blob: fc67ec4b8c174c9fcfdb358c4ee6be1fe111cfd4 [file] [log] [blame]
//===- RewriterGen.cpp - MLIR pattern rewriter generator ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RewriterGen uses pattern rewrite definitions to generate rewriter matchers.
//
//===----------------------------------------------------------------------===//
#include "mlir/TableGen/Attribute.h"
#include "mlir/TableGen/Format.h"
#include "mlir/TableGen/GenInfo.h"
#include "mlir/TableGen/Operator.h"
#include "mlir/TableGen/Pattern.h"
#include "mlir/TableGen/Predicate.h"
#include "mlir/TableGen/Type.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Main.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
using namespace mlir;
using namespace mlir::tblgen;
using llvm::formatv;
using llvm::Record;
using llvm::RecordKeeper;
#define DEBUG_TYPE "mlir-tblgen-rewritergen"
namespace llvm {
template <>
struct format_provider<mlir::tblgen::Pattern::IdentifierLine> {
static void format(const mlir::tblgen::Pattern::IdentifierLine &v,
raw_ostream &os, StringRef style) {
os << v.first << ":" << v.second;
}
};
} // end namespace llvm
//===----------------------------------------------------------------------===//
// PatternEmitter
//===----------------------------------------------------------------------===//
namespace {
class PatternEmitter {
public:
PatternEmitter(Record *pat, RecordOperatorMap *mapper, raw_ostream &os);
// Emits the mlir::RewritePattern struct named `rewriteName`.
void emit(StringRef rewriteName);
private:
// Emits the code for matching ops.
void emitMatchLogic(DagNode tree);
// Emits the code for rewriting ops.
void emitRewriteLogic();
//===--------------------------------------------------------------------===//
// Match utilities
//===--------------------------------------------------------------------===//
// Emits C++ statements for matching the op constrained by the given DAG
// `tree`.
void emitOpMatch(DagNode tree, int depth);
// Emits C++ statements for matching the `argIndex`-th argument of the given
// DAG `tree` as an operand.
void emitOperandMatch(DagNode tree, int argIndex, int depth, int indent);
// Emits C++ statements for matching the `argIndex`-th argument of the given
// DAG `tree` as an attribute.
void emitAttributeMatch(DagNode tree, int argIndex, int depth, int indent);
// Emits C++ for checking a match with a corresponding match failure
// diagnostic.
void emitMatchCheck(int depth, const FmtObjectBase &matchFmt,
const llvm::formatv_object_base &failureFmt);
//===--------------------------------------------------------------------===//
// Rewrite utilities
//===--------------------------------------------------------------------===//
// The entry point for handling a result pattern rooted at `resultTree`. This
// method dispatches to concrete handlers according to `resultTree`'s kind and
// returns a symbol representing the whole value pack. Callers are expected to
// further resolve the symbol according to the specific use case.
//
// `depth` is the nesting level of `resultTree`; 0 means top-level result
// pattern. For top-level result pattern, `resultIndex` indicates which result
// of the matched root op this pattern is intended to replace, which can be
// used to deduce the result type of the op generated from this result
// pattern.
std::string handleResultPattern(DagNode resultTree, int resultIndex,
int depth);
// Emits the C++ statement to replace the matched DAG with a value built via
// calling native C++ code.
std::string handleReplaceWithNativeCodeCall(DagNode resultTree);
// Returns the symbol of the old value serving as the replacement.
StringRef handleReplaceWithValue(DagNode tree);
// Returns the location value to use.
std::string handleLocationDirective(DagNode tree);
// Emits the C++ statement to build a new op out of the given DAG `tree` and
// returns the variable name that this op is assigned to. If the root op in
// DAG `tree` has a specified name, the created op will be assigned to a
// variable of the given name. Otherwise, a unique name will be used as the
// result value name.
std::string handleOpCreation(DagNode tree, int resultIndex, int depth);
using ChildNodeIndexNameMap = DenseMap<unsigned, std::string>;
// Emits a local variable for each value and attribute to be used for creating
// an op.
void createSeparateLocalVarsForOpArgs(DagNode node,
ChildNodeIndexNameMap &childNodeNames);
// Emits the concrete arguments used to call an op's builder.
void supplyValuesForOpArgs(DagNode node,
const ChildNodeIndexNameMap &childNodeNames);
// Emits the local variables for holding all values as a whole and all named
// attributes as a whole to be used for creating an op.
void createAggregateLocalVarsForOpArgs(
DagNode node, const ChildNodeIndexNameMap &childNodeNames);
// Returns the C++ expression to construct a constant attribute of the given
// `value` for the given attribute kind `attr`.
std::string handleConstantAttr(Attribute attr, StringRef value);
// Returns the C++ expression to build an argument from the given DAG `leaf`.
// `patArgName` is used to bound the argument to the source pattern.
std::string handleOpArgument(DagLeaf leaf, StringRef patArgName);
//===--------------------------------------------------------------------===//
// General utilities
//===--------------------------------------------------------------------===//
// Collects all of the operations within the given dag tree.
void collectOps(DagNode tree, llvm::SmallPtrSetImpl<const Operator *> &ops);
// Returns a unique symbol for a local variable of the given `op`.
std::string getUniqueSymbol(const Operator *op);
//===--------------------------------------------------------------------===//
// Symbol utilities
//===--------------------------------------------------------------------===//
// Returns how many static values the given DAG `node` correspond to.
int getNodeValueCount(DagNode node);
private:
// Pattern instantiation location followed by the location of multiclass
// prototypes used. This is intended to be used as a whole to
// PrintFatalError() on errors.
