blob: 22dadf4f6403be3699cf0a0a2dc7521ced10e49d [file] [log] [blame]
//===- bolt/Passes/ValidateInternalCalls.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValidateInternalCalls class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/ValidateInternalCalls.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Passes/DataflowInfoManager.h"
#include "bolt/Passes/FrameAnalysis.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCInstPrinter.h"
#include <optional>
#include <queue>
#define DEBUG_TYPE "bolt-internalcalls"
namespace llvm {
namespace bolt {
namespace {
// Helper used to extract the target basic block used in an internal call.
// Return nullptr if this is not an internal call target.
BinaryBasicBlock *getInternalCallTarget(BinaryFunction &Function,
const MCInst &Inst) {
const BinaryContext &BC = Function.getBinaryContext();
if (!BC.MIB->isCall(Inst) || MCPlus::getNumPrimeOperands(Inst) != 1 ||
!Inst.getOperand(0).isExpr())
return nullptr;
return Function.getBasicBlockForLabel(BC.MIB->getTargetSymbol(Inst));
}
// A special StackPointerTracking that considers internal calls
class StackPointerTrackingForInternalCalls
: public StackPointerTrackingBase<StackPointerTrackingForInternalCalls> {
friend class DataflowAnalysis<StackPointerTrackingForInternalCalls,
std::pair<int, int>>;
std::optional<unsigned> AnnotationIndex;
protected:
// We change the starting state to only consider the first block as an
// entry point, otherwise the analysis won't converge (there will be two valid
// stack offsets, one for an external call and another for an internal call).
std::pair<int, int> getStartingStateAtBB(const BinaryBasicBlock &BB) {
if (&BB == &*Func.begin())
return std::make_pair(-8, getEmpty());
return std::make_pair(getEmpty(), getEmpty());
}
// Here we decrement SP for internal calls too, in addition to the regular
// StackPointerTracking processing.
std::pair<int, int> computeNext(const MCInst &Point,
const std::pair<int, int> &Cur) {
std::pair<int, int> Res = StackPointerTrackingBase<
StackPointerTrackingForInternalCalls>::computeNext(Point, Cur);
if (Res.first == StackPointerTracking::SUPERPOSITION ||
Res.first == StackPointerTracking::EMPTY)
return Res;
if (BC.MIB->isReturn(Point)) {
Res.first += 8;
return Res;
}
BinaryBasicBlock *Target = getInternalCallTarget(Func, Point);
if (!Target)
return Res;
Res.first -= 8;
return Res;
}
StringRef getAnnotationName() const {
return StringRef("StackPointerTrackingForInternalCalls");
}
public:
StackPointerTrackingForInternalCalls(BinaryFunction &BF)
: StackPointerTrackingBase<StackPointerTrackingForInternalCalls>(BF) {}
void run() {
StackPointerTrackingBase<StackPointerTrackingForInternalCalls>::run();
}
};
} // end anonymous namespace
void ValidateInternalCalls::fixCFGForPIC(BinaryFunction &Function) const {
std::queue<BinaryBasicBlock *> Work;
for (BinaryBasicBlock &BB : Function)
Work.emplace(&BB);
while (!Work.empty()) {
BinaryBasicBlock &BB = *Work.front();
Work.pop();
// Search for the next internal call.
const BinaryBasicBlock::iterator InternalCall =
llvm::find_if(BB, [&](const MCInst &Inst) {
return getInternalCallTarget(Function, Inst) != nullptr;
});
// No internal call? Done with this block.
if (InternalCall == BB.end())
continue;
BinaryBasicBlock *Target = getInternalCallTarget(Function, *InternalCall);
InstructionListType MovedInsts = BB.splitInstructions(&*InternalCall);
if (!MovedInsts.empty()) {
// Split this block at the call instruction.
