blob: 1f192180ec4516bec68a5ae13f407ab0513d4e42 [file] [log] [blame]
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <map>
using namespace clang;
LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
namespace {
/// Get start location of the Declarator from the TypeLoc.
/// E.g.:
/// loc of `(` in `int (a)`
/// loc of `*` in `int *(a)`
/// loc of the first `(` in `int (*a)(int)`
/// loc of the `*` in `int *(a)(int)`
/// loc of the first `*` in `const int *const *volatile a;`
///
/// It is non-trivial to get the start location because TypeLocs are stored
/// inside out. In the example above `*volatile` is the TypeLoc returned
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
/// returns.
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
auto L = Visit(T.getInnerLoc());
if (L.isValid())
return L;
return T.getLParenLoc();
}
// Types spelled in the prefix part of the declarator.
SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
return HandlePointer(T);
}
// All other cases are not important, as they are either part of declaration
// specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
// existing declarators (e.g. QualifiedTypeLoc). They cannot start the
// declarator themselves, but their underlying type can.
SourceLocation VisitTypeLoc(TypeLoc T) {
auto N = T.getNextTypeLoc();
if (!N)
return SourceLocation();
return Visit(N);
}
SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
if (T.getTypePtr()->hasTrailingReturn())
return SourceLocation(); // avoid recursing into the suffix of declarator.
return VisitTypeLoc(T);
}
private:
template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
auto L = Visit(T.getPointeeLoc());
if (L.isValid())
return L;
return T.getLocalSourceRange().getBegin();
}
};
} // namespace
static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
switch (E.getOperator()) {
// Comparison
case OO_EqualEqual:
case OO_ExclaimEqual:
case OO_Greater:
case OO_GreaterEqual:
case OO_Less:
case OO_LessEqual:
case OO_Spaceship:
// Assignment
case OO_Equal:
case OO_SlashEqual:
case OO_PercentEqual:
case OO_CaretEqual:
case OO_PipeEqual:
case OO_LessLessEqual:
case OO_GreaterGreaterEqual:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_AmpEqual:
// Binary computation
case OO_Slash:
case OO_Percent:
case OO_Caret:
case OO_Pipe:
case OO_LessLess:
case OO_GreaterGreater:
case OO_AmpAmp:
case OO_PipePipe:
case OO_ArrowStar:
case OO_Comma:
return syntax::NodeKind::BinaryOperatorExpression;
case OO_Tilde:
case OO_Exclaim:
return syntax::NodeKind::PrefixUnaryOperatorExpression;
// Prefix/Postfix increment/decrement
case OO_PlusPlus:
case OO_MinusMinus:
switch (E.getNumArgs()) {
case 1:
return syntax::NodeKind::PrefixUnaryOperatorExpression;
case 2:
return syntax::NodeKind::PostfixUnaryOperatorExpression;
default:
llvm_unreachable("Invalid number of arguments for operator");
}
// Operators that can be unary or binary
case OO_Plus:
case OO_Minus:
case OO_Star:
case OO_Amp:
switch (E.getNumArgs()) {
case 1:
return syntax::NodeKind::PrefixUnaryOperatorExpression;
case 2:
return syntax::NodeKind::BinaryOperatorExpression;
default:
llvm_unreachable("Invalid number of arguments for operator");
}
return syntax::NodeKind::BinaryOperatorExpression;
// Not yet supported by SyntaxTree
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
case OO_Coawait:
case OO_Call:
case OO_Subscript:
case OO_Arrow:
return syntax::NodeKind::UnknownExpression;
case OO_Conditional: // not overloadable
case NUM_OVERLOADED_OPERATORS:
case OO_None:
llvm_unreachable("Not an overloadable operator");
}
llvm_unreachable("Unknown OverloadedOperatorKind enum");
}
/// Gets the range of declarator as defined by the C++ grammar. E.g.
/// `int a;` -> range of `a`,
/// `int *a;` -> range of `*a`,
/// `int a[10];` -> range of `a[10]`,
/// `int a[1][2][3];` -> range of `a[1][2][3]`,
/// `int *a = nullptr` -> range of `*a = nullptr`.
