blob: abb1bf2ac3acf2f36e652ed47a59f454be084382 [file] [log] [blame]
//===- Operation.h - MLIR Operation Class -----------------------*- C++ -*-===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Operation class.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_IR_OPERATION_H
#define MLIR_IR_OPERATION_H
#include "mlir/IR/Block.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/Region.h"
#include "llvm/ADT/Twine.h"
namespace mlir {
/// Operation is a basic unit of execution within a function. Operations can
/// be nested within other operations effectively forming a tree. Child
/// operations are organized into operation blocks represented by a 'Block'
/// class.
class Operation final
: public IRMultiObjectWithUseList<OpOperand>,
public llvm::ilist_node_with_parent<Operation, Block>,
private llvm::TrailingObjects<Operation, detail::TrailingOpResult,
BlockOperand, Region,
detail::OperandStorage> {
public:
/// Create a new Operation with the specific fields.
static Operation *create(Location location, OperationName name,
ArrayRef<Type> resultTypes, ArrayRef<Value> operands,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList);
/// Overload of create that takes an existing NamedAttributeList to avoid
/// unnecessarily uniquing a list of attributes.
static Operation *create(Location location, OperationName name,
ArrayRef<Type> resultTypes, ArrayRef<Value> operands,
NamedAttributeList attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList);
/// Create a new Operation from the fields stored in `state`.
static Operation *create(const OperationState &state);
/// Create a new Operation with the specific fields.
static Operation *create(Location location, OperationName name,
ArrayRef<Type> resultTypes, ArrayRef<Value> operands,
NamedAttributeList attributes,
ArrayRef<Block *> successors = {},
RegionRange regions = {},
bool resizableOperandList = false);
/// The name of an operation is the key identifier for it.
OperationName getName() { return name; }
/// If this operation has a registered operation description, return it.
/// Otherwise return null.
const AbstractOperation *getAbstractOperation() {
return getName().getAbstractOperation();
}
/// Returns true if this operation has a registered operation description,
/// otherwise false.
bool isRegistered() { return getAbstractOperation(); }
/// Remove this operation from its parent block and delete it.
void erase();
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *clone(BlockAndValueMapping &mapper);
Operation *clone();
/// Create a partial copy of this operation without traversing into attached
/// regions. The new operation will have the same number of regions as the
/// original one, but they will be left empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results.
Operation *cloneWithoutRegions(BlockAndValueMapping &mapper);
/// Create a partial copy of this operation without traversing into attached
/// regions. The new operation will have the same number of regions as the
/// original one, but they will be left empty.
Operation *cloneWithoutRegions();
/// Returns the operation block that contains this operation.
Block *getBlock() { return block; }
/// Return the context this operation is associated with.
MLIRContext *getContext();
/// Return the dialect this operation is associated with, or nullptr if the
/// associated dialect is not registered.
Dialect *getDialect();
/// The source location the operation was defined or derived from.
Location getLoc() { return location; }
/// Set the source location the operation was defined or derived from.
void setLoc(Location loc) { location = loc; }
/// Returns the region to which the instruction belongs. Returns nullptr if
/// the instruction is unlinked.
Region *getParentRegion();
/// Returns the closest surrounding operation that contains this operation
/// or nullptr if this is a top-level operation.
Operation *getParentOp();
/// Return the closest surrounding parent operation that is of type 'OpTy'.
template <typename OpTy> OpTy getParentOfType() {
auto *op = this;
while ((op = op->getParentOp()))
if (auto parentOp = dyn_cast<OpTy>(op))
return parentOp;
return OpTy();
}
/// Return true if this operation is a proper ancestor of the `other`
/// operation.
bool isProperAncestor(Operation *other);
/// Return true if this operation is an ancestor of the `other` operation. An
/// operation is considered as its own ancestor, use `isProperAncestor` to
/// avoid this.
bool isAncestor(Operation *other) {
return this == other || isProperAncestor(other);
}
/// Replace any uses of 'from' with 'to' within this operation.
void replaceUsesOfWith(Value from, Value to);
/// Replace all uses of results of this operation with the provided 'values'.
template <typename ValuesT,
typename = decltype(std::declval<ValuesT>().begin())>
void replaceAllUsesWith(ValuesT &&values) {
assert(std::distance(values.begin(), values.end()) == getNumResults() &&
"expected 'values' to correspond 1-1 with the number of results");
auto valueIt = values.begin();
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
getResult(i).replaceAllUsesWith(*(valueIt++));
}
/// Replace all uses of results of this operation with results of 'op'.
