blob: b064d83b5faadce949a9af4a36eee5de9ab81db5 [file] [log] [blame]
//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
using namespace mlir;
/// Return true if the given operation is unknown and may potentially define a
/// symbol table.
static bool isPotentiallyUnknownSymbolTable(Operation *op) {
return !op->getDialect() && op->getNumRegions() == 1;
}
/// Returns the string name of the given symbol, or None if this is not a
/// symbol.
static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
auto nameAttr =
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
}
/// Computes the nested symbol reference attribute for the symbol 'symbolName'
/// that are usable within the symbol table operations from 'symbol' as far up
/// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
/// Returns success if all references up to 'within' could be computed.
static LogicalResult
collectValidReferencesFor(Operation *symbol, StringRef symbolName,
Operation *within,
SmallVectorImpl<SymbolRefAttr> &results) {
assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
MLIRContext *ctx = symbol->getContext();
auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
results.push_back(leafRef);
// Early exit for when 'within' is the parent of 'symbol'.
Operation *symbolTableOp = symbol->getParentOp();
if (within == symbolTableOp)
return success();
// Collect references until 'symbolTableOp' reaches 'within'.
SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
do {
// Each parent of 'symbol' should define a symbol table.
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
// Each parent of 'symbol' should also be a symbol.
Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp);
if (!symbolTableName)
return failure();
results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
symbolTableOp = symbolTableOp->getParentOp();
if (symbolTableOp == within)
break;
nestedRefs.insert(nestedRefs.begin(),
FlatSymbolRefAttr::get(*symbolTableName, ctx));
} while (true);
return success();
}
//===----------------------------------------------------------------------===//
// SymbolTable
//===----------------------------------------------------------------------===//
/// Build a symbol table with the symbols within the given operation.
SymbolTable::SymbolTable(Operation *symbolTableOp)
: symbolTableOp(symbolTableOp) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
"expected operation to have SymbolTable trait");
assert(symbolTableOp->getNumRegions() == 1 &&
"expected operation to have a single region");
assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
"expected operation to have a single block");
for (auto &op : symbolTableOp->getRegion(0).front()) {
Optional<StringRef> name = getNameIfSymbol(&op);
if (!name)
continue;
auto inserted = symbolTable.insert({*name, &op});
(void)inserted;
assert(inserted.second &&
"expected region to contain uniquely named symbol operations");
}
}
/// Look up a symbol with the specified name, returning null if no such name
/// exists. Names never include the @ on them.
Operation *SymbolTable::lookup(StringRef name) const {
return symbolTable.lookup(name);
}
/// Erase the given symbol from the table.
void SymbolTable::erase(Operation *symbol) {
Optional<StringRef> name = getNameIfSymbol(symbol);
assert(name && "expected valid 'name' attribute");
assert(symbol->getParentOp() == symbolTableOp &&
"expected this operation to be inside of the operation with this "
"SymbolTable");
auto it = symbolTable.find(*name);
if (it != symbolTable.end() && it->second == symbol) {
symbolTable.erase(it);
symbol->erase();
}
}
/// Insert a new symbol into the table and associated operation, and rename it
/// as necessary to avoid collisions.
void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
auto &body = symbolTableOp->getRegion(0).front();
if (insertPt == Block::iterator() || insertPt == body.end())
insertPt = Block::iterator(body.getTerminator());
assert(insertPt->getParentOp() == symbolTableOp &&
"expected insertPt to be in the associated module operation");
body.getOperations().insert(insertPt, symbol);
// Add this symbol to the symbol table, uniquing the name if a conflict is
// detected.
StringRef name = getSymbolName(symbol);
if (symbolTable.insert({name, symbol}).second)
return;
// If a conflict was detected, then the symbol will not have been added to
// the symbol table. Try suffixes until we get to a unique name that works.