/// FIMXE: \p Name must be a source range, e.g. for `operator+`.
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
SourceLocation Name,
SourceRange Initializer) {
SourceLocation Start = GetStartLoc().Visit(T);
SourceLocation End = T.getSourceRange().getEnd();
assert(End.isValid());
if (Name.isValid()) {
if (Start.isInvalid())
Start = Name;
if (SM.isBeforeInTranslationUnit(End, Name))
End = Name;
}
if (Initializer.isValid()) {
auto InitializerEnd = Initializer.getEnd();
assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
End == InitializerEnd);
End = InitializerEnd;
}
return SourceRange(Start, End);
}
namespace {
/// All AST hierarchy roots that can be represented as pointers.
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
/// FIXME: expose this as public API.
class ASTToSyntaxMapping {
public:
void add(ASTPtr From, syntax::Tree *To) {
assert(To != nullptr);
assert(!From.isNull());
bool Added = Nodes.insert({From, To}).second;
(void)Added;
assert(Added && "mapping added twice");
}
syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
private:
llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
};
} // namespace
/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
/// - create a corresponding syntax node,
/// - assign roles to all pending child nodes with 'markChild' and
/// 'markChildToken',
/// - replace the child nodes with the new syntax node in the pending list
/// with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
for (const auto &T : Arena.tokenBuffer().expandedTokens())
LocationToToken.insert({T.location().getRawEncoding(), &T});
}
llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
const SourceManager &sourceManager() const { return Arena.sourceManager(); }
/// Populate children for \p New node, assuming it covers tokens from \p
/// Range.
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
ASTPtr From) {
assert(New);
Pending.foldChildren(Arena, Range, New);
if (From)
Mapping.add(From, New);
}
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
TypeLoc L) {
// FIXME: add mapping for TypeLocs
foldNode(Range, New, nullptr);
}
/// Notifies that we should not consume trailing semicolon when computing
/// token range of \p D.
void noticeDeclWithoutSemicolon(Decl *D);
/// Mark the \p Child node with a corresponding \p Role. All marked children
/// should be consumed by foldNode.
/// When called on expressions (clang::Expr is derived from clang::Stmt),
/// wraps expressions into expression statement.
void markStmtChild(Stmt *Child, NodeRole Role);
/// Should be called for expressions in non-statement position to avoid
/// wrapping into expression statement.
void markExprChild(Expr *Child, NodeRole Role);
/// Set role for a token starting at \p Loc.
void markChildToken(SourceLocation Loc, NodeRole R);
/// Set role for \p T.
void markChildToken(const syntax::Token *T, NodeRole R);
/// Set role for \p N.
void markChild(syntax::Node *N, NodeRole R);
/// Set role for the syntax node matching \p N.
void markChild(ASTPtr N, NodeRole R);
/// Finish building the tree and consume the root node.
syntax::TranslationUnit *finalize() && {
auto Tokens = Arena.tokenBuffer().expandedTokens();
assert(!Tokens.empty());
assert(Tokens.back().kind() == tok::eof);
// Build the root of the tree, consuming all the children.
Pending.foldChildren(Arena, Tokens.drop_back(),
new (Arena.allocator()) syntax::TranslationUnit);
auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
TU->assertInvariantsRecursive();
return TU;
}
/// Finds a token starting at \p L. The token must exist if \p L is valid.
const syntax::Token *findToken(SourceLocation L) const;
/// Finds the syntax tokens corresponding to the \p SourceRange.
llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
assert(Range.isValid());
return getRange(Range.getBegin(), Range.getEnd());
}
/// Finds the syntax tokens corresponding to the passed source locations.
