blob: 753e7454196184877971aff51021fe28cc1dd849 [file] [log] [blame]
// RUN: mlir-opt %s \
// RUN: -linalg-tile-to-parallel-loops="linalg-tile-sizes=256" \
// RUN: -async-parallel-for="num-concurrent-async-execute=4" \
// RUN: -async-ref-counting \
// RUN: -async-to-async-runtime \
// RUN: -convert-async-to-llvm \
// RUN: -lower-affine \
// RUN: -convert-linalg-to-loops \
// RUN: -convert-scf-to-std \
// RUN: -std-expand \
// RUN: -convert-vector-to-llvm \
// RUN: -convert-std-to-llvm \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O3 \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_runner_utils%shlibext \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext\
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_async_runtime%shlibext \
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s \
// RUN: -convert-linalg-to-loops \
// RUN: -convert-scf-to-std \
// RUN: -convert-vector-to-llvm \
// RUN: -convert-std-to-llvm \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O3 \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_runner_utils%shlibext \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext\
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_async_runtime%shlibext \
// RUN: | FileCheck %s --dump-input=always
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func @linalg_generic(%lhs: memref<?x?xf32>,
%rhs: memref<?x?xf32>,
%sum: memref<?x?xf32>) {
linalg.generic {
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel"]
}
ins(%lhs, %rhs : memref<?x?xf32>, memref<?x?xf32>)
outs(%sum : memref<?x?xf32>)
{
^bb0(%lhs_in: f32, %rhs_in: f32, %sum_out: f32):
%0 = addf %lhs_in, %rhs_in : f32
linalg.yield %0 : f32
}
return
}
func @entry() {
%f1 = constant 1.0 : f32
%f4 = constant 4.0 : f32
%c0 = constant 0 : index
%c1 = constant 1 : index
%cM = constant 1000 : index
//
// Sanity check for the function under test.
//
%LHS10 = alloc() {alignment = 64} : memref<1x10xf32>
%RHS10 = alloc() {alignment = 64} : memref<1x10xf32>
%DST10 = alloc() {alignment = 64} : memref<1x10xf32>
linalg.fill(%LHS10, %f1) : memref<1x10xf32>, f32
linalg.fill(%RHS10, %f1) : memref<1x10xf32>, f32
%LHS = memref_cast %LHS10 : memref<1x10xf32> to memref<?x?xf32>
%RHS = memref_cast %RHS10 : memref<1x10xf32> to memref<?x?xf32>
%DST = memref_cast %DST10 : memref<1x10xf32> to memref<?x?xf32>
call @linalg_generic(%LHS, %RHS, %DST)
: (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>) -> ()
// CHECK: [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
%U = memref_cast %DST10 : memref<1x10xf32> to memref<*xf32>
call @print_memref_f32(%U): (memref<*xf32>) -> ()
dealloc %LHS10: memref<1x10xf32>
dealloc %RHS10: memref<1x10xf32>
dealloc %DST10: memref<1x10xf32>
//
// Allocate data for microbenchmarks.
//
%LHS1024 = alloc() {alignment = 64} : memref<1024x1024xf32>
%RHS1024 = alloc() {alignment = 64} : memref<1024x1024xf32>
%DST1024 = alloc() {alignment = 64} : memref<1024x1024xf32>
%LHS0 = memref_cast %LHS1024 : memref<1024x1024xf32> to memref<?x?xf32>
%RHS0 = memref_cast %RHS1024 : memref<1024x1024xf32> to memref<?x?xf32>
%DST0 = memref_cast %DST1024 : memref<1024x1024xf32> to memref<?x?xf32>
//
// Warm up.
//
call @linalg_generic(%LHS0, %RHS0, %DST0)
: (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>) -> ()
//
// Measure execution time.
//
%t0 = call @rtclock() : () -> f64
scf.for %i = %c0 to %cM step %c1 {
call @linalg_generic(%LHS0, %RHS0, %DST0)
: (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>) -> ()
}
%t1 = call @rtclock() : () -> f64
%t1024 = subf %t1, %t0 : f64
// Print timings.
vector.print %t1024 : f64
// Free.
dealloc %LHS1024: memref<1024x1024xf32>
dealloc %RHS1024: memref<1024x1024xf32>
dealloc %DST1024: memref<1024x1024xf32>
return
}
func private @rtclock() -> f64
func private @print_memref_f32(memref<*xf32>)
attributes { llvm.emit_c_interface }