blob: 8877cc5f684acc5de8b2f7f8e0e3495bc26cfd9a [file] [log] [blame]
//===- Pass.cpp - Pass infrastructure implementation ----------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements common pass infrastructure.
//
//===----------------------------------------------------------------------===//
#include "mlir/Pass/Pass.h"
#include "PassDetail.h"
#include "mlir/Analysis/Verifier.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Module.h"
#include "mlir/Support/FileUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/ToolOutputFile.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// Pass
//===----------------------------------------------------------------------===//
/// Out of line virtual method to ensure vtables and metadata are emitted to a
/// single .o file.
void Pass::anchor() {}
/// Attempt to initialize the options of this pass from the given string.
LogicalResult Pass::initializeOptions(StringRef options) {
return passOptions.parseFromString(options);
}
/// Copy the option values from 'other', which is another instance of this
/// pass.
void Pass::copyOptionValuesFrom(const Pass *other) {
passOptions.copyOptionValuesFrom(other->passOptions);
}
/// Prints out the pass in the textual representation of pipelines. If this is
/// an adaptor pass, print with the op_name(sub_pass,...) format.
void Pass::printAsTextualPipeline(raw_ostream &os) {
// Special case for adaptors to use the 'op_name(sub_passes)' format.
if (auto *adaptor = getAdaptorPassBase(this)) {
interleaveComma(adaptor->getPassManagers(), os, [&](OpPassManager &pm) {
os << pm.getOpName() << "(";
pm.printAsTextualPipeline(os);
os << ")";
});
return;
}
// Otherwise, print the pass argument followed by its options.
if (const PassInfo *info = lookupPassInfo())
os << info->getPassArgument();
else
os << getName();
passOptions.print(os);
}
/// Forwarding function to execute this pass.
LogicalResult Pass::run(Operation *op, AnalysisManager am) {
passState.emplace(op, am);
// Instrument before the pass has run.
auto pi = am.getPassInstrumentor();
if (pi)
pi->runBeforePass(this, op);
// Invoke the virtual runOnOperation method.
runOnOperation();
// Invalidate any non preserved analyses.
am.invalidate(passState->preservedAnalyses);
// Instrument after the pass has run.
bool passFailed = passState->irAndPassFailed.getInt();
if (pi) {
if (passFailed)
pi->runAfterPassFailed(this, op);
else
pi->runAfterPass(this, op);
}
// Return if the pass signaled a failure.
return failure(passFailed);
}
//===----------------------------------------------------------------------===//
// Verifier Passes
//===----------------------------------------------------------------------===//
void VerifierPass::runOnOperation() {
if (failed(verify(getOperation())))
signalPassFailure();
markAllAnalysesPreserved();
}
//===----------------------------------------------------------------------===//
// OpPassManagerImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct OpPassManagerImpl {
OpPassManagerImpl(OperationName name, bool disableThreads, bool verifyPasses)
: name(name), disableThreads(disableThreads), verifyPasses(verifyPasses) {
}
/// Merge the passes of this pass manager into the one provided.
void mergeInto(OpPassManagerImpl &rhs) {
assert(name == rhs.name && "merging unrelated pass managers");
for (auto &pass : passes)
rhs.passes.push_back(std::move(pass));
passes.clear();
}
/// Coalesce adjacent AdaptorPasses into one large adaptor. This runs
/// recursively through the pipeline graph.
void coalesceAdjacentAdaptorPasses();
/// The name of the operation that passes of this pass manager operate on.
OperationName name;
/// Flag to disable multi-threading of passes.
bool disableThreads : 1;
/// Flag that specifies if the IR should be verified after each pass has run.
bool verifyPasses : 1;
/// The set of passes to run as part of this pass manager.
std::vector<std::unique_ptr<Pass>> passes;
};
} // end namespace detail
} // end namespace mlir
/// Coalesce adjacent AdaptorPasses into one large adaptor. This runs
/// recursively through the pipeline graph.
void OpPassManagerImpl::coalesceAdjacentAdaptorPasses() {
// Bail out early if there are no adaptor passes.
if (llvm::none_of(passes, [](std::unique_ptr<Pass> &pass) {
return isAdaptorPass(pass.get());
}))
return;
// Walk the pass list and merge adjacent adaptors.
