blob: ead45491c159a8206474429e78403ba68128b92b [file] [log] [blame]
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Utils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/IntegerSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "analysis-utils"
using namespace mlir;
using llvm::SmallDenseMap;
/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
/// the outermost 'affine.for' operation to the innermost one.
void mlir::getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops) {
auto *currOp = op.getParentOp();
AffineForOp currAffineForOp;
// Traverse up the hierarchy collecting all 'affine.for' operation while
// skipping over 'affine.if' operations.
while (currOp && ((currAffineForOp = dyn_cast<AffineForOp>(currOp)) ||
isa<AffineIfOp>(currOp))) {
if (currAffineForOp)
loops->push_back(currAffineForOp);
currOp = currOp->getParentOp();
}
std::reverse(loops->begin(), loops->end());
}
// Populates 'cst' with FlatAffineConstraints which represent slice bounds.
LogicalResult
ComputationSliceState::getAsConstraints(FlatAffineConstraints *cst) {
assert(!lbOperands.empty());
// Adds src 'ivs' as dimension identifiers in 'cst'.
unsigned numDims = ivs.size();
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
unsigned numSymbols = lbOperands[0].size();
SmallVector<Value, 4> values(ivs);
// Append 'ivs' then 'operands' to 'values'.
values.append(lbOperands[0].begin(), lbOperands[0].end());
cst->reset(numDims, numSymbols, 0, values);
// Add loop bound constraints for values which are loop IVs and equality
// constraints for symbols which are constants.
for (const auto &value : values) {
assert(cst->containsId(value) && "value expected to be present");
if (isValidSymbol(value)) {
// Check if the symbol is a constant.
if (auto cOp = value.getDefiningOp<ConstantIndexOp>())
cst->setIdToConstant(value, cOp.getValue());
} else if (auto loop = getForInductionVarOwner(value)) {
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
return success();
}
// Clears state bounds and operand state.
void ComputationSliceState::clearBounds() {
lbs.clear();
ubs.clear();
lbOperands.clear();
ubOperands.clear();
}
unsigned MemRefRegion::getRank() const {
return memref.getType().cast<MemRefType>().getRank();
}
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
SmallVectorImpl<int64_t> *lbDivisors) const {
auto memRefType = memref.getType().cast<MemRefType>();
unsigned rank = memRefType.getRank();
if (shape)
shape->reserve(rank);
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
// Use a copy of the region constraints that has upper/lower bounds for each
// memref dimension with static size added to guard against potential
// over-approximation from projection or union bounding box. We may not add
// this on the region itself since they might just be redundant constraints
// that will need non-trivials means to eliminate.
FlatAffineConstraints cstWithShapeBounds(cst);
for (unsigned r = 0; r < rank; r++) {
cstWithShapeBounds.addConstantLowerBound(r, 0);
int64_t dimSize = memRefType.getDimSize(r);
if (ShapedType::isDynamic(dimSize))
continue;
cstWithShapeBounds.addConstantUpperBound(r, dimSize - 1);
}
// Find a constant upper bound on the extent of this memref region along each
// dimension.
int64_t numElements = 1;
int64_t diffConstant;
int64_t lbDivisor;
for (unsigned d = 0; d < rank; d++) {
SmallVector<int64_t, 4> lb;
Optional<int64_t> diff =
cstWithShapeBounds.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
if (diff.hasValue()) {
diffConstant = diff.getValue();
assert(lbDivisor > 0);
} else {
// If no constant bound is found, then it can always be bound by the
// memref's dim size if the latter has a constant size along this dim.
auto dimSize = memRefType.getDimSize(d);
if (dimSize == -1)
return None;
diffConstant = dimSize;
// Lower bound becomes 0.