SmallString<128> nameBuffer(name);
unsigned originalLength = nameBuffer.size();
// Iteratively try suffixes until we find one that isn't used.
do {
nameBuffer.resize(originalLength);
nameBuffer += '_';
nameBuffer += std::to_string(uniquingCounter++);
} while (!symbolTable.insert({nameBuffer, symbol}).second);
setSymbolName(symbol, nameBuffer);
}
/// Returns the name of the given symbol operation.
StringRef SymbolTable::getSymbolName(Operation *symbol) {
Optional<StringRef> name = getNameIfSymbol(symbol);
assert(name && "expected valid symbol name");
return *name;
}
/// Sets the name of the given symbol operation.
void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
symbol->setAttr(getSymbolAttrName(),
StringAttr::get(name, symbol->getContext()));
}
/// Returns the visibility of the given symbol operation.
SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
// If the attribute doesn't exist, assume public.
StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
if (!vis)
return Visibility::Public;
// Otherwise, switch on the string value.
return llvm::StringSwitch<Visibility>(vis.getValue())
.Case("private", Visibility::Private)
.Case("nested", Visibility::Nested)
.Case("public", Visibility::Public);
}
/// Sets the visibility of the given symbol operation.
void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
MLIRContext *ctx = symbol->getContext();
// If the visibility is public, just drop the attribute as this is the
// default.
if (vis == Visibility::Public) {
symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
return;
}
// Otherwise, update the attribute.
assert((vis == Visibility::Private || vis == Visibility::Nested) &&
"unknown symbol visibility kind");
StringRef visName = vis == Visibility::Private ? "private" : "nested";
symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
}
/// Returns the nearest symbol table from a given operation `from`. Returns
/// nullptr if no valid parent symbol table could be found.
Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
assert(from && "expected valid operation");
if (isPotentiallyUnknownSymbolTable(from))
return nullptr;
while (!from->hasTrait<OpTrait::SymbolTable>()) {
from = from->getParentOp();
// Check that this is a valid op and isn't an unknown symbol table.
if (!from || isPotentiallyUnknownSymbolTable(from))
return nullptr;
}
return from;
}
/// Walks all symbol table operations nested within, and including, `op`. For
/// each symbol table operation, the provided callback is invoked with the op
/// and a boolean signifying if the symbols within that symbol table can be
/// treated as if all uses are visible. `allSymUsesVisible` identifies whether
/// all of the symbol uses of symbols within `op` are visible.
void SymbolTable::walkSymbolTables(
Operation *op, bool allSymUsesVisible,
function_ref<void(Operation *, bool)> callback) {
bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
if (isSymbolTable) {
SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
allSymUsesVisible |= !symbol || symbol.isPrivate();
} else {
// Otherwise if 'op' is not a symbol table, any nested symbols are
// guaranteed to be hidden.
allSymUsesVisible = true;
}
for (Region &region : op->getRegions())
for (Block &block : region)
for (Operation &nestedOp : block)
walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
// If 'op' had the symbol table trait, visit it after any nested symbol
// tables.
if (isSymbolTable)
callback(op, allSymUsesVisible);
}
/// Returns the operation registered with the given symbol name with the
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
/// was found.
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
StringRef symbol) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Look for a symbol with the given name.
for (auto &op : symbolTableOp->getRegion(0).front().without_terminator())
if (getNameIfSymbol(&op) == symbol)
return &op;
return nullptr;
}
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
SymbolRefAttr symbol) {
SmallVector<Operation *, 4> resolvedSymbols;
if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
return nullptr;
return resolvedSymbols.back();
}
LogicalResult
SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
SmallVectorImpl<Operation *> &symbols) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Lookup the root reference for this symbol.
symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference());
if (!symbolTableOp)
return failure();
symbols.push_back(symbolTableOp);
// If there are no nested references, just return the root symbol directly.
ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
if (nestedRefs.empty())
return success();
// Verify that the root is also a symbol table.
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
// Otherwise, lookup each of the nested non-leaf references and ensure that
// each corresponds to a valid symbol table.
for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue());
if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
symbols.push_back(symbolTableOp);
}
symbols.push_back(lookupSymbolIn(symbolTableOp, symbol.getLeafReference()));
return success(symbols.back());
}
/// Returns the operation registered with the given symbol name within the
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
/// nullptr if no valid symbol was found.