OpToOpPassAdaptorBase *lastAdaptor = nullptr;
for (auto it = passes.begin(), e = passes.end(); it != e; ++it) {
// Check to see if this pass is an adaptor.
if (auto *currentAdaptor = getAdaptorPassBase(it->get())) {
// If it is the first adaptor in a possible chain, remember it and
// continue.
if (!lastAdaptor) {
lastAdaptor = currentAdaptor;
continue;
}
// Otherwise, merge into the existing adaptor and delete the current one.
currentAdaptor->mergeInto(*lastAdaptor);
it->reset();
// If the verifier is enabled, then next pass is a verifier run so
// drop it. Verifier passes are inserted after every pass, so this one
// would be a duplicate.
if (verifyPasses) {
assert(std::next(it) != e && isa<VerifierPass>(*std::next(it)));
(++it)->reset();
}
} else if (lastAdaptor && !isa<VerifierPass>(*it)) {
// If this pass is not an adaptor and not a verifier pass, then coalesce
// and forget any existing adaptor.
for (auto &pm : lastAdaptor->getPassManagers())
pm.getImpl().coalesceAdjacentAdaptorPasses();
lastAdaptor = nullptr;
}
}
// If there was an adaptor at the end of the manager, coalesce it as well.
if (lastAdaptor) {
for (auto &pm : lastAdaptor->getPassManagers())
pm.getImpl().coalesceAdjacentAdaptorPasses();
}
// Now that the adaptors have been merged, erase the empty slot corresponding
// to the merged adaptors that were nulled-out in the loop above.
llvm::erase_if(passes, std::logical_not<std::unique_ptr<Pass>>());
}
//===----------------------------------------------------------------------===//
// OpPassManager
//===----------------------------------------------------------------------===//
OpPassManager::OpPassManager(OperationName name, bool disableThreads,
bool verifyPasses)
: impl(new OpPassManagerImpl(name, disableThreads, verifyPasses)) {
assert(name.getAbstractOperation() &&
"OpPassManager can only operate on registered operations");
assert(name.getAbstractOperation()->hasProperty(
OperationProperty::IsolatedFromAbove) &&
"OpPassManager only supports operating on operations marked as "
"'IsolatedFromAbove'");
}
OpPassManager::OpPassManager(OpPassManager &&rhs) : impl(std::move(rhs.impl)) {}
OpPassManager::OpPassManager(const OpPassManager &rhs) { *this = rhs; }
OpPassManager &OpPassManager::operator=(const OpPassManager &rhs) {
impl.reset(new OpPassManagerImpl(rhs.impl->name, rhs.impl->disableThreads,
rhs.impl->verifyPasses));
for (auto &pass : rhs.impl->passes)
impl->passes.emplace_back(pass->clone());
return *this;
}
OpPassManager::~OpPassManager() {}
OpPassManager::pass_iterator OpPassManager::begin() {
return impl->passes.begin();
}
OpPassManager::pass_iterator OpPassManager::end() { return impl->passes.end(); }
/// Run all of the passes in this manager over the current operation.
LogicalResult OpPassManager::run(Operation *op, AnalysisManager am) {
// Run each of the held passes.
for (auto &pass : impl->passes)
if (failed(pass->run(op, am)))
return failure();
return success();
}
/// Nest a new operation pass manager for the given operation kind under this
/// pass manager.
OpPassManager &OpPassManager::nest(const OperationName &nestedName) {
OpPassManager nested(nestedName, impl->disableThreads, impl->verifyPasses);
/// Create an adaptor for this pass. If multi-threading is disabled, then
/// create a synchronous adaptor.
if (impl->disableThreads || !llvm::llvm_is_multithreaded()) {
auto *adaptor = new OpToOpPassAdaptor(std::move(nested));
addPass(std::unique_ptr<Pass>(adaptor));
return adaptor->getPassManagers().front();
}
auto *adaptor = new OpToOpPassAdaptorParallel(std::move(nested));
addPass(std::unique_ptr<Pass>(adaptor));
return adaptor->getPassManagers().front();
}
OpPassManager &OpPassManager::nest(StringRef nestedName) {
return nest(OperationName(nestedName, getContext()));
}
/// Add the given pass to this pass manager. If this pass has a concrete
/// operation type, it must be the same type as this pass manager.
void OpPassManager::addPass(std::unique_ptr<Pass> pass) {
// If this pass runs on a different operation than this pass manager, then
// implicitly nest a pass manager for this operation.
auto passOpName = pass->getOpName();
if (passOpName && passOpName != impl->name.getStringRef())
return nest(*passOpName).addPass(std::move(pass));
impl->passes.emplace_back(std::move(pass));
if (impl->verifyPasses)
impl->passes.emplace_back(std::make_unique<VerifierPass>());
}
/// Returns the number of passes held by this manager.
size_t OpPassManager::size() const { return impl->passes.size(); }
/// Returns the internal implementation instance.