lb.resize(cstWithShapeBounds.getNumSymbolIds() + 1, 0);
lbDivisor = 1;
}
numElements *= diffConstant;
if (lbs) {
lbs->push_back(lb);
assert(lbDivisors && "both lbs and lbDivisor or none");
lbDivisors->push_back(lbDivisor);
}
if (shape) {
shape->push_back(diffConstant);
}
}
return numElements;
}
void MemRefRegion::getLowerAndUpperBound(unsigned pos, AffineMap &lbMap,
AffineMap &ubMap) const {
assert(pos < cst.getNumDimIds() && "invalid position");
auto memRefType = memref.getType().cast<MemRefType>();
unsigned rank = memRefType.getRank();
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
auto boundPairs = cst.getLowerAndUpperBound(
pos, /*offset=*/0, /*num=*/rank, cst.getNumDimAndSymbolIds(),
/*localExprs=*/{}, memRefType.getContext());
lbMap = boundPairs.first;
ubMap = boundPairs.second;
assert(lbMap && "lower bound for a region must exist");
assert(ubMap && "upper bound for a region must exist");
assert(lbMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
assert(ubMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
}
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
assert(memref == other.memref);
return cst.unionBoundingBox(*other.getConstraints());
}
/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parametric in 'loopDepth' loops
/// surrounding opInst and any additional Function symbols.
// For example, the memref region for this load operation at loopDepth = 1 will
// be as below:
//
// affine.for %i = 0 to 32 {
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
// load %A[%ii]
// }
// }
//
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
//
// TODO: extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
ComputationSliceState *sliceState,
bool addMemRefDimBounds) {
assert((isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) &&
"affine read/write op expected");
MemRefAccess access(op);
memref = access.memref;
write = access.isStore();
unsigned rank = access.getRank();
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
<< "depth: " << loopDepth << "\n";);
// 0-d memrefs.
if (rank == 0) {
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*op, &ivs);
assert(loopDepth <= ivs.size() && "invalid 'loopDepth'");
// The first 'loopDepth' IVs are symbols for this region.
ivs.resize(loopDepth);
SmallVector<Value, 4> regionSymbols;
extractForInductionVars(ivs, &regionSymbols);
// A 0-d memref has a 0-d region.
cst.reset(rank, loopDepth, /*numLocals=*/0, regionSymbols);
return success();
}
// Build the constraints for this region.
AffineValueMap accessValueMap;
access.getAccessMap(&accessValueMap);
AffineMap accessMap = accessValueMap.getAffineMap();
unsigned numDims = accessMap.getNumDims();
unsigned numSymbols = accessMap.getNumSymbols();
unsigned numOperands = accessValueMap.getNumOperands();
// Merge operands with slice operands.
SmallVector<Value, 4> operands;
operands.resize(numOperands);
for (unsigned i = 0; i < numOperands; ++i)
operands[i] = accessValueMap.getOperand(i);
if (sliceState != nullptr) {
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
// Append slice operands to 'operands' as symbols.
for (auto extraOperand : sliceState->lbOperands[0]) {
if (!llvm::is_contained(operands, extraOperand)) {
operands.push_back(extraOperand);
numSymbols++;
}
}
}
// We'll first associate the dims and symbols of the access map to the dims
// and symbols resp. of cst. This will change below once cst is
// fully constructed out.
cst.reset(numDims, numSymbols, 0, operands);
// Add equality constraints.
// Add inequalities for loop lower/upper bounds.
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
auto operand = operands[i];
if (auto loop = getForInductionVarOwner(operand)) {
// Note that cst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO: rewrite this to use getInstIndexSet; this way
// conditionals will be handled when the latter supports it.
if (failed(cst.addAffineForOpDomain(loop)))
return failure();
} else {
// Has to be a valid symbol.
auto symbol = operand;
assert(isValidSymbol(symbol));
// Check if the symbol is a constant.
if (auto *op = symbol.getDefiningOp()) {
if (auto constOp = dyn_cast<ConstantIndexOp>(op)) {
cst.setIdToConstant(symbol, constOp.getValue());
}
}
}
}
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
if (sliceState != nullptr) {
// Add dim and symbol slice operands.
for (auto operand : sliceState->lbOperands[0]) {
cst.addInductionVarOrTerminalSymbol(operand);
}
// Add upper/lower bounds from 'sliceState' to 'cst'.
LogicalResult ret =
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
sliceState->lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
}
// Add access function equalities to connect loop IVs to data dimensions.
if (failed(cst.composeMap(&accessValueMap))) {
op->emitError("getMemRefRegion: compose affine map failed");
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
return failure();
}
// Set all identifiers appearing after the first 'rank' identifiers as
// symbolic identifiers - so that the ones corresponding to the memref
// dimensions are the dimensional identifiers for the memref region.
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - rank);
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
// this memref region is symbolic.