/// \p First is the start position of the first token and \p Last is the start
/// position of the last token.
llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
SourceLocation Last) const {
assert(First.isValid());
assert(Last.isValid());
assert(First == Last ||
Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
}
llvm::ArrayRef<syntax::Token>
getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
auto Tokens = getRange(D->getSourceRange());
return maybeAppendSemicolon(Tokens, D);
}
/// Returns true if \p D is the last declarator in a chain and is thus
/// reponsible for creating SimpleDeclaration for the whole chain.
template <class T>
bool isResponsibleForCreatingDeclaration(const T *D) const {
static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
std::is_base_of<TypedefNameDecl, T>::value),
"only DeclaratorDecl and TypedefNameDecl are supported.");
const Decl *Next = D->getNextDeclInContext();
// There's no next sibling, this one is responsible.
if (Next == nullptr) {
return true;
}
const auto *NextT = llvm::dyn_cast<T>(Next);
// Next sibling is not the same type, this one is responsible.
if (NextT == nullptr) {
return true;
}
// Next sibling doesn't begin at the same loc, it must be a different
// declaration, so this declarator is responsible.
if (NextT->getBeginLoc() != D->getBeginLoc()) {
return true;
}
// NextT is a member of the same declaration, and we need the last member to
// create declaration. This one is not responsible.
return false;
}
llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
llvm::ArrayRef<clang::syntax::Token> Tokens;
// We want to drop the template parameters for specializations.
if (const auto *S = llvm::dyn_cast<TagDecl>(D))
Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
else
Tokens = getRange(D->getSourceRange());
return maybeAppendSemicolon(Tokens, D);
}
llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
return getRange(E->getSourceRange());
}
/// Find the adjusted range for the statement, consuming the trailing
/// semicolon when needed.
llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
auto Tokens = getRange(S->getSourceRange());
if (isa<CompoundStmt>(S))
return Tokens;
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
// all statements that end with those. Consume this semicolon here.
if (Tokens.back().kind() == tok::semi)
return Tokens;
return withTrailingSemicolon(Tokens);
}
private:
llvm::ArrayRef<syntax::Token>
maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
const Decl *D) const {
if (llvm::isa<NamespaceDecl>(D))
return Tokens;
if (DeclsWithoutSemicolons.count(D))
return Tokens;
// FIXME: do not consume trailing semicolon on function definitions.
// Most declarations own a semicolon in syntax trees, but not in clang AST.
return withTrailingSemicolon(Tokens);
}
llvm::ArrayRef<syntax::Token>
withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
assert(!Tokens.empty());
assert(Tokens.back().kind() != tok::eof);
// We never consume 'eof', so looking at the next token is ok.
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
return Tokens;
}
void setRole(syntax::Node *N, NodeRole R) {
assert(N->role() == NodeRole::Detached);
N->setRole(R);
}
/// A collection of trees covering the input tokens.
/// When created, each tree corresponds to a single token in the file.
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
/// node and update the list of trees accordingly.
///
/// Ensures that added nodes properly nest and cover the whole token stream.
struct Forest {
Forest(syntax::Arena &A) {
assert(!A.tokenBuffer().expandedTokens().empty());
assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
// Create all leaf nodes.
// Note that we do not have 'eof' in the tree.
for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
auto *L = new (A.allocator()) syntax::Leaf(&T);
L->Original = true;
L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
Trees.insert(Trees.end(), {&T, L});
}
}
void assignRole(llvm::ArrayRef<syntax::Token> Range,
syntax::NodeRole Role) {
assert(!Range.empty());
auto It = Trees.lower_bound(Range.begin());
assert(It != Trees.end() && "no node found");
assert(It->first == Range.begin() && "no child with the specified range");
assert((std::next(It) == Trees.end() ||
std::next(It)->first == Range.end()) &&
"no child with the specified range");
assert(It->second->role() == NodeRole::Detached &&
"re-assigning role for a child");
It->second->setRole(Role);
}
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
void foldChildren(const syntax::Arena &A,
llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
// Attach children to `Node`.
assert(Node->firstChild() == nullptr && "node already has children");
auto *FirstToken = Tokens.begin();
auto BeginChildren = Trees.lower_bound(FirstToken);
assert((BeginChildren == Trees.end() ||
BeginChildren->first == FirstToken) &&
"fold crosses boundaries of existing subtrees");
auto EndChildren = Trees.lower_bound(Tokens.end());
assert(
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
"fold crosses boundaries of existing subtrees");
// We need to go in reverse order, because we can only prepend.
for (auto It = EndChildren; It != BeginChildren; --It) {
auto *C = std::prev(It)->second;
if (C->role() == NodeRole::Detached)
C->setRole(NodeRole::Unknown);
Node->prependChildLowLevel(C);
}
// Mark that this node came from the AST and is backed by the source code.