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
StringRef symbol) {
Operation *symbolTableOp = getNearestSymbolTable(from);
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
}
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
SymbolRefAttr symbol) {
Operation *symbolTableOp = getNearestSymbolTable(from);
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
LogicalResult detail::verifySymbolTable(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one region";
if (!llvm::hasSingleElement(op->getRegion(0)))
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one block";
// Check that all symbols are uniquely named within child regions.
DenseMap<Attribute, Location> nameToOrigLoc;
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
// Check for a symbol name attribute.
auto nameAttr =
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
if (!nameAttr)
continue;
// Try to insert this symbol into the table.
auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
if (!it.second)
return op.emitError()
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
.attachNote(it.first->second)
.append("see existing symbol definition here");
}
}
return success();
}
LogicalResult detail::verifySymbol(Operation *op) {
// Verify the name attribute.
if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
return op->emitOpError() << "requires string attribute '"
<< mlir::SymbolTable::getSymbolAttrName() << "'";
// Verify the visibility attribute.
if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
if (!visStrAttr)
return op->emitOpError() << "requires visibility attribute '"
<< mlir::SymbolTable::getVisibilityAttrName()
<< "' to be a string attribute, but got " << vis;
if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
visStrAttr.getValue()))
return op->emitOpError()
<< "visibility expected to be one of [\"public\", \"private\", "
"\"nested\"], but got "
<< visStrAttr;
}
return success();
}
//===----------------------------------------------------------------------===//
// Symbol Use Lists
//===----------------------------------------------------------------------===//
/// Walk all of the symbol references within the given operation, invoking the
/// provided callback for each found use. The callbacks takes as arguments: the
/// use of the symbol, and the nested access chain to the attribute within the
/// operation dictionary. An access chain is a set of indices into nested
/// container attributes. For example, a symbol use in an attribute dictionary
/// that looks like the following:
///
/// {use = [{other_attr, @symbol}]}
///
/// May have the following access chain:
///
/// [0, 0, 1]
///
static WalkResult walkSymbolRefs(
Operation *op,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
// Check to see if the operation has any attributes.
if (op->getMutableAttrDict().empty())
return WalkResult::advance();
DictionaryAttr attrDict = op->getAttrDictionary();
// A worklist of a container attribute and the current index into the held
// attribute list.
SmallVector<Attribute, 1> attrWorklist(1, attrDict);
SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
// Process the symbol references within the given nested attribute range.
auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
for (Attribute attr : llvm::drop_begin(attrRange, index)) {
/// Check for a nested container attribute, these will also need to be
/// walked.
if (attr.isa<ArrayAttr, DictionaryAttr>()) {
attrWorklist.push_back(attr);
curAccessChain.push_back(-1);
return WalkResult::advance();
}
// Invoke the provided callback if we find a symbol use and check for a
// requested interrupt.
if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
return WalkResult::interrupt();
// Make sure to keep the index counter in sync.
++index;
}
// Pop this container attribute from the worklist.
attrWorklist.pop_back();
curAccessChain.pop_back();
return WalkResult::advance();
};
WalkResult result = WalkResult::advance();
do {
Attribute attr = attrWorklist.back();
int &index = curAccessChain.back();
++index;
// Process the given attribute, which is guaranteed to be a container.
if (auto dict = attr.dyn_cast<DictionaryAttr>())
result = processAttrs(index, make_second_range(dict.getValue()));
else
result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
} while (!attrWorklist.empty() && !result.wasInterrupted());
return result;
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// regions, invoking the provided callback for each. This does not traverse
/// into any nested symbol tables.
static Optional<WalkResult> walkSymbolUses(
MutableArrayRef<Region> regions,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
while (!worklist.empty()) {
for (Operation &op : worklist.pop_back_val()->getOps()) {
if (walkSymbolRefs(&op, callback).wasInterrupted())
return WalkResult::interrupt();
// Check that this isn't a potentially unknown symbol table.