SmallVector<AffineForOp, 4> enclosingIVs;
getLoopIVs(*op, &enclosingIVs);
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
enclosingIVs.resize(loopDepth);
SmallVector<Value, 4> ids;
cst.getIdValues(cst.getNumDimIds(), cst.getNumDimAndSymbolIds(), &ids);
for (auto id : ids) {
AffineForOp iv;
if ((iv = getForInductionVarOwner(id)) &&
llvm::is_contained(enclosingIVs, iv) == false) {
cst.projectOut(id);
}
}
// Project out any local variables (these would have been added for any
// mod/divs).
cst.projectOut(cst.getNumDimAndSymbolIds(), cst.getNumLocalIds());
// Constant fold any symbolic identifiers.
cst.constantFoldIdRange(/*pos=*/cst.getNumDimIds(),
/*num=*/cst.getNumSymbolIds());
assert(cst.getNumDimIds() == rank && "unexpected MemRefRegion format");
// Add upper/lower bounds for each memref dimension with static size
// to guard against potential over-approximation from projection.
// TODO: Support dynamic memref dimensions.
if (addMemRefDimBounds) {
auto memRefType = memref.getType().cast<MemRefType>();
for (unsigned r = 0; r < rank; r++) {
cst.addConstantLowerBound(/*pos=*/r, /*lb=*/0);
if (memRefType.isDynamicDim(r))
continue;
cst.addConstantUpperBound(/*pos=*/r, memRefType.getDimSize(r) - 1);
}
}
cst.removeTrivialRedundancy();
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
LLVM_DEBUG(cst.dump());
return success();
}
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else {
auto vectorType = elementType.cast<VectorType>();
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
}
return llvm::divideCeil(sizeInBits, 8);
}
// Returns the size of the region.
Optional<int64_t> MemRefRegion::getRegionSize() {
auto memRefType = memref.getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return false;
}
// Indices to use for the DmaStart op.
// Indices for the original memref being DMAed from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being DMAed into/from.
SmallVector<Value, 4> bufIndices;
// Compute the extents of the buffer.
Optional<int64_t> numElements = getConstantBoundingSizeAndShape();
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
return None;
}
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
}
/// Returns the size of memref data in bytes if it's statically shaped, None
/// otherwise. If the element of the memref has vector type, takes into account
/// size of the vector as well.
// TODO: improve/complete this when we have target data.
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
if (!memRefType.hasStaticShape())
return None;
auto elementType = memRefType.getElementType();
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
return None;
uint64_t sizeInBytes = getMemRefEltSizeInBytes(memRefType);
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
}
return sizeInBytes;
}
template <typename LoadOrStoreOp>
LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
bool emitError) {
static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
AffineWriteOpInterface>::value,
"argument should be either a AffineReadOpInterface or a "
"AffineWriteOpInterface");
Operation *op = loadOrStoreOp.getOperation();
MemRefRegion region(op->getLoc());
if (failed(region.compute(op, /*loopDepth=*/0, /*sliceState=*/nullptr,
/*addMemRefDimBounds=*/false)))
return success();
LLVM_DEBUG(llvm::dbgs() << "Memory region");
LLVM_DEBUG(region.getConstraints()->dump());
bool outOfBounds = false;
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
// For each dimension, check for out of bounds.
for (unsigned r = 0; r < rank; r++) {
FlatAffineConstraints ucst(*region.getConstraints());
// Intersect memory region with constraint capturing out of bounds (both out
// of upper and out of lower), and check if the constraint system is
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
// TODO: handle dynamic dim sizes.
if (dimSize == -1)
continue;
// Check for overflow: d_i >= memref dim size.
ucst.addConstantLowerBound(r, dimSize);
outOfBounds = !ucst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of upper bound access along dimension #" << (r + 1);
}
// Check for a negative index.
