blob: 36f686ca2f1d8163b664d75f401a9be5dadb0d34 [file] [log] [blame]
//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
namespace {
struct X86_64 : TargetInfo {
X86_64();
uint64_t getImplicitAddend(MemoryBufferRef, const section_64 &,
const relocation_info &) const override;
void relocateOne(uint8_t *loc, const Reloc &, uint64_t val) const override;
void writeStub(uint8_t *buf, const DylibSymbol &) const override;
void writeStubHelperHeader(uint8_t *buf) const override;
void writeStubHelperEntry(uint8_t *buf, const DylibSymbol &,
uint64_t entryAddr) const override;
void prepareSymbolRelocation(lld::macho::Symbol &, const InputSection *,
const Reloc &) override;
uint64_t getSymbolVA(const lld::macho::Symbol &, uint8_t type) const override;
};
} // namespace
static std::string getErrorLocation(MemoryBufferRef mb, const section_64 &sec,
const relocation_info &rel) {
return ("invalid relocation at offset " + std::to_string(rel.r_address) +
" of " + sec.segname + "," + sec.sectname + " in " +
mb.getBufferIdentifier())
.str();
}
static void validateLength(MemoryBufferRef mb, const section_64 &sec,
const relocation_info &rel,
const std::vector<uint8_t> &validLengths) {
if (std::find(validLengths.begin(), validLengths.end(), rel.r_length) !=
validLengths.end())
return;
std::string msg = getErrorLocation(mb, sec, rel) + ": relocations of type " +
std::to_string(rel.r_type) + " must have r_length of ";
bool first = true;
for (uint8_t length : validLengths) {
if (!first)
msg += " or ";
first = false;
msg += std::to_string(length);
}
fatal(msg);
}
uint64_t X86_64::getImplicitAddend(MemoryBufferRef mb, const section_64 &sec,
const relocation_info &rel) const {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
const uint8_t *loc = buf + sec.offset + rel.r_address;
switch (rel.r_type) {
case X86_64_RELOC_BRANCH:
// XXX: ld64 also supports r_length = 0 here but I'm not sure when such a
// relocation will actually be generated.
validateLength(mb, sec, rel, {2});
break;
case X86_64_RELOC_SIGNED:
case X86_64_RELOC_SIGNED_1:
case X86_64_RELOC_SIGNED_2:
case X86_64_RELOC_SIGNED_4:
case X86_64_RELOC_GOT_LOAD:
case X86_64_RELOC_GOT:
if (!rel.r_pcrel)
fatal(getErrorLocation(mb, sec, rel) + ": relocations of type " +
std::to_string(rel.r_type) + " must be pcrel");
validateLength(mb, sec, rel, {2});
break;
case X86_64_RELOC_UNSIGNED:
if (rel.r_pcrel)
fatal(getErrorLocation(mb, sec, rel) + ": relocations of type " +
std::to_string(rel.r_type) + " must not be pcrel");
validateLength(mb, sec, rel, {2, 3});
break;
default:
error("TODO: Unhandled relocation type " + std::to_string(rel.r_type));
return 0;
}
switch (rel.r_length) {
case 0:
return *loc;
case 1:
return read16le(loc);
case 2:
return read32le(loc);
case 3:
return read64le(loc);
default:
llvm_unreachable("invalid r_length");
}
}
void X86_64::relocateOne(uint8_t *loc, const Reloc &r, uint64_t val) const {
switch (r.type) {
case X86_64_RELOC_BRANCH:
case X86_64_RELOC_SIGNED:
case X86_64_RELOC_SIGNED_1:
case X86_64_RELOC_SIGNED_2:
case X86_64_RELOC_SIGNED_4:
case X86_64_RELOC_GOT_LOAD:
case X86_64_RELOC_GOT:
// These types are only used for pc-relative relocations, so offset by 4
// since the RIP has advanced by 4 at this point. This is only valid when
// r_length = 2, which is enforced by validateLength().
val -= 4;
break;
case X86_64_RELOC_UNSIGNED:
break;
default:
llvm_unreachable(
"getImplicitAddend should have flagged all unhandled relocation types");
}
switch (r.length) {
case 0:
*loc = val;
break;
case 1:
write16le(loc, val);
break;
case 2:
write32le(loc, val);
break;
case 3:
write64le(loc, val);
break;
default:
llvm_unreachable("invalid r_length");
}
}
// The following methods emit a number of assembly sequences with RIP-relative
// addressing. Note that RIP-relative addressing on X86-64 has the RIP pointing
// to the next instruction, not the current instruction, so we always have to
// account for the current instruction's size when calculating offsets.
// writeRipRelative helps with that.
//
// bufAddr: The virtual address corresponding to buf[0].
// bufOff: The offset within buf of the next instruction.