Node->Original = true;
Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
Trees.erase(BeginChildren, EndChildren);
Trees.insert({FirstToken, Node});
}
// EXPECTS: all tokens were consumed and are owned by a single root node.
syntax::Node *finalize() && {
assert(Trees.size() == 1);
auto *Root = Trees.begin()->second;
Trees = {};
return Root;
}
std::string str(const syntax::Arena &A) const {
std::string R;
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
unsigned CoveredTokens =
It != Trees.end()
? (std::next(It)->first - It->first)
: A.tokenBuffer().expandedTokens().end() - It->first;
R += std::string(llvm::formatv(
"- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
It->first->text(A.sourceManager()), CoveredTokens));
R += It->second->dump(A);
}
return R;
}
private:
/// Maps from the start token to a subtree starting at that token.
/// Keys in the map are pointers into the array of expanded tokens, so
/// pointer order corresponds to the order of preprocessor tokens.
std::map<const syntax::Token *, syntax::Node *> Trees;
};
/// For debugging purposes.
std::string str() { return Pending.str(Arena); }
syntax::Arena &Arena;
/// To quickly find tokens by their start location.
llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
LocationToToken;
Forest Pending;
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
ASTToSyntaxMapping Mapping;
};
namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
: Builder(Builder), Context(Context) {}
bool shouldTraversePostOrder() const { return true; }
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
return processDeclaratorAndDeclaration(DD);
}
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
return processDeclaratorAndDeclaration(TD);
}
bool VisitDecl(Decl *D) {
assert(!D->isImplicit());
Builder.foldNode(Builder.getDeclarationRange(D),
new (allocator()) syntax::UnknownDeclaration(), D);
return true;
}
// RAV does not call WalkUpFrom* on explicit instantiations, so we have to
// override Traverse.
// FIXME: make RAV call WalkUpFrom* instead.
bool
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
return false;
if (C->isExplicitSpecialization())
return true; // we are only interested in explicit instantiations.
auto *Declaration =
cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
foldExplicitTemplateInstantiation(
Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
return true;
}
bool WalkUpFromTemplateDecl(TemplateDecl *S) {
foldTemplateDeclaration(
Builder.getDeclarationRange(S),
Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
Builder.getDeclarationRange(S->getTemplatedDecl()), S);
return true;
}
bool WalkUpFromTagDecl(TagDecl *C) {
// FIXME: build the ClassSpecifier node.
if (!C->isFreeStanding()) {
assert(C->getNumTemplateParameterLists() == 0);
return true;
}
handleFreeStandingTagDecl(C);
return true;
}
syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
assert(C->isFreeStanding());
// Class is a declaration specifier and needs a spanning declaration node.
auto DeclarationRange = Builder.getDeclarationRange(C);
syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
Builder.foldNode(DeclarationRange, Result, nullptr);
// Build TemplateDeclaration nodes if we had template parameters.
auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
Result =
foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
DeclarationRange = R;
};
if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
ConsumeTemplateParameters(*S->getTemplateParameters());
for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
return Result;
}
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
// We do not want to call VisitDecl(), the declaration for translation
// unit is built by finalize().
return true;
}
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
using NodeRole = syntax::NodeRole;
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
for (auto *Child : S->body())
Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CompoundStatement, S);
return true;
}
// Some statements are not yet handled by syntax trees.
bool WalkUpFromStmt(Stmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::UnknownStatement, S);
return true;
}
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
// We override to traverse range initializer as VarDecl.