void replaceAllUsesWith(Operation *op) {
assert(getNumResults() == op->getNumResults());
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
getResult(i).replaceAllUsesWith(op->getResult(i));
}
/// Destroys this operation and its subclass data.
void destroy();
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void dropAllReferences();
/// Drop uses of all values defined by this operation or its nested regions.
void dropAllDefinedValueUses();
/// Unlink this operation from its current block and insert it right before
/// `existingOp` which may be in the same or another block in the same
/// function.
void moveBefore(Operation *existingOp);
/// Unlink this operation from its current block and insert it right before
/// `iterator` in the specified block.
void moveBefore(Block *block, llvm::iplist<Operation>::iterator iterator);
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool isBeforeInBlock(Operation *other);
void print(raw_ostream &os, OpPrintingFlags flags = llvm::None);
void print(raw_ostream &os, AsmState &state,
OpPrintingFlags flags = llvm::None);
void dump();
//===--------------------------------------------------------------------===//
// Operands
//===--------------------------------------------------------------------===//
/// Returns if the operation has a resizable operation list, i.e. operands can
/// be added.
bool hasResizableOperandsList() { return getOperandStorage().isResizable(); }
/// Replace the current operands of this operation with the ones provided in
/// 'operands'. If the operands list is not resizable, the size of 'operands'
/// must be less than or equal to the current number of operands.
void setOperands(ValueRange operands);
unsigned getNumOperands() { return getOperandStorage().size(); }
Value getOperand(unsigned idx) { return getOpOperand(idx).get(); }
void setOperand(unsigned idx, Value value) {
return getOpOperand(idx).set(value);
}
// Support operand iteration.
using operand_range = OperandRange;
using operand_iterator = operand_range::iterator;
operand_iterator operand_begin() { return getOperands().begin(); }
operand_iterator operand_end() { return getOperands().end(); }
/// Returns an iterator on the underlying Value's (Value ).
operand_range getOperands() { return operand_range(this); }
/// Erase the operand at position `idx`.
void eraseOperand(unsigned idx) { getOperandStorage().eraseOperand(idx); }
MutableArrayRef<OpOperand> getOpOperands() {
return getOperandStorage().getOperands();
}
OpOperand &getOpOperand(unsigned idx) { return getOpOperands()[idx]; }
// Support operand type iteration.
using operand_type_iterator = operand_range::type_iterator;
using operand_type_range = iterator_range<operand_type_iterator>;
operand_type_iterator operand_type_begin() { return operand_begin(); }
operand_type_iterator operand_type_end() { return operand_end(); }
operand_type_range getOperandTypes() { return getOperands().getTypes(); }
//===--------------------------------------------------------------------===//
// Results
//===--------------------------------------------------------------------===//
/// Return the number of results held by this operation.
unsigned getNumResults();
/// Get the 'idx'th result of this operation.
OpResult getResult(unsigned idx) { return OpResult(this, idx); }
/// Support result iteration.
using result_range = ResultRange;
using result_iterator = result_range::iterator;
result_iterator result_begin() { return getResults().begin(); }
result_iterator result_end() { return getResults().end(); }
result_range getResults() { return result_range(this); }
result_range getOpResults() { return getResults(); }
OpResult getOpResult(unsigned idx) { return getResult(idx); }
/// Support result type iteration.
using result_type_iterator = result_range::type_iterator;
using result_type_range = iterator_range<result_type_iterator>;
result_type_iterator result_type_begin() { return result_begin(); }
result_type_iterator result_type_end() { return result_end(); }
result_type_range getResultTypes() { return getResults().getTypes(); }
//===--------------------------------------------------------------------===//
// Attributes
//===--------------------------------------------------------------------===//
// Operations may optionally carry a list of attributes that associate
// constants to names. Attributes may be dynamically added and removed over
// the lifetime of an operation.
/// Return all of the attributes on this operation.
ArrayRef<NamedAttribute> getAttrs() { return attrs.getAttrs(); }
/// Return the internal attribute list on this operation.
NamedAttributeList &getAttrList() { return attrs; }
/// Set the attribute list on this operation.
/// Using a NamedAttributeList is more efficient as it does not require new
/// uniquing in the MLIRContext.
void setAttrs(NamedAttributeList newAttrs) { attrs = newAttrs; }
/// Return the specified attribute if present, null otherwise.