std::unique_ptr<BinaryBasicBlock> NewBB = Function.createBasicBlock();
NewBB->addInstructions(MovedInsts.begin(), MovedInsts.end());
BB.moveAllSuccessorsTo(NewBB.get());
Work.emplace(NewBB.get());
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
NewBBs.emplace_back(std::move(NewBB));
Function.insertBasicBlocks(&BB, std::move(NewBBs));
}
// Update successors
BB.removeAllSuccessors();
BB.addSuccessor(Target, BB.getExecutionCount(), 0ULL);
}
}
bool ValidateInternalCalls::fixCFGForIC(BinaryFunction &Function) const {
const BinaryContext &BC = Function.getBinaryContext();
// Track SP value
StackPointerTrackingForInternalCalls SPTIC(Function);
SPTIC.run();
// Track instructions reaching a given point of the CFG to answer
// "There is a path from entry to point A that contains instruction B"
ReachingInsns<false> RI(Function);
RI.run();
// We use the InsnToBB map that DataflowInfoManager provides us
DataflowInfoManager Info(Function, nullptr, nullptr);
bool Updated = false;
auto processReturns = [&](BinaryBasicBlock &BB, MCInst &Return) {
// Check all reaching internal calls
for (auto I = RI.expr_begin(Return), E = RI.expr_end(); I != E; ++I) {
MCInst &ReachingInst = **I;
if (!getInternalCallTarget(Function, ReachingInst) ||
BC.MIB->hasAnnotation(ReachingInst, getProcessedICTag()))
continue;
// Stack pointer matching
int SPAtCall = SPTIC.getStateAt(ReachingInst)->first;
int SPAtRet = SPTIC.getStateAt(Return)->first;
if (SPAtCall != StackPointerTracking::SUPERPOSITION &&
SPAtRet != StackPointerTracking::SUPERPOSITION &&
SPAtCall != SPAtRet - 8)
continue;
Updated = true;
// Mark this call as processed, so we don't try to analyze it as a
// PIC-computation internal call.
BC.MIB->addAnnotation(ReachingInst, getProcessedICTag(), 0U);
// Connect this block with the returning block of the caller
BinaryBasicBlock *CallerBlock = Info.getInsnToBBMap()[&ReachingInst];
BinaryBasicBlock *ReturnDestBlock =
Function.getLayout().getBasicBlockAfter(CallerBlock);
BB.addSuccessor(ReturnDestBlock, BB.getExecutionCount(), 0);
}
};
// This will connect blocks terminated with RETs to their respective
// internal caller return block. A note here: this is overly conservative
// because in nested calls, or unrelated calls, it will create edges
// connecting RETs to potentially unrelated internal calls. This is safe
// and if this causes a problem to recover the stack offsets properly, we
// will fail later.
for (BinaryBasicBlock &BB : Function) {
for (MCInst &Inst : BB) {
if (!BC.MIB->isReturn(Inst))
continue;
processReturns(BB, Inst);
}
}
return Updated;
}
bool ValidateInternalCalls::hasTailCallsInRange(
BinaryFunction &Function) const {
const BinaryContext &BC = Function.getBinaryContext();
for (BinaryBasicBlock &BB : Function)
for (MCInst &Inst : BB)
if (BC.MIB->isTailCall(Inst))
return true;
return false;
}
bool ValidateInternalCalls::analyzeFunction(BinaryFunction &Function) const {
fixCFGForPIC(Function);
while (fixCFGForIC(Function)) {
}
BinaryContext &BC = Function.getBinaryContext();
RegAnalysis RA = RegAnalysis(BC, nullptr, nullptr);
RA.setConservativeStrategy(RegAnalysis::ConservativeStrategy::CLOBBERS_NONE);
bool HasTailCalls = hasTailCallsInRange(Function);
for (BinaryBasicBlock &BB : Function) {
for (MCInst &Inst : BB) {
BinaryBasicBlock *Target = getInternalCallTarget(Function, Inst);
if (!Target || BC.MIB->hasAnnotation(Inst, getProcessedICTag()))
continue;
if (HasTailCalls) {
LLVM_DEBUG(dbgs() << Function
<< " has tail calls and internal calls.\n");
return false;
}