// RAV traverses it as a statement, we produce invalid node kinds in that
// case.
// FIXME: should do this in RAV instead?
bool Result = [&, this]() {
if (S->getInit() && !TraverseStmt(S->getInit()))
return false;
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
return false;
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
return false;
if (S->getBody() && !TraverseStmt(S->getBody()))
return false;
return true;
}();
WalkUpFromCXXForRangeStmt(S);
return Result;
}
bool TraverseStmt(Stmt *S) {
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
// We want to consume the semicolon, make sure SimpleDeclaration does not.
for (auto *D : DS->decls())
Builder.noticeDeclWithoutSemicolon(D);
} else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit());
}
return RecursiveASTVisitor::TraverseStmt(S);
}
// Some expressions are not yet handled by syntax trees.
bool WalkUpFromExpr(Expr *E) {
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
Builder.foldNode(Builder.getExprRange(E),
new (allocator()) syntax::UnknownExpression, E);
return true;
}
syntax::NestedNameSpecifier *
BuildNestedNameSpecifier(NestedNameSpecifierLoc QualifierLoc) {
if (!QualifierLoc)
return nullptr;
for (auto it = QualifierLoc; it; it = it.getPrefix()) {
auto *NS = new (allocator()) syntax::NameSpecifier;
Builder.foldNode(Builder.getRange(it.getLocalSourceRange()), NS, nullptr);
Builder.markChild(NS, syntax::NodeRole::NestedNameSpecifier_specifier);
}
auto *NNS = new (allocator()) syntax::NestedNameSpecifier;
Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), NNS,
nullptr);
return NNS;
}
bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
// The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
// referencing the location of the UDL suffix (`_w` in `1.2_w`). The
// UDL suffix location does not point to the beginning of a token, so we
// can't represent the UDL suffix as a separate syntax tree node.
return WalkUpFromUserDefinedLiteral(S);
}
syntax::UserDefinedLiteralExpression *
buildUserDefinedLiteral(UserDefinedLiteral *S) {
switch (S->getLiteralOperatorKind()) {
case clang::UserDefinedLiteral::LOK_Integer:
return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
case clang::UserDefinedLiteral::LOK_Floating:
return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
case clang::UserDefinedLiteral::LOK_Character:
return new (allocator()) syntax::CharUserDefinedLiteralExpression;
case clang::UserDefinedLiteral::LOK_String:
return new (allocator()) syntax::StringUserDefinedLiteralExpression;
case clang::UserDefinedLiteral::LOK_Raw:
case clang::UserDefinedLiteral::LOK_Template:
// For raw literal operator and numeric literal operator template we
// cannot get the type of the operand in the semantic AST. We get this
// information from the token. As integer and floating point have the same
// token kind, we run `NumericLiteralParser` again to distinguish them.
auto TokLoc = S->getBeginLoc();
auto TokSpelling =
Builder.findToken(TokLoc)->text(Context.getSourceManager());
auto Literal =
NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
Context.getLangOpts(), Context.getTargetInfo(),
Context.getDiagnostics());
if (Literal.isIntegerLiteral())
return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
else {
assert(Literal.isFloatingLiteral());
return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
}
}
llvm_unreachable("Unknown literal operator kind.");
}
bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
return true;
}
bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
if (auto *NNS = BuildNestedNameSpecifier(S->getQualifierLoc()))
Builder.markChild(NNS, syntax::NodeRole::IdExpression_qualifier);
auto *unqualifiedId = new (allocator()) syntax::UnqualifiedId;
// Get `UnqualifiedId` from `DeclRefExpr`.