OpPassManagerImpl &OpPassManager::getImpl() { return *impl; }
/// Return an instance of the context.
MLIRContext *OpPassManager::getContext() const {
return impl->name.getAbstractOperation()->dialect.getContext();
}
/// Return the operation name that this pass manager operates on.
const OperationName &OpPassManager::getOpName() const { return impl->name; }
/// Prints out the passes of the pass manager as the textual representation
/// of pipelines.
void OpPassManager::printAsTextualPipeline(raw_ostream &os) {
// Filter out passes that are not part of the public pipeline.
auto filteredPasses = llvm::make_filter_range(
impl->passes, [](const std::unique_ptr<Pass> &pass) {
return !isa<VerifierPass>(pass);
});
interleaveComma(filteredPasses, os, [&](const std::unique_ptr<Pass> &pass) {
pass->printAsTextualPipeline(os);
});
}
//===----------------------------------------------------------------------===//
// OpToOpPassAdaptor
//===----------------------------------------------------------------------===//
/// Utility to run the given operation and analysis manager on a provided op
/// pass manager.
static LogicalResult runPipeline(OpPassManager &pm, Operation *op,
AnalysisManager am) {
// Run the pipeline over the provided operation.
auto result = pm.run(op, am);
// Clear out any computed operation analyses. These analyses won't be used
// any more in this pipeline, and this helps reduce the current working set
// of memory. If preserving these analyses becomes important in the future
// we can re-evaluate this.
am.clear();
return result;
}
/// Find an operation pass manager that can operate on an operation of the given
/// type, or nullptr if one does not exist.
static OpPassManager *findPassManagerFor(MutableArrayRef<OpPassManager> mgrs,
const OperationName &name) {
auto it = llvm::find_if(
mgrs, [&](OpPassManager &mgr) { return mgr.getOpName() == name; });
return it == mgrs.end() ? nullptr : &*it;
}
OpToOpPassAdaptorBase::OpToOpPassAdaptorBase(OpPassManager &&mgr) {
mgrs.emplace_back(std::move(mgr));
}
/// Merge the current pass adaptor into given 'rhs'.
void OpToOpPassAdaptorBase::mergeInto(OpToOpPassAdaptorBase &rhs) {
for (auto &pm : mgrs) {
// If an existing pass manager exists, then merge the given pass manager
// into it.
if (auto *existingPM = findPassManagerFor(rhs.mgrs, pm.getOpName())) {
pm.getImpl().mergeInto(existingPM->getImpl());
} else {
// Otherwise, add the given pass manager to the list.
rhs.mgrs.emplace_back(std::move(pm));
}
}
mgrs.clear();
// After coalescing, sort the pass managers within rhs by name.
llvm::array_pod_sort(rhs.mgrs.begin(), rhs.mgrs.end(),
[](const OpPassManager *lhs, const OpPassManager *rhs) {
return lhs->getOpName().getStringRef().compare(
rhs->getOpName().getStringRef());
});
}
/// Returns the adaptor pass name.
std::string OpToOpPassAdaptorBase::getName() {
std::string name = "Pipeline Collection : [";
llvm::raw_string_ostream os(name);
interleaveComma(getPassManagers(), os, [&](OpPassManager &pm) {
os << '\'' << pm.getOpName() << '\'';
});
os << ']';
return os.str();
}
OpToOpPassAdaptor::OpToOpPassAdaptor(OpPassManager &&mgr)
: OpToOpPassAdaptorBase(std::move(mgr)) {}
/// Run the held pipeline over all nested operations.