FrameIndexEntry FIE;
int32_t SrcImm = 0;
MCPhysReg Reg = 0;
int64_t StackOffset = 0;
bool IsIndexed = false;
MCInst *TargetInst = ProgramPoint::getFirstPointAt(*Target).getInst();
if (!BC.MIB->isStackAccess(*TargetInst, FIE.IsLoad, FIE.IsStore,
FIE.IsStoreFromReg, Reg, SrcImm,
FIE.StackPtrReg, StackOffset, FIE.Size,
FIE.IsSimple, IsIndexed)) {
LLVM_DEBUG({
dbgs() << "Frame analysis failed - not simple: " << Function << "\n";
Function.dump();
});
return false;
}
if (!FIE.IsLoad || FIE.StackPtrReg != BC.MIB->getStackPointer() ||
StackOffset != 0) {
LLVM_DEBUG({
dbgs() << "Target instruction does not fetch return address - not "
"simple: "
<< Function << "\n";
Function.dump();
});
return false;
}
// Now track how the return address is used by tracking uses of Reg
ReachingDefOrUse</*Def=*/false> RU =
ReachingDefOrUse<false>(RA, Function, Reg);
RU.run();
int64_t Offset = static_cast<int64_t>(Target->getInputOffset());
bool UseDetected = false;
for (auto I = RU.expr_begin(*RU.getStateBefore(*TargetInst)),
E = RU.expr_end();
I != E; ++I) {
MCInst &Use = **I;
BitVector UsedRegs = BitVector(BC.MRI->getNumRegs(), false);
BC.MIB->getTouchedRegs(Use, UsedRegs);
if (!UsedRegs[Reg])
continue;
UseDetected = true;
int64_t Output;
std::pair<MCPhysReg, int64_t> Input1 = std::make_pair(Reg, 0);
std::pair<MCPhysReg, int64_t> Input2 = std::make_pair(0, 0);
if (!BC.MIB->evaluateStackOffsetExpr(Use, Output, Input1, Input2)) {
LLVM_DEBUG(dbgs() << "Evaluate stack offset expr failed.\n");
return false;
}
if (Offset + Output < 0 ||
Offset + Output > static_cast<int64_t>(Function.getSize())) {
LLVM_DEBUG({
dbgs() << "Detected out-of-range PIC reference in " << Function
<< "\nReturn address load: ";
BC.InstPrinter->printInst(TargetInst, 0, "", *BC.STI, dbgs());
dbgs() << "\nUse: ";
BC.InstPrinter->printInst(&Use, 0, "", *BC.STI, dbgs());
dbgs() << "\n";
Function.dump();
});
return false;
}
LLVM_DEBUG({
dbgs() << "Validated access: ";
BC.InstPrinter->printInst(&Use, 0, "", *BC.STI, dbgs());
dbgs() << "\n";
});
}
if (!UseDetected) {
LLVM_DEBUG(dbgs() << "No use detected.\n");
return false;
}
}
}
return true;
}
void ValidateInternalCalls::runOnFunctions(BinaryContext &BC) {
if (!BC.isX86())
return;
// Look for functions that need validation. This should be pretty rare.
std::set<BinaryFunction *> NeedsValidation;
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
for (BinaryBasicBlock &BB : Function) {
for (MCInst &Inst : BB) {
if (getInternalCallTarget(Function, Inst)) {
NeedsValidation.insert(&Function);
Function.setSimple(false);
break;
}
}
}
}
// Skip validation for non-relocation mode
if (!BC.HasRelocations)
return;
// Since few functions need validation, we can work with our most expensive
// algorithms here. Fix the CFG treating internal calls as unconditional
// jumps. This optimistically assumes this call is a PIC trick to get the PC
// value, so it is not really a call, but a jump. If we find that it's not the
// case, we mark this function as non-simple and stop processing it.
std::set<BinaryFunction *> Invalid;
for (BinaryFunction *Function : NeedsValidation) {
LLVM_DEBUG(dbgs() << "Validating " << *Function << "\n");
if (!analyzeFunction(*Function))
Invalid.insert(Function);
clearAnnotations(*Function);
}
if (!Invalid.empty()) {
errs() << "BOLT-WARNING: will skip the following function(s) as unsupported"
" internal calls were detected:\n";
for (BinaryFunction *Function : Invalid) {
errs() << " " << *Function << "\n";
Function->setIgnored();
}
}
}
} // namespace bolt
} // namespace llvm