// FIXME: Extract this logic so that it can be used by `MemberExpr`,
// and other semantic constructs, now it is tied to `DeclRefExpr`.
if (!S->hasExplicitTemplateArgs()) {
Builder.foldNode(Builder.getRange(S->getNameInfo().getSourceRange()),
unqualifiedId, nullptr);
} else {
auto templateIdSourceRange =
SourceRange(S->getNameInfo().getBeginLoc(), S->getRAngleLoc());
Builder.foldNode(Builder.getRange(templateIdSourceRange), unqualifiedId,
nullptr);
}
Builder.markChild(unqualifiedId, syntax::NodeRole::IdExpression_id);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::IdExpression, S);
return true;
}
bool WalkUpFromParenExpr(ParenExpr *S) {
Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
Builder.markExprChild(S->getSubExpr(),
syntax::NodeRole::ParenExpression_subExpression);
Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::ParenExpression, S);
return true;
}
bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::IntegerLiteralExpression, S);
return true;
}
bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::CharacterLiteralExpression, S);
return true;
}
bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::FloatingLiteralExpression, S);
return true;
}
bool WalkUpFromStringLiteral(StringLiteral *S) {
Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::StringLiteralExpression, S);
return true;
}
bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::BoolLiteralExpression, S);
return true;
}
bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::CxxNullPtrExpression, S);
return true;
}
bool WalkUpFromUnaryOperator(UnaryOperator *S) {
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorExpression_operatorToken);
Builder.markExprChild(S->getSubExpr(),
syntax::NodeRole::UnaryOperatorExpression_operand);
if (S->isPostfix())
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PostfixUnaryOperatorExpression,
S);
else
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PrefixUnaryOperatorExpression,
S);
return true;
}
bool WalkUpFromBinaryOperator(BinaryOperator *S) {
Builder.markExprChild(
S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorExpression_operatorToken);
Builder.markExprChild(
S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::BinaryOperatorExpression, S);
return true;
}
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
if (getOperatorNodeKind(*S) ==
syntax::NodeKind::PostfixUnaryOperatorExpression) {
// A postfix unary operator is declared as taking two operands. The
// second operand is used to distinguish from its prefix counterpart. In
// the semantic AST this "phantom" operand is represented as a
// `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
// operand because it does not correspond to anything written in source
// code
for (auto *child : S->children()) {
if (child->getSourceRange().isInvalid())
continue;
if (!TraverseStmt(child))
return false;
}
return WalkUpFromCXXOperatorCallExpr(S);
} else
return RecursiveASTVisitor::TraverseCXXOperatorCallExpr(S);
}
bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
switch (getOperatorNodeKind(*S)) {
case syntax::NodeKind::BinaryOperatorExpression:
Builder.markExprChild(
S->getArg(0),
syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
Builder.markChildToken(
S->getOperatorLoc(),
syntax::NodeRole::OperatorExpression_operatorToken);
Builder.markExprChild(
S->getArg(1),
syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::BinaryOperatorExpression, S);
return true;
case syntax::NodeKind::PrefixUnaryOperatorExpression:
Builder.markChildToken(
S->getOperatorLoc(),
syntax::NodeRole::OperatorExpression_operatorToken);
Builder.markExprChild(S->getArg(0),
syntax::NodeRole::UnaryOperatorExpression_operand);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PrefixUnaryOperatorExpression,
S);
return true;
case syntax::NodeKind::PostfixUnaryOperatorExpression:
Builder.markChildToken(
S->getOperatorLoc(),
syntax::NodeRole::OperatorExpression_operatorToken);
Builder.markExprChild(S->getArg(0),
syntax::NodeRole::UnaryOperatorExpression_operand);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PostfixUnaryOperatorExpression,
S);
return true;
case syntax::NodeKind::UnknownExpression:
return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S);
default:
llvm_unreachable("getOperatorNodeKind() does not return this value");
}
}
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
auto Tokens = Builder.getDeclarationRange(S);
if (Tokens.front().kind() == tok::coloncolon) {
// Handle nested namespace definitions. Those start at '::' token, e.g.