if (isPotentiallyUnknownSymbolTable(&op))
return llvm::None;
// If this op defines a new symbol table scope, we can't traverse. Any
// symbol references nested within 'op' are different semantically.
if (!op.hasTrait<OpTrait::SymbolTable>()) {
for (Region &region : op.getRegions())
worklist.push_back(&region);
}
}
}
return WalkResult::advance();
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables.
static Optional<WalkResult> walkSymbolUses(
Operation *from,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
// If this operation has regions, and it, as well as its dialect, isn't
// registered then conservatively fail. The operation may define a
// symbol table, so we can't opaquely know if we should traverse to find
// nested uses.
if (isPotentiallyUnknownSymbolTable(from))
return llvm::None;
// Walk the uses on this operation.
if (walkSymbolRefs(from, callback).wasInterrupted())
return WalkResult::interrupt();
// Only recurse if this operation is not a symbol table. A symbol table
// defines a new scope, so we can't walk the attributes from within the symbol
// table op.
if (!from->hasTrait<OpTrait::SymbolTable>())
return walkSymbolUses(from->getRegions(), callback);
return WalkResult::advance();
}
namespace {
/// This class represents a single symbol scope. A symbol scope represents the
/// set of operations nested within a symbol table that may reference symbols
/// within that table. A symbol scope does not contain the symbol table
/// operation itself, just its contained operations. A scope ends at leaf
/// operations or another symbol table operation.
struct SymbolScope {
/// Walk the symbol uses within this scope, invoking the given callback.
/// This variant is used when the callback type matches that expected by
/// 'walkSymbolUses'.
template <typename CallbackT,
typename std::enable_if_t<!std::is_same<
typename llvm::function_traits<CallbackT>::result_t,
void>::value> * = nullptr>
Optional<WalkResult> walk(CallbackT cback) {
if (Region *region = limit.dyn_cast<Region *>())
return walkSymbolUses(*region, cback);
return walkSymbolUses(limit.get<Operation *>(), cback);
}
/// This variant is used when the callback type matches a stripped down type:
/// void(SymbolTable::SymbolUse use)
template <typename CallbackT,
typename std::enable_if_t<std::is_same<
typename llvm::function_traits<CallbackT>::result_t,
void>::value> * = nullptr>
Optional<WalkResult> walk(CallbackT cback) {
return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
return cback(use), WalkResult::advance();
});
}
/// The representation of the symbol within this scope.
SymbolRefAttr symbol;
/// The IR unit representing this scope.
llvm::PointerUnion<Operation *, Region *> limit;
};
} // end anonymous namespace
/// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
Operation *limit) {
StringRef symName = SymbolTable::getSymbolName(symbol);
assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
// Compute the ancestors of 'limit'.
llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
SmallPtrSet<Operation *, 4>>
limitAncestors;
Operation *limitAncestor = limit;
do {
// Check to see if 'symbol' is an ancestor of 'limit'.
if (limitAncestor == symbol) {
// Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
// doesn't support parent references.
if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
symbol->getParentOp())
return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}};
return {};
}
limitAncestors.insert(limitAncestor);
} while ((limitAncestor = limitAncestor->getParentOp()));
// Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
Operation *commonAncestor = symbol->getParentOp();
do {
if (limitAncestors.count(commonAncestor))
break;
} while ((commonAncestor = commonAncestor->getParentOp()));
assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
// Compute the set of valid nested references for 'symbol' as far up to the
// common ancestor as possible.
SmallVector<SymbolRefAttr, 2> references;
bool collectedAllReferences = succeeded(
collectValidReferencesFor(symbol, symName, commonAncestor, references));
// Handle the case where the common ancestor is 'limit'.
if (commonAncestor == limit) {
SmallVector<SymbolScope, 2> scopes;
// Walk each of the ancestors of 'symbol', calling the compute function for
// each one.