FlatAffineConstraints lcst(*region.getConstraints());
std::fill(ineq.begin(), ineq.end(), 0);
// d_i <= -1;
lcst.addConstantUpperBound(r, -1);
outOfBounds = !lcst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of lower bound access along dimension #" << (r + 1);
}
}
return failure(outOfBounds);
}
// Explicitly instantiate the template so that the compiler knows we need them!
template LogicalResult
mlir::boundCheckLoadOrStoreOp(AffineReadOpInterface loadOp, bool emitError);
template LogicalResult
mlir::boundCheckLoadOrStoreOp(AffineWriteOpInterface storeOp, bool emitError);
// Returns in 'positions' the Block positions of 'op' in each ancestor
// Block from the Block containing operation, stopping at 'limitBlock'.
static void findInstPosition(Operation *op, Block *limitBlock,
SmallVectorImpl<unsigned> *positions) {
Block *block = op->getBlock();
while (block != limitBlock) {
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
// rely on linear scans.
int instPosInBlock = std::distance(block->begin(), op->getIterator());
positions->push_back(instPosInBlock);
op = block->getParentOp();
block = op->getBlock();
}
std::reverse(positions->begin(), positions->end());
}
// Returns the Operation in a possibly nested set of Blocks, where the
// position of the operation is represented by 'positions', which has a
// Block position for each level of nesting.
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
unsigned level, Block *block) {
unsigned i = 0;
for (auto &op : *block) {
if (i != positions[level]) {
++i;
continue;
}
if (level == positions.size() - 1)
return &op;
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
return getInstAtPosition(positions, level + 1,
childAffineForOp.getBody());
for (auto &region : op.getRegions()) {
for (auto &b : region)
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
return ret;
}
return nullptr;
}
return nullptr;
}
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
FlatAffineConstraints *cst) {
for (unsigned i = 0, e = cst->getNumDimIds(); i < e; ++i) {
auto value = cst->getIdValue(i);
if (ivs.count(value) == 0) {
assert(isForInductionVar(value));
auto loop = getForInductionVarOwner(value);
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
return success();
}
// Returns the innermost common loop depth for the set of operations in 'ops'.
// TODO: Move this to LoopUtils.
static unsigned
getInnermostCommonLoopDepth(ArrayRef<Operation *> ops,
SmallVectorImpl<AffineForOp> &surroundingLoops) {
unsigned numOps = ops.size();
assert(numOps > 0);
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
for (unsigned i = 0; i < numOps; ++i) {
getLoopIVs(*ops[i], &loops[i]);
loopDepthLimit =
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
}
unsigned loopDepth = 0;
for (unsigned d = 0; d < loopDepthLimit; ++d) {
unsigned i;
for (i = 1; i < numOps; ++i) {
if (loops[i - 1][d] != loops[i][d])
return loopDepth;
}
surroundingLoops.push_back(loops[i - 1][d]);
++loopDepth;
}
return loopDepth;
}
/// Computes in 'sliceUnion' the union of all slice bounds computed at
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB'.
/// Returns 'Success' if union was computed, 'failure' otherwise.
LogicalResult mlir::computeSliceUnion(ArrayRef<Operation *> opsA,
ArrayRef<Operation *> opsB,
unsigned loopDepth,
unsigned numCommonLoops,
bool isBackwardSlice,
ComputationSliceState *sliceUnion) {
// Compute the union of slice bounds between all pairs in 'opsA' and
// 'opsB' in 'sliceUnionCst'.
FlatAffineConstraints sliceUnionCst;
assert(sliceUnionCst.getNumDimAndSymbolIds() == 0);
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
for (unsigned i = 0, numOpsA = opsA.size(); i < numOpsA; ++i) {
MemRefAccess srcAccess(opsA[i]);
for (unsigned j = 0, numOpsB = opsB.size(); j < numOpsB; ++j) {
MemRefAccess dstAccess(opsB[j]);
if (srcAccess.memref != dstAccess.memref)
continue;
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
if ((!isBackwardSlice && loopDepth > getNestingDepth(opsA[i])) ||
(isBackwardSlice && loopDepth > getNestingDepth(opsB[j]))) {
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n");
return failure();
}
bool readReadAccesses = isa<AffineReadOpInterface>(srcAccess.opInst) &&
isa<AffineReadOpInterface>(dstAccess.opInst);
FlatAffineConstraints dependenceConstraints;
// Check dependence between 'srcAccess' and 'dstAccess'.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
&dependenceConstraints, /*dependenceComponents=*/nullptr,
/*allowRAR=*/readReadAccesses);
if (result.value == DependenceResult::Failure) {
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n");
return failure();
}
if (result.value == DependenceResult::NoDependence)
continue;
dependentOpPairs.push_back({opsA[i], opsB[j]});
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
ComputationSliceState tmpSliceState;
mlir::getComputationSliceState(opsA[i], opsB[j], &dependenceConstraints,
loopDepth, isBackwardSlice,
&tmpSliceState);
if (sliceUnionCst.getNumDimAndSymbolIds() == 0) {
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n");
return failure();
}
assert(sliceUnionCst.getNumDimAndSymbolIds() > 0);
continue;
}
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
FlatAffineConstraints tmpSliceCst;
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n");
return failure();
}
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
if (!sliceUnionCst.areIdsAlignedWithOther(tmpSliceCst)) {
// Pre-constraint id alignment: record loop IVs used in each constraint
// system.