ArrayRef<llvm::SMLoc> loc;
// Op's TableGen Record to wrapper object.
RecordOperatorMap *opMap;
// Handy wrapper for pattern being emitted.
Pattern pattern;
// Map for all bound symbols' info.
SymbolInfoMap symbolInfoMap;
// The next unused ID for newly created values.
unsigned nextValueId;
raw_ostream &os;
// Format contexts containing placeholder substitutions.
FmtContext fmtCtx;
// Number of op processed.
int opCounter = 0;
};
} // end anonymous namespace
PatternEmitter::PatternEmitter(Record *pat, RecordOperatorMap *mapper,
raw_ostream &os)
: loc(pat->getLoc()), opMap(mapper), pattern(pat, mapper),
symbolInfoMap(pat->getLoc()), nextValueId(0), os(os) {
fmtCtx.withBuilder("rewriter");
}
std::string PatternEmitter::handleConstantAttr(Attribute attr,
StringRef value) {
if (!attr.isConstBuildable())
PrintFatalError(loc, "Attribute " + attr.getAttrDefName() +
" does not have the 'constBuilderCall' field");
// TODO: Verify the constants here
return std::string(tgfmt(attr.getConstBuilderTemplate(), &fmtCtx, value));
}
// Helper function to match patterns.
void PatternEmitter::emitOpMatch(DagNode tree, int depth) {
Operator &op = tree.getDialectOp(opMap);
LLVM_DEBUG(llvm::dbgs() << "start emitting match for op '"
<< op.getOperationName() << "' at depth " << depth
<< '\n');
int indent = 4 + 2 * depth;
os.indent(indent) << formatv(
"auto castedOp{0} = dyn_cast_or_null<{1}>(op{0}); (void)castedOp{0};\n",
depth, op.getQualCppClassName());
// Skip the operand matching at depth 0 as the pattern rewriter already does.
if (depth != 0) {
// Skip if there is no defining operation (e.g., arguments to function).
os.indent(indent) << formatv("if (!castedOp{0}) return failure();\n",
depth);
}
if (tree.getNumArgs() != op.getNumArgs()) {
PrintFatalError(loc, formatv("op '{0}' argument number mismatch: {1} in "
"pattern vs. {2} in definition",
op.getOperationName(), tree.getNumArgs(),
op.getNumArgs()));
}
// If the operand's name is set, set to that variable.
auto name = tree.getSymbol();
if (!name.empty())
os.indent(indent) << formatv("{0} = castedOp{1};\n", name, depth);
for (int i = 0, e = tree.getNumArgs(); i != e; ++i) {
auto opArg = op.getArg(i);
// Handle nested DAG construct first
if (DagNode argTree = tree.getArgAsNestedDag(i)) {
if (auto *operand = opArg.dyn_cast<NamedTypeConstraint *>()) {
if (operand->isVariableLength()) {
auto error = formatv("use nested DAG construct to match op {0}'s "
"variadic operand #{1} unsupported now",
op.getOperationName(), i);
PrintFatalError(loc, error);
}
}
os.indent(indent) << "{\n";
os.indent(indent + 2) << formatv(
"auto *op{0} = "
"(*castedOp{1}.getODSOperands({2}).begin()).getDefiningOp();\n",
depth + 1, depth, i);
emitOpMatch(argTree, depth + 1);
os.indent(indent + 2)
<< formatv("tblgen_ops[{0}] = op{1};\n", ++opCounter, depth + 1);
os.indent(indent) << "}\n";
continue;
}
// Next handle DAG leaf: operand or attribute
if (opArg.is<NamedTypeConstraint *>()) {
emitOperandMatch(tree, i, depth, indent);
} else if (opArg.is<NamedAttribute *>()) {
emitAttributeMatch(tree, i, depth, indent);
} else {
PrintFatalError(loc, "unhandled case when matching op");
}
}
LLVM_DEBUG(llvm::dbgs() << "done emitting match for op '"
<< op.getOperationName() << "' at depth " << depth
<< '\n');
}
void PatternEmitter::emitOperandMatch(DagNode tree, int argIndex, int depth,
int indent) {
Operator &op = tree.getDialectOp(opMap);
auto *operand = op.getArg(argIndex).get<NamedTypeConstraint *>();
auto matcher = tree.getArgAsLeaf(argIndex);
// If a constraint is specified, we need to generate C++ statements to
// check the constraint.
if (!matcher.isUnspecified()) {
if (!matcher.isOperandMatcher()) {
PrintFatalError(
loc, formatv("the {1}-th argument of op '{0}' should be an operand",
op.getOperationName(), argIndex + 1));
}
// Only need to verify if the matcher's type is different from the one
// of op definition.
Constraint constraint = matcher.getAsConstraint();
if (operand->constraint != constraint) {
if (operand->isVariableLength()) {
auto error = formatv(
"further constrain op {0}'s variadic operand #{1} unsupported now",
op.getOperationName(), argIndex);
PrintFatalError(loc, error);
}
auto self =
formatv("(*castedOp{0}.getODSOperands({1}).begin()).getType()", depth,
argIndex);
emitMatchCheck(
depth,
tgfmt(constraint.getConditionTemplate(), &fmtCtx.withSelf(self)),
formatv("\"operand {0} of op '{1}' failed to satisfy constraint: "
"'{2}'\"",
operand - op.operand_begin(), op.getOperationName(),
constraint.getDescription()));
}
}
// Capture the value
auto name = tree.getArgName(argIndex);
// `$_` is a special symbol to ignore op argument matching.