Operation *limitIt = symbol->getParentOp();
for (size_t i = 0, e = references.size(); i != e;
++i, limitIt = limitIt->getParentOp()) {
assert(limitIt->hasTrait<OpTrait::SymbolTable>());
scopes.push_back({references[i], &limitIt->getRegion(0)});
}
return scopes;
}
// Otherwise, we just need the symbol reference for 'symbol' that will be
// used within 'limit'. This is the last reference in the list we computed
// above if we were able to collect all references.
if (!collectedAllReferences)
return {};
return {{references.back(), limit}};
}
static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
Region *limit) {
auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
// If we collected some scopes to walk, make sure to constrain the one for
// limit to the specific region requested.
if (!scopes.empty())
scopes.back().limit = limit;
return scopes;
}
template <typename IRUnit>
static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
IRUnit *limit) {
return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}};
}
/// Returns true if the given reference 'SubRef' is a sub reference of the
/// reference 'ref', i.e. 'ref' is a further qualified reference.
static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
if (ref == subRef)
return true;
// If the references are not pointer equal, check to see if `subRef` is a
// prefix of `ref`.
if (ref.isa<FlatSymbolRefAttr>() ||
ref.getRootReference() != subRef.getRootReference())
return false;
auto refLeafs = ref.getNestedReferences();
auto subRefLeafs = subRef.getNestedReferences();
return subRefLeafs.size() < refLeafs.size() &&
subRefLeafs == refLeafs.take_front(subRefLeafs.size());
}
//===----------------------------------------------------------------------===//
// SymbolTable::getSymbolUses
/// The implementation of SymbolTable::getSymbolUses below.
template <typename FromT>
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
std::vector<SymbolTable::SymbolUse> uses;
auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
uses.push_back(symbolUse);
return WalkResult::advance();
};
auto result = walkSymbolUses(from, walkFn);
return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
}
/// Get an iterator range for all of the uses, for any symbol, that are nested
/// within the given operation 'from'. This does not traverse into any nested
/// symbol tables, and will also only return uses on 'from' if it does not
/// also define a symbol table. This is because we treat the region as the
/// boundary of the symbol table, and not the op itself. This function returns
/// None if there are any unknown operations that may potentially be symbol
/// tables.
auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
return getSymbolUsesImpl(from);
}
auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
}
//===----------------------------------------------------------------------===//
// SymbolTable::getSymbolUses
/// The implementation of SymbolTable::getSymbolUses below.
template <typename SymbolT, typename IRUnitT>
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
IRUnitT *limit) {
std::vector<SymbolTable::SymbolUse> uses;
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
uses.push_back(symbolUse);
}))
return llvm::None;
}
return SymbolTable::UseRange(std::move(uses));
}
/// Get all of the uses of the given symbol that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables. This function returns None if there
/// are any unknown operations that may potentially be symbol tables.
auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
//===----------------------------------------------------------------------===//
// SymbolTable::symbolKnownUseEmpty
/// The implementation of SymbolTable::symbolKnownUseEmpty below.
template <typename SymbolT, typename IRUnitT>
static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
// Walk all of the symbol uses looking for a reference to 'symbol'.
if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
? WalkResult::interrupt()
: WalkResult::advance();
}) != WalkResult::advance())
return false;
}
return true;
}
/// Return if the given symbol is known to have no uses that are nested within
/// the given operation 'from'. This does not traverse into any nested symbol
/// tables. This function will also return false if there are any unknown
/// operations that may potentially be symbol tables.