SmallPtrSet<Value, 8> sliceUnionIVs;
for (unsigned k = 0, l = sliceUnionCst.getNumDimIds(); k < l; ++k)
sliceUnionIVs.insert(sliceUnionCst.getIdValue(k));
SmallPtrSet<Value, 8> tmpSliceIVs;
for (unsigned k = 0, l = tmpSliceCst.getNumDimIds(); k < l; ++k)
tmpSliceIVs.insert(tmpSliceCst.getIdValue(k));
sliceUnionCst.mergeAndAlignIdsWithOther(/*offset=*/0, &tmpSliceCst);
// Post-constraint id alignment: add loop IV bounds missing after
// id alignment to constraint systems. This can occur if one constraint
// system uses an loop IV that is not used by the other. The call
// to unionBoundingBox below expects constraints for each Loop IV, even
// if they are the unsliced full loop bounds added here.
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
return failure();
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
return failure();
}
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
if (sliceUnionCst.getNumLocalIds() > 0 ||
tmpSliceCst.getNumLocalIds() > 0 ||
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute union bounding box of slice bounds\n");
return failure();
}
}
}
// Empty union.
if (sliceUnionCst.getNumDimAndSymbolIds() == 0)
return failure();
// Gather loops surrounding ops from loop nest where slice will be inserted.
SmallVector<Operation *, 4> ops;
for (auto &dep : dependentOpPairs) {
ops.push_back(isBackwardSlice ? dep.second : dep.first);
}
SmallVector<AffineForOp, 4> surroundingLoops;
unsigned innermostCommonLoopDepth =
getInnermostCommonLoopDepth(ops, surroundingLoops);
if (loopDepth > innermostCommonLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n");
return failure();
}
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimIds();
// Convert any dst loop IVs which are symbol identifiers to dim identifiers.
sliceUnionCst.convertLoopIVSymbolsToDims();
sliceUnion->clearBounds();
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
// Get slice bounds from slice union constraints 'sliceUnionCst'.
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
opsA[0]->getContext(), &sliceUnion->lbs,
&sliceUnion->ubs);
// Add slice bound operands of union.
SmallVector<Value, 4> sliceBoundOperands;
sliceUnionCst.getIdValues(numSliceLoopIVs,
sliceUnionCst.getNumDimAndSymbolIds(),
&sliceBoundOperands);
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
sliceUnion->ivs.clear();
sliceUnionCst.getIdValues(0, numSliceLoopIVs, &sliceUnion->ivs);
// Set loop nest insertion point to block start at 'loopDepth'.
sliceUnion->insertPoint =
isBackwardSlice
? surroundingLoops[loopDepth - 1].getBody()->begin()
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
return success();
}
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
// Computes slice bounds by projecting out any loop IVs from
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
void mlir::getComputationSliceState(
Operation *depSourceOp, Operation *depSinkOp,
FlatAffineConstraints *dependenceConstraints, unsigned loopDepth,
bool isBackwardSlice, ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getLoopIVs(*depSourceOp, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*depSinkOp, &dstLoopIVs);
unsigned numDstLoopIVs = dstLoopIVs.size();
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
(isBackwardSlice && loopDepth <= numDstLoopIVs));
// Project out dimensions other than those up to 'loopDepth'.
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
unsigned num =
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
dependenceConstraints->projectOut(pos, num);
// Add slice loop IV values to 'sliceState'.
unsigned offset = isBackwardSlice ? 0 : loopDepth;
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
dependenceConstraints->getIdValues(offset, offset + numSliceLoopIVs,
&sliceState->ivs);
// Set up lower/upper bound affine maps for the slice.