void OpToOpPassAdaptor::runOnOperation() {
auto am = getAnalysisManager();
PassInstrumentation::PipelineParentInfo parentInfo = {llvm::get_threadid(),
this};
auto *instrumentor = am.getPassInstrumentor();
for (auto &region : getOperation()->getRegions()) {
for (auto &block : region) {
for (auto &op : block) {
auto *mgr = findPassManagerFor(mgrs, op.getName());
if (!mgr)
continue;
// Run the held pipeline over the current operation.
if (instrumentor)
instrumentor->runBeforePipeline(mgr->getOpName(), parentInfo);
auto result = runPipeline(*mgr, &op, am.slice(&op));
if (instrumentor)
instrumentor->runAfterPipeline(mgr->getOpName(), parentInfo);
if (failed(result))
return signalPassFailure();
}
}
}
}
OpToOpPassAdaptorParallel::OpToOpPassAdaptorParallel(OpPassManager &&mgr)
: OpToOpPassAdaptorBase(std::move(mgr)) {}
/// Utility functor that checks if the two ranges of pass managers have a size
/// mismatch.
static bool hasSizeMismatch(ArrayRef<OpPassManager> lhs,
ArrayRef<OpPassManager> rhs) {
return lhs.size() != rhs.size() ||
llvm::any_of(llvm::seq<size_t>(0, lhs.size()),
[&](size_t i) { return lhs[i].size() != rhs[i].size(); });
}
// Run the held pipeline asynchronously across the functions within the module.
void OpToOpPassAdaptorParallel::runOnOperation() {
AnalysisManager am = getAnalysisManager();
// Create the async executors if they haven't been created, or if the main
// pipeline has changed.
if (asyncExecutors.empty() || hasSizeMismatch(asyncExecutors.front(), mgrs))
asyncExecutors.assign(llvm::hardware_concurrency(), mgrs);
// Run a prepass over the module to collect the operations to execute over.
// This ensures that an analysis manager exists for each operation, as well as
// providing a queue of operations to execute over.
std::vector<std::pair<Operation *, AnalysisManager>> opAMPairs;
for (auto &region : getOperation()->getRegions()) {
for (auto &block : region) {
for (auto &op : block) {
// Add this operation iff the name matches the any of the pass managers.
if (findPassManagerFor(mgrs, op.getName()))
opAMPairs.emplace_back(&op, am.slice(&op));
}
}
}
// A parallel diagnostic handler that provides deterministic diagnostic
// ordering.
ParallelDiagnosticHandler diagHandler(&getContext());
// An index for the current operation/analysis manager pair.
std::atomic<unsigned> opIt(0);
// Get the current thread for this adaptor.
PassInstrumentation::PipelineParentInfo parentInfo = {llvm::get_threadid(),
this};
auto *instrumentor = am.getPassInstrumentor();
// An atomic failure variable for the async executors.
std::atomic<bool> passFailed(false);
llvm::parallel::for_each(
llvm::parallel::par, asyncExecutors.begin(),
std::next(asyncExecutors.begin(),
std::min(asyncExecutors.size(), opAMPairs.size())),
[&](MutableArrayRef<OpPassManager> pms) {
for (auto e = opAMPairs.size(); !passFailed && opIt < e;) {
// Get the next available operation index.
unsigned nextID = opIt++;
if (nextID >= e)
break;
// Set the order id for this thread in the diagnostic handler.
diagHandler.setOrderIDForThread(nextID);
// Get the pass manager for this operation and execute it.
auto &it = opAMPairs[nextID];
auto *pm = findPassManagerFor(pms, it.first->getName());
assert(pm && "expected valid pass manager for operation");
if (instrumentor)
instrumentor->runBeforePipeline(pm->getOpName(), parentInfo);
auto pipelineResult = runPipeline(*pm, it.first, it.second);
if (instrumentor)
instrumentor->runAfterPipeline(pm->getOpName(), parentInfo);
// Drop this thread from being tracked by the diagnostic handler.
// After this task has finished, the thread may be used outside of
// this pass manager context meaning that we don't want to track
// diagnostics from it anymore.
diagHandler.eraseOrderIDForThread();
// Handle a failed pipeline result.
if (failed(pipelineResult)) {
passFailed = true;
break;
}
}
});
// Signal a failure if any of the executors failed.
if (passFailed)
signalPassFailure();
}
/// Utility function to convert the given class to the base adaptor it is an
/// adaptor pass, returns nullptr otherwise.