if (!name.empty() && name != "_") {
// We need to subtract the number of attributes before this operand to get
// the index in the operand list.
auto numPrevAttrs = std::count_if(
op.arg_begin(), op.arg_begin() + argIndex,
[](const Argument &arg) { return arg.is<NamedAttribute *>(); });
os.indent(indent) << formatv("{0} = castedOp{1}.getODSOperands({2});\n",
name, depth, argIndex - numPrevAttrs);
}
}
void PatternEmitter::emitAttributeMatch(DagNode tree, int argIndex, int depth,
int indent) {
Operator &op = tree.getDialectOp(opMap);
auto *namedAttr = op.getArg(argIndex).get<NamedAttribute *>();
const auto &attr = namedAttr->attr;
os.indent(indent) << "{\n";
indent += 2;
os.indent(indent) << formatv(
"auto tblgen_attr = op{0}->getAttrOfType<{1}>(\"{2}\");"
"(void)tblgen_attr;\n",
depth, attr.getStorageType(), namedAttr->name);
// TODO: This should use getter method to avoid duplication.
if (attr.hasDefaultValue()) {
os.indent(indent) << "if (!tblgen_attr) tblgen_attr = "
<< std::string(tgfmt(attr.getConstBuilderTemplate(),
&fmtCtx, attr.getDefaultValue()))
<< ";\n";
} else if (attr.isOptional()) {
// For a missing attribute that is optional according to definition, we
// should just capture a mlir::Attribute() to signal the missing state.
// That is precisely what getAttr() returns on missing attributes.
} else {
emitMatchCheck(depth, tgfmt("tblgen_attr", &fmtCtx),
formatv("\"expected op '{0}' to have attribute '{1}' "
"of type '{2}'\"",
op.getOperationName(), namedAttr->name,
attr.getStorageType()));
}
auto matcher = tree.getArgAsLeaf(argIndex);
if (!matcher.isUnspecified()) {
if (!matcher.isAttrMatcher()) {
PrintFatalError(
loc, formatv("the {1}-th argument of op '{0}' should be an attribute",
op.getOperationName(), argIndex + 1));
}
// If a constraint is specified, we need to generate C++ statements to
// check the constraint.
emitMatchCheck(
depth,
tgfmt(matcher.getConditionTemplate(), &fmtCtx.withSelf("tblgen_attr")),
formatv("\"op '{0}' attribute '{1}' failed to satisfy constraint: "
"{2}\"",
op.getOperationName(), namedAttr->name,
matcher.getAsConstraint().getDescription()));
}
// Capture the value
auto name = tree.getArgName(argIndex);
// `$_` is a special symbol to ignore op argument matching.
if (!name.empty() && name != "_") {
os.indent(indent) << formatv("{0} = tblgen_attr;\n", name);
}
indent -= 2;
os.indent(indent) << "}\n";
}
void PatternEmitter::emitMatchCheck(
int depth, const FmtObjectBase &matchFmt,
const llvm::formatv_object_base &failureFmt) {
// {0} The match depth (used to get the operation that failed to match).
// {1} The format for the match string.
// {2} The format for the failure string.
const char *matchStr = R"(
if (!({1})) {
return rewriter.notifyMatchFailure(op{0}, [&](::mlir::Diagnostic &diag) {
diag << {2};
});
})";
os << llvm::formatv(matchStr, depth, matchFmt.str(), failureFmt.str())
<< "\n";
}
void PatternEmitter::emitMatchLogic(DagNode tree) {
LLVM_DEBUG(llvm::dbgs() << "--- start emitting match logic ---\n");
int depth = 0;
emitOpMatch(tree, depth);
for (auto &appliedConstraint : pattern.getConstraints()) {
auto &constraint = appliedConstraint.constraint;
auto &entities = appliedConstraint.entities;
auto condition = constraint.getConditionTemplate();
if (isa<TypeConstraint>(constraint)) {
auto self = formatv("({0}.getType())",
symbolInfoMap.getValueAndRangeUse(entities.front()));
emitMatchCheck(
depth, tgfmt(condition, &fmtCtx.withSelf(self.str())),
formatv("\"value entity '{0}' failed to satisfy constraint: {1}\"",
entities.front(), constraint.getDescription()));
} else if (isa<AttrConstraint>(constraint)) {
PrintFatalError(
loc, "cannot use AttrConstraint in Pattern multi-entity constraints");
} else {
// TODO: replace formatv arguments with the exact specified
// args.
if (entities.size() > 4) {
PrintFatalError(loc, "only support up to 4-entity constraints now");
}
SmallVector<std::string, 4> names;
int i = 0;
for (int e = entities.size(); i < e; ++i)
names.push_back(symbolInfoMap.getValueAndRangeUse(entities[i]));
std::string self = appliedConstraint.self;
if (!self.empty())
self = symbolInfoMap.getValueAndRangeUse(self);
for (; i < 4; ++i)
names.push_back("<unused>");
emitMatchCheck(depth,
tgfmt(condition, &fmtCtx.withSelf(self), names[0],
names[1], names[2], names[3]),
formatv("\"entities '{0}' failed to satisfy constraint: "
"{1}\"",
llvm::join(entities, ", "),
constraint.getDescription()));
}
}
LLVM_DEBUG(llvm::dbgs() << "--- done emitting match logic ---\n");
}
void PatternEmitter::collectOps(DagNode tree,
llvm::SmallPtrSetImpl<const Operator *> &ops) {
// Check if this tree is an operation.
if (tree.isOperation()) {
const Operator &op = tree.getDialectOp(opMap);
LLVM_DEBUG(llvm::dbgs()
<< "found operation " << op.getOperationName() << '\n');
ops.insert(&op);
}
// Recurse the arguments of the tree.
for (unsigned i = 0, e = tree.getNumArgs(); i != e; ++i)
if (auto child = tree.getArgAsNestedDag(i))
collectOps(child, ops);
}
void PatternEmitter::emit(StringRef rewriteName) {
// Get the DAG tree for the source pattern.