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
depSourceOp->getContext(),
&sliceState->lbs, &sliceState->ubs);
// Set up bound operands for the slice's lower and upper bounds.
SmallVector<Value, 4> sliceBoundOperands;
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolIds();
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
if (i < offset || i >= offset + numSliceLoopIVs) {
sliceBoundOperands.push_back(dependenceConstraints->getIdValue(i));
}
}
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
sliceState->insertPoint =
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
llvm::SmallDenseSet<Value, 8> sequentialLoops;
if (isa<AffineReadOpInterface>(depSourceOp) &&
isa<AffineReadOpInterface>(depSinkOp)) {
// For read-read access pairs, clear any slice bounds on sequential loops.
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
&sequentialLoops);
}
// Clear all sliced loop bounds beginning at the first sequential loop, or
// first loop with a slice fusion barrier attribute..
// TODO: Use MemRef read/write regions instead of
// using 'kSliceFusionBarrierAttrName'.
auto getSliceLoop = [&](unsigned i) {
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
};
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
Value iv = getSliceLoop(i).getInductionVar();
if (sequentialLoops.count(iv) == 0 &&
getSliceLoop(i).getAttr(kSliceFusionBarrierAttrName) == nullptr)
continue;
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
sliceState->lbs[j] = AffineMap();
sliceState->ubs[j] = AffineMap();
}
break;
}
}
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO: extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO: the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
// solution.
AffineForOp
mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
unsigned dstLoopDepth,
ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getLoopIVs(*srcOpInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*dstOpInst, &dstLoopIVs);
unsigned dstLoopIVsSize = dstLoopIVs.size();
if (dstLoopDepth > dstLoopIVsSize) {
dstOpInst->emitError("invalid destination loop depth");
return AffineForOp();
}
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
SmallVector<unsigned, 4> positions;
// TODO: This code is incorrect since srcLoopIVs can be 0-d.
findInstPosition(srcOpInst, srcLoopIVs[0].getOperation()->getBlock(),
&positions);
// Clone src loop nest and insert it a the beginning of the operation block
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
auto sliceLoopNest =
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
Operation *sliceInst =
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
// Get loop nest surrounding 'sliceInst'.
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
// Sanity check.
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
(void)sliceSurroundingLoopsSize;
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
(void)sliceLoopLimit;
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
// Update loop bounds for loops in 'sliceLoopNest'.
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
if (AffineMap lbMap = sliceState->lbs[i])
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
if (AffineMap ubMap = sliceState->ubs[i])
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
}
return sliceLoopNest;
}
// Constructs MemRefAccess populating it with the memref, its indices and
// opinst from 'loadOrStoreOpInst'.
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(loadOrStoreOpInst)) {
memref = loadOp.getMemRef();
opInst = loadOrStoreOpInst;
auto loadMemrefType = loadOp.getMemRefType();
indices.reserve(loadMemrefType.getRank());
for (auto index : loadOp.getMapOperands()) {
indices.push_back(index);
}
} else {
assert(isa<AffineWriteOpInterface>(loadOrStoreOpInst) &&
"Affine read/write op expected");
auto storeOp = cast<AffineWriteOpInterface>(loadOrStoreOpInst);
opInst = loadOrStoreOpInst;
memref = storeOp.getMemRef();
auto storeMemrefType = storeOp.getMemRefType();
indices.reserve(storeMemrefType.getRank());
for (auto index : storeOp.getMapOperands()) {
indices.push_back(index);
}
}
}
unsigned MemRefAccess::getRank() const {
return memref.getType().cast<MemRefType>().getRank();
}
bool MemRefAccess::isStore() const {
return isa<AffineWriteOpInterface>(opInst);
}
/// Returns the nesting depth of this statement, i.e., the number of loops
/// surrounding this statement.
unsigned mlir::getNestingDepth(Operation *op) {
Operation *currOp = op;
unsigned depth = 0;
while ((currOp = currOp->getParentOp())) {
if (isa<AffineForOp>(currOp))
depth++;
}
return depth;
}
/// Equal if both affine accesses are provably equivalent (at compile
/// time) when considering the memref, the affine maps and their respective
/// operands. The equality of access functions + operands is checked by
/// subtracting fully composed value maps, and then simplifying the difference
/// using the expression flattener.
/// TODO: this does not account for aliasing of memrefs.