Attribute getAttr(Identifier name) { return attrs.get(name); }
Attribute getAttr(StringRef name) { return attrs.get(name); }
template <typename AttrClass> AttrClass getAttrOfType(Identifier name) {
return getAttr(name).dyn_cast_or_null<AttrClass>();
}
template <typename AttrClass> AttrClass getAttrOfType(StringRef name) {
return getAttr(name).dyn_cast_or_null<AttrClass>();
}
/// If the an attribute exists with the specified name, change it to the new
/// value. Otherwise, add a new attribute with the specified name/value.
void setAttr(Identifier name, Attribute value) { attrs.set(name, value); }
void setAttr(StringRef name, Attribute value) {
setAttr(Identifier::get(name, getContext()), value);
}
/// Remove the attribute with the specified name if it exists. The return
/// value indicates whether the attribute was present or not.
NamedAttributeList::RemoveResult removeAttr(Identifier name) {
return attrs.remove(name);
}
/// A utility iterator that filters out non-dialect attributes.
class dialect_attr_iterator
: public llvm::filter_iterator<ArrayRef<NamedAttribute>::iterator,
bool (*)(NamedAttribute)> {
static bool filter(NamedAttribute attr) {
// Dialect attributes are prefixed by the dialect name, like operations.
return attr.first.strref().count('.');
}
explicit dialect_attr_iterator(ArrayRef<NamedAttribute>::iterator it,
ArrayRef<NamedAttribute>::iterator end)
: llvm::filter_iterator<ArrayRef<NamedAttribute>::iterator,
bool (*)(NamedAttribute)>(it, end, &filter) {}
// Allow access to the constructor.
friend Operation;
};
using dialect_attr_range = iterator_range<dialect_attr_iterator>;
/// Return a range corresponding to the dialect attributes for this operation.
dialect_attr_range getDialectAttrs() {
auto attrs = getAttrs();
return {dialect_attr_iterator(attrs.begin(), attrs.end()),
dialect_attr_iterator(attrs.end(), attrs.end())};
}
dialect_attr_iterator dialect_attr_begin() {
auto attrs = getAttrs();
return dialect_attr_iterator(attrs.begin(), attrs.end());
}
dialect_attr_iterator dialect_attr_end() {
auto attrs = getAttrs();
return dialect_attr_iterator(attrs.end(), attrs.end());
}
/// Set the dialect attributes for this operation, and preserve all dependent.
template <typename DialectAttrT>
void setDialectAttrs(DialectAttrT &&dialectAttrs) {
SmallVector<NamedAttribute, 16> attrs;
attrs.assign(std::begin(dialectAttrs), std::end(dialectAttrs));
for (auto attr : getAttrs())
if (!attr.first.strref().count('.'))
attrs.push_back(attr);
setAttrs(llvm::makeArrayRef(attrs));
}
//===--------------------------------------------------------------------===//
// Blocks
//===--------------------------------------------------------------------===//
/// Returns the number of regions held by this operation.
unsigned getNumRegions() { return numRegions; }
/// Returns the regions held by this operation.
MutableArrayRef<Region> getRegions() {
auto *regions = getTrailingObjects<Region>();
return {regions, numRegions};
}
/// Returns the region held by this operation at position 'index'.
Region &getRegion(unsigned index) {
assert(index < numRegions && "invalid region index");
return getRegions()[index];
}
//===--------------------------------------------------------------------===//
// Terminators
//===--------------------------------------------------------------------===//
MutableArrayRef<BlockOperand> getBlockOperands() {
return {getTrailingObjects<BlockOperand>(), numSuccs};
}
// Successor iteration.
using succ_iterator = SuccessorRange::iterator;
succ_iterator successor_begin() { return getSuccessors().begin(); }
succ_iterator successor_end() { return getSuccessors().end(); }
SuccessorRange getSuccessors() { return SuccessorRange(this); }
/// Return the operands of this operation that are *not* successor arguments.
operand_range getNonSuccessorOperands();
operand_range getSuccessorOperands(unsigned index);
Value getSuccessorOperand(unsigned succIndex, unsigned opIndex) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(opIndex < getNumSuccessorOperands(succIndex));
return getOperand(getSuccessorOperandIndex(succIndex) + opIndex);
}
bool hasSuccessors() { return numSuccs != 0; }
unsigned getNumSuccessors() { return numSuccs; }
unsigned getNumSuccessorOperands(unsigned index) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(index < getNumSuccessors());
return getBlockOperands()[index].numSuccessorOperands;
}
Block *getSuccessor(unsigned index) {
assert(index < getNumSuccessors());
return getBlockOperands()[index].get();
}
void setSuccessor(Block *block, unsigned index);
/// Erase a specific operand from the operand list of the successor at
/// 'index'.
void eraseSuccessorOperand(unsigned succIndex, unsigned opIndex) {
assert(succIndex < getNumSuccessors());
assert(opIndex < getNumSuccessorOperands(succIndex));
getOperandStorage().eraseOperand(getSuccessorOperandIndex(succIndex) +
opIndex);
--getBlockOperands()[succIndex].numSuccessorOperands;
}
/// Get the index of the first operand of the successor at the provided
/// index.
unsigned getSuccessorOperandIndex(unsigned index);
/// Return a pair (successorIndex, successorArgIndex) containing the index
/// of the successor that `operandIndex` belongs to and the index of the
/// argument to that successor that `operandIndex` refers to.