DagNode sourceTree = pattern.getSourcePattern();
const Operator &rootOp = pattern.getSourceRootOp();
auto rootName = rootOp.getOperationName();
// Collect the set of result operations.
llvm::SmallPtrSet<const Operator *, 4> resultOps;
LLVM_DEBUG(llvm::dbgs() << "start collecting ops used in result patterns\n");
for (unsigned i = 0, e = pattern.getNumResultPatterns(); i != e; ++i) {
collectOps(pattern.getResultPattern(i), resultOps);
}
LLVM_DEBUG(llvm::dbgs() << "done collecting ops used in result patterns\n");
// Emit RewritePattern for Pattern.
auto locs = pattern.getLocation();
os << formatv("/* Generated from:\n\t{0:$[ instantiating\n\t]}\n*/\n",
make_range(locs.rbegin(), locs.rend()));
os << formatv(R"(struct {0} : public ::mlir::RewritePattern {
{0}(::mlir::MLIRContext *context)
: ::mlir::RewritePattern("{1}", {{)",
rewriteName, rootName);
// Sort result operators by name.
llvm::SmallVector<const Operator *, 4> sortedResultOps(resultOps.begin(),
resultOps.end());
llvm::sort(sortedResultOps, [&](const Operator *lhs, const Operator *rhs) {
return lhs->getOperationName() < rhs->getOperationName();
});
llvm::interleaveComma(sortedResultOps, os, [&](const Operator *op) {
os << '"' << op->getOperationName() << '"';
});
os << formatv(R"(}, {0}, context) {{})", pattern.getBenefit()) << "\n";
// Emit matchAndRewrite() function.
os << R"(
::mlir::LogicalResult
matchAndRewrite(::mlir::Operation *op0,
::mlir::PatternRewriter &rewriter) const override {
)";
// Register all symbols bound in the source pattern.
pattern.collectSourcePatternBoundSymbols(symbolInfoMap);
LLVM_DEBUG(
llvm::dbgs() << "start creating local variables for capturing matches\n");
os.indent(4) << "// Variables for capturing values and attributes used for "
"creating ops\n";
// Create local variables for storing the arguments and results bound
// to symbols.
for (const auto &symbolInfoPair : symbolInfoMap) {
StringRef symbol = symbolInfoPair.getKey();
auto &info = symbolInfoPair.getValue();
os.indent(4) << info.getVarDecl(symbol);
}
// TODO: capture ops with consistent numbering so that it can be
// reused for fused loc.
os.indent(4) << formatv("::mlir::Operation *tblgen_ops[{0}];\n\n",
pattern.getSourcePattern().getNumOps());
LLVM_DEBUG(
llvm::dbgs() << "done creating local variables for capturing matches\n");
os.indent(4) << "// Match\n";
os.indent(4) << "tblgen_ops[0] = op0;\n";
emitMatchLogic(sourceTree);
os << "\n";
os.indent(4) << "// Rewrite\n";
emitRewriteLogic();
os.indent(4) << "return success();\n";
os << " };\n";
os << "};\n";
}
void PatternEmitter::emitRewriteLogic() {
LLVM_DEBUG(llvm::dbgs() << "--- start emitting rewrite logic ---\n");
const Operator &rootOp = pattern.getSourceRootOp();
int numExpectedResults = rootOp.getNumResults();
int numResultPatterns = pattern.getNumResultPatterns();
// First register all symbols bound to ops generated in result patterns.
pattern.collectResultPatternBoundSymbols(symbolInfoMap);
// Only the last N static values generated are used to replace the matched
// root N-result op. We need to calculate the starting index (of the results
// of the matched op) each result pattern is to replace.
SmallVector<int, 4> offsets(numResultPatterns + 1, numExpectedResults);
// If we don't need to replace any value at all, set the replacement starting
// index as the number of result patterns so we skip all of them when trying
// to replace the matched op's results.
int replStartIndex = numExpectedResults == 0 ? numResultPatterns : -1;
for (int i = numResultPatterns - 1; i >= 0; --i) {
auto numValues = getNodeValueCount(pattern.getResultPattern(i));
offsets[i] = offsets[i + 1] - numValues;
if (offsets[i] == 0) {
if (replStartIndex == -1)
replStartIndex = i;
} else if (offsets[i] < 0 && offsets[i + 1] > 0) {
auto error = formatv(
"cannot use the same multi-result op '{0}' to generate both "
"auxiliary values and values to be used for replacing the matched op",
pattern.getResultPattern(i).getSymbol());
PrintFatalError(loc, error);
}
}
if (offsets.front() > 0) {
const char error[] = "no enough values generated to replace the matched op";
PrintFatalError(loc, error);
}
os.indent(4) << "auto odsLoc = rewriter.getFusedLoc({";
for (int i = 0, e = pattern.getSourcePattern().getNumOps(); i != e; ++i) {
os << (i ? ", " : "") << "tblgen_ops[" << i << "]->getLoc()";
}
os << "}); (void)odsLoc;\n";
// Process auxiliary result patterns.