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
if (memref != rhs.memref)
return false;
AffineValueMap diff, thisMap, rhsMap;
getAccessMap(&thisMap);
rhs.getAccessMap(&rhsMap);
AffineValueMap::difference(thisMap, rhsMap, &diff);
return llvm::all_of(diff.getAffineMap().getResults(),
[](AffineExpr e) { return e == 0; });
}
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
/// where each lists loops from outer-most to inner-most in loop nest.
unsigned mlir::getNumCommonSurroundingLoops(Operation &A, Operation &B) {
SmallVector<AffineForOp, 4> loopsA, loopsB;
getLoopIVs(A, &loopsA);
getLoopIVs(B, &loopsB);
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (loopsA[i].getOperation() != loopsB[i].getOperation())
break;
++numCommonLoops;
}
return numCommonLoops;
}
static Optional<int64_t> getMemoryFootprintBytes(Block &block,
Block::iterator start,
Block::iterator end,
int memorySpace) {
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
// Walk this 'affine.for' operation to gather all memory regions.
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
if (!isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst)) {
// Neither load nor a store op.
return WalkResult::advance();
}
// Compute the memref region symbolic in any IVs enclosing this block.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(
region->compute(opInst,
/*loopDepth=*/getNestingDepth(&*block.begin())))) {
return opInst->emitError("error obtaining memory region\n");
}
auto it = regions.find(region->memref);
if (it == regions.end()) {
regions[region->memref] = std::move(region);
} else if (failed(it->second->unionBoundingBox(*region))) {
return opInst->emitWarning(
"getMemoryFootprintBytes: unable to perform a union on a memory "
"region");
}
return WalkResult::advance();
});
if (result.wasInterrupted())
return None;
int64_t totalSizeInBytes = 0;
for (const auto &region : regions) {
Optional<int64_t> size = region.second->getRegionSize();
if (!size.hasValue())
return None;
totalSizeInBytes += size.getValue();
}
return totalSizeInBytes;
}
Optional<int64_t> mlir::getMemoryFootprintBytes(AffineForOp forOp,
int memorySpace) {
auto *forInst = forOp.getOperation();
return ::getMemoryFootprintBytes(
*forInst->getBlock(), Block::iterator(forInst),
std::next(Block::iterator(forInst)), memorySpace);
}
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
/// at 'forOp'.
void mlir::getSequentialLoops(AffineForOp forOp,
llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
forOp.getOperation()->walk([&](Operation *op) {
if (auto innerFor = dyn_cast<AffineForOp>(op))
if (!isLoopParallel(innerFor))
sequentialLoops->insert(innerFor.getInductionVar());
});
}
/// Returns true if 'forOp' is parallel.
bool mlir::isLoopParallel(AffineForOp forOp) {
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOpInsts;
auto walkResult = forOp.walk([&](Operation *opInst) -> WalkResult {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst))
loadAndStoreOpInsts.push_back(opInst);
else if (!isa<AffineForOp, AffineYieldOp, AffineIfOp>(opInst) &&
!MemoryEffectOpInterface::hasNoEffect(opInst))
return WalkResult::interrupt();
return WalkResult::advance();
});
// Stop early if the loop has unknown ops with side effects.
if (walkResult.wasInterrupted())
return false;
// Dep check depth would be number of enclosing loops + 1.
unsigned depth = getNestingDepth(forOp) + 1;
// Check dependences between all pairs of ops in 'loadAndStoreOpInsts'.
for (auto *srcOpInst : loadAndStoreOpInsts) {
MemRefAccess srcAccess(srcOpInst);
for (auto *dstOpInst : loadAndStoreOpInsts) {
MemRefAccess dstAccess(dstOpInst);
FlatAffineConstraints dependenceConstraints;
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, depth, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (result.value != DependenceResult::NoDependence)
return false;
}
}
return true;
}
IntegerSet mlir::simplifyIntegerSet(IntegerSet set) {
FlatAffineConstraints fac(set);
if (fac.isEmpty())
return IntegerSet::getEmptySet(set.getNumDims(), set.getNumSymbols(),
set.getContext());
fac.removeTrivialRedundancy();
auto simplifiedSet = fac.getAsIntegerSet(set.getContext());
assert(simplifiedSet && "guaranteed to succeed while roundtripping");
return simplifiedSet;
}