=*/true))
continue;
const std::pair<double, double> &Scores = ScoreMap[MapEntry.first];
outs() << "Function " << MapEntry.first->getDemangledName();
if (MapEntry.first->getDemangledName() !=
MapEntry.second->getDemangledName())
outs() << "\nmatched " << MapEntry.second->getDemangledName();
outs() << "\n\tScore bin1 = " << format("%.2f", Scores.first * 100.0)
<< "%\n\tScore bin2 = " << format("%.2f", Scores.second * 100.0)
<< "%\t(Difference: ";
printColoredPercentage((Scores.second - Scores.first) * 100.0);
outs() << ")";
if (MapEntry.second->computeHash(/*UseDFS=*/true) !=
MapEntry.first->computeHash(/*UseDFS=*/true)) {
outs() << "\t[Functions have different contents]";
if (opts::PrintDiffCFG) {
outs() << "\n *** CFG for function in binary 1:\n";
setLightColor();
MapEntry.second->dump();
setRegularColor();
outs() << "\n *** CFG for function in binary 2:\n";
setLightColor();
MapEntry.first->dump();
setRegularColor();
}
}
outs() << "\n";
if (Printed++ == opts::DisplayCount)
break;
}
}
/// Print hottest functions from each binary
void reportHottestFuncs() {
unsigned Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " hottest functions in binary 2:\n";
outs() << "=====================================\n";
setRegularColor();
for (std::pair<const double, const BinaryFunction *> &MapEntry :
llvm::reverse(LargestBin2)) {
outs() << "Function " << MapEntry.second->getDemangledName() << "\n";
auto Iter = ScoreMap.find(MapEntry.second);
if (Iter != ScoreMap.end())
outs() << "\tScore bin1 = "
<< format("%.2f", Iter->second.first * 100.0) << "%\n";
outs() << "\tScore bin2 = " << format("%.2f", MapEntry.first * 100.0)
<< "%\n";
if (Printed++ == opts::DisplayCount)
break;
}
Printed = 0;
setTitleColor();
outs() << "\nTop " << opts::DisplayCount
<< " hottest functions in binary 1:\n";
outs() << "=====================================\n";
setRegularColor();
for (const std::pair<const double, const BinaryFunction *> &MapEntry :
llvm::reverse(LargestBin1)) {
outs() << "Function " << MapEntry.second->getDemangledName()
<< "\n\tScore bin1 = " << format("%.2f", MapEntry.first * 100.0)
<< "%\n";
if (Printed++ == opts::DisplayCount)
break;
}
}
/// Print functions in binary 2 that did not match anything in binary 1.
/// Unfortunately, in an LTO build, even a small change can lead to several
/// LTO variants being unmapped, corresponding to local functions that never
/// appear in one of the binaries because they were previously inlined.
void reportUnmapped() {
outs() << "List of functions from binary 2 that were not matched with any "
<< "function in binary 1:\n";
for (const auto &BFI2 : RI2.BC->getBinaryFunctions()) {
const BinaryFunction &Function2 = BFI2.second;
if (Bin2MappedFuncs.count(&Function2))
continue;
outs() << Function2.getPrintName() << "\n";
}
}
public:
/// Main entry point: coordinate all tasks necessary to compare two binaries
void compareAndReport() {
buildLookupMaps();
matchFunctions();
if (opts::IgnoreLTOSuffix)
computeAggregatedLTOScore();
matchBasicBlocks();
reportHottestFuncDiffs();
reportHottestBBDiffs();
reportHottestEdgeDiffs();
reportHottestFuncs();
if (!opts::PrintUnmapped)
return;
reportUnmapped();
}
RewriteInstanceDiff(RewriteInstance &RI1, RewriteInstance &RI2)
: RI1(RI1), RI2(RI2) {
compareAndReport();
}
};
} // end nampespace bolt
} // end namespace llvm
void RewriteInstance::compare(RewriteInstance &RI2) {
outs() << "BOLT-DIFF: ======== Binary1 vs. Binary2 ========\n";
outs() << "Trace for binary 1 has " << this->getTotalScore()
<< " instructions executed.\n";
outs() << "Trace for binary 2 has " << RI2.getTotalScore()
<< " instructions executed.\n";
if (opts::NormalizeByBin1) {
double Diff2to1 =
static_cast<double>(RI2.getTotalScore() - this->getTotalScore()) /
this->getTotalScore();
outs() << "Binary2 change in score with respect to Binary1: ";
printColoredPercentage(Diff2to1 * 100.0);
outs() << "\n";
}
if (!this->getTotalScore() || !RI2.getTotalScore()) {
outs() << "BOLT-DIFF: Both binaries must have recorded activity in known "
"functions.\n";
return;
}
// Pre-pass ICF
if (opts::ICF) {
IdenticalCodeFolding ICF(opts::NeverPrint);
outs() << "BOLT-DIFF: Starting ICF pass for binary 1";
ICF.runOnFunctions(*BC);
outs() << "BOLT-DIFF: Starting ICF pass for binary 2";
ICF.runOnFunctions(*RI2.BC);
}
RewriteInstanceDiff RID(*this, RI2);
}