for (int i = 0; i < replStartIndex; ++i) {
DagNode resultTree = pattern.getResultPattern(i);
auto val = handleResultPattern(resultTree, offsets[i], 0);
// Normal op creation will be streamed to `os` by the above call; but
// NativeCodeCall will only be materialized to `os` if it is used. Here
// we are handling auxiliary patterns so we want the side effect even if
// NativeCodeCall is not replacing matched root op's results.
if (resultTree.isNativeCodeCall())
os.indent(4) << val << ";\n";
}
if (numExpectedResults == 0) {
assert(replStartIndex >= numResultPatterns &&
"invalid auxiliary vs. replacement pattern division!");
// No result to replace. Just erase the op.
os.indent(4) << "rewriter.eraseOp(op0);\n";
} else {
// Process replacement result patterns.
os.indent(4)
<< "::llvm::SmallVector<::mlir::Value, 4> tblgen_repl_values;\n";
for (int i = replStartIndex; i < numResultPatterns; ++i) {
DagNode resultTree = pattern.getResultPattern(i);
auto val = handleResultPattern(resultTree, offsets[i], 0);
os.indent(4) << "\n";
// Resolve each symbol for all range use so that we can loop over them.
// We need an explicit cast to `SmallVector` to capture the cases where
// `{0}` resolves to an `Operation::result_range` as well as cases that
// are not iterable (e.g. vector that gets wrapped in additional braces by
// RewriterGen).
// TODO: Revisit the need for materializing a vector.
os << symbolInfoMap.getAllRangeUse(
val,
" for (auto v : ::llvm::SmallVector<::mlir::Value, 4>{ {0} }) {{ "
"tblgen_repl_values.push_back(v); }",
"\n");
}
os.indent(4) << "\n";
os.indent(4) << "rewriter.replaceOp(op0, tblgen_repl_values);\n";
}
LLVM_DEBUG(llvm::dbgs() << "--- done emitting rewrite logic ---\n");
}
std::string PatternEmitter::getUniqueSymbol(const Operator *op) {
return std::string(
formatv("tblgen_{0}_{1}", op->getCppClassName(), nextValueId++));
}
std::string PatternEmitter::handleResultPattern(DagNode resultTree,
int resultIndex, int depth) {
LLVM_DEBUG(llvm::dbgs() << "handle result pattern: ");
LLVM_DEBUG(resultTree.print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
if (resultTree.isLocationDirective()) {
PrintFatalError(loc,
"location directive can only be used with op creation");
}
if (resultTree.isNativeCodeCall()) {
auto symbol = handleReplaceWithNativeCodeCall(resultTree);
symbolInfoMap.bindValue(symbol);
return symbol;
}
if (resultTree.isReplaceWithValue())
return handleReplaceWithValue(resultTree).str();
// Normal op creation.
auto symbol = handleOpCreation(resultTree, resultIndex, depth);
if (resultTree.getSymbol().empty()) {
// This is an op not explicitly bound to a symbol in the rewrite rule.
// Register the auto-generated symbol for it.
symbolInfoMap.bindOpResult(symbol, pattern.getDialectOp(resultTree));
}
return symbol;
}
StringRef PatternEmitter::handleReplaceWithValue(DagNode tree) {
assert(tree.isReplaceWithValue());
if (tree.getNumArgs() != 1) {
PrintFatalError(
loc, "replaceWithValue directive must take exactly one argument");
}
if (!tree.getSymbol().empty()) {
PrintFatalError(loc, "cannot bind symbol to replaceWithValue");
}
return tree.getArgName(0);
}
std::string PatternEmitter::handleLocationDirective(DagNode tree) {
assert(tree.isLocationDirective());
auto lookUpArgLoc = [this, &tree](int idx) {
const auto *const lookupFmt = "(*{0}.begin()).getLoc()";
return symbolInfoMap.getAllRangeUse(tree.getArgName(idx), lookupFmt);
};
if (tree.getNumArgs() == 0)
llvm::PrintFatalError(
"At least one argument to location directive required");
if (!tree.getSymbol().empty())
PrintFatalError(loc, "cannot bind symbol to location");
if (tree.getNumArgs() == 1) {
DagLeaf leaf = tree.getArgAsLeaf(0);
if (leaf.isStringAttr())
return formatv("::mlir::NameLoc::get(rewriter.getIdentifier(\"{0}\"), "
"rewriter.getContext())",
leaf.getStringAttr())
.str();
return lookUpArgLoc(0);
}
std::string ret;
llvm::raw_string_ostream os(ret);
std::string strAttr;
os << "rewriter.getFusedLoc({";
bool first = true;
for (int i = 0, e = tree.getNumArgs(); i != e; ++i) {
DagLeaf leaf = tree.getArgAsLeaf(i);
// Handle the optional string value.
if (leaf.isStringAttr()) {
if (!strAttr.empty())
llvm::PrintFatalError("Only one string attribute may be specified");
strAttr = leaf.getStringAttr();
continue;
}
os << (first ? "" : ", ") << lookUpArgLoc(i);
first = false;
}
os << "}";
if (!strAttr.empty()) {
os << ", rewriter.getStringAttr(\"" << strAttr << "\")";
}
os << ")";
return os.str();
}
std::string PatternEmitter::handleOpArgument(DagLeaf leaf,
StringRef patArgName) {
if (leaf.isConstantAttr()) {
auto constAttr = leaf.getAsConstantAttr();
return handleConstantAttr(constAttr.getAttribute(),
constAttr.getConstantValue());
}
if (leaf.isEnumAttrCase()) {
auto enumCase = leaf.getAsEnumAttrCase();
if (enumCase.isStrCase())
return handleConstantAttr(enumCase, enumCase.getSymbol());
// This is an enum case backed by an IntegerAttr. We need to get its value
// to build the constant.