// destAddr: The destination address that the current instruction references.
static void writeRipRelative(uint8_t *buf, uint64_t bufAddr, uint64_t bufOff,
uint64_t destAddr) {
uint64_t rip = bufAddr + bufOff;
// For the instructions we care about, the RIP-relative address is always
// stored in the last 4 bytes of the instruction.
write32le(buf + bufOff - 4, destAddr - rip);
}
static constexpr uint8_t stub[] = {
0xff, 0x25, 0, 0, 0, 0, // jmpq *__la_symbol_ptr(%rip)
};
void X86_64::writeStub(uint8_t *buf, const DylibSymbol &sym) const {
memcpy(buf, stub, 2); // just copy the two nonzero bytes
uint64_t stubAddr = in.stubs->addr + sym.stubsIndex * sizeof(stub);
writeRipRelative(buf, stubAddr, sizeof(stub),
in.lazyPointers->addr + sym.stubsIndex * WordSize);
}
static constexpr uint8_t stubHelperHeader[] = {
0x4c, 0x8d, 0x1d, 0, 0, 0, 0, // 0x0: leaq ImageLoaderCache(%rip), %r11
0x41, 0x53, // 0x7: pushq %r11
0xff, 0x25, 0, 0, 0, 0, // 0x9: jmpq *dyld_stub_binder@GOT(%rip)
0x90, // 0xf: nop
};
static constexpr uint8_t stubHelperEntry[] = {
0x68, 0, 0, 0, 0, // 0x0: pushq <bind offset>
0xe9, 0, 0, 0, 0, // 0x5: jmp <__stub_helper>
};
void X86_64::writeStubHelperHeader(uint8_t *buf) const {
memcpy(buf, stubHelperHeader, sizeof(stubHelperHeader));
writeRipRelative(buf, in.stubHelper->addr, 7, in.imageLoaderCache->getVA());
writeRipRelative(buf, in.stubHelper->addr, 0xf,
in.got->addr +
in.stubHelper->stubBinder->gotIndex * WordSize);
}
void X86_64::writeStubHelperEntry(uint8_t *buf, const DylibSymbol &sym,
uint64_t entryAddr) const {
memcpy(buf, stubHelperEntry, sizeof(stubHelperEntry));
write32le(buf + 1, sym.lazyBindOffset);
writeRipRelative(buf, entryAddr, sizeof(stubHelperEntry),
in.stubHelper->addr);
}
void X86_64::prepareSymbolRelocation(lld::macho::Symbol &sym,
const InputSection *isec, const Reloc &r) {
switch (r.type) {
case X86_64_RELOC_GOT_LOAD:
// TODO: implement mov -> lea relaxation for non-dynamic symbols
case X86_64_RELOC_GOT:
in.got->addEntry(sym);
break;
case X86_64_RELOC_BRANCH: {
if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
in.stubs->addEntry(*dysym);
break;
}
case X86_64_RELOC_UNSIGNED: {
if (auto *dysym = dyn_cast<DylibSymbol>(&sym)) {
if (r.length != 3) {
error("X86_64_RELOC_UNSIGNED referencing the dynamic symbol " +
dysym->getName() + " must have r_length = 3");
return;
}
in.binding->addEntry(dysym, isec, r.offset, r.addend);
}
break;
}
case X86_64_RELOC_SIGNED:
case X86_64_RELOC_SIGNED_1:
case X86_64_RELOC_SIGNED_2:
case X86_64_RELOC_SIGNED_4:
break;
case X86_64_RELOC_SUBTRACTOR:
case X86_64_RELOC_TLV:
fatal("TODO: handle relocation type " + std::to_string(r.type));
break;
default:
llvm_unreachable("unexpected relocation type");
}
}
uint64_t X86_64::getSymbolVA(const lld::macho::Symbol &sym,
uint8_t type) const {
switch (type) {
case X86_64_RELOC_GOT_LOAD:
case X86_64_RELOC_GOT:
return in.got->addr + sym.gotIndex * WordSize;
case X86_64_RELOC_BRANCH:
if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
return in.stubs->addr + dysym->stubsIndex * sizeof(stub);
return sym.getVA();
case X86_64_RELOC_UNSIGNED:
case X86_64_RELOC_SIGNED:
case X86_64_RELOC_SIGNED_1:
case X86_64_RELOC_SIGNED_2:
case X86_64_RELOC_SIGNED_4:
return sym.getVA();
case X86_64_RELOC_SUBTRACTOR:
case X86_64_RELOC_TLV:
fatal("TODO: handle relocation type " + std::to_string(type));
default:
llvm_unreachable("Unexpected relocation type");
}
}
X86_64::X86_64() {
cpuType = CPU_TYPE_X86_64;
cpuSubtype = CPU_SUBTYPE_X86_64_ALL;
stubSize = sizeof(stub);
stubHelperHeaderSize = sizeof(stubHelperHeader);
stubHelperEntrySize = sizeof(stubHelperEntry);
}
TargetInfo *macho::createX86_64TargetInfo() {
static X86_64 t;
return &t;
}