///
/// If `operandIndex` is not a successor operand, None is returned.
Optional<std::pair<unsigned, unsigned>>
decomposeSuccessorOperandIndex(unsigned operandIndex);
/// Returns the `BlockArgument` corresponding to operand `operandIndex` in
/// some successor, or None if `operandIndex` isn't a successor operand index.
Optional<BlockArgument> getSuccessorBlockArgument(unsigned operandIndex) {
auto decomposed = decomposeSuccessorOperandIndex(operandIndex);
if (!decomposed.hasValue())
return None;
return getSuccessor(decomposed->first)->getArgument(decomposed->second);
}
//===--------------------------------------------------------------------===//
// Accessors for various properties of operations
//===--------------------------------------------------------------------===//
/// Returns whether the operation is commutative.
bool isCommutative() {
if (auto *absOp = getAbstractOperation())
return absOp->hasProperty(OperationProperty::Commutative);
return false;
}
/// Returns whether the operation has side-effects.
bool hasNoSideEffect() {
if (auto *absOp = getAbstractOperation())
return absOp->hasProperty(OperationProperty::NoSideEffect);
return false;
}
/// Represents the status of whether an operation is a terminator. We
/// represent an 'unknown' status because we want to support unregistered
/// terminators.
enum class TerminatorStatus { Terminator, NonTerminator, Unknown };
/// Returns the status of whether this operation is a terminator or not.
TerminatorStatus getTerminatorStatus() {
if (auto *absOp = getAbstractOperation()) {
return absOp->hasProperty(OperationProperty::Terminator)
? TerminatorStatus::Terminator
: TerminatorStatus::NonTerminator;
}
return TerminatorStatus::Unknown;
}
/// Returns if the operation is known to be a terminator.
bool isKnownTerminator() {
return getTerminatorStatus() == TerminatorStatus::Terminator;
}
/// Returns if the operation is known to *not* be a terminator.
bool isKnownNonTerminator() {
return getTerminatorStatus() == TerminatorStatus::NonTerminator;
}
/// Returns if the operation is known to be completely isolated from enclosing
/// regions, i.e. no internal regions reference values defined above this
/// operation.
bool isKnownIsolatedFromAbove() {
if (auto *absOp = getAbstractOperation())
return absOp->hasProperty(OperationProperty::IsolatedFromAbove);
return false;
}
/// Attempt to fold this operation with the specified constant operand values
/// - the elements in "operands" will correspond directly to the operands of
/// the operation, but may be null if non-constant. If folding is successful,
/// this fills in the `results` vector. If not, `results` is unspecified.
LogicalResult fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results);
/// Returns if the operation was registered with a particular trait, e.g.
/// hasTrait<OperandsAreIntegerLike>().
template <template <typename T> class Trait> bool hasTrait() {
auto *absOp = getAbstractOperation();
return absOp ? absOp->hasTrait<Trait>() : false;
}
//===--------------------------------------------------------------------===//
// Operation Walkers
//===--------------------------------------------------------------------===//
/// Walk the operation in postorder, calling the callback for each nested
/// operation(including this one). The callback method can take any of the
/// following forms:
/// void(Operation*) : Walk all operations opaquely.
/// * op->walk([](Operation *nestedOp) { ...});
/// void(OpT) : Walk all operations of the given derived type.
/// * op->walk([](ReturnOp returnOp) { ...});
/// WalkResult(Operation*|OpT) : Walk operations, but allow for
/// interruption/cancellation.
/// * op->walk([](... op) {
/// // Interrupt, i.e cancel, the walk based on some invariant.