OpToOpPassAdaptorBase *mlir::detail::getAdaptorPassBase(Pass *pass) {
if (auto *adaptor = dyn_cast<OpToOpPassAdaptor>(pass))
return adaptor;
if (auto *adaptor = dyn_cast<OpToOpPassAdaptorParallel>(pass))
return adaptor;
return nullptr;
}
//===----------------------------------------------------------------------===//
// PassCrashReproducer
//===----------------------------------------------------------------------===//
/// Safely run the pass manager over the given module, creating a reproducible
/// on failure or crash.
static LogicalResult runWithCrashRecovery(OpPassManager &pm,
ModuleAnalysisManager &am,
ModuleOp module,
StringRef crashReproducerFileName) {
/// Enable crash recovery.
llvm::CrashRecoveryContext::Enable();
// Grab the textual pipeline executing within the pass manager first, just in
// case the pass manager becomes compromised.
std::string pipeline;
{
llvm::raw_string_ostream pipelineOS(pipeline);
pm.printAsTextualPipeline(pipelineOS);
}
// Clone the initial module before running it through the pass pipeline.
OwningModuleRef reproducerModule = module.clone();
// Safely invoke the pass manager within a recovery context.
LogicalResult passManagerResult = failure();
llvm::CrashRecoveryContext recoveryContext;
recoveryContext.RunSafelyOnThread(
[&] { passManagerResult = pm.run(module, am); });
/// Disable crash recovery.
llvm::CrashRecoveryContext::Disable();
if (succeeded(passManagerResult))
return success();
// The conversion failed, so generate a reproducible.
std::string error;
std::unique_ptr<llvm::ToolOutputFile> outputFile =
mlir::openOutputFile(crashReproducerFileName, &error);
if (!outputFile)
return emitError(UnknownLoc::get(pm.getContext()),
"<MLIR-PassManager-Crash-Reproducer>: ")
<< error;
auto &outputOS = outputFile->os();
// Output the current pass manager configuration.
outputOS << "// configuration: -pass-pipeline='" << pipeline << "'";
if (pm.getImpl().disableThreads)
outputOS << " -disable-pass-threading";
// TODO(riverriddle) Should this also be configured with a pass manager flag?
outputOS << "\n// note: verifyPasses="
<< (pm.getImpl().verifyPasses ? "true" : "false") << "\n";
// Output the .mlir module.
reproducerModule->print(outputOS);
outputFile->keep();
return reproducerModule->emitError()
<< "A failure has been detected while processing the MLIR module, a "
"reproducer has been generated in '"
<< crashReproducerFileName << "'";
}
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
PassManager::PassManager(MLIRContext *ctx, bool verifyPasses)
: OpPassManager(OperationName(ModuleOp::getOperationName(), ctx),
/*disableThreads=*/false, verifyPasses),
passTiming(false) {}
PassManager::~PassManager() {}
/// Run the passes within this manager on the provided module.
LogicalResult PassManager::run(ModuleOp module) {
// Before running, make sure to coalesce any adjacent pass adaptors in the
// pipeline.
getImpl().coalesceAdjacentAdaptorPasses();
// Construct an analysis manager for the pipeline.
ModuleAnalysisManager am(module, instrumentor.get());
// If reproducer generation is enabled, run the pass manager with crash
// handling enabled.
LogicalResult result =
crashReproducerFileName
? runWithCrashRecovery(*this, am, module, *crashReproducerFileName)
: OpPassManager::run(module, am);
// Dump all of the pass statistics if necessary.
if (passStatisticsMode)
dumpStatistics();
return result;
}
/// Disable support for multi-threading within the pass manager.
void PassManager::disableMultithreading(bool disable) {
getImpl().disableThreads = disable;
}
/// Enable support for the pass manager to generate a reproducer on the event
/// of a crash or a pass failure. `outputFile` is a .mlir filename used to write
/// the generated reproducer.
void PassManager::enableCrashReproducerGeneration(StringRef outputFile) {
crashReproducerFileName = outputFile;
}
/// Add the provided instrumentation to the pass manager.
void PassManager::addInstrumentation(std::unique_ptr<PassInstrumentation> pi) {
if (!instrumentor)
instrumentor = std::make_unique<PassInstrumentor>();
instrumentor->addInstrumentation(std::move(pi));
}
//===----------------------------------------------------------------------===//
// AnalysisManager
//===----------------------------------------------------------------------===//
/// Returns a pass instrumentation object for the current operation.