std::string val = std::to_string(enumCase.getValue());
return handleConstantAttr(enumCase, val);
}
LLVM_DEBUG(llvm::dbgs() << "handle argument '" << patArgName << "'\n");
auto argName = symbolInfoMap.getValueAndRangeUse(patArgName);
if (leaf.isUnspecified() || leaf.isOperandMatcher()) {
LLVM_DEBUG(llvm::dbgs() << "replace " << patArgName << " with '" << argName
<< "' (via symbol ref)\n");
return argName;
}
if (leaf.isNativeCodeCall()) {
auto repl = tgfmt(leaf.getNativeCodeTemplate(), &fmtCtx.withSelf(argName));
LLVM_DEBUG(llvm::dbgs() << "replace " << patArgName << " with '" << repl
<< "' (via NativeCodeCall)\n");
return std::string(repl);
}
PrintFatalError(loc, "unhandled case when rewriting op");
}
std::string PatternEmitter::handleReplaceWithNativeCodeCall(DagNode tree) {
LLVM_DEBUG(llvm::dbgs() << "handle NativeCodeCall pattern: ");
LLVM_DEBUG(tree.print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
auto fmt = tree.getNativeCodeTemplate();
// TODO: replace formatv arguments with the exact specified args.
SmallVector<std::string, 8> attrs(8);
if (tree.getNumArgs() > 8) {
PrintFatalError(loc, "unsupported NativeCodeCall argument numbers: " +
Twine(tree.getNumArgs()));
}
for (int i = 0, e = tree.getNumArgs(); i != e; ++i) {
attrs[i] = handleOpArgument(tree.getArgAsLeaf(i), tree.getArgName(i));
LLVM_DEBUG(llvm::dbgs() << "NativeCodeCall argument #" << i
<< " replacement: " << attrs[i] << "\n");
}
return std::string(tgfmt(fmt, &fmtCtx, attrs[0], attrs[1], attrs[2], attrs[3],
attrs[4], attrs[5], attrs[6], attrs[7]));
}
int PatternEmitter::getNodeValueCount(DagNode node) {
if (node.isOperation()) {
// If the op is bound to a symbol in the rewrite rule, query its result
// count from the symbol info map.
auto symbol = node.getSymbol();
if (!symbol.empty()) {
return symbolInfoMap.getStaticValueCount(symbol);
}
// Otherwise this is an unbound op; we will use all its results.
return pattern.getDialectOp(node).getNumResults();
}
// TODO: This considers all NativeCodeCall as returning one
// value. Enhance if multi-value ones are needed.
return 1;
}
std::string PatternEmitter::handleOpCreation(DagNode tree, int resultIndex,
int depth) {
LLVM_DEBUG(llvm::dbgs() << "create op for pattern: ");
LLVM_DEBUG(tree.print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
Operator &resultOp = tree.getDialectOp(opMap);
auto numOpArgs = resultOp.getNumArgs();
auto numPatArgs = tree.getNumArgs();
// Get the location for this operation if explicitly provided.
std::string locToUse;
if (numPatArgs != 0) {
if (auto lastArg = tree.getArgAsNestedDag(numPatArgs - 1))
if (lastArg.isLocationDirective())
locToUse = handleLocationDirective(lastArg);
}
auto inPattern = numPatArgs - !locToUse.empty();
if (numOpArgs != inPattern) {
PrintFatalError(loc,
formatv("resultant op '{0}' argument number mismatch: "
"{1} in pattern vs. {2} in definition",
resultOp.getOperationName(), inPattern, numOpArgs));
}
// If no explicit location is given, use the default, all fused, location.
if (locToUse.empty())
locToUse = "odsLoc";
// A map to collect all nested DAG child nodes' names, with operand index as
// the key. This includes both bound and unbound child nodes.
ChildNodeIndexNameMap childNodeNames;
// First go through all the child nodes who are nested DAG constructs to
// create ops for them and remember the symbol names for them, so that we can
// use the results in the current node. This happens in a recursive manner.
for (int i = 0, e = resultOp.getNumOperands(); i != e; ++i) {
if (auto child = tree.getArgAsNestedDag(i))
childNodeNames[i] = handleResultPattern(child, i, depth + 1);
}
// The name of the local variable holding this op.
std::string valuePackName;
// The symbol for holding the result of this pattern. Note that the result of
// this pattern is not necessarily the same as the variable created by this
// pattern because we can use `__N` suffix to refer only a specific result if
// the generated op is a multi-result op.
std::string resultValue;
if (tree.getSymbol().empty()) {
// No symbol is explicitly bound to this op in the pattern. Generate a
// unique name.
valuePackName = resultValue = getUniqueSymbol(&resultOp);
} else {
resultValue = std::string(tree.getSymbol());
// Strip the index to get the name for the value pack and use it to name the
// local variable for the op.
valuePackName = std::string(SymbolInfoMap::getValuePackName(resultValue));
}
// Create the local variable for this op.
os.indent(4) << formatv("{0} {1};\n", resultOp.getQualCppClassName(),
valuePackName);
os.indent(4) << "{\n";
// Right now ODS don't have general type inference support. Except a few
// special cases listed below, DRR needs to supply types for all results
// when building an op.
bool isSameOperandsAndResultType =
resultOp.getTrait("OpTrait::SameOperandsAndResultType");
bool useFirstAttr = resultOp.getTrait("OpTrait::FirstAttrDerivedResultType");
if (isSameOperandsAndResultType || useFirstAttr) {
// We know how to deduce the result type for ops with these traits and we've
// generated builders taking aggregate parameters. Use those builders to
// create the ops.