// namespace a^::b {}
// FIXME: build corresponding nodes for the name of this namespace.
return true;
}
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
return true;
}
bool TraverseParenTypeLoc(ParenTypeLoc L) {
// We reverse order of traversal to get the proper syntax structure.
if (!WalkUpFromParenTypeLoc(L))
return false;
return TraverseTypeLoc(L.getInnerLoc());
}
bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
new (allocator()) syntax::ParenDeclarator, L);
return true;
}
// Declarator chunks, they are produced by type locs and some clang::Decls.
bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
Builder.markExprChild(L.getSizeExpr(),
syntax::NodeRole::ArraySubscript_sizeExpression);
Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
new (allocator()) syntax::ArraySubscript, L);
return true;
}
bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
for (auto *P : L.getParams()) {
Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
}
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
new (allocator()) syntax::ParametersAndQualifiers, L);
return true;
}
bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
if (!L.getTypePtr()->hasTrailingReturn())
return WalkUpFromFunctionTypeLoc(L);
auto *TrailingReturnTokens = BuildTrailingReturn(L);
// Finish building the node for parameters.
Builder.markChild(TrailingReturnTokens,
syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
return WalkUpFromFunctionTypeLoc(L);
}
bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
auto SR = L.getLocalSourceRange();
Builder.foldNode(Builder.getRange(SR),
new (allocator()) syntax::MemberPointer, L);
return true;
}
// The code below is very regular, it could even be generated with some
// preprocessor magic. We merely assign roles to the corresponding children
// and fold resulting nodes.
bool WalkUpFromDeclStmt(DeclStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DeclarationStatement, S);
return true;
}
bool WalkUpFromNullStmt(NullStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::EmptyStatement, S);
return true;
}
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
Builder.markChildToken(S->getSwitchLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::SwitchStatement, S);
return true;
}
bool WalkUpFromCaseStmt(CaseStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CaseStatement, S);
return true;
}
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DefaultStatement, S);
return true;
}
bool WalkUpFromIfStmt(IfStmt *S) {
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getThen(),
syntax::NodeRole::IfStatement_thenStatement);
Builder.markChildToken(S->getElseLoc(),
syntax::NodeRole::IfStatement_elseKeyword);
Builder.markStmtChild(S->getElse(),
syntax::NodeRole::IfStatement_elseStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::IfStatement, S);
return true;
}
bool WalkUpFromForStmt(ForStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ForStatement, S);
return true;
}
bool WalkUpFromWhileStmt(WhileStmt *S) {
Builder.markChildToken(S->getWhileLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::WhileStatement, S);
return true;
}
bool WalkUpFromContinueStmt(ContinueStmt *S) {
Builder.markChildToken(S->getContinueLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ContinueStatement, S);
return true;
}
bool WalkUpFromBreakStmt(BreakStmt *S) {
Builder.markChildToken(S->getBreakLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::BreakStatement, S);
return true;
}
bool WalkUpFromReturnStmt(ReturnStmt *S) {
Builder.markChildToken(S->getReturnLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getRetValue(),
syntax::NodeRole::ReturnStatement_value);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ReturnStatement, S);
return true;
}
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::RangeBasedForStatement, S);
return true;
}
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::EmptyDeclaration, S);
return true;
}
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
Builder.markExprChild(S->getAssertExpr(),
syntax::NodeRole::StaticAssertDeclaration_condition);
Builder.markExprChild(S->getMessage(),
syntax::NodeRole::StaticAssertDeclaration_message);
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::StaticAssertDeclaration, S);
return true;
}
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::LinkageSpecificationDeclaration,
S);
return true;
}
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::NamespaceAliasDefinition, S);
return true;
}
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingNamespaceDirective, S);
return true;
}
bool WalkUpFromUsingDecl(UsingDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingDeclaration, S);
return true;
}
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingDeclaration, S);
return true;
}
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingDeclaration, S);
return true;
}
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::TypeAliasDeclaration, S);
return true;
}
private:
template <class T> SourceLocation getQualifiedNameStart(T *D) {
static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
std::is_base_of<TypedefNameDecl, T>::value),
"only DeclaratorDecl and TypedefNameDecl are supported.");
auto DN = D->getDeclName();
bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
if (IsAnonymous)
return SourceLocation();
if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
if (DD->getQualifierLoc()) {
return DD->getQualifierLoc().getBeginLoc();
}
}
return D->getLocation();
}
SourceRange getInitializerRange(Decl *D) {
if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
auto *I = V->getInit();
// Initializers in range-based-for are not part of the declarator
if (I && !V->isCXXForRangeDecl())
return I->getSourceRange();
}
return SourceRange();
}
/// Folds SimpleDeclarator node (if present) and in case this is the last
/// declarator in the chain it also folds SimpleDeclaration node.