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
//===----------------------------------------------------------------------===//
// SymbolTable::replaceAllSymbolUses
/// Rebuild the given attribute container after replacing all references to a
/// symbol with the updated attribute in 'accesses'.
static Attribute rebuildAttrAfterRAUW(
Attribute container,
ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
unsigned depth) {
// Given a range of Attributes, update the ones referred to by the given
// access chains to point to the new symbol attribute.
auto updateAttrs = [&](auto &&attrRange) {
auto attrBegin = std::begin(attrRange);
for (unsigned i = 0, e = accesses.size(); i != e;) {
ArrayRef<int> access = accesses[i].first;
Attribute &attr = *std::next(attrBegin, access[depth]);
// Check to see if this is a leaf access, i.e. a SymbolRef.
if (access.size() == depth + 1) {
attr = accesses[i].second;
++i;
continue;
}
// Otherwise, this is a container. Collect all of the accesses for this
// index and recurse. The recursion here is bounded by the size of the
// largest access array.
auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
ArrayRef<int> nextAccess = it.first;
return nextAccess.size() > depth + 1 &&
nextAccess[depth] == access[depth];
});
attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
// Skip over all of the accesses that refer to the nested container.
i += nestedAccesses.size();
}
};
if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
updateAttrs(make_second_range(newAttrs));
return DictionaryAttr::get(newAttrs, dictAttr.getContext());
}
auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
updateAttrs(newAttrs);
return ArrayAttr::get(newAttrs, container.getContext());
}
/// Generates a new symbol reference attribute with a new leaf reference.
static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
FlatSymbolRefAttr newLeafAttr) {
if (oldAttr.isa<FlatSymbolRefAttr>())
return newLeafAttr;
auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
nestedRefs.back() = newLeafAttr;
return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
oldAttr.getContext());
}
/// The implementation of SymbolTable::replaceAllSymbolUses below.
template <typename SymbolT, typename IRUnitT>
static LogicalResult
replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
// A collection of operations along with their new attribute dictionary.
std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
// The current operation being processed.
Operation *curOp = nullptr;
// The set of access chains into the attribute dictionary of the current
// operation, as well as the replacement attribute to use.
SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
// Generate a new attribute dictionary for the current operation by replacing
// references to the old symbol.
auto generateNewAttrDict = [&] {
auto oldDict = curOp->getAttrDictionary();
auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
return newDict.cast<DictionaryAttr>();
};
// Generate a new attribute to replace the given attribute.
MLIRContext *ctx = limit->getContext();
FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
ArrayRef<int> accessChain) {
SymbolRefAttr useRef = symbolUse.getSymbolRef();
if (!isReferencePrefixOf(scope.symbol, useRef))
return WalkResult::advance();
// If we have a valid match, check to see if this is a proper
// subreference. If it is, then we will need to generate a different new
// attribute specifically for this use.
SymbolRefAttr replacementRef = newAttr;
if (useRef != scope.symbol) {
if (scope.symbol.isa<FlatSymbolRefAttr>()) {
replacementRef =
SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
} else {
auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
newLeafAttr;
replacementRef =
SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
}
}
// If there was a previous operation, generate a new attribute dict
// for it. This means that we've finished processing the current
// operation, so generate a new dictionary for it.
if (curOp && symbolUse.getUser() != curOp) {
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
accessChains.clear();
}
// Record this access.
curOp = symbolUse.getUser();
accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
return WalkResult::advance();
};
if (!scope.walk(walkFn))
return failure();
// Check to see if we have a dangling op that needs to be processed.
if (curOp) {
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
curOp = nullptr;
}
}
// Update the attribute dictionaries as necessary.
for (auto &it : updatedAttrDicts)
it.first->setAttrs(it.second);
return success();
}
/// Attempt to replace all uses of the given symbol 'oldSymbol' with the
/// provided symbol 'newSymbol' that are nested within the given operation
/// 'from'. This does not traverse into any nested symbol tables. If there are
/// any unknown operations that may potentially be symbol tables, no uses are
/// replaced and failure is returned.
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
StringRef newSymbol,
Operation *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
StringRef newSymbol,
Operation *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
StringRef newSymbol,
Region *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
StringRef newSymbol,
Region *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
//===----------------------------------------------------------------------===//
// Symbol Interfaces
//===----------------------------------------------------------------------===//
/// Include the generated symbol interfaces.
#include "mlir/IR/SymbolInterfaces.cpp.inc"