/// if (some_invariant)
/// return WalkResult::interrupt();
/// return WalkResult::advance();
/// });
template <typename FnT, typename RetT = detail::walkResultType<FnT>>
RetT walk(FnT &&callback) {
return detail::walkOperations(this, std::forward<FnT>(callback));
}
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic emitOpError(const Twine &message = {});
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic emitError(const Twine &message = {});
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic emitWarning(const Twine &message = {});
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic emitRemark(const Twine &message = {});
private:
//===--------------------------------------------------------------------===//
// Ordering
//===--------------------------------------------------------------------===//
/// This value represents an invalid index ordering for an operation within a
/// block.
static constexpr unsigned kInvalidOrderIdx = -1;
/// This value represents the stride to use when computing a new order for an
/// operation.
static constexpr unsigned kOrderStride = 5;
/// Update the order index of this operation of this operation if necessary,
/// potentially recomputing the order of the parent block.
void updateOrderIfNecessary();
/// Returns true if this operation has a valid order.
bool hasValidOrder() { return orderIndex != kInvalidOrderIdx; }
private:
Operation(Location location, OperationName name, ArrayRef<Type> resultTypes,
unsigned numSuccessors, unsigned numRegions,
const NamedAttributeList &attributes);
// Operations are deleted through the destroy() member because they are
// allocated with malloc.
~Operation();
/// Returns the operand storage object.
detail::OperandStorage &getOperandStorage() {
return *getTrailingObjects<detail::OperandStorage>();
}
/// Returns a raw pointer to the storage for the given trailing result. The
/// given result number should be 0-based relative to the trailing results,
/// and not all of the results of the operation. This method should generally
/// only be used by the 'Value' classes.
detail::TrailingOpResult *getTrailingResult(unsigned trailingResultNumber) {
return getTrailingObjects<detail::TrailingOpResult>() +
trailingResultNumber;
}
/// Provide a 'getParent' method for ilist_node_with_parent methods.
/// We mark it as a const function because ilist_node_with_parent specifically
/// requires a 'getParent() const' method. Once ilist_node removes this
/// constraint, we should drop the const to fit the rest of the MLIR const
/// model.
Block *getParent() const { return block; }
/// The operation block that contains this operation.
Block *block = nullptr;
/// This holds information about the source location the operation was defined
/// or derived from.
Location location;
/// Relative order of this operation in its parent block. Used for
/// O(1) local dominance checks between operations.
mutable unsigned orderIndex = 0;
const unsigned numSuccs;
const unsigned numRegions : 31;
/// This holds the result types of the operation. There are three different
/// states recorded here:
/// - 0 results : The type below is null.
/// - 1 result : The single result type is held here.
/// - N results : The type here is a tuple holding the result types.
/// Note: We steal a bit for 'hasSingleResult' from somewhere else so that we
/// can use 'resultType` in an ArrayRef<Type>.
bool hasSingleResult : 1;
Type resultType;
/// This holds the name of the operation.
OperationName name;
/// This holds general named attributes for the operation.
NamedAttributeList attrs;
// allow ilist_traits access to 'block' field.
friend struct llvm::ilist_traits<Operation>;
// allow block to access the 'orderIndex' field.
friend class Block;
// allow value to access the 'getTrailingResult' method.
friend class Value;
// allow ilist_node_with_parent to access the 'getParent' method.
friend class llvm::ilist_node_with_parent<Operation, Block>;
// This stuff is used by the TrailingObjects template.
friend llvm::TrailingObjects<Operation, detail::TrailingOpResult,
BlockOperand, Region, detail::OperandStorage>;
size_t numTrailingObjects(OverloadToken<detail::TrailingOpResult>) const {
return OpResult::getNumTrailing(
const_cast<Operation *>(this)->getNumResults());
}
size_t numTrailingObjects(OverloadToken<BlockOperand>) const {
return numSuccs;
}
size_t numTrailingObjects(OverloadToken<Region>) const { return numRegions; }
};
inline raw_ostream &operator<<(raw_ostream &os, Operation &op) {
op.print(os);
return os;
}
} // end namespace mlir
namespace llvm {
/// Provide isa functionality for operation casts.
template <typename T> struct isa_impl<T, ::mlir::Operation> {
static inline bool doit(const ::mlir::Operation &op) {
return T::classof(const_cast<::mlir::Operation *>(&op));
}
};
/// Provide specializations for operation casts as the resulting T is value
/// typed.
template <typename T> struct cast_retty_impl<T, ::mlir::Operation *> {
using ret_type = T;
};
template <typename T> struct cast_retty_impl<T, ::mlir::Operation> {
using ret_type = T;
};
template <class T>
struct cast_convert_val<T, ::mlir::Operation, ::mlir::Operation> {
static T doit(::mlir::Operation &val) { return T(&val); }
};
template <class T>
struct cast_convert_val<T, ::mlir::Operation *, ::mlir::Operation *> {
static T doit(::mlir::Operation *val) { return T(val); }
};
} // end namespace llvm
#endif // MLIR_IR_OPERATION_H