// First prepare local variables for op arguments used in builder call.
createAggregateLocalVarsForOpArgs(tree, childNodeNames);
// Then create the op.
os.indent(6) << formatv(
"{0} = rewriter.create<{1}>({2}, tblgen_values, tblgen_attrs);\n",
valuePackName, resultOp.getQualCppClassName(), locToUse);
os.indent(4) << "}\n";
return resultValue;
}
bool usePartialResults = valuePackName != resultValue;
if (usePartialResults || depth > 0 || resultIndex < 0) {
// For these cases (broadcastable ops, op results used both as auxiliary
// values and replacement values, ops in nested patterns, auxiliary ops), we
// still need to supply the result types when building the op. But because
// we don't generate a builder automatically with ODS for them, it's the
// developer's responsibility to make sure such a builder (with result type
// deduction ability) exists. We go through the separate-parameter builder
// here given that it's easier for developers to write compared to
// aggregate-parameter builders.
createSeparateLocalVarsForOpArgs(tree, childNodeNames);
os.indent(6) << formatv("{0} = rewriter.create<{1}>({2}", valuePackName,
resultOp.getQualCppClassName(), locToUse);
supplyValuesForOpArgs(tree, childNodeNames);
os << "\n );\n";
os.indent(4) << "}\n";
return resultValue;
}
// If depth == 0 and resultIndex >= 0, it means we are replacing the values
// generated from the source pattern root op. Then we can use the source
// pattern's value types to determine the value type of the generated op
// here.
// First prepare local variables for op arguments used in builder call.
createAggregateLocalVarsForOpArgs(tree, childNodeNames);
// Then prepare the result types. We need to specify the types for all
// results.
os.indent(6) << formatv("::mlir::SmallVector<::mlir::Type, 4> tblgen_types; "
"(void)tblgen_types;\n");
int numResults = resultOp.getNumResults();
if (numResults != 0) {
for (int i = 0; i < numResults; ++i)
os.indent(6) << formatv("for (auto v : castedOp0.getODSResults({0})) {{"
"tblgen_types.push_back(v.getType()); }\n",
resultIndex + i);
}
os.indent(6) << formatv("{0} = rewriter.create<{1}>({2}, tblgen_types, "
"tblgen_values, tblgen_attrs);\n",
valuePackName, resultOp.getQualCppClassName(),
locToUse);
os.indent(4) << "}\n";
return resultValue;
}
void PatternEmitter::createSeparateLocalVarsForOpArgs(
DagNode node, ChildNodeIndexNameMap &childNodeNames) {
Operator &resultOp = node.getDialectOp(opMap);
// Now prepare operands used for building this op:
// * If the operand is non-variadic, we create a `Value` local variable.
// * If the operand is variadic, we create a `SmallVector<Value>` local
// variable.
int valueIndex = 0; // An index for uniquing local variable names.
for (int argIndex = 0, e = resultOp.getNumArgs(); argIndex < e; ++argIndex) {
const auto *operand =
resultOp.getArg(argIndex).dyn_cast<NamedTypeConstraint *>();
if (!operand) {
// We do not need special handling for attributes.
continue;
}
std::string varName;
if (operand->isVariadic()) {
varName = std::string(formatv("tblgen_values_{0}", valueIndex++));
os.indent(6) << formatv("::mlir::SmallVector<::mlir::Value, 4> {0};\n",
varName);
std::string range;
if (node.isNestedDagArg(argIndex)) {
range = childNodeNames[argIndex];
} else {
range = std::string(node.getArgName(argIndex));
}
// Resolve the symbol for all range use so that we have a uniform way of
// capturing the values.
range = symbolInfoMap.getValueAndRangeUse(range);
os.indent(6) << formatv("for (auto v : {0}) {1}.push_back(v);\n", range,
varName);
} else {
varName = std::string(formatv("tblgen_value_{0}", valueIndex++));
os.indent(6) << formatv("::mlir::Value {0} = ", varName);
if (node.isNestedDagArg(argIndex)) {
os << symbolInfoMap.getValueAndRangeUse(childNodeNames[argIndex]);
} else {
DagLeaf leaf = node.getArgAsLeaf(argIndex);
auto symbol =
symbolInfoMap.getValueAndRangeUse(node.getArgName(argIndex));
if (leaf.isNativeCodeCall()) {
os << std::string(
tgfmt(leaf.getNativeCodeTemplate(), &fmtCtx.withSelf(symbol)));
} else {
os << symbol;
}
}
os << ";\n";
}
// Update to use the newly created local variable for building the op later.
childNodeNames[argIndex] = varName;
}
}
void PatternEmitter::supplyValuesForOpArgs(
DagNode node, const ChildNodeIndexNameMap &childNodeNames) {
Operator &resultOp = node.getDialectOp(opMap);
for (int argIndex = 0, numOpArgs = resultOp.getNumArgs();
argIndex != numOpArgs; ++argIndex) {
// Start each argument on its own line.