template <class T> bool processDeclaratorAndDeclaration(T *D) {
SourceRange Initializer = getInitializerRange(D);
auto Range = getDeclaratorRange(Builder.sourceManager(),
D->getTypeSourceInfo()->getTypeLoc(),
getQualifiedNameStart(D), Initializer);
// There doesn't have to be a declarator (e.g. `void foo(int)` only has
// declaration, but no declarator).
if (Range.getBegin().isValid()) {
auto *N = new (allocator()) syntax::SimpleDeclarator;
Builder.foldNode(Builder.getRange(Range), N, nullptr);
Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
}
if (Builder.isResponsibleForCreatingDeclaration(D)) {
Builder.foldNode(Builder.getDeclarationRange(D),
new (allocator()) syntax::SimpleDeclaration, D);
}
return true;
}
/// Returns the range of the built node.
syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
assert(L.getTypePtr()->hasTrailingReturn());
auto ReturnedType = L.getReturnLoc();
// Build node for the declarator, if any.
auto ReturnDeclaratorRange =
getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
/*Name=*/SourceLocation(),
/*Initializer=*/SourceLocation());
syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
if (ReturnDeclaratorRange.isValid()) {
ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
ReturnDeclarator, nullptr);
}
// Build node for trailing return type.
auto Return = Builder.getRange(ReturnedType.getSourceRange());
const auto *Arrow = Return.begin() - 1;
assert(Arrow->kind() == tok::arrow);
auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
if (ReturnDeclarator)
Builder.markChild(ReturnDeclarator,
syntax::NodeRole::TrailingReturnType_declarator);
auto *R = new (allocator()) syntax::TrailingReturnType;
Builder.foldNode(Tokens, R, L);
return R;
}
void foldExplicitTemplateInstantiation(
ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
const syntax::Token *TemplateKW,
syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
Builder.markChild(
InnerDeclaration,
syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
Builder.foldNode(
Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
}
syntax::TemplateDeclaration *foldTemplateDeclaration(
ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
auto *N = new (allocator()) syntax::TemplateDeclaration;
Builder.foldNode(Range, N, From);
Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
return N;
}
/// A small helper to save some typing.
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
syntax::TreeBuilder &Builder;
const ASTContext &Context;
};
} // namespace
void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
DeclsWithoutSemicolons.insert(D);
}
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
if (Loc.isInvalid())
return;
Pending.assignRole(*findToken(Loc), Role);
}
void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
if (!T)
return;
Pending.assignRole(*T, R);
}
void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
assert(N);
setRole(N, R);
}
void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
auto *SN = Mapping.find(N);
assert(SN != nullptr);
setRole(SN, R);
}
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
if (!Child)
return;
syntax::Tree *ChildNode;
if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
// This is an expression in a statement position, consume the trailing
// semicolon and form an 'ExpressionStatement' node.
markExprChild(ChildExpr, NodeRole::ExpressionStatement_expression);
ChildNode = new (allocator()) syntax::ExpressionStatement;
// (!) 'getStmtRange()' ensures this covers a trailing semicolon.
Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
} else {
ChildNode = Mapping.find(Child);
}
assert(ChildNode != nullptr);
setRole(ChildNode, Role);
}
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
if (!Child)
return;
Child = Child->IgnoreImplicit();
syntax::Tree *ChildNode = Mapping.find(Child);
assert(ChildNode != nullptr);
setRole(ChildNode, Role);
}
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
if (L.isInvalid())
return nullptr;
auto It = LocationToToken.find(L.getRawEncoding());
assert(It != LocationToToken.end());
return It->second;
}
syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
TreeBuilder Builder(A);
BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
return std::move(Builder).finalize();
}