PassInstrumentor *AnalysisManager::getPassInstrumentor() const {
ParentPointerT curParent = parent;
while (auto *parentAM = curParent.dyn_cast<const AnalysisManager *>())
curParent = parentAM->parent;
return curParent.get<const ModuleAnalysisManager *>()->getPassInstrumentor();
}
/// Get an analysis manager for the given child operation.
AnalysisManager AnalysisManager::slice(Operation *op) {
assert(op->getParentOp() == impl->getOperation() &&
"'op' has a different parent operation");
auto it = impl->childAnalyses.find(op);
if (it == impl->childAnalyses.end())
it = impl->childAnalyses
.try_emplace(op, std::make_unique<NestedAnalysisMap>(op))
.first;
return {this, it->second.get()};
}
/// Invalidate any non preserved analyses.
void detail::NestedAnalysisMap::invalidate(
const detail::PreservedAnalyses &pa) {
// If all analyses were preserved, then there is nothing to do here.
if (pa.isAll())
return;
// Invalidate the analyses for the current operation directly.
analyses.invalidate(pa);
// If no analyses were preserved, then just simply clear out the child
// analysis results.
if (pa.isNone()) {
childAnalyses.clear();
return;
}
// Otherwise, invalidate each child analysis map.
SmallVector<NestedAnalysisMap *, 8> mapsToInvalidate(1, this);
while (!mapsToInvalidate.empty()) {
auto *map = mapsToInvalidate.pop_back_val();
for (auto &analysisPair : map->childAnalyses) {
analysisPair.second->invalidate(pa);
if (!analysisPair.second->childAnalyses.empty())
mapsToInvalidate.push_back(analysisPair.second.get());
}
}
}
//===----------------------------------------------------------------------===//
// PassInstrumentation
//===----------------------------------------------------------------------===//
PassInstrumentation::~PassInstrumentation() {}
//===----------------------------------------------------------------------===//
// PassInstrumentor
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct PassInstrumentorImpl {
/// Mutex to keep instrumentation access thread-safe.
llvm::sys::SmartMutex<true> mutex;
/// Set of registered instrumentations.
std::vector<std::unique_ptr<PassInstrumentation>> instrumentations;
};
} // end namespace detail
} // end namespace mlir
PassInstrumentor::PassInstrumentor() : impl(new PassInstrumentorImpl()) {}
PassInstrumentor::~PassInstrumentor() {}
/// See PassInstrumentation::runBeforePipeline for details.
void PassInstrumentor::runBeforePipeline(
const OperationName &name,
const PassInstrumentation::PipelineParentInfo &parentInfo) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforePipeline(name, parentInfo);
}
/// See PassInstrumentation::runAfterPipeline for details.
void PassInstrumentor::runAfterPipeline(
const OperationName &name,
const PassInstrumentation::PipelineParentInfo &parentInfo) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPipeline(name, parentInfo);
}
/// See PassInstrumentation::runBeforePass for details.
void PassInstrumentor::runBeforePass(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforePass(pass, op);
}
/// See PassInstrumentation::runAfterPass for details.
void PassInstrumentor::runAfterPass(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPass(pass, op);
}
/// See PassInstrumentation::runAfterPassFailed for details.
void PassInstrumentor::runAfterPassFailed(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPassFailed(pass, op);
}
/// See PassInstrumentation::runBeforeAnalysis for details.
void PassInstrumentor::runBeforeAnalysis(StringRef name, AnalysisID *id,
Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforeAnalysis(name, id, op);
}
/// See PassInstrumentation::runAfterAnalysis for details.
void PassInstrumentor::runAfterAnalysis(StringRef name, AnalysisID *id,
Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterAnalysis(name, id, op);
}
/// Add the given instrumentation to the collection.
void PassInstrumentor::addInstrumentation(
std::unique_ptr<PassInstrumentation> pi) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
impl->instrumentations.emplace_back(std::move(pi));
}
constexpr AnalysisID mlir::detail::PreservedAnalyses::allAnalysesID;