(os << ",\n").indent(8);
Argument opArg = resultOp.getArg(argIndex);
// Handle the case of operand first.
if (auto *operand = opArg.dyn_cast<NamedTypeConstraint *>()) {
if (!operand->name.empty())
os << "/*" << operand->name << "=*/";
os << childNodeNames.lookup(argIndex);
continue;
}
// The argument in the op definition.
auto opArgName = resultOp.getArgName(argIndex);
if (auto subTree = node.getArgAsNestedDag(argIndex)) {
if (!subTree.isNativeCodeCall())
PrintFatalError(loc, "only NativeCodeCall allowed in nested dag node "
"for creating attribute");
os << formatv("/*{0}=*/{1}", opArgName,
handleReplaceWithNativeCodeCall(subTree));
} else {
auto leaf = node.getArgAsLeaf(argIndex);
// The argument in the result DAG pattern.
auto patArgName = node.getArgName(argIndex);
if (leaf.isConstantAttr() || leaf.isEnumAttrCase()) {
// TODO: Refactor out into map to avoid recomputing these.
if (!opArg.is<NamedAttribute *>())
PrintFatalError(loc, Twine("expected attribute ") + Twine(argIndex));
if (!patArgName.empty())
os << "/*" << patArgName << "=*/";
} else {
os << "/*" << opArgName << "=*/";
}
os << handleOpArgument(leaf, patArgName);
}
}
}
void PatternEmitter::createAggregateLocalVarsForOpArgs(
DagNode node, const ChildNodeIndexNameMap &childNodeNames) {
Operator &resultOp = node.getDialectOp(opMap);
os.indent(6) << formatv("::mlir::SmallVector<::mlir::Value, 4> "
"tblgen_values; (void)tblgen_values;\n");
os.indent(6) << formatv("::mlir::SmallVector<::mlir::NamedAttribute, 4> "
"tblgen_attrs; (void)tblgen_attrs;\n");
const char *addAttrCmd =
"if (auto tmpAttr = {1}) "
"tblgen_attrs.emplace_back(rewriter.getIdentifier(\"{0}\"), tmpAttr);\n";
for (int argIndex = 0, e = resultOp.getNumArgs(); argIndex < e; ++argIndex) {
if (resultOp.getArg(argIndex).is<NamedAttribute *>()) {
// The argument in the op definition.
auto opArgName = resultOp.getArgName(argIndex);
if (auto subTree = node.getArgAsNestedDag(argIndex)) {
if (!subTree.isNativeCodeCall())
PrintFatalError(loc, "only NativeCodeCall allowed in nested dag node "
"for creating attribute");
os.indent(6) << formatv(addAttrCmd, opArgName,
handleReplaceWithNativeCodeCall(subTree));
} else {
auto leaf = node.getArgAsLeaf(argIndex);
// The argument in the result DAG pattern.
auto patArgName = node.getArgName(argIndex);
os.indent(6) << formatv(addAttrCmd, opArgName,
handleOpArgument(leaf, patArgName));
}
continue;
}
const auto *operand =
resultOp.getArg(argIndex).get<NamedTypeConstraint *>();
std::string varName;
if (operand->isVariadic()) {
std::string range;
if (node.isNestedDagArg(argIndex)) {
range = childNodeNames.lookup(argIndex);
} else {
range = std::string(node.getArgName(argIndex));
}
// Resolve the symbol for all range use so that we have a uniform way of
// capturing the values.
range = symbolInfoMap.getValueAndRangeUse(range);
os.indent(6) << formatv(
"for (auto v : {0}) tblgen_values.push_back(v);\n", range);
} else {
os.indent(6) << formatv("tblgen_values.push_back(", varName);
if (node.isNestedDagArg(argIndex)) {
os << symbolInfoMap.getValueAndRangeUse(
childNodeNames.lookup(argIndex));
} else {
DagLeaf leaf = node.getArgAsLeaf(argIndex);
auto symbol =
symbolInfoMap.getValueAndRangeUse(node.getArgName(argIndex));
if (leaf.isNativeCodeCall()) {
os << std::string(
tgfmt(leaf.getNativeCodeTemplate(), &fmtCtx.withSelf(symbol)));
} else {
os << symbol;
}
}
os << ");\n";
}
}
}
static void emitRewriters(const RecordKeeper &recordKeeper, raw_ostream &os) {
emitSourceFileHeader("Rewriters", os);
const auto &patterns = recordKeeper.getAllDerivedDefinitions("Pattern");
auto numPatterns = patterns.size();
// We put the map here because it can be shared among multiple patterns.
RecordOperatorMap recordOpMap;
std::vector<std::string> rewriterNames;
rewriterNames.reserve(numPatterns);
std::string baseRewriterName = "GeneratedConvert";
int rewriterIndex = 0;
for (Record *p : patterns) {
std::string name;
if (p->isAnonymous()) {
// If no name is provided, ensure unique rewriter names simply by
// appending unique suffix.
name = baseRewriterName + llvm::utostr(rewriterIndex++);
} else {
name = std::string(p->getName());
}
LLVM_DEBUG(llvm::dbgs()
<< "=== start generating pattern '" << name << "' ===\n");
PatternEmitter(p, &recordOpMap, os).emit(name);
LLVM_DEBUG(llvm::dbgs()
<< "=== done generating pattern '" << name << "' ===\n");
rewriterNames.push_back(std::move(name));
}
// Emit function to add the generated matchers to the pattern list.
os << "void LLVM_ATTRIBUTE_UNUSED populateWithGenerated(MLIRContext "
"*context, OwningRewritePatternList *patterns) {\n";
for (const auto &name : rewriterNames) {
os << " patterns->insert<" << name << ">(context);\n";
}
os << "}\n";
}
static mlir::GenRegistration
genRewriters("gen-rewriters", "Generate pattern rewriters",
[](const RecordKeeper &records, raw_ostream &os) {
emitRewriters(records, os